1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1AllocationContext.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1HeapTransition.hpp"
  38 #include "gc/g1/g1HeapVerifier.hpp"
  39 #include "gc/g1/g1HRPrinter.hpp"
  40 #include "gc/g1/g1InCSetState.hpp"
  41 #include "gc/g1/g1MonitoringSupport.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/hSpaceCounters.hpp"
  46 #include "gc/g1/heapRegionManager.hpp"
  47 #include "gc/g1/heapRegionSet.hpp"
  48 #include "gc/shared/barrierSet.hpp"
  49 #include "gc/shared/collectedHeap.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "memory/memRegion.hpp"
  53 #include "utilities/stack.hpp"
  54 
  55 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  56 // It uses the "Garbage First" heap organization and algorithm, which
  57 // may combine concurrent marking with parallel, incremental compaction of
  58 // heap subsets that will yield large amounts of garbage.
  59 
  60 // Forward declarations
  61 class HeapRegion;
  62 class HRRSCleanupTask;
  63 class GenerationSpec;
  64 class G1ParScanThreadState;
  65 class G1ParScanThreadStateSet;
  66 class G1ParScanThreadState;
  67 class ObjectClosure;
  68 class SpaceClosure;
  69 class CompactibleSpaceClosure;
  70 class Space;
  71 class G1CollectionSet;
  72 class G1CollectorPolicy;
  73 class G1Policy;
  74 class G1HotCardCache;
  75 class G1RemSet;
  76 class HeapRegionRemSetIterator;
  77 class G1ConcurrentMark;
  78 class ConcurrentMarkThread;
  79 class ConcurrentG1Refine;
  80 class GenerationCounters;
  81 class STWGCTimer;
  82 class G1NewTracer;
  83 class EvacuationFailedInfo;
  84 class nmethod;
  85 class Ticks;
  86 class WorkGang;
  87 class G1Allocator;
  88 class G1ArchiveAllocator;
  89 class G1FullGCScope;
  90 class G1HeapVerifier;
  91 class G1HeapSizingPolicy;
  92 class G1HeapSummary;
  93 class G1EvacSummary;
  94 
  95 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  96 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  97 
  98 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  99 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 100 
 101 // The G1 STW is alive closure.
 102 // An instance is embedded into the G1CH and used as the
 103 // (optional) _is_alive_non_header closure in the STW
 104 // reference processor. It is also extensively used during
 105 // reference processing during STW evacuation pauses.
 106 class G1STWIsAliveClosure: public BoolObjectClosure {
 107   G1CollectedHeap* _g1;
 108 public:
 109   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 110   bool do_object_b(oop p);
 111 };
 112 
 113 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 114  private:
 115   void reset_from_card_cache(uint start_idx, size_t num_regions);
 116  public:
 117   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 118 };
 119 
 120 class G1CollectedHeap : public CollectedHeap {
 121   friend class G1FreeCollectionSetTask;
 122   friend class VM_CollectForMetadataAllocation;
 123   friend class VM_G1CollectForAllocation;
 124   friend class VM_G1CollectFull;
 125   friend class VM_G1IncCollectionPause;
 126   friend class VMStructs;
 127   friend class MutatorAllocRegion;
 128   friend class G1GCAllocRegion;
 129   friend class G1HeapVerifier;
 130 
 131   // Closures used in implementation.
 132   friend class G1ParScanThreadState;
 133   friend class G1ParScanThreadStateSet;
 134   friend class G1ParTask;
 135   friend class G1PLABAllocator;
 136   friend class G1PrepareCompactClosure;
 137 
 138   // Other related classes.
 139   friend class HeapRegionClaimer;
 140 
 141   // Testing classes.
 142   friend class G1CheckCSetFastTableClosure;
 143 
 144 private:
 145   WorkGang* _workers;
 146   G1CollectorPolicy* _collector_policy;
 147 
 148   static size_t _humongous_object_threshold_in_words;
 149 
 150   // The secondary free list which contains regions that have been
 151   // freed up during the cleanup process. This will be appended to
 152   // the master free list when appropriate.
 153   FreeRegionList _secondary_free_list;
 154 
 155   // It keeps track of the old regions.
 156   HeapRegionSet _old_set;
 157 
 158   // It keeps track of the humongous regions.
 159   HeapRegionSet _humongous_set;
 160 
 161   void eagerly_reclaim_humongous_regions();
 162   // Start a new incremental collection set for the next pause.
 163   void start_new_collection_set();
 164 
 165   // The number of regions we could create by expansion.
 166   uint _expansion_regions;
 167 
 168   // The block offset table for the G1 heap.
 169   G1BlockOffsetTable* _bot;
 170 
 171   // Tears down the region sets / lists so that they are empty and the
 172   // regions on the heap do not belong to a region set / list. The
 173   // only exception is the humongous set which we leave unaltered. If
 174   // free_list_only is true, it will only tear down the master free
 175   // list. It is called before a Full GC (free_list_only == false) or
 176   // before heap shrinking (free_list_only == true).
 177   void tear_down_region_sets(bool free_list_only);
 178 
 179   // Rebuilds the region sets / lists so that they are repopulated to
 180   // reflect the contents of the heap. The only exception is the
 181   // humongous set which was not torn down in the first place. If
 182   // free_list_only is true, it will only rebuild the master free
 183   // list. It is called after a Full GC (free_list_only == false) or
 184   // after heap shrinking (free_list_only == true).
 185   void rebuild_region_sets(bool free_list_only);
 186 
 187   // Callback for region mapping changed events.
 188   G1RegionMappingChangedListener _listener;
 189 
 190   // The sequence of all heap regions in the heap.
 191   HeapRegionManager _hrm;
 192 
 193   // Manages all allocations with regions except humongous object allocations.
 194   G1Allocator* _allocator;
 195 
 196   // Manages all heap verification.
 197   G1HeapVerifier* _verifier;
 198 
 199   // Outside of GC pauses, the number of bytes used in all regions other
 200   // than the current allocation region(s).
 201   size_t _summary_bytes_used;
 202 
 203   void increase_used(size_t bytes);
 204   void decrease_used(size_t bytes);
 205 
 206   void set_used(size_t bytes);
 207 
 208   // Class that handles archive allocation ranges.
 209   G1ArchiveAllocator* _archive_allocator;
 210 
 211   // Statistics for each allocation context
 212   AllocationContextStats _allocation_context_stats;
 213 
 214   // GC allocation statistics policy for survivors.
 215   G1EvacStats _survivor_evac_stats;
 216 
 217   // GC allocation statistics policy for tenured objects.
 218   G1EvacStats _old_evac_stats;
 219 
 220   // It specifies whether we should attempt to expand the heap after a
 221   // region allocation failure. If heap expansion fails we set this to
 222   // false so that we don't re-attempt the heap expansion (it's likely
 223   // that subsequent expansion attempts will also fail if one fails).
 224   // Currently, it is only consulted during GC and it's reset at the
 225   // start of each GC.
 226   bool _expand_heap_after_alloc_failure;
 227 
 228   // Helper for monitoring and management support.
 229   G1MonitoringSupport* _g1mm;
 230 
 231   // Records whether the region at the given index is (still) a
 232   // candidate for eager reclaim.  Only valid for humongous start
 233   // regions; other regions have unspecified values.  Humongous start
 234   // regions are initialized at start of collection pause, with
 235   // candidates removed from the set as they are found reachable from
 236   // roots or the young generation.
 237   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 238    protected:
 239     bool default_value() const { return false; }
 240    public:
 241     void clear() { G1BiasedMappedArray<bool>::clear(); }
 242     void set_candidate(uint region, bool value) {
 243       set_by_index(region, value);
 244     }
 245     bool is_candidate(uint region) {
 246       return get_by_index(region);
 247     }
 248   };
 249 
 250   HumongousReclaimCandidates _humongous_reclaim_candidates;
 251   // Stores whether during humongous object registration we found candidate regions.
 252   // If not, we can skip a few steps.
 253   bool _has_humongous_reclaim_candidates;
 254 
 255   volatile uint _gc_time_stamp;
 256 
 257   G1HRPrinter _hr_printer;
 258 
 259   // It decides whether an explicit GC should start a concurrent cycle
 260   // instead of doing a STW GC. Currently, a concurrent cycle is
 261   // explicitly started if:
 262   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 263   // (b) cause == _g1_humongous_allocation
 264   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 265   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 266   // (e) cause == _update_allocation_context_stats_inc
 267   // (f) cause == _wb_conc_mark
 268   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 269 
 270   // indicates whether we are in young or mixed GC mode
 271   G1CollectorState _collector_state;
 272 
 273   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 274   // concurrent cycles) we have started.
 275   volatile uint _old_marking_cycles_started;
 276 
 277   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 278   // concurrent cycles) we have completed.
 279   volatile uint _old_marking_cycles_completed;
 280 
 281   // This is a non-product method that is helpful for testing. It is
 282   // called at the end of a GC and artificially expands the heap by
 283   // allocating a number of dead regions. This way we can induce very
 284   // frequent marking cycles and stress the cleanup / concurrent
 285   // cleanup code more (as all the regions that will be allocated by
 286   // this method will be found dead by the marking cycle).
 287   void allocate_dummy_regions() PRODUCT_RETURN;
 288 
 289   // Clear RSets after a compaction. It also resets the GC time stamps.
 290   void clear_rsets_post_compaction();
 291 
 292   // If the HR printer is active, dump the state of the regions in the
 293   // heap after a compaction.
 294   void print_hrm_post_compaction();
 295 
 296   // Create a memory mapper for auxiliary data structures of the given size and
 297   // translation factor.
 298   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 299                                                          size_t size,
 300                                                          size_t translation_factor);
 301 
 302   static G1Policy* create_g1_policy(STWGCTimer* gc_timer);
 303 
 304   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 305 
 306   void process_weak_jni_handles();
 307 
 308   // These are macros so that, if the assert fires, we get the correct
 309   // line number, file, etc.
 310 
 311 #define heap_locking_asserts_params(_extra_message_)                          \
 312   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 313   (_extra_message_),                                                          \
 314   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 315   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 316   BOOL_TO_STR(Thread::current()->is_VM_thread())
 317 
 318 #define assert_heap_locked()                                                  \
 319   do {                                                                        \
 320     assert(Heap_lock->owned_by_self(),                                        \
 321            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 322   } while (0)
 323 
 324 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 325   do {                                                                        \
 326     assert(Heap_lock->owned_by_self() ||                                      \
 327            (SafepointSynchronize::is_at_safepoint() &&                        \
 328              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 329            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 330                                         "should be at a safepoint"));         \
 331   } while (0)
 332 
 333 #define assert_heap_locked_and_not_at_safepoint()                             \
 334   do {                                                                        \
 335     assert(Heap_lock->owned_by_self() &&                                      \
 336                                     !SafepointSynchronize::is_at_safepoint(), \
 337           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 338                                        "should not be at a safepoint"));      \
 339   } while (0)
 340 
 341 #define assert_heap_not_locked()                                              \
 342   do {                                                                        \
 343     assert(!Heap_lock->owned_by_self(),                                       \
 344         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 345   } while (0)
 346 
 347 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 348   do {                                                                        \
 349     assert(!Heap_lock->owned_by_self() &&                                     \
 350                                     !SafepointSynchronize::is_at_safepoint(), \
 351       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 352                                    "should not be at a safepoint"));          \
 353   } while (0)
 354 
 355 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 356   do {                                                                        \
 357     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 358               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 359            heap_locking_asserts_params("should be at a safepoint"));          \
 360   } while (0)
 361 
 362 #define assert_not_at_safepoint()                                             \
 363   do {                                                                        \
 364     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 365            heap_locking_asserts_params("should not be at a safepoint"));      \
 366   } while (0)
 367 
 368 protected:
 369 
 370   // The young region list.
 371   G1EdenRegions _eden;
 372   G1SurvivorRegions _survivor;
 373 
 374   STWGCTimer* _gc_timer_stw;
 375 
 376   G1NewTracer* _gc_tracer_stw;
 377 
 378   // The current policy object for the collector.
 379   G1Policy* _g1_policy;
 380   G1HeapSizingPolicy* _heap_sizing_policy;
 381 
 382   G1CollectionSet _collection_set;
 383 
 384   // This is the second level of trying to allocate a new region. If
 385   // new_region() didn't find a region on the free_list, this call will
 386   // check whether there's anything available on the
 387   // secondary_free_list and/or wait for more regions to appear on
 388   // that list, if _free_regions_coming is set.
 389   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 390 
 391   // Try to allocate a single non-humongous HeapRegion sufficient for
 392   // an allocation of the given word_size. If do_expand is true,
 393   // attempt to expand the heap if necessary to satisfy the allocation
 394   // request. If the region is to be used as an old region or for a
 395   // humongous object, set is_old to true. If not, to false.
 396   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 397 
 398   // Initialize a contiguous set of free regions of length num_regions
 399   // and starting at index first so that they appear as a single
 400   // humongous region.
 401   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 402                                                       uint num_regions,
 403                                                       size_t word_size,
 404                                                       AllocationContext_t context);
 405 
 406   // Attempt to allocate a humongous object of the given size. Return
 407   // NULL if unsuccessful.
 408   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 409 
 410   // The following two methods, allocate_new_tlab() and
 411   // mem_allocate(), are the two main entry points from the runtime
 412   // into the G1's allocation routines. They have the following
 413   // assumptions:
 414   //
 415   // * They should both be called outside safepoints.
 416   //
 417   // * They should both be called without holding the Heap_lock.
 418   //
 419   // * All allocation requests for new TLABs should go to
 420   //   allocate_new_tlab().
 421   //
 422   // * All non-TLAB allocation requests should go to mem_allocate().
 423   //
 424   // * If either call cannot satisfy the allocation request using the
 425   //   current allocating region, they will try to get a new one. If
 426   //   this fails, they will attempt to do an evacuation pause and
 427   //   retry the allocation.
 428   //
 429   // * If all allocation attempts fail, even after trying to schedule
 430   //   an evacuation pause, allocate_new_tlab() will return NULL,
 431   //   whereas mem_allocate() will attempt a heap expansion and/or
 432   //   schedule a Full GC.
 433   //
 434   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 435   //   should never be called with word_size being humongous. All
 436   //   humongous allocation requests should go to mem_allocate() which
 437   //   will satisfy them with a special path.
 438 
 439   virtual HeapWord* allocate_new_tlab(size_t word_size);
 440 
 441   virtual HeapWord* mem_allocate(size_t word_size,
 442                                  bool*  gc_overhead_limit_was_exceeded);
 443 
 444   // The following three methods take a gc_count_before_ret
 445   // parameter which is used to return the GC count if the method
 446   // returns NULL. Given that we are required to read the GC count
 447   // while holding the Heap_lock, and these paths will take the
 448   // Heap_lock at some point, it's easier to get them to read the GC
 449   // count while holding the Heap_lock before they return NULL instead
 450   // of the caller (namely: mem_allocate()) having to also take the
 451   // Heap_lock just to read the GC count.
 452 
 453   // First-level mutator allocation attempt: try to allocate out of
 454   // the mutator alloc region without taking the Heap_lock. This
 455   // should only be used for non-humongous allocations.
 456   inline HeapWord* attempt_allocation(size_t word_size,
 457                                       uint* gc_count_before_ret,
 458                                       uint* gclocker_retry_count_ret);
 459 
 460   // Second-level mutator allocation attempt: take the Heap_lock and
 461   // retry the allocation attempt, potentially scheduling a GC
 462   // pause. This should only be used for non-humongous allocations.
 463   HeapWord* attempt_allocation_slow(size_t word_size,
 464                                     AllocationContext_t context,
 465                                     uint* gc_count_before_ret,
 466                                     uint* gclocker_retry_count_ret);
 467 
 468   // Takes the Heap_lock and attempts a humongous allocation. It can
 469   // potentially schedule a GC pause.
 470   HeapWord* attempt_allocation_humongous(size_t word_size,
 471                                          uint* gc_count_before_ret,
 472                                          uint* gclocker_retry_count_ret);
 473 
 474   // Allocation attempt that should be called during safepoints (e.g.,
 475   // at the end of a successful GC). expect_null_mutator_alloc_region
 476   // specifies whether the mutator alloc region is expected to be NULL
 477   // or not.
 478   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 479                                             AllocationContext_t context,
 480                                             bool expect_null_mutator_alloc_region);
 481 
 482   // These methods are the "callbacks" from the G1AllocRegion class.
 483 
 484   // For mutator alloc regions.
 485   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 486   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 487                                    size_t allocated_bytes);
 488 
 489   // For GC alloc regions.
 490   bool has_more_regions(InCSetState dest);
 491   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 492   void retire_gc_alloc_region(HeapRegion* alloc_region,
 493                               size_t allocated_bytes, InCSetState dest);
 494 
 495   // - if explicit_gc is true, the GC is for a System.gc() etc,
 496   //   otherwise it's for a failed allocation.
 497   // - if clear_all_soft_refs is true, all soft references should be
 498   //   cleared during the GC.
 499   // - it returns false if it is unable to do the collection due to the
 500   //   GC locker being active, true otherwise.
 501   bool do_full_collection(bool explicit_gc,
 502                           bool clear_all_soft_refs);
 503 
 504   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 505   virtual void do_full_collection(bool clear_all_soft_refs);
 506 
 507   // Resize the heap if necessary after a full collection.
 508   void resize_if_necessary_after_full_collection();
 509 
 510   // Callback from VM_G1CollectForAllocation operation.
 511   // This function does everything necessary/possible to satisfy a
 512   // failed allocation request (including collection, expansion, etc.)
 513   HeapWord* satisfy_failed_allocation(size_t word_size,
 514                                       AllocationContext_t context,
 515                                       bool* succeeded);
 516 private:
 517   // Internal helpers used during full GC to split it up to
 518   // increase readability.
 519   void do_full_collection_inner(G1FullGCScope* scope);
 520   void abort_concurrent_cycle();
 521   void verify_before_full_collection(bool explicit_gc);
 522   void prepare_heap_for_full_collection();
 523   void prepare_heap_for_mutators();
 524   void abort_refinement();
 525   void verify_after_full_collection();
 526   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 527 
 528   // Helper method for satisfy_failed_allocation()
 529   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 530                                              AllocationContext_t context,
 531                                              bool do_gc,
 532                                              bool clear_all_soft_refs,
 533                                              bool expect_null_mutator_alloc_region,
 534                                              bool* gc_succeeded);
 535 
 536 protected:
 537   // Attempting to expand the heap sufficiently
 538   // to support an allocation of the given "word_size".  If
 539   // successful, perform the allocation and return the address of the
 540   // allocated block, or else "NULL".
 541   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 542 
 543   // Preserve any referents discovered by concurrent marking that have not yet been
 544   // copied by the STW pause.
 545   void preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states);
 546   // Process any reference objects discovered during
 547   // an incremental evacuation pause.
 548   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 549 
 550   // Enqueue any remaining discovered references
 551   // after processing.
 552   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 553 
 554   // Merges the information gathered on a per-thread basis for all worker threads
 555   // during GC into global variables.
 556   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 557 public:
 558   WorkGang* workers() const { return _workers; }
 559 
 560   G1Allocator* allocator() {
 561     return _allocator;
 562   }
 563 
 564   G1HeapVerifier* verifier() {
 565     return _verifier;
 566   }
 567 
 568   G1MonitoringSupport* g1mm() {
 569     assert(_g1mm != NULL, "should have been initialized");
 570     return _g1mm;
 571   }
 572 
 573   // Expand the garbage-first heap by at least the given size (in bytes!).
 574   // Returns true if the heap was expanded by the requested amount;
 575   // false otherwise.
 576   // (Rounds up to a HeapRegion boundary.)
 577   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 578 
 579   // Returns the PLAB statistics for a given destination.
 580   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 581 
 582   // Determines PLAB size for a given destination.
 583   inline size_t desired_plab_sz(InCSetState dest);
 584 
 585   inline AllocationContextStats& allocation_context_stats();
 586 
 587   // Do anything common to GC's.
 588   void gc_prologue(bool full);
 589   void gc_epilogue(bool full);
 590 
 591   // Modify the reclaim candidate set and test for presence.
 592   // These are only valid for starts_humongous regions.
 593   inline void set_humongous_reclaim_candidate(uint region, bool value);
 594   inline bool is_humongous_reclaim_candidate(uint region);
 595 
 596   // Remove from the reclaim candidate set.  Also remove from the
 597   // collection set so that later encounters avoid the slow path.
 598   inline void set_humongous_is_live(oop obj);
 599 
 600   // Register the given region to be part of the collection set.
 601   inline void register_humongous_region_with_cset(uint index);
 602   // Register regions with humongous objects (actually on the start region) in
 603   // the in_cset_fast_test table.
 604   void register_humongous_regions_with_cset();
 605   // We register a region with the fast "in collection set" test. We
 606   // simply set to true the array slot corresponding to this region.
 607   void register_young_region_with_cset(HeapRegion* r) {
 608     _in_cset_fast_test.set_in_young(r->hrm_index());
 609   }
 610   void register_old_region_with_cset(HeapRegion* r) {
 611     _in_cset_fast_test.set_in_old(r->hrm_index());
 612   }
 613   inline void register_ext_region_with_cset(HeapRegion* r) {
 614     _in_cset_fast_test.set_ext(r->hrm_index());
 615   }
 616   void clear_in_cset(const HeapRegion* hr) {
 617     _in_cset_fast_test.clear(hr);
 618   }
 619 
 620   void clear_cset_fast_test() {
 621     _in_cset_fast_test.clear();
 622   }
 623 
 624   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 625 
 626   // This is called at the start of either a concurrent cycle or a Full
 627   // GC to update the number of old marking cycles started.
 628   void increment_old_marking_cycles_started();
 629 
 630   // This is called at the end of either a concurrent cycle or a Full
 631   // GC to update the number of old marking cycles completed. Those two
 632   // can happen in a nested fashion, i.e., we start a concurrent
 633   // cycle, a Full GC happens half-way through it which ends first,
 634   // and then the cycle notices that a Full GC happened and ends
 635   // too. The concurrent parameter is a boolean to help us do a bit
 636   // tighter consistency checking in the method. If concurrent is
 637   // false, the caller is the inner caller in the nesting (i.e., the
 638   // Full GC). If concurrent is true, the caller is the outer caller
 639   // in this nesting (i.e., the concurrent cycle). Further nesting is
 640   // not currently supported. The end of this call also notifies
 641   // the FullGCCount_lock in case a Java thread is waiting for a full
 642   // GC to happen (e.g., it called System.gc() with
 643   // +ExplicitGCInvokesConcurrent).
 644   void increment_old_marking_cycles_completed(bool concurrent);
 645 
 646   uint old_marking_cycles_completed() {
 647     return _old_marking_cycles_completed;
 648   }
 649 
 650   G1HRPrinter* hr_printer() { return &_hr_printer; }
 651 
 652   // Allocates a new heap region instance.
 653   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 654 
 655   // Allocate the highest free region in the reserved heap. This will commit
 656   // regions as necessary.
 657   HeapRegion* alloc_highest_free_region();
 658 
 659   // Frees a non-humongous region by initializing its contents and
 660   // adding it to the free list that's passed as a parameter (this is
 661   // usually a local list which will be appended to the master free
 662   // list later). The used bytes of freed regions are accumulated in
 663   // pre_used. If skip_remset is true, the region's RSet will not be freed
 664   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 665   // be freed up. The assumption is that this will be done later.
 666   // The locked parameter indicates if the caller has already taken
 667   // care of proper synchronization. This may allow some optimizations.
 668   void free_region(HeapRegion* hr,
 669                    FreeRegionList* free_list,
 670                    bool skip_remset,
 671                    bool skip_hot_card_cache = false,
 672                    bool locked = false);
 673 
 674   // It dirties the cards that cover the block so that the post
 675   // write barrier never queues anything when updating objects on this
 676   // block. It is assumed (and in fact we assert) that the block
 677   // belongs to a young region.
 678   inline void dirty_young_block(HeapWord* start, size_t word_size);
 679 
 680   // Frees a humongous region by collapsing it into individual regions
 681   // and calling free_region() for each of them. The freed regions
 682   // will be added to the free list that's passed as a parameter (this
 683   // is usually a local list which will be appended to the master free
 684   // list later). The used bytes of freed regions are accumulated in
 685   // pre_used. If skip_remset is true, the region's RSet will not be freed
 686   // up. The assumption is that this will be done later.
 687   void free_humongous_region(HeapRegion* hr,
 688                              FreeRegionList* free_list,
 689                              bool skip_remset);
 690 
 691   // Facility for allocating in 'archive' regions in high heap memory and
 692   // recording the allocated ranges. These should all be called from the
 693   // VM thread at safepoints, without the heap lock held. They can be used
 694   // to create and archive a set of heap regions which can be mapped at the
 695   // same fixed addresses in a subsequent JVM invocation.
 696   void begin_archive_alloc_range(bool open = false);
 697 
 698   // Check if the requested size would be too large for an archive allocation.
 699   bool is_archive_alloc_too_large(size_t word_size);
 700 
 701   // Allocate memory of the requested size from the archive region. This will
 702   // return NULL if the size is too large or if no memory is available. It
 703   // does not trigger a garbage collection.
 704   HeapWord* archive_mem_allocate(size_t word_size);
 705 
 706   // Optionally aligns the end address and returns the allocated ranges in
 707   // an array of MemRegions in order of ascending addresses.
 708   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 709                                size_t end_alignment_in_bytes = 0);
 710 
 711   // Facility for allocating a fixed range within the heap and marking
 712   // the containing regions as 'archive'. For use at JVM init time, when the
 713   // caller may mmap archived heap data at the specified range(s).
 714   // Verify that the MemRegions specified in the argument array are within the
 715   // reserved heap.
 716   bool check_archive_addresses(MemRegion* range, size_t count);
 717 
 718   // Commit the appropriate G1 regions containing the specified MemRegions
 719   // and mark them as 'archive' regions. The regions in the array must be
 720   // non-overlapping and in order of ascending address.
 721   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 722 
 723   // Insert any required filler objects in the G1 regions around the specified
 724   // ranges to make the regions parseable. This must be called after
 725   // alloc_archive_regions, and after class loading has occurred.
 726   void fill_archive_regions(MemRegion* range, size_t count);
 727 
 728   // For each of the specified MemRegions, uncommit the containing G1 regions
 729   // which had been allocated by alloc_archive_regions. This should be called
 730   // rather than fill_archive_regions at JVM init time if the archive file
 731   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 732   void dealloc_archive_regions(MemRegion* range, size_t count);
 733 
 734 protected:
 735 
 736   // Shrink the garbage-first heap by at most the given size (in bytes!).
 737   // (Rounds down to a HeapRegion boundary.)
 738   virtual void shrink(size_t expand_bytes);
 739   void shrink_helper(size_t expand_bytes);
 740 
 741   #if TASKQUEUE_STATS
 742   static void print_taskqueue_stats_hdr(outputStream* const st);
 743   void print_taskqueue_stats() const;
 744   void reset_taskqueue_stats();
 745   #endif // TASKQUEUE_STATS
 746 
 747   // Schedule the VM operation that will do an evacuation pause to
 748   // satisfy an allocation request of word_size. *succeeded will
 749   // return whether the VM operation was successful (it did do an
 750   // evacuation pause) or not (another thread beat us to it or the GC
 751   // locker was active). Given that we should not be holding the
 752   // Heap_lock when we enter this method, we will pass the
 753   // gc_count_before (i.e., total_collections()) as a parameter since
 754   // it has to be read while holding the Heap_lock. Currently, both
 755   // methods that call do_collection_pause() release the Heap_lock
 756   // before the call, so it's easy to read gc_count_before just before.
 757   HeapWord* do_collection_pause(size_t         word_size,
 758                                 uint           gc_count_before,
 759                                 bool*          succeeded,
 760                                 GCCause::Cause gc_cause);
 761 
 762   void wait_for_root_region_scanning();
 763 
 764   // The guts of the incremental collection pause, executed by the vm
 765   // thread. It returns false if it is unable to do the collection due
 766   // to the GC locker being active, true otherwise
 767   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 768 
 769   // Actually do the work of evacuating the collection set.
 770   virtual void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 771 
 772   void pre_evacuate_collection_set();
 773   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 774 
 775   // Print the header for the per-thread termination statistics.
 776   static void print_termination_stats_hdr();
 777   // Print actual per-thread termination statistics.
 778   void print_termination_stats(uint worker_id,
 779                                double elapsed_ms,
 780                                double strong_roots_ms,
 781                                double term_ms,
 782                                size_t term_attempts,
 783                                size_t alloc_buffer_waste,
 784                                size_t undo_waste) const;
 785   // Update object copying statistics.
 786   void record_obj_copy_mem_stats();
 787 
 788   // The hot card cache for remembered set insertion optimization.
 789   G1HotCardCache* _hot_card_cache;
 790 
 791   // The g1 remembered set of the heap.
 792   G1RemSet* _g1_rem_set;
 793 
 794   // A set of cards that cover the objects for which the Rsets should be updated
 795   // concurrently after the collection.
 796   DirtyCardQueueSet _dirty_card_queue_set;
 797 
 798   // After a collection pause, convert the regions in the collection set into free
 799   // regions.
 800   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 801 
 802   // Abandon the current collection set without recording policy
 803   // statistics or updating free lists.
 804   void abandon_collection_set(G1CollectionSet* collection_set);
 805 
 806   // The concurrent marker (and the thread it runs in.)
 807   G1ConcurrentMark* _cm;
 808   ConcurrentMarkThread* _cmThread;
 809 
 810   // The concurrent refiner.
 811   ConcurrentG1Refine* _cg1r;
 812 
 813   // The parallel task queues
 814   RefToScanQueueSet *_task_queues;
 815 
 816   // True iff a evacuation has failed in the current collection.
 817   bool _evacuation_failed;
 818 
 819   EvacuationFailedInfo* _evacuation_failed_info_array;
 820 
 821   // Failed evacuations cause some logical from-space objects to have
 822   // forwarding pointers to themselves.  Reset them.
 823   void remove_self_forwarding_pointers();
 824 
 825   // Restore the objects in the regions in the collection set after an
 826   // evacuation failure.
 827   void restore_after_evac_failure();
 828 
 829   PreservedMarksSet _preserved_marks_set;
 830 
 831   // Preserve the mark of "obj", if necessary, in preparation for its mark
 832   // word being overwritten with a self-forwarding-pointer.
 833   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 834 
 835 #ifndef PRODUCT
 836   // Support for forcing evacuation failures. Analogous to
 837   // PromotionFailureALot for the other collectors.
 838 
 839   // Records whether G1EvacuationFailureALot should be in effect
 840   // for the current GC
 841   bool _evacuation_failure_alot_for_current_gc;
 842 
 843   // Used to record the GC number for interval checking when
 844   // determining whether G1EvaucationFailureALot is in effect
 845   // for the current GC.
 846   size_t _evacuation_failure_alot_gc_number;
 847 
 848   // Count of the number of evacuations between failures.
 849   volatile size_t _evacuation_failure_alot_count;
 850 
 851   // Set whether G1EvacuationFailureALot should be in effect
 852   // for the current GC (based upon the type of GC and which
 853   // command line flags are set);
 854   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 855                                                   bool during_initial_mark,
 856                                                   bool during_marking);
 857 
 858   inline void set_evacuation_failure_alot_for_current_gc();
 859 
 860   // Return true if it's time to cause an evacuation failure.
 861   inline bool evacuation_should_fail();
 862 
 863   // Reset the G1EvacuationFailureALot counters.  Should be called at
 864   // the end of an evacuation pause in which an evacuation failure occurred.
 865   inline void reset_evacuation_should_fail();
 866 #endif // !PRODUCT
 867 
 868   // ("Weak") Reference processing support.
 869   //
 870   // G1 has 2 instances of the reference processor class. One
 871   // (_ref_processor_cm) handles reference object discovery
 872   // and subsequent processing during concurrent marking cycles.
 873   //
 874   // The other (_ref_processor_stw) handles reference object
 875   // discovery and processing during full GCs and incremental
 876   // evacuation pauses.
 877   //
 878   // During an incremental pause, reference discovery will be
 879   // temporarily disabled for _ref_processor_cm and will be
 880   // enabled for _ref_processor_stw. At the end of the evacuation
 881   // pause references discovered by _ref_processor_stw will be
 882   // processed and discovery will be disabled. The previous
 883   // setting for reference object discovery for _ref_processor_cm
 884   // will be re-instated.
 885   //
 886   // At the start of marking:
 887   //  * Discovery by the CM ref processor is verified to be inactive
 888   //    and it's discovered lists are empty.
 889   //  * Discovery by the CM ref processor is then enabled.
 890   //
 891   // At the end of marking:
 892   //  * Any references on the CM ref processor's discovered
 893   //    lists are processed (possibly MT).
 894   //
 895   // At the start of full GC we:
 896   //  * Disable discovery by the CM ref processor and
 897   //    empty CM ref processor's discovered lists
 898   //    (without processing any entries).
 899   //  * Verify that the STW ref processor is inactive and it's
 900   //    discovered lists are empty.
 901   //  * Temporarily set STW ref processor discovery as single threaded.
 902   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 903   //    field.
 904   //  * Finally enable discovery by the STW ref processor.
 905   //
 906   // The STW ref processor is used to record any discovered
 907   // references during the full GC.
 908   //
 909   // At the end of a full GC we:
 910   //  * Enqueue any reference objects discovered by the STW ref processor
 911   //    that have non-live referents. This has the side-effect of
 912   //    making the STW ref processor inactive by disabling discovery.
 913   //  * Verify that the CM ref processor is still inactive
 914   //    and no references have been placed on it's discovered
 915   //    lists (also checked as a precondition during initial marking).
 916 
 917   // The (stw) reference processor...
 918   ReferenceProcessor* _ref_processor_stw;
 919 
 920   // During reference object discovery, the _is_alive_non_header
 921   // closure (if non-null) is applied to the referent object to
 922   // determine whether the referent is live. If so then the
 923   // reference object does not need to be 'discovered' and can
 924   // be treated as a regular oop. This has the benefit of reducing
 925   // the number of 'discovered' reference objects that need to
 926   // be processed.
 927   //
 928   // Instance of the is_alive closure for embedding into the
 929   // STW reference processor as the _is_alive_non_header field.
 930   // Supplying a value for the _is_alive_non_header field is
 931   // optional but doing so prevents unnecessary additions to
 932   // the discovered lists during reference discovery.
 933   G1STWIsAliveClosure _is_alive_closure_stw;
 934 
 935   // The (concurrent marking) reference processor...
 936   ReferenceProcessor* _ref_processor_cm;
 937 
 938   // Instance of the concurrent mark is_alive closure for embedding
 939   // into the Concurrent Marking reference processor as the
 940   // _is_alive_non_header field. Supplying a value for the
 941   // _is_alive_non_header field is optional but doing so prevents
 942   // unnecessary additions to the discovered lists during reference
 943   // discovery.
 944   G1CMIsAliveClosure _is_alive_closure_cm;
 945 
 946   volatile bool _free_regions_coming;
 947 
 948 public:
 949 
 950   RefToScanQueue *task_queue(uint i) const;
 951 
 952   uint num_task_queues() const;
 953 
 954   // A set of cards where updates happened during the GC
 955   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 956 
 957   // Create a G1CollectedHeap with the specified policy.
 958   // Must call the initialize method afterwards.
 959   // May not return if something goes wrong.
 960   G1CollectedHeap(G1CollectorPolicy* policy);
 961 
 962 private:
 963   jint initialize_concurrent_refinement();
 964 public:
 965   // Initialize the G1CollectedHeap to have the initial and
 966   // maximum sizes and remembered and barrier sets
 967   // specified by the policy object.
 968   jint initialize();
 969 
 970   virtual void stop();
 971 
 972   // Return the (conservative) maximum heap alignment for any G1 heap
 973   static size_t conservative_max_heap_alignment();
 974 
 975   // Does operations required after initialization has been done.
 976   void post_initialize();
 977 
 978   // Initialize weak reference processing.
 979   void ref_processing_init();
 980 
 981   virtual Name kind() const {
 982     return CollectedHeap::G1CollectedHeap;
 983   }
 984 
 985   virtual const char* name() const {
 986     return "G1";
 987   }
 988 
 989   const G1CollectorState* collector_state() const { return &_collector_state; }
 990   G1CollectorState* collector_state() { return &_collector_state; }
 991 
 992   // The current policy object for the collector.
 993   G1Policy* g1_policy() const { return _g1_policy; }
 994 
 995   const G1CollectionSet* collection_set() const { return &_collection_set; }
 996   G1CollectionSet* collection_set() { return &_collection_set; }
 997 
 998   virtual CollectorPolicy* collector_policy() const;
 999 
1000   // Adaptive size policy.  No such thing for g1.
1001   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1002 
1003   // The rem set and barrier set.
1004   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1005 
1006   // Try to minimize the remembered set.
1007   void scrub_rem_set();
1008 
1009   uint get_gc_time_stamp() {
1010     return _gc_time_stamp;
1011   }
1012 
1013   inline void reset_gc_time_stamp();
1014 
1015   void check_gc_time_stamps() PRODUCT_RETURN;
1016 
1017   inline void increment_gc_time_stamp();
1018 
1019   // Reset the given region's GC timestamp. If it's starts humongous,
1020   // also reset the GC timestamp of its corresponding
1021   // continues humongous regions too.
1022   void reset_gc_time_stamps(HeapRegion* hr);
1023 
1024   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1025   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
1026 
1027   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
1028   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
1029 
1030   // The shared block offset table array.
1031   G1BlockOffsetTable* bot() const { return _bot; }
1032 
1033   // Reference Processing accessors
1034 
1035   // The STW reference processor....
1036   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1037 
1038   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1039 
1040   // The Concurrent Marking reference processor...
1041   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1042 
1043   virtual size_t capacity() const;
1044   virtual size_t used() const;
1045   // This should be called when we're not holding the heap lock. The
1046   // result might be a bit inaccurate.
1047   size_t used_unlocked() const;
1048   size_t recalculate_used() const;
1049 
1050   // These virtual functions do the actual allocation.
1051   // Some heaps may offer a contiguous region for shared non-blocking
1052   // allocation, via inlined code (by exporting the address of the top and
1053   // end fields defining the extent of the contiguous allocation region.)
1054   // But G1CollectedHeap doesn't yet support this.
1055 
1056   virtual bool is_maximal_no_gc() const {
1057     return _hrm.available() == 0;
1058   }
1059 
1060   // The current number of regions in the heap.
1061   uint num_regions() const { return _hrm.length(); }
1062 
1063   // The max number of regions in the heap.
1064   uint max_regions() const { return _hrm.max_length(); }
1065 
1066   // The number of regions that are completely free.
1067   uint num_free_regions() const { return _hrm.num_free_regions(); }
1068 
1069   MemoryUsage get_auxiliary_data_memory_usage() const {
1070     return _hrm.get_auxiliary_data_memory_usage();
1071   }
1072 
1073   // The number of regions that are not completely free.
1074   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1075 
1076 #ifdef ASSERT
1077   bool is_on_master_free_list(HeapRegion* hr) {
1078     return _hrm.is_free(hr);
1079   }
1080 #endif // ASSERT
1081 
1082   // Wrapper for the region list operations that can be called from
1083   // methods outside this class.
1084 
1085   void secondary_free_list_add(FreeRegionList* list) {
1086     _secondary_free_list.add_ordered(list);
1087   }
1088 
1089   void append_secondary_free_list() {
1090     _hrm.insert_list_into_free_list(&_secondary_free_list);
1091   }
1092 
1093   void append_secondary_free_list_if_not_empty_with_lock() {
1094     // If the secondary free list looks empty there's no reason to
1095     // take the lock and then try to append it.
1096     if (!_secondary_free_list.is_empty()) {
1097       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1098       append_secondary_free_list();
1099     }
1100   }
1101 
1102   inline void old_set_add(HeapRegion* hr);
1103   inline void old_set_remove(HeapRegion* hr);
1104 
1105   size_t non_young_capacity_bytes() {
1106     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1107   }
1108 
1109   void set_free_regions_coming();
1110   void reset_free_regions_coming();
1111   bool free_regions_coming() { return _free_regions_coming; }
1112   void wait_while_free_regions_coming();
1113 
1114   // Determine whether the given region is one that we are using as an
1115   // old GC alloc region.
1116   bool is_old_gc_alloc_region(HeapRegion* hr);
1117 
1118   // Perform a collection of the heap; intended for use in implementing
1119   // "System.gc".  This probably implies as full a collection as the
1120   // "CollectedHeap" supports.
1121   virtual void collect(GCCause::Cause cause);
1122 
1123   virtual bool copy_allocation_context_stats(const jint* contexts,
1124                                              jlong* totals,
1125                                              jbyte* accuracy,
1126                                              jint len);
1127 
1128   // True iff an evacuation has failed in the most-recent collection.
1129   bool evacuation_failed() { return _evacuation_failed; }
1130 
1131   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1132   void prepend_to_freelist(FreeRegionList* list);
1133   void decrement_summary_bytes(size_t bytes);
1134 
1135   virtual bool is_in(const void* p) const;
1136 #ifdef ASSERT
1137   // Returns whether p is in one of the available areas of the heap. Slow but
1138   // extensive version.
1139   bool is_in_exact(const void* p) const;
1140 #endif
1141 
1142   // Return "TRUE" iff the given object address is within the collection
1143   // set. Assumes that the reference points into the heap.
1144   inline bool is_in_cset(const HeapRegion *hr);
1145   inline bool is_in_cset(oop obj);
1146   inline bool is_in_cset(HeapWord* addr);
1147 
1148   inline bool is_in_cset_or_humongous(const oop obj);
1149 
1150  private:
1151   // This array is used for a quick test on whether a reference points into
1152   // the collection set or not. Each of the array's elements denotes whether the
1153   // corresponding region is in the collection set or not.
1154   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1155 
1156  public:
1157 
1158   inline InCSetState in_cset_state(const oop obj);
1159 
1160   // Return "TRUE" iff the given object address is in the reserved
1161   // region of g1.
1162   bool is_in_g1_reserved(const void* p) const {
1163     return _hrm.reserved().contains(p);
1164   }
1165 
1166   // Returns a MemRegion that corresponds to the space that has been
1167   // reserved for the heap
1168   MemRegion g1_reserved() const {
1169     return _hrm.reserved();
1170   }
1171 
1172   virtual bool is_in_closed_subset(const void* p) const;
1173 
1174   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1175     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1176   }
1177 
1178   // Iteration functions.
1179 
1180   // Iterate over all objects, calling "cl.do_object" on each.
1181   virtual void object_iterate(ObjectClosure* cl);
1182 
1183   virtual void safe_object_iterate(ObjectClosure* cl) {
1184     object_iterate(cl);
1185   }
1186 
1187   // Iterate over heap regions, in address order, terminating the
1188   // iteration early if the "doHeapRegion" method returns "true".
1189   void heap_region_iterate(HeapRegionClosure* blk) const;
1190 
1191   // Return the region with the given index. It assumes the index is valid.
1192   inline HeapRegion* region_at(uint index) const;
1193 
1194   // Return the next region (by index) that is part of the same
1195   // humongous object that hr is part of.
1196   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1197 
1198   // Calculate the region index of the given address. Given address must be
1199   // within the heap.
1200   inline uint addr_to_region(HeapWord* addr) const;
1201 
1202   inline HeapWord* bottom_addr_for_region(uint index) const;
1203 
1204   // Iterate over the heap regions in parallel. Assumes that this will be called
1205   // in parallel by a number of worker threads with distinct worker ids
1206   // in the range passed to the HeapRegionClaimer. Applies "blk->doHeapRegion"
1207   // to each of the regions, by attempting to claim the region using the
1208   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1209   // region.
1210   void heap_region_par_iterate(HeapRegionClosure* cl,
1211                                uint worker_id,
1212                                HeapRegionClaimer* hrclaimer) const;
1213 
1214   // Iterate over the regions (if any) in the current collection set.
1215   void collection_set_iterate(HeapRegionClosure* blk);
1216 
1217   // Iterate over the regions (if any) in the current collection set. Starts the
1218   // iteration over the entire collection set so that the start regions of a given
1219   // worker id over the set active_workers are evenly spread across the set of
1220   // collection set regions.
1221   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1222 
1223   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1224 
1225   // Returns the HeapRegion that contains addr. addr must not be NULL.
1226   template <class T>
1227   inline HeapRegion* heap_region_containing(const T addr) const;
1228 
1229   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1230   // each address in the (reserved) heap is a member of exactly
1231   // one block.  The defining characteristic of a block is that it is
1232   // possible to find its size, and thus to progress forward to the next
1233   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1234   // represent Java objects, or they might be free blocks in a
1235   // free-list-based heap (or subheap), as long as the two kinds are
1236   // distinguishable and the size of each is determinable.
1237 
1238   // Returns the address of the start of the "block" that contains the
1239   // address "addr".  We say "blocks" instead of "object" since some heaps
1240   // may not pack objects densely; a chunk may either be an object or a
1241   // non-object.
1242   virtual HeapWord* block_start(const void* addr) const;
1243 
1244   // Requires "addr" to be the start of a chunk, and returns its size.
1245   // "addr + size" is required to be the start of a new chunk, or the end
1246   // of the active area of the heap.
1247   virtual size_t block_size(const HeapWord* addr) const;
1248 
1249   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1250   // the block is an object.
1251   virtual bool block_is_obj(const HeapWord* addr) const;
1252 
1253   // Section on thread-local allocation buffers (TLABs)
1254   // See CollectedHeap for semantics.
1255 
1256   bool supports_tlab_allocation() const;
1257   size_t tlab_capacity(Thread* ignored) const;
1258   size_t tlab_used(Thread* ignored) const;
1259   size_t max_tlab_size() const;
1260   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1261 
1262   // Can a compiler initialize a new object without store barriers?
1263   // This permission only extends from the creation of a new object
1264   // via a TLAB up to the first subsequent safepoint. If such permission
1265   // is granted for this heap type, the compiler promises to call
1266   // defer_store_barrier() below on any slow path allocation of
1267   // a new object for which such initializing store barriers will
1268   // have been elided. G1, like CMS, allows this, but should be
1269   // ready to provide a compensating write barrier as necessary
1270   // if that storage came out of a non-young region. The efficiency
1271   // of this implementation depends crucially on being able to
1272   // answer very efficiently in constant time whether a piece of
1273   // storage in the heap comes from a young region or not.
1274   // See ReduceInitialCardMarks.
1275   virtual bool can_elide_tlab_store_barriers() const {
1276     return true;
1277   }
1278 
1279   virtual bool card_mark_must_follow_store() const {
1280     return true;
1281   }
1282 
1283   inline bool is_in_young(const oop obj);
1284 
1285   virtual bool is_scavengable(const void* addr);
1286 
1287   // We don't need barriers for initializing stores to objects
1288   // in the young gen: for the SATB pre-barrier, there is no
1289   // pre-value that needs to be remembered; for the remembered-set
1290   // update logging post-barrier, we don't maintain remembered set
1291   // information for young gen objects.
1292   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1293 
1294   // Returns "true" iff the given word_size is "very large".
1295   static bool is_humongous(size_t word_size) {
1296     // Note this has to be strictly greater-than as the TLABs
1297     // are capped at the humongous threshold and we want to
1298     // ensure that we don't try to allocate a TLAB as
1299     // humongous and that we don't allocate a humongous
1300     // object in a TLAB.
1301     return word_size > _humongous_object_threshold_in_words;
1302   }
1303 
1304   // Returns the humongous threshold for a specific region size
1305   static size_t humongous_threshold_for(size_t region_size) {
1306     return (region_size / 2);
1307   }
1308 
1309   // Returns the number of regions the humongous object of the given word size
1310   // requires.
1311   static size_t humongous_obj_size_in_regions(size_t word_size);
1312 
1313   // Print the maximum heap capacity.
1314   virtual size_t max_capacity() const;
1315 
1316   virtual jlong millis_since_last_gc();
1317 
1318 
1319   // Convenience function to be used in situations where the heap type can be
1320   // asserted to be this type.
1321   static G1CollectedHeap* heap();
1322 
1323   void set_region_short_lived_locked(HeapRegion* hr);
1324   // add appropriate methods for any other surv rate groups
1325 
1326   const G1SurvivorRegions* survivor() const { return &_survivor; }
1327 
1328   uint survivor_regions_count() const {
1329     return _survivor.length();
1330   }
1331 
1332   uint eden_regions_count() const {
1333     return _eden.length();
1334   }
1335 
1336   uint young_regions_count() const {
1337     return _eden.length() + _survivor.length();
1338   }
1339 
1340   uint old_regions_count() const { return _old_set.length(); }
1341 
1342   uint humongous_regions_count() const { return _humongous_set.length(); }
1343 
1344 #ifdef ASSERT
1345   bool check_young_list_empty();
1346 #endif
1347 
1348   // *** Stuff related to concurrent marking.  It's not clear to me that so
1349   // many of these need to be public.
1350 
1351   // The functions below are helper functions that a subclass of
1352   // "CollectedHeap" can use in the implementation of its virtual
1353   // functions.
1354   // This performs a concurrent marking of the live objects in a
1355   // bitmap off to the side.
1356   void doConcurrentMark();
1357 
1358   bool isMarkedNext(oop obj) const;
1359 
1360   // Determine if an object is dead, given the object and also
1361   // the region to which the object belongs. An object is dead
1362   // iff a) it was not allocated since the last mark, b) it
1363   // is not marked, and c) it is not in an archive region.
1364   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1365     return
1366       hr->is_obj_dead(obj, _cm->prevMarkBitMap()) &&
1367       !hr->is_archive();
1368   }
1369 
1370   // This function returns true when an object has been
1371   // around since the previous marking and hasn't yet
1372   // been marked during this marking, and is not in an archive region.
1373   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1374     return
1375       !hr->obj_allocated_since_next_marking(obj) &&
1376       !isMarkedNext(obj) &&
1377       !hr->is_archive();
1378   }
1379 
1380   // Determine if an object is dead, given only the object itself.
1381   // This will find the region to which the object belongs and
1382   // then call the region version of the same function.
1383 
1384   // Added if it is NULL it isn't dead.
1385 
1386   inline bool is_obj_dead(const oop obj) const;
1387 
1388   inline bool is_obj_ill(const oop obj) const;
1389 
1390   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1391 
1392   // Refinement
1393 
1394   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1395 
1396   // Optimized nmethod scanning support routines
1397 
1398   // Register the given nmethod with the G1 heap.
1399   virtual void register_nmethod(nmethod* nm);
1400 
1401   // Unregister the given nmethod from the G1 heap.
1402   virtual void unregister_nmethod(nmethod* nm);
1403 
1404   // Free up superfluous code root memory.
1405   void purge_code_root_memory();
1406 
1407   // Rebuild the strong code root lists for each region
1408   // after a full GC.
1409   void rebuild_strong_code_roots();
1410 
1411   // Partial cleaning used when class unloading is disabled.
1412   // Let the caller choose what structures to clean out:
1413   // - StringTable
1414   // - SymbolTable
1415   // - StringDeduplication structures
1416   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_symbols, bool unlink_string_dedup);
1417 
1418   // Complete cleaning used when class unloading is enabled.
1419   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1420   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1421 
1422   // Redirty logged cards in the refinement queue.
1423   void redirty_logged_cards();
1424   // Verification
1425 
1426   // Perform any cleanup actions necessary before allowing a verification.
1427   virtual void prepare_for_verify();
1428 
1429   // Perform verification.
1430 
1431   // vo == UsePrevMarking  -> use "prev" marking information,
1432   // vo == UseNextMarking -> use "next" marking information
1433   // vo == UseMarkWord    -> use the mark word in the object header
1434   //
1435   // NOTE: Only the "prev" marking information is guaranteed to be
1436   // consistent most of the time, so most calls to this should use
1437   // vo == UsePrevMarking.
1438   // Currently, there is only one case where this is called with
1439   // vo == UseNextMarking, which is to verify the "next" marking
1440   // information at the end of remark.
1441   // Currently there is only one place where this is called with
1442   // vo == UseMarkWord, which is to verify the marking during a
1443   // full GC.
1444   void verify(VerifyOption vo);
1445 
1446   // WhiteBox testing support.
1447   virtual bool supports_concurrent_phase_control() const;
1448   virtual const char* const* concurrent_phases() const;
1449   virtual bool request_concurrent_phase(const char* phase);
1450 
1451   // The methods below are here for convenience and dispatch the
1452   // appropriate method depending on value of the given VerifyOption
1453   // parameter. The values for that parameter, and their meanings,
1454   // are the same as those above.
1455 
1456   bool is_obj_dead_cond(const oop obj,
1457                         const HeapRegion* hr,
1458                         const VerifyOption vo) const;
1459 
1460   bool is_obj_dead_cond(const oop obj,
1461                         const VerifyOption vo) const;
1462 
1463   G1HeapSummary create_g1_heap_summary();
1464   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1465 
1466   // Printing
1467 private:
1468   void print_heap_regions() const;
1469   void print_regions_on(outputStream* st) const;
1470 
1471 public:
1472   virtual void print_on(outputStream* st) const;
1473   virtual void print_extended_on(outputStream* st) const;
1474   virtual void print_on_error(outputStream* st) const;
1475 
1476   virtual void print_gc_threads_on(outputStream* st) const;
1477   virtual void gc_threads_do(ThreadClosure* tc) const;
1478 
1479   // Override
1480   void print_tracing_info() const;
1481 
1482   // The following two methods are helpful for debugging RSet issues.
1483   void print_cset_rsets() PRODUCT_RETURN;
1484   void print_all_rsets() PRODUCT_RETURN;
1485 
1486 public:
1487   size_t pending_card_num();
1488 
1489 protected:
1490   size_t _max_heap_capacity;
1491 };
1492 
1493 class G1ParEvacuateFollowersClosure : public VoidClosure {
1494 private:
1495   double _start_term;
1496   double _term_time;
1497   size_t _term_attempts;
1498 
1499   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1500   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1501 protected:
1502   G1CollectedHeap*              _g1h;
1503   G1ParScanThreadState*         _par_scan_state;
1504   RefToScanQueueSet*            _queues;
1505   ParallelTaskTerminator*       _terminator;
1506 
1507   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1508   RefToScanQueueSet*      queues()         { return _queues; }
1509   ParallelTaskTerminator* terminator()     { return _terminator; }
1510 
1511 public:
1512   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1513                                 G1ParScanThreadState* par_scan_state,
1514                                 RefToScanQueueSet* queues,
1515                                 ParallelTaskTerminator* terminator)
1516     : _g1h(g1h), _par_scan_state(par_scan_state),
1517       _queues(queues), _terminator(terminator),
1518       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1519 
1520   void do_void();
1521 
1522   double term_time() const { return _term_time; }
1523   size_t term_attempts() const { return _term_attempts; }
1524 
1525 private:
1526   inline bool offer_termination();
1527 };
1528 
1529 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP