1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/shared/ageTable.inline.hpp"
  28 #include "gc/shared/cardTableRS.hpp"
  29 #include "gc/shared/collectorCounters.hpp"
  30 #include "gc/shared/gcHeapSummary.hpp"
  31 #include "gc/shared/gcLocker.inline.hpp"
  32 #include "gc/shared/gcPolicyCounters.hpp"
  33 #include "gc/shared/gcTimer.hpp"
  34 #include "gc/shared/gcTrace.hpp"
  35 #include "gc/shared/gcTraceTime.inline.hpp"
  36 #include "gc/shared/genCollectedHeap.hpp"
  37 #include "gc/shared/genOopClosures.inline.hpp"
  38 #include "gc/shared/generationSpec.hpp"
  39 #include "gc/shared/preservedMarks.inline.hpp"
  40 #include "gc/shared/referencePolicy.hpp"
  41 #include "gc/shared/space.inline.hpp"
  42 #include "gc/shared/spaceDecorator.hpp"
  43 #include "gc/shared/strongRootsScope.hpp"
  44 #include "gc/shared/weakProcessor.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/iterator.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/instanceRefKlass.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/atomic.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/prefetch.inline.hpp"
  53 #include "runtime/thread.inline.hpp"
  54 #include "utilities/align.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/globalDefinitions.hpp"
  57 #include "utilities/stack.inline.hpp"
  58 #if INCLUDE_ALL_GCS
  59 #include "gc/cms/parOopClosures.hpp"
  60 #endif
  61 
  62 //
  63 // DefNewGeneration functions.
  64 
  65 // Methods of protected closure types.
  66 
  67 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  68   assert(_young_gen->kind() == Generation::ParNew ||
  69          _young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  70 }
  71 
  72 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  73   return (HeapWord*)p >= _young_gen->reserved().end() || p->is_forwarded();
  74 }
  75 
  76 DefNewGeneration::KeepAliveClosure::
  77 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  78   _rs = GenCollectedHeap::heap()->rem_set();
  79 }
  80 
  81 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  82 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  83 
  84 
  85 DefNewGeneration::FastKeepAliveClosure::
  86 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  87   DefNewGeneration::KeepAliveClosure(cl) {
  88   _boundary = g->reserved().end();
  89 }
  90 
  91 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  92 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  93 
  94 DefNewGeneration::EvacuateFollowersClosure::
  95 EvacuateFollowersClosure(GenCollectedHeap* gch,
  96                          ScanClosure* cur,
  97                          ScanClosure* older) :
  98   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
  99 {}
 100 
 101 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
 102   do {
 103     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 104   } while (!_gch->no_allocs_since_save_marks());
 105 }
 106 
 107 DefNewGeneration::FastEvacuateFollowersClosure::
 108 FastEvacuateFollowersClosure(GenCollectedHeap* gch,
 109                              FastScanClosure* cur,
 110                              FastScanClosure* older) :
 111   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
 112 {
 113   assert(_gch->young_gen()->kind() == Generation::DefNew, "Generation should be DefNew");
 114   _young_gen = (DefNewGeneration*)_gch->young_gen();
 115 }
 116 
 117 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 118   do {
 119     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 120   } while (!_gch->no_allocs_since_save_marks());
 121   guarantee(_young_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 122 }
 123 
 124 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 125     OopsInClassLoaderDataOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 126 {
 127   _boundary = _g->reserved().end();
 128 }
 129 
 130 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 131 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 132 
 133 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 134     OopsInClassLoaderDataOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 135 {
 136   _boundary = _g->reserved().end();
 137 }
 138 
 139 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 140 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 141 
 142 void CLDScanClosure::do_cld(ClassLoaderData* cld) {
 143   NOT_PRODUCT(ResourceMark rm);
 144   log_develop_trace(gc, scavenge)("CLDScanClosure::do_cld " PTR_FORMAT ", %s, dirty: %s",
 145                                   p2i(cld),
 146                                   cld->loader_name(),
 147                                   cld->has_modified_oops() ? "true" : "false");
 148 
 149   // If the cld has not been dirtied we know that there's
 150   // no references into  the young gen and we can skip it.
 151   if (cld->has_modified_oops()) {
 152     if (_accumulate_modified_oops) {
 153       cld->accumulate_modified_oops();
 154     }
 155 
 156     // Tell the closure which CLD is being scanned so that it can be dirtied
 157     // if oops are left pointing into the young gen.
 158     _scavenge_closure->set_scanned_cld(cld);
 159 
 160     // Clean the cld since we're going to scavenge all the metadata.
 161     cld->oops_do(_scavenge_closure, false, /*clear_modified_oops*/true);
 162 
 163     _scavenge_closure->set_scanned_cld(NULL);
 164   }
 165 }
 166 
 167 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 168   _g(g)
 169 {
 170   _boundary = _g->reserved().end();
 171 }
 172 
 173 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 174 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 175 
 176 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 177 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 178 
 179 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 180                                    size_t initial_size,
 181                                    const char* policy)
 182   : Generation(rs, initial_size),
 183     _preserved_marks_set(false /* in_c_heap */),
 184     _promo_failure_drain_in_progress(false),
 185     _should_allocate_from_space(false)
 186 {
 187   MemRegion cmr((HeapWord*)_virtual_space.low(),
 188                 (HeapWord*)_virtual_space.high());
 189   GenCollectedHeap* gch = GenCollectedHeap::heap();
 190 
 191   gch->barrier_set()->resize_covered_region(cmr);
 192 
 193   _eden_space = new ContiguousSpace();
 194   _from_space = new ContiguousSpace();
 195   _to_space   = new ContiguousSpace();
 196 
 197   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
 198     vm_exit_during_initialization("Could not allocate a new gen space");
 199   }
 200 
 201   // Compute the maximum eden and survivor space sizes. These sizes
 202   // are computed assuming the entire reserved space is committed.
 203   // These values are exported as performance counters.
 204   uintx alignment = gch->collector_policy()->space_alignment();
 205   uintx size = _virtual_space.reserved_size();
 206   _max_survivor_size = compute_survivor_size(size, alignment);
 207   _max_eden_size = size - (2*_max_survivor_size);
 208 
 209   // allocate the performance counters
 210   GenCollectorPolicy* gcp = gch->gen_policy();
 211 
 212   // Generation counters -- generation 0, 3 subspaces
 213   _gen_counters = new GenerationCounters("new", 0, 3,
 214       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 215   _gc_counters = new CollectorCounters(policy, 0);
 216 
 217   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 218                                       _gen_counters);
 219   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 220                                       _gen_counters);
 221   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 222                                     _gen_counters);
 223 
 224   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 225   update_counters();
 226   _old_gen = NULL;
 227   _tenuring_threshold = MaxTenuringThreshold;
 228   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 229 
 230   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 231 }
 232 
 233 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 234                                                 bool clear_space,
 235                                                 bool mangle_space) {
 236   uintx alignment =
 237     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 238 
 239   // If the spaces are being cleared (only done at heap initialization
 240   // currently), the survivor spaces need not be empty.
 241   // Otherwise, no care is taken for used areas in the survivor spaces
 242   // so check.
 243   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 244     "Initialization of the survivor spaces assumes these are empty");
 245 
 246   // Compute sizes
 247   uintx size = _virtual_space.committed_size();
 248   uintx survivor_size = compute_survivor_size(size, alignment);
 249   uintx eden_size = size - (2*survivor_size);
 250   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 251 
 252   if (eden_size < minimum_eden_size) {
 253     // May happen due to 64Kb rounding, if so adjust eden size back up
 254     minimum_eden_size = align_up(minimum_eden_size, alignment);
 255     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 256     uintx unaligned_survivor_size =
 257       align_down(maximum_survivor_size, alignment);
 258     survivor_size = MAX2(unaligned_survivor_size, alignment);
 259     eden_size = size - (2*survivor_size);
 260     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 261     assert(eden_size >= minimum_eden_size, "just checking");
 262   }
 263 
 264   char *eden_start = _virtual_space.low();
 265   char *from_start = eden_start + eden_size;
 266   char *to_start   = from_start + survivor_size;
 267   char *to_end     = to_start   + survivor_size;
 268 
 269   assert(to_end == _virtual_space.high(), "just checking");
 270   assert(Space::is_aligned(eden_start), "checking alignment");
 271   assert(Space::is_aligned(from_start), "checking alignment");
 272   assert(Space::is_aligned(to_start),   "checking alignment");
 273 
 274   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 275   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 276   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 277 
 278   // A minimum eden size implies that there is a part of eden that
 279   // is being used and that affects the initialization of any
 280   // newly formed eden.
 281   bool live_in_eden = minimum_eden_size > 0;
 282 
 283   // If not clearing the spaces, do some checking to verify that
 284   // the space are already mangled.
 285   if (!clear_space) {
 286     // Must check mangling before the spaces are reshaped.  Otherwise,
 287     // the bottom or end of one space may have moved into another
 288     // a failure of the check may not correctly indicate which space
 289     // is not properly mangled.
 290     if (ZapUnusedHeapArea) {
 291       HeapWord* limit = (HeapWord*) _virtual_space.high();
 292       eden()->check_mangled_unused_area(limit);
 293       from()->check_mangled_unused_area(limit);
 294         to()->check_mangled_unused_area(limit);
 295     }
 296   }
 297 
 298   // Reset the spaces for their new regions.
 299   eden()->initialize(edenMR,
 300                      clear_space && !live_in_eden,
 301                      SpaceDecorator::Mangle);
 302   // If clear_space and live_in_eden, we will not have cleared any
 303   // portion of eden above its top. This can cause newly
 304   // expanded space not to be mangled if using ZapUnusedHeapArea.
 305   // We explicitly do such mangling here.
 306   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 307     eden()->mangle_unused_area();
 308   }
 309   from()->initialize(fromMR, clear_space, mangle_space);
 310   to()->initialize(toMR, clear_space, mangle_space);
 311 
 312   // Set next compaction spaces.
 313   eden()->set_next_compaction_space(from());
 314   // The to-space is normally empty before a compaction so need
 315   // not be considered.  The exception is during promotion
 316   // failure handling when to-space can contain live objects.
 317   from()->set_next_compaction_space(NULL);
 318 }
 319 
 320 void DefNewGeneration::swap_spaces() {
 321   ContiguousSpace* s = from();
 322   _from_space        = to();
 323   _to_space          = s;
 324   eden()->set_next_compaction_space(from());
 325   // The to-space is normally empty before a compaction so need
 326   // not be considered.  The exception is during promotion
 327   // failure handling when to-space can contain live objects.
 328   from()->set_next_compaction_space(NULL);
 329 
 330   if (UsePerfData) {
 331     CSpaceCounters* c = _from_counters;
 332     _from_counters = _to_counters;
 333     _to_counters = c;
 334   }
 335 }
 336 
 337 bool DefNewGeneration::expand(size_t bytes) {
 338   MutexLocker x(ExpandHeap_lock);
 339   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 340   bool success = _virtual_space.expand_by(bytes);
 341   if (success && ZapUnusedHeapArea) {
 342     // Mangle newly committed space immediately because it
 343     // can be done here more simply that after the new
 344     // spaces have been computed.
 345     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 346     MemRegion mangle_region(prev_high, new_high);
 347     SpaceMangler::mangle_region(mangle_region);
 348   }
 349 
 350   // Do not attempt an expand-to-the reserve size.  The
 351   // request should properly observe the maximum size of
 352   // the generation so an expand-to-reserve should be
 353   // unnecessary.  Also a second call to expand-to-reserve
 354   // value potentially can cause an undue expansion.
 355   // For example if the first expand fail for unknown reasons,
 356   // but the second succeeds and expands the heap to its maximum
 357   // value.
 358   if (GCLocker::is_active()) {
 359     log_debug(gc)("Garbage collection disabled, expanded heap instead");
 360   }
 361 
 362   return success;
 363 }
 364 
 365 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate,
 366                                                     size_t new_size_before,
 367                                                     size_t alignment) const {
 368   size_t desired_new_size = new_size_before;
 369 
 370   if (NewSizeThreadIncrease > 0) {
 371     int threads_count;
 372     size_t thread_increase_size = 0;
 373 
 374     // 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'.
 375     threads_count = Threads::number_of_non_daemon_threads();
 376     if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) {
 377       thread_increase_size = threads_count * NewSizeThreadIncrease;
 378 
 379       // 2. Check an overflow at 'new_size_candidate + thread_increase_size'.
 380       if (new_size_candidate <= max_uintx - thread_increase_size) {
 381         new_size_candidate += thread_increase_size;
 382 
 383         // 3. Check an overflow at 'align_up'.
 384         size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
 385         if (new_size_candidate <= aligned_max) {
 386           desired_new_size = align_up(new_size_candidate, alignment);
 387         }
 388       }
 389     }
 390   }
 391 
 392   return desired_new_size;
 393 }
 394 
 395 void DefNewGeneration::compute_new_size() {
 396   // This is called after a GC that includes the old generation, so from-space
 397   // will normally be empty.
 398   // Note that we check both spaces, since if scavenge failed they revert roles.
 399   // If not we bail out (otherwise we would have to relocate the objects).
 400   if (!from()->is_empty() || !to()->is_empty()) {
 401     return;
 402   }
 403 
 404   GenCollectedHeap* gch = GenCollectedHeap::heap();
 405 
 406   size_t old_size = gch->old_gen()->capacity();
 407   size_t new_size_before = _virtual_space.committed_size();
 408   size_t min_new_size = initial_size();
 409   size_t max_new_size = reserved().byte_size();
 410   assert(min_new_size <= new_size_before &&
 411          new_size_before <= max_new_size,
 412          "just checking");
 413   // All space sizes must be multiples of Generation::GenGrain.
 414   size_t alignment = Generation::GenGrain;
 415 
 416   int threads_count = 0;
 417   size_t thread_increase_size = 0;
 418 
 419   size_t new_size_candidate = old_size / NewRatio;
 420   // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease
 421   // and reverts to previous value if any overflow happens
 422   size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, alignment);
 423 
 424   // Adjust new generation size
 425   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 426   assert(desired_new_size <= max_new_size, "just checking");
 427 
 428   bool changed = false;
 429   if (desired_new_size > new_size_before) {
 430     size_t change = desired_new_size - new_size_before;
 431     assert(change % alignment == 0, "just checking");
 432     if (expand(change)) {
 433        changed = true;
 434     }
 435     // If the heap failed to expand to the desired size,
 436     // "changed" will be false.  If the expansion failed
 437     // (and at this point it was expected to succeed),
 438     // ignore the failure (leaving "changed" as false).
 439   }
 440   if (desired_new_size < new_size_before && eden()->is_empty()) {
 441     // bail out of shrinking if objects in eden
 442     size_t change = new_size_before - desired_new_size;
 443     assert(change % alignment == 0, "just checking");
 444     _virtual_space.shrink_by(change);
 445     changed = true;
 446   }
 447   if (changed) {
 448     // The spaces have already been mangled at this point but
 449     // may not have been cleared (set top = bottom) and should be.
 450     // Mangling was done when the heap was being expanded.
 451     compute_space_boundaries(eden()->used(),
 452                              SpaceDecorator::Clear,
 453                              SpaceDecorator::DontMangle);
 454     MemRegion cmr((HeapWord*)_virtual_space.low(),
 455                   (HeapWord*)_virtual_space.high());
 456     gch->barrier_set()->resize_covered_region(cmr);
 457 
 458     log_debug(gc, ergo, heap)(
 459         "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 460         new_size_before/K, _virtual_space.committed_size()/K,
 461         eden()->capacity()/K, from()->capacity()/K);
 462     log_trace(gc, ergo, heap)(
 463         "  [allowed " SIZE_FORMAT "K extra for %d threads]",
 464           thread_increase_size/K, threads_count);
 465       }
 466 }
 467 
 468 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 469   assert(false, "NYI -- are you sure you want to call this?");
 470 }
 471 
 472 
 473 size_t DefNewGeneration::capacity() const {
 474   return eden()->capacity()
 475        + from()->capacity();  // to() is only used during scavenge
 476 }
 477 
 478 
 479 size_t DefNewGeneration::used() const {
 480   return eden()->used()
 481        + from()->used();      // to() is only used during scavenge
 482 }
 483 
 484 
 485 size_t DefNewGeneration::free() const {
 486   return eden()->free()
 487        + from()->free();      // to() is only used during scavenge
 488 }
 489 
 490 size_t DefNewGeneration::max_capacity() const {
 491   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 492   const size_t reserved_bytes = reserved().byte_size();
 493   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 494 }
 495 
 496 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 497   return eden()->free();
 498 }
 499 
 500 size_t DefNewGeneration::capacity_before_gc() const {
 501   return eden()->capacity();
 502 }
 503 
 504 size_t DefNewGeneration::contiguous_available() const {
 505   return eden()->free();
 506 }
 507 
 508 
 509 HeapWord* volatile* DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 510 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 511 
 512 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 513   eden()->object_iterate(blk);
 514   from()->object_iterate(blk);
 515 }
 516 
 517 
 518 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 519                                      bool usedOnly) {
 520   blk->do_space(eden());
 521   blk->do_space(from());
 522   blk->do_space(to());
 523 }
 524 
 525 // The last collection bailed out, we are running out of heap space,
 526 // so we try to allocate the from-space, too.
 527 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 528   bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc();
 529 
 530   // If the Heap_lock is not locked by this thread, this will be called
 531   // again later with the Heap_lock held.
 532   bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
 533 
 534   HeapWord* result = NULL;
 535   if (do_alloc) {
 536     result = from()->allocate(size);
 537   }
 538 
 539   log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):  will_fail: %s  heap_lock: %s  free: " SIZE_FORMAT "%s%s returns %s",
 540                         size,
 541                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 542                           "true" : "false",
 543                         Heap_lock->is_locked() ? "locked" : "unlocked",
 544                         from()->free(),
 545                         should_try_alloc ? "" : "  should_allocate_from_space: NOT",
 546                         do_alloc ? "  Heap_lock is not owned by self" : "",
 547                         result == NULL ? "NULL" : "object");
 548 
 549   return result;
 550 }
 551 
 552 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 553                                                 bool   is_tlab,
 554                                                 bool   parallel) {
 555   // We don't attempt to expand the young generation (but perhaps we should.)
 556   return allocate(size, is_tlab);
 557 }
 558 
 559 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 560   // Set the desired survivor size to half the real survivor space
 561   size_t const survivor_capacity = to()->capacity() / HeapWordSize;
 562   size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 563 
 564   _tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size);
 565 
 566   if (UsePerfData) {
 567     GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->gen_policy()->counters();
 568     gc_counters->tenuring_threshold()->set_value(_tenuring_threshold);
 569     gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize);
 570   }
 571 
 572   age_table()->print_age_table(_tenuring_threshold);
 573 }
 574 
 575 void DefNewGeneration::collect(bool   full,
 576                                bool   clear_all_soft_refs,
 577                                size_t size,
 578                                bool   is_tlab) {
 579   assert(full || size > 0, "otherwise we don't want to collect");
 580 
 581   GenCollectedHeap* gch = GenCollectedHeap::heap();
 582 
 583   _gc_timer->register_gc_start();
 584   DefNewTracer gc_tracer;
 585   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 586 
 587   _old_gen = gch->old_gen();
 588 
 589   // If the next generation is too full to accommodate promotion
 590   // from this generation, pass on collection; let the next generation
 591   // do it.
 592   if (!collection_attempt_is_safe()) {
 593     log_trace(gc)(":: Collection attempt not safe ::");
 594     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 595     return;
 596   }
 597   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 598 
 599   init_assuming_no_promotion_failure();
 600 
 601   GCTraceTime(Trace, gc, phases) tm("DefNew", NULL, gch->gc_cause());
 602 
 603   gch->trace_heap_before_gc(&gc_tracer);
 604 
 605   // These can be shared for all code paths
 606   IsAliveClosure is_alive(this);
 607   ScanWeakRefClosure scan_weak_ref(this);
 608 
 609   age_table()->clear();
 610   to()->clear(SpaceDecorator::Mangle);
 611   // The preserved marks should be empty at the start of the GC.
 612   _preserved_marks_set.init(1);
 613 
 614   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 615 
 616   assert(gch->no_allocs_since_save_marks(),
 617          "save marks have not been newly set.");
 618 
 619   // Not very pretty.
 620   CollectorPolicy* cp = gch->collector_policy();
 621 
 622   FastScanClosure fsc_with_no_gc_barrier(this, false);
 623   FastScanClosure fsc_with_gc_barrier(this, true);
 624 
 625   CLDScanClosure cld_scan_closure(&fsc_with_no_gc_barrier,
 626                                   gch->rem_set()->cld_rem_set()->accumulate_modified_oops());
 627 
 628   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 629   FastEvacuateFollowersClosure evacuate_followers(gch,
 630                                                   &fsc_with_no_gc_barrier,
 631                                                   &fsc_with_gc_barrier);
 632 
 633   assert(gch->no_allocs_since_save_marks(),
 634          "save marks have not been newly set.");
 635 
 636   {
 637     // DefNew needs to run with n_threads == 0, to make sure the serial
 638     // version of the card table scanning code is used.
 639     // See: CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel.
 640     StrongRootsScope srs(0);
 641 
 642     gch->young_process_roots(&srs,
 643                              &fsc_with_no_gc_barrier,
 644                              &fsc_with_gc_barrier,
 645                              &cld_scan_closure);
 646   }
 647 
 648   // "evacuate followers".
 649   evacuate_followers.do_void();
 650 
 651   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 652   ReferenceProcessor* rp = ref_processor();
 653   rp->setup_policy(clear_all_soft_refs);
 654   ReferenceProcessorPhaseTimes pt(_gc_timer, rp->num_q());
 655   const ReferenceProcessorStats& stats =
 656   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 657                                     NULL, &pt);
 658   gc_tracer.report_gc_reference_stats(stats);
 659   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 660   pt.print_all_references();
 661 
 662   WeakProcessor::unlink_or_oops_do(&is_alive, &keep_alive);
 663 
 664   if (!_promotion_failed) {
 665     // Swap the survivor spaces.
 666     eden()->clear(SpaceDecorator::Mangle);
 667     from()->clear(SpaceDecorator::Mangle);
 668     if (ZapUnusedHeapArea) {
 669       // This is now done here because of the piece-meal mangling which
 670       // can check for valid mangling at intermediate points in the
 671       // collection(s).  When a young collection fails to collect
 672       // sufficient space resizing of the young generation can occur
 673       // an redistribute the spaces in the young generation.  Mangle
 674       // here so that unzapped regions don't get distributed to
 675       // other spaces.
 676       to()->mangle_unused_area();
 677     }
 678     swap_spaces();
 679 
 680     assert(to()->is_empty(), "to space should be empty now");
 681 
 682     adjust_desired_tenuring_threshold();
 683 
 684     // A successful scavenge should restart the GC time limit count which is
 685     // for full GC's.
 686     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 687     size_policy->reset_gc_overhead_limit_count();
 688     assert(!gch->incremental_collection_failed(), "Should be clear");
 689   } else {
 690     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 691     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 692 
 693     remove_forwarding_pointers();
 694     log_info(gc, promotion)("Promotion failed");
 695     // Add to-space to the list of space to compact
 696     // when a promotion failure has occurred.  In that
 697     // case there can be live objects in to-space
 698     // as a result of a partial evacuation of eden
 699     // and from-space.
 700     swap_spaces();   // For uniformity wrt ParNewGeneration.
 701     from()->set_next_compaction_space(to());
 702     gch->set_incremental_collection_failed();
 703 
 704     // Inform the next generation that a promotion failure occurred.
 705     _old_gen->promotion_failure_occurred();
 706     gc_tracer.report_promotion_failed(_promotion_failed_info);
 707 
 708     // Reset the PromotionFailureALot counters.
 709     NOT_PRODUCT(gch->reset_promotion_should_fail();)
 710   }
 711   // We should have processed and cleared all the preserved marks.
 712   _preserved_marks_set.reclaim();
 713   // set new iteration safe limit for the survivor spaces
 714   from()->set_concurrent_iteration_safe_limit(from()->top());
 715   to()->set_concurrent_iteration_safe_limit(to()->top());
 716 
 717   // We need to use a monotonically non-decreasing time in ms
 718   // or we will see time-warp warnings and os::javaTimeMillis()
 719   // does not guarantee monotonicity.
 720   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 721   update_time_of_last_gc(now);
 722 
 723   gch->trace_heap_after_gc(&gc_tracer);
 724 
 725   _gc_timer->register_gc_end();
 726 
 727   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 728 }
 729 
 730 void DefNewGeneration::init_assuming_no_promotion_failure() {
 731   _promotion_failed = false;
 732   _promotion_failed_info.reset();
 733   from()->set_next_compaction_space(NULL);
 734 }
 735 
 736 void DefNewGeneration::remove_forwarding_pointers() {
 737   RemoveForwardedPointerClosure rspc;
 738   eden()->object_iterate(&rspc);
 739   from()->object_iterate(&rspc);
 740 
 741   SharedRestorePreservedMarksTaskExecutor task_executor(GenCollectedHeap::heap()->workers());
 742   _preserved_marks_set.restore(&task_executor);
 743 }
 744 
 745 void DefNewGeneration::handle_promotion_failure(oop old) {
 746   log_debug(gc, promotion)("Promotion failure size = %d) ", old->size());
 747 
 748   _promotion_failed = true;
 749   _promotion_failed_info.register_copy_failure(old->size());
 750   _preserved_marks_set.get()->push_if_necessary(old, old->mark());
 751   // forward to self
 752   old->forward_to(old);
 753 
 754   _promo_failure_scan_stack.push(old);
 755 
 756   if (!_promo_failure_drain_in_progress) {
 757     // prevent recursion in copy_to_survivor_space()
 758     _promo_failure_drain_in_progress = true;
 759     drain_promo_failure_scan_stack();
 760     _promo_failure_drain_in_progress = false;
 761   }
 762 }
 763 
 764 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 765   assert(is_in_reserved(old) && !old->is_forwarded(),
 766          "shouldn't be scavenging this oop");
 767   size_t s = old->size();
 768   oop obj = NULL;
 769 
 770   // Try allocating obj in to-space (unless too old)
 771   if (old->age() < tenuring_threshold()) {
 772     obj = (oop) to()->allocate_aligned(s);
 773   }
 774 
 775   // Otherwise try allocating obj tenured
 776   if (obj == NULL) {
 777     obj = _old_gen->promote(old, s);
 778     if (obj == NULL) {
 779       handle_promotion_failure(old);
 780       return old;
 781     }
 782   } else {
 783     // Prefetch beyond obj
 784     const intx interval = PrefetchCopyIntervalInBytes;
 785     Prefetch::write(obj, interval);
 786 
 787     // Copy obj
 788     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 789 
 790     // Increment age if obj still in new generation
 791     obj->incr_age();
 792     age_table()->add(obj, s);
 793   }
 794 
 795   // Done, insert forward pointer to obj in this header
 796   old->forward_to(obj);
 797 
 798   return obj;
 799 }
 800 
 801 void DefNewGeneration::drain_promo_failure_scan_stack() {
 802   while (!_promo_failure_scan_stack.is_empty()) {
 803      oop obj = _promo_failure_scan_stack.pop();
 804      obj->oop_iterate(_promo_failure_scan_stack_closure);
 805   }
 806 }
 807 
 808 void DefNewGeneration::save_marks() {
 809   eden()->set_saved_mark();
 810   to()->set_saved_mark();
 811   from()->set_saved_mark();
 812 }
 813 
 814 
 815 void DefNewGeneration::reset_saved_marks() {
 816   eden()->reset_saved_mark();
 817   to()->reset_saved_mark();
 818   from()->reset_saved_mark();
 819 }
 820 
 821 
 822 bool DefNewGeneration::no_allocs_since_save_marks() {
 823   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 824   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 825   return to()->saved_mark_at_top();
 826 }
 827 
 828 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 829                                                                 \
 830 void DefNewGeneration::                                         \
 831 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 832   cl->set_generation(this);                                     \
 833   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 834   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 835   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 836   cl->reset_generation();                                       \
 837   save_marks();                                                 \
 838 }
 839 
 840 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 841 
 842 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 843 
 844 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 845                                          size_t max_alloc_words) {
 846   if (requestor == this || _promotion_failed) {
 847     return;
 848   }
 849   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 850 
 851   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 852   if (to_space->top() > to_space->bottom()) {
 853     trace("to_space not empty when contribute_scratch called");
 854   }
 855   */
 856 
 857   ContiguousSpace* to_space = to();
 858   assert(to_space->end() >= to_space->top(), "pointers out of order");
 859   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 860   if (free_words >= MinFreeScratchWords) {
 861     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 862     sb->num_words = free_words;
 863     sb->next = list;
 864     list = sb;
 865   }
 866 }
 867 
 868 void DefNewGeneration::reset_scratch() {
 869   // If contributing scratch in to_space, mangle all of
 870   // to_space if ZapUnusedHeapArea.  This is needed because
 871   // top is not maintained while using to-space as scratch.
 872   if (ZapUnusedHeapArea) {
 873     to()->mangle_unused_area_complete();
 874   }
 875 }
 876 
 877 bool DefNewGeneration::collection_attempt_is_safe() {
 878   if (!to()->is_empty()) {
 879     log_trace(gc)(":: to is not empty ::");
 880     return false;
 881   }
 882   if (_old_gen == NULL) {
 883     GenCollectedHeap* gch = GenCollectedHeap::heap();
 884     _old_gen = gch->old_gen();
 885   }
 886   return _old_gen->promotion_attempt_is_safe(used());
 887 }
 888 
 889 void DefNewGeneration::gc_epilogue(bool full) {
 890   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 891 
 892   assert(!GCLocker::is_active(), "We should not be executing here");
 893   // Check if the heap is approaching full after a collection has
 894   // been done.  Generally the young generation is empty at
 895   // a minimum at the end of a collection.  If it is not, then
 896   // the heap is approaching full.
 897   GenCollectedHeap* gch = GenCollectedHeap::heap();
 898   if (full) {
 899     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 900     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 901       log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 902                             GCCause::to_string(gch->gc_cause()));
 903       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 904       set_should_allocate_from_space(); // we seem to be running out of space
 905     } else {
 906       log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 907                             GCCause::to_string(gch->gc_cause()));
 908       gch->clear_incremental_collection_failed(); // We just did a full collection
 909       clear_should_allocate_from_space(); // if set
 910     }
 911   } else {
 912 #ifdef ASSERT
 913     // It is possible that incremental_collection_failed() == true
 914     // here, because an attempted scavenge did not succeed. The policy
 915     // is normally expected to cause a full collection which should
 916     // clear that condition, so we should not be here twice in a row
 917     // with incremental_collection_failed() == true without having done
 918     // a full collection in between.
 919     if (!seen_incremental_collection_failed &&
 920         gch->incremental_collection_failed()) {
 921       log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 922                             GCCause::to_string(gch->gc_cause()));
 923       seen_incremental_collection_failed = true;
 924     } else if (seen_incremental_collection_failed) {
 925       log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 926                             GCCause::to_string(gch->gc_cause()));
 927       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 928              (GCCause::is_user_requested_gc(gch->gc_cause()) && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 929              !gch->incremental_collection_failed(),
 930              "Twice in a row");
 931       seen_incremental_collection_failed = false;
 932     }
 933 #endif // ASSERT
 934   }
 935 
 936   if (ZapUnusedHeapArea) {
 937     eden()->check_mangled_unused_area_complete();
 938     from()->check_mangled_unused_area_complete();
 939     to()->check_mangled_unused_area_complete();
 940   }
 941 
 942   if (!CleanChunkPoolAsync) {
 943     Chunk::clean_chunk_pool();
 944   }
 945 
 946   // update the generation and space performance counters
 947   update_counters();
 948   gch->gen_policy()->counters()->update_counters();
 949 }
 950 
 951 void DefNewGeneration::record_spaces_top() {
 952   assert(ZapUnusedHeapArea, "Not mangling unused space");
 953   eden()->set_top_for_allocations();
 954   to()->set_top_for_allocations();
 955   from()->set_top_for_allocations();
 956 }
 957 
 958 void DefNewGeneration::ref_processor_init() {
 959   Generation::ref_processor_init();
 960 }
 961 
 962 
 963 void DefNewGeneration::update_counters() {
 964   if (UsePerfData) {
 965     _eden_counters->update_all();
 966     _from_counters->update_all();
 967     _to_counters->update_all();
 968     _gen_counters->update_all();
 969   }
 970 }
 971 
 972 void DefNewGeneration::verify() {
 973   eden()->verify();
 974   from()->verify();
 975     to()->verify();
 976 }
 977 
 978 void DefNewGeneration::print_on(outputStream* st) const {
 979   Generation::print_on(st);
 980   st->print("  eden");
 981   eden()->print_on(st);
 982   st->print("  from");
 983   from()->print_on(st);
 984   st->print("  to  ");
 985   to()->print_on(st);
 986 }
 987 
 988 
 989 const char* DefNewGeneration::name() const {
 990   return "def new generation";
 991 }
 992 
 993 // Moved from inline file as they are not called inline
 994 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
 995   return eden();
 996 }
 997 
 998 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
 999   // This is the slow-path allocation for the DefNewGeneration.
1000   // Most allocations are fast-path in compiled code.
1001   // We try to allocate from the eden.  If that works, we are happy.
1002   // Note that since DefNewGeneration supports lock-free allocation, we
1003   // have to use it here, as well.
1004   HeapWord* result = eden()->par_allocate(word_size);
1005   if (result != NULL) {
1006     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1007       _old_gen->sample_eden_chunk();
1008     }
1009   } else {
1010     // If the eden is full and the last collection bailed out, we are running
1011     // out of heap space, and we try to allocate the from-space, too.
1012     // allocate_from_space can't be inlined because that would introduce a
1013     // circular dependency at compile time.
1014     result = allocate_from_space(word_size);
1015   }
1016   return result;
1017 }
1018 
1019 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1020                                          bool is_tlab) {
1021   HeapWord* res = eden()->par_allocate(word_size);
1022   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1023     _old_gen->sample_eden_chunk();
1024   }
1025   return res;
1026 }
1027 
1028 size_t DefNewGeneration::tlab_capacity() const {
1029   return eden()->capacity();
1030 }
1031 
1032 size_t DefNewGeneration::tlab_used() const {
1033   return eden()->used();
1034 }
1035 
1036 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1037   return unsafe_max_alloc_nogc();
1038 }