1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1AllocationContext.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1HeapTransition.hpp"
  38 #include "gc/g1/g1HeapVerifier.hpp"
  39 #include "gc/g1/g1HRPrinter.hpp"
  40 #include "gc/g1/g1InCSetState.hpp"
  41 #include "gc/g1/g1MonitoringSupport.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/hSpaceCounters.hpp"
  46 #include "gc/g1/heapRegionManager.hpp"
  47 #include "gc/g1/heapRegionSet.hpp"
  48 #include "gc/shared/barrierSet.hpp"
  49 #include "gc/shared/collectedHeap.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "memory/memRegion.hpp"
  53 #include "utilities/stack.hpp"
  54 
  55 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  56 // It uses the "Garbage First" heap organization and algorithm, which
  57 // may combine concurrent marking with parallel, incremental compaction of
  58 // heap subsets that will yield large amounts of garbage.
  59 
  60 // Forward declarations
  61 class HeapRegion;
  62 class HRRSCleanupTask;
  63 class GenerationSpec;
  64 class G1ParScanThreadState;
  65 class G1ParScanThreadStateSet;
  66 class G1ParScanThreadState;
  67 class ObjectClosure;
  68 class SpaceClosure;
  69 class CompactibleSpaceClosure;
  70 class Space;
  71 class G1CollectionSet;
  72 class G1CollectorPolicy;
  73 class G1Policy;
  74 class G1HotCardCache;
  75 class G1RemSet;
  76 class HeapRegionRemSetIterator;
  77 class G1ConcurrentMark;
  78 class ConcurrentMarkThread;
  79 class ConcurrentG1Refine;
  80 class GenerationCounters;
  81 class STWGCTimer;
  82 class G1NewTracer;
  83 class EvacuationFailedInfo;
  84 class nmethod;
  85 class Ticks;
  86 class WorkGang;
  87 class G1Allocator;
  88 class G1ArchiveAllocator;
  89 class G1FullGCScope;
  90 class G1HeapVerifier;
  91 class G1HeapSizingPolicy;
  92 class G1HeapSummary;
  93 class G1EvacSummary;
  94 
  95 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  96 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  97 
  98 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  99 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 100 
 101 // The G1 STW is alive closure.
 102 // An instance is embedded into the G1CH and used as the
 103 // (optional) _is_alive_non_header closure in the STW
 104 // reference processor. It is also extensively used during
 105 // reference processing during STW evacuation pauses.
 106 class G1STWIsAliveClosure: public BoolObjectClosure {
 107   G1CollectedHeap* _g1;
 108 public:
 109   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 110   bool do_object_b(oop p);
 111 };
 112 
 113 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 114  private:
 115   void reset_from_card_cache(uint start_idx, size_t num_regions);
 116  public:
 117   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 118 };
 119 
 120 class G1CollectedHeap : public CollectedHeap {
 121   friend class G1FreeCollectionSetTask;
 122   friend class VM_CollectForMetadataAllocation;
 123   friend class VM_G1CollectForAllocation;
 124   friend class VM_G1CollectFull;
 125   friend class VM_G1IncCollectionPause;
 126   friend class VMStructs;
 127   friend class MutatorAllocRegion;
 128   friend class G1GCAllocRegion;
 129   friend class G1HeapVerifier;
 130 
 131   // Closures used in implementation.
 132   friend class G1ParScanThreadState;
 133   friend class G1ParScanThreadStateSet;
 134   friend class G1ParTask;
 135   friend class G1PLABAllocator;
 136   friend class G1PrepareCompactClosure;
 137 
 138   // Other related classes.
 139   friend class HeapRegionClaimer;
 140 
 141   // Testing classes.
 142   friend class G1CheckCSetFastTableClosure;
 143 
 144 private:
 145   WorkGang* _workers;
 146   G1CollectorPolicy* _collector_policy;
 147 
 148   static size_t _humongous_object_threshold_in_words;
 149 
 150   // The secondary free list which contains regions that have been
 151   // freed up during the cleanup process. This will be appended to
 152   // the master free list when appropriate.
 153   FreeRegionList _secondary_free_list;
 154 
 155   // It keeps track of the old regions.
 156   HeapRegionSet _old_set;
 157 
 158   // It keeps track of the humongous regions.
 159   HeapRegionSet _humongous_set;
 160 
 161   void eagerly_reclaim_humongous_regions();
 162   // Start a new incremental collection set for the next pause.
 163   void start_new_collection_set();
 164 
 165   // The number of regions we could create by expansion.
 166   uint _expansion_regions;
 167 
 168   // The block offset table for the G1 heap.
 169   G1BlockOffsetTable* _bot;
 170 
 171   // Tears down the region sets / lists so that they are empty and the
 172   // regions on the heap do not belong to a region set / list. The
 173   // only exception is the humongous set which we leave unaltered. If
 174   // free_list_only is true, it will only tear down the master free
 175   // list. It is called before a Full GC (free_list_only == false) or
 176   // before heap shrinking (free_list_only == true).
 177   void tear_down_region_sets(bool free_list_only);
 178 
 179   // Rebuilds the region sets / lists so that they are repopulated to
 180   // reflect the contents of the heap. The only exception is the
 181   // humongous set which was not torn down in the first place. If
 182   // free_list_only is true, it will only rebuild the master free
 183   // list. It is called after a Full GC (free_list_only == false) or
 184   // after heap shrinking (free_list_only == true).
 185   void rebuild_region_sets(bool free_list_only);
 186 
 187   // Callback for region mapping changed events.
 188   G1RegionMappingChangedListener _listener;
 189 
 190   // The sequence of all heap regions in the heap.
 191   HeapRegionManager _hrm;
 192 
 193   // Manages all allocations with regions except humongous object allocations.
 194   G1Allocator* _allocator;
 195 
 196   // Manages all heap verification.
 197   G1HeapVerifier* _verifier;
 198 
 199   // Outside of GC pauses, the number of bytes used in all regions other
 200   // than the current allocation region(s).
 201   size_t _summary_bytes_used;
 202 
 203   void increase_used(size_t bytes);
 204   void decrease_used(size_t bytes);
 205 
 206   void set_used(size_t bytes);
 207 
 208   // Class that handles archive allocation ranges.
 209   G1ArchiveAllocator* _archive_allocator;
 210 
 211   // Statistics for each allocation context
 212   AllocationContextStats _allocation_context_stats;
 213 
 214   // GC allocation statistics policy for survivors.
 215   G1EvacStats _survivor_evac_stats;
 216 
 217   // GC allocation statistics policy for tenured objects.
 218   G1EvacStats _old_evac_stats;
 219 
 220   // It specifies whether we should attempt to expand the heap after a
 221   // region allocation failure. If heap expansion fails we set this to
 222   // false so that we don't re-attempt the heap expansion (it's likely
 223   // that subsequent expansion attempts will also fail if one fails).
 224   // Currently, it is only consulted during GC and it's reset at the
 225   // start of each GC.
 226   bool _expand_heap_after_alloc_failure;
 227 
 228   // Helper for monitoring and management support.
 229   G1MonitoringSupport* _g1mm;
 230 
 231   // Records whether the region at the given index is (still) a
 232   // candidate for eager reclaim.  Only valid for humongous start
 233   // regions; other regions have unspecified values.  Humongous start
 234   // regions are initialized at start of collection pause, with
 235   // candidates removed from the set as they are found reachable from
 236   // roots or the young generation.
 237   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 238    protected:
 239     bool default_value() const { return false; }
 240    public:
 241     void clear() { G1BiasedMappedArray<bool>::clear(); }
 242     void set_candidate(uint region, bool value) {
 243       set_by_index(region, value);
 244     }
 245     bool is_candidate(uint region) {
 246       return get_by_index(region);
 247     }
 248   };
 249 
 250   HumongousReclaimCandidates _humongous_reclaim_candidates;
 251   // Stores whether during humongous object registration we found candidate regions.
 252   // If not, we can skip a few steps.
 253   bool _has_humongous_reclaim_candidates;
 254 
 255   volatile uint _gc_time_stamp;
 256 
 257   G1HRPrinter _hr_printer;
 258 
 259   // It decides whether an explicit GC should start a concurrent cycle
 260   // instead of doing a STW GC. Currently, a concurrent cycle is
 261   // explicitly started if:
 262   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 263   // (b) cause == _g1_humongous_allocation
 264   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 265   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 266   // (e) cause == _update_allocation_context_stats_inc
 267   // (f) cause == _wb_conc_mark
 268   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 269 
 270   // indicates whether we are in young or mixed GC mode
 271   G1CollectorState _collector_state;
 272 
 273   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 274   // concurrent cycles) we have started.
 275   volatile uint _old_marking_cycles_started;
 276 
 277   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 278   // concurrent cycles) we have completed.
 279   volatile uint _old_marking_cycles_completed;
 280 
 281   // This is a non-product method that is helpful for testing. It is
 282   // called at the end of a GC and artificially expands the heap by
 283   // allocating a number of dead regions. This way we can induce very
 284   // frequent marking cycles and stress the cleanup / concurrent
 285   // cleanup code more (as all the regions that will be allocated by
 286   // this method will be found dead by the marking cycle).
 287   void allocate_dummy_regions() PRODUCT_RETURN;
 288 
 289   // Clear RSets after a compaction. It also resets the GC time stamps.
 290   void clear_rsets_post_compaction();
 291 
 292   // If the HR printer is active, dump the state of the regions in the
 293   // heap after a compaction.
 294   void print_hrm_post_compaction();
 295 
 296   // Create a memory mapper for auxiliary data structures of the given size and
 297   // translation factor.
 298   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 299                                                          size_t size,
 300                                                          size_t translation_factor);
 301 
 302   static G1Policy* create_g1_policy(STWGCTimer* gc_timer);
 303 
 304   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 305 
 306   // These are macros so that, if the assert fires, we get the correct
 307   // line number, file, etc.
 308 
 309 #define heap_locking_asserts_params(_extra_message_)                          \
 310   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 311   (_extra_message_),                                                          \
 312   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 313   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 314   BOOL_TO_STR(Thread::current()->is_VM_thread())
 315 
 316 #define assert_heap_locked()                                                  \
 317   do {                                                                        \
 318     assert(Heap_lock->owned_by_self(),                                        \
 319            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 320   } while (0)
 321 
 322 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 323   do {                                                                        \
 324     assert(Heap_lock->owned_by_self() ||                                      \
 325            (SafepointSynchronize::is_at_safepoint() &&                        \
 326              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 327            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 328                                         "should be at a safepoint"));         \
 329   } while (0)
 330 
 331 #define assert_heap_locked_and_not_at_safepoint()                             \
 332   do {                                                                        \
 333     assert(Heap_lock->owned_by_self() &&                                      \
 334                                     !SafepointSynchronize::is_at_safepoint(), \
 335           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 336                                        "should not be at a safepoint"));      \
 337   } while (0)
 338 
 339 #define assert_heap_not_locked()                                              \
 340   do {                                                                        \
 341     assert(!Heap_lock->owned_by_self(),                                       \
 342         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 343   } while (0)
 344 
 345 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 346   do {                                                                        \
 347     assert(!Heap_lock->owned_by_self() &&                                     \
 348                                     !SafepointSynchronize::is_at_safepoint(), \
 349       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 350                                    "should not be at a safepoint"));          \
 351   } while (0)
 352 
 353 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 354   do {                                                                        \
 355     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 356               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 357            heap_locking_asserts_params("should be at a safepoint"));          \
 358   } while (0)
 359 
 360 #define assert_not_at_safepoint()                                             \
 361   do {                                                                        \
 362     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 363            heap_locking_asserts_params("should not be at a safepoint"));      \
 364   } while (0)
 365 
 366 protected:
 367 
 368   // The young region list.
 369   G1EdenRegions _eden;
 370   G1SurvivorRegions _survivor;
 371 
 372   STWGCTimer* _gc_timer_stw;
 373 
 374   G1NewTracer* _gc_tracer_stw;
 375 
 376   // The current policy object for the collector.
 377   G1Policy* _g1_policy;
 378   G1HeapSizingPolicy* _heap_sizing_policy;
 379 
 380   G1CollectionSet _collection_set;
 381 
 382   // This is the second level of trying to allocate a new region. If
 383   // new_region() didn't find a region on the free_list, this call will
 384   // check whether there's anything available on the
 385   // secondary_free_list and/or wait for more regions to appear on
 386   // that list, if _free_regions_coming is set.
 387   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 388 
 389   // Try to allocate a single non-humongous HeapRegion sufficient for
 390   // an allocation of the given word_size. If do_expand is true,
 391   // attempt to expand the heap if necessary to satisfy the allocation
 392   // request. If the region is to be used as an old region or for a
 393   // humongous object, set is_old to true. If not, to false.
 394   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 395 
 396   // Initialize a contiguous set of free regions of length num_regions
 397   // and starting at index first so that they appear as a single
 398   // humongous region.
 399   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 400                                                       uint num_regions,
 401                                                       size_t word_size,
 402                                                       AllocationContext_t context);
 403 
 404   // Attempt to allocate a humongous object of the given size. Return
 405   // NULL if unsuccessful.
 406   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 407 
 408   // The following two methods, allocate_new_tlab() and
 409   // mem_allocate(), are the two main entry points from the runtime
 410   // into the G1's allocation routines. They have the following
 411   // assumptions:
 412   //
 413   // * They should both be called outside safepoints.
 414   //
 415   // * They should both be called without holding the Heap_lock.
 416   //
 417   // * All allocation requests for new TLABs should go to
 418   //   allocate_new_tlab().
 419   //
 420   // * All non-TLAB allocation requests should go to mem_allocate().
 421   //
 422   // * If either call cannot satisfy the allocation request using the
 423   //   current allocating region, they will try to get a new one. If
 424   //   this fails, they will attempt to do an evacuation pause and
 425   //   retry the allocation.
 426   //
 427   // * If all allocation attempts fail, even after trying to schedule
 428   //   an evacuation pause, allocate_new_tlab() will return NULL,
 429   //   whereas mem_allocate() will attempt a heap expansion and/or
 430   //   schedule a Full GC.
 431   //
 432   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 433   //   should never be called with word_size being humongous. All
 434   //   humongous allocation requests should go to mem_allocate() which
 435   //   will satisfy them with a special path.
 436 
 437   virtual HeapWord* allocate_new_tlab(size_t word_size);
 438 
 439   virtual HeapWord* mem_allocate(size_t word_size,
 440                                  bool*  gc_overhead_limit_was_exceeded);
 441 
 442   // The following three methods take a gc_count_before_ret
 443   // parameter which is used to return the GC count if the method
 444   // returns NULL. Given that we are required to read the GC count
 445   // while holding the Heap_lock, and these paths will take the
 446   // Heap_lock at some point, it's easier to get them to read the GC
 447   // count while holding the Heap_lock before they return NULL instead
 448   // of the caller (namely: mem_allocate()) having to also take the
 449   // Heap_lock just to read the GC count.
 450 
 451   // First-level mutator allocation attempt: try to allocate out of
 452   // the mutator alloc region without taking the Heap_lock. This
 453   // should only be used for non-humongous allocations.
 454   inline HeapWord* attempt_allocation(size_t word_size,
 455                                       uint* gc_count_before_ret,
 456                                       uint* gclocker_retry_count_ret);
 457 
 458   // Second-level mutator allocation attempt: take the Heap_lock and
 459   // retry the allocation attempt, potentially scheduling a GC
 460   // pause. This should only be used for non-humongous allocations.
 461   HeapWord* attempt_allocation_slow(size_t word_size,
 462                                     AllocationContext_t context,
 463                                     uint* gc_count_before_ret,
 464                                     uint* gclocker_retry_count_ret);
 465 
 466   // Takes the Heap_lock and attempts a humongous allocation. It can
 467   // potentially schedule a GC pause.
 468   HeapWord* attempt_allocation_humongous(size_t word_size,
 469                                          uint* gc_count_before_ret,
 470                                          uint* gclocker_retry_count_ret);
 471 
 472   // Allocation attempt that should be called during safepoints (e.g.,
 473   // at the end of a successful GC). expect_null_mutator_alloc_region
 474   // specifies whether the mutator alloc region is expected to be NULL
 475   // or not.
 476   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 477                                             AllocationContext_t context,
 478                                             bool expect_null_mutator_alloc_region);
 479 
 480   // These methods are the "callbacks" from the G1AllocRegion class.
 481 
 482   // For mutator alloc regions.
 483   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 484   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 485                                    size_t allocated_bytes);
 486 
 487   // For GC alloc regions.
 488   bool has_more_regions(InCSetState dest);
 489   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 490   void retire_gc_alloc_region(HeapRegion* alloc_region,
 491                               size_t allocated_bytes, InCSetState dest);
 492 
 493   // - if explicit_gc is true, the GC is for a System.gc() etc,
 494   //   otherwise it's for a failed allocation.
 495   // - if clear_all_soft_refs is true, all soft references should be
 496   //   cleared during the GC.
 497   // - it returns false if it is unable to do the collection due to the
 498   //   GC locker being active, true otherwise.
 499   bool do_full_collection(bool explicit_gc,
 500                           bool clear_all_soft_refs);
 501 
 502   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 503   virtual void do_full_collection(bool clear_all_soft_refs);
 504 
 505   // Resize the heap if necessary after a full collection.
 506   void resize_if_necessary_after_full_collection();
 507 
 508   // Callback from VM_G1CollectForAllocation operation.
 509   // This function does everything necessary/possible to satisfy a
 510   // failed allocation request (including collection, expansion, etc.)
 511   HeapWord* satisfy_failed_allocation(size_t word_size,
 512                                       AllocationContext_t context,
 513                                       bool* succeeded);
 514 private:
 515   // Internal helpers used during full GC to split it up to
 516   // increase readability.
 517   void do_full_collection_inner(G1FullGCScope* scope);
 518   void abort_concurrent_cycle();
 519   void verify_before_full_collection(bool explicit_gc);
 520   void prepare_heap_for_full_collection();
 521   void prepare_heap_for_mutators();
 522   void abort_refinement();
 523   void verify_after_full_collection();
 524   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 525 
 526   // Helper method for satisfy_failed_allocation()
 527   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 528                                              AllocationContext_t context,
 529                                              bool do_gc,
 530                                              bool clear_all_soft_refs,
 531                                              bool expect_null_mutator_alloc_region,
 532                                              bool* gc_succeeded);
 533 
 534 protected:
 535   // Attempting to expand the heap sufficiently
 536   // to support an allocation of the given "word_size".  If
 537   // successful, perform the allocation and return the address of the
 538   // allocated block, or else "NULL".
 539   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 540 
 541   // Preserve any referents discovered by concurrent marking that have not yet been
 542   // copied by the STW pause.
 543   void preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states);
 544   // Process any reference objects discovered during
 545   // an incremental evacuation pause.
 546   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 547 
 548   // Enqueue any remaining discovered references
 549   // after processing.
 550   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 551 
 552   // Merges the information gathered on a per-thread basis for all worker threads
 553   // during GC into global variables.
 554   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 555 public:
 556   WorkGang* workers() const { return _workers; }
 557 
 558   G1Allocator* allocator() {
 559     return _allocator;
 560   }
 561 
 562   G1HeapVerifier* verifier() {
 563     return _verifier;
 564   }
 565 
 566   G1MonitoringSupport* g1mm() {
 567     assert(_g1mm != NULL, "should have been initialized");
 568     return _g1mm;
 569   }
 570 
 571   // Expand the garbage-first heap by at least the given size (in bytes!).
 572   // Returns true if the heap was expanded by the requested amount;
 573   // false otherwise.
 574   // (Rounds up to a HeapRegion boundary.)
 575   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 576 
 577   // Returns the PLAB statistics for a given destination.
 578   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 579 
 580   // Determines PLAB size for a given destination.
 581   inline size_t desired_plab_sz(InCSetState dest);
 582 
 583   inline AllocationContextStats& allocation_context_stats();
 584 
 585   // Do anything common to GC's.
 586   void gc_prologue(bool full);
 587   void gc_epilogue(bool full);
 588 
 589   // Modify the reclaim candidate set and test for presence.
 590   // These are only valid for starts_humongous regions.
 591   inline void set_humongous_reclaim_candidate(uint region, bool value);
 592   inline bool is_humongous_reclaim_candidate(uint region);
 593 
 594   // Remove from the reclaim candidate set.  Also remove from the
 595   // collection set so that later encounters avoid the slow path.
 596   inline void set_humongous_is_live(oop obj);
 597 
 598   // Register the given region to be part of the collection set.
 599   inline void register_humongous_region_with_cset(uint index);
 600   // Register regions with humongous objects (actually on the start region) in
 601   // the in_cset_fast_test table.
 602   void register_humongous_regions_with_cset();
 603   // We register a region with the fast "in collection set" test. We
 604   // simply set to true the array slot corresponding to this region.
 605   void register_young_region_with_cset(HeapRegion* r) {
 606     _in_cset_fast_test.set_in_young(r->hrm_index());
 607   }
 608   void register_old_region_with_cset(HeapRegion* r) {
 609     _in_cset_fast_test.set_in_old(r->hrm_index());
 610   }
 611   inline void register_ext_region_with_cset(HeapRegion* r) {
 612     _in_cset_fast_test.set_ext(r->hrm_index());
 613   }
 614   void clear_in_cset(const HeapRegion* hr) {
 615     _in_cset_fast_test.clear(hr);
 616   }
 617 
 618   void clear_cset_fast_test() {
 619     _in_cset_fast_test.clear();
 620   }
 621 
 622   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 623 
 624   // This is called at the start of either a concurrent cycle or a Full
 625   // GC to update the number of old marking cycles started.
 626   void increment_old_marking_cycles_started();
 627 
 628   // This is called at the end of either a concurrent cycle or a Full
 629   // GC to update the number of old marking cycles completed. Those two
 630   // can happen in a nested fashion, i.e., we start a concurrent
 631   // cycle, a Full GC happens half-way through it which ends first,
 632   // and then the cycle notices that a Full GC happened and ends
 633   // too. The concurrent parameter is a boolean to help us do a bit
 634   // tighter consistency checking in the method. If concurrent is
 635   // false, the caller is the inner caller in the nesting (i.e., the
 636   // Full GC). If concurrent is true, the caller is the outer caller
 637   // in this nesting (i.e., the concurrent cycle). Further nesting is
 638   // not currently supported. The end of this call also notifies
 639   // the FullGCCount_lock in case a Java thread is waiting for a full
 640   // GC to happen (e.g., it called System.gc() with
 641   // +ExplicitGCInvokesConcurrent).
 642   void increment_old_marking_cycles_completed(bool concurrent);
 643 
 644   uint old_marking_cycles_completed() {
 645     return _old_marking_cycles_completed;
 646   }
 647 
 648   G1HRPrinter* hr_printer() { return &_hr_printer; }
 649 
 650   // Allocates a new heap region instance.
 651   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 652 
 653   // Allocate the highest free region in the reserved heap. This will commit
 654   // regions as necessary.
 655   HeapRegion* alloc_highest_free_region();
 656 
 657   // Frees a non-humongous region by initializing its contents and
 658   // adding it to the free list that's passed as a parameter (this is
 659   // usually a local list which will be appended to the master free
 660   // list later). The used bytes of freed regions are accumulated in
 661   // pre_used. If skip_remset is true, the region's RSet will not be freed
 662   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 663   // be freed up. The assumption is that this will be done later.
 664   // The locked parameter indicates if the caller has already taken
 665   // care of proper synchronization. This may allow some optimizations.
 666   void free_region(HeapRegion* hr,
 667                    FreeRegionList* free_list,
 668                    bool skip_remset,
 669                    bool skip_hot_card_cache = false,
 670                    bool locked = false);
 671 
 672   // It dirties the cards that cover the block so that the post
 673   // write barrier never queues anything when updating objects on this
 674   // block. It is assumed (and in fact we assert) that the block
 675   // belongs to a young region.
 676   inline void dirty_young_block(HeapWord* start, size_t word_size);
 677 
 678   // Frees a humongous region by collapsing it into individual regions
 679   // and calling free_region() for each of them. The freed regions
 680   // will be added to the free list that's passed as a parameter (this
 681   // is usually a local list which will be appended to the master free
 682   // list later). The used bytes of freed regions are accumulated in
 683   // pre_used. If skip_remset is true, the region's RSet will not be freed
 684   // up. The assumption is that this will be done later.
 685   void free_humongous_region(HeapRegion* hr,
 686                              FreeRegionList* free_list,
 687                              bool skip_remset);
 688 
 689   // Facility for allocating in 'archive' regions in high heap memory and
 690   // recording the allocated ranges. These should all be called from the
 691   // VM thread at safepoints, without the heap lock held. They can be used
 692   // to create and archive a set of heap regions which can be mapped at the
 693   // same fixed addresses in a subsequent JVM invocation.
 694   void begin_archive_alloc_range(bool open = false);
 695 
 696   // Check if the requested size would be too large for an archive allocation.
 697   bool is_archive_alloc_too_large(size_t word_size);
 698 
 699   // Allocate memory of the requested size from the archive region. This will
 700   // return NULL if the size is too large or if no memory is available. It
 701   // does not trigger a garbage collection.
 702   HeapWord* archive_mem_allocate(size_t word_size);
 703 
 704   // Optionally aligns the end address and returns the allocated ranges in
 705   // an array of MemRegions in order of ascending addresses.
 706   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 707                                size_t end_alignment_in_bytes = 0);
 708 
 709   // Facility for allocating a fixed range within the heap and marking
 710   // the containing regions as 'archive'. For use at JVM init time, when the
 711   // caller may mmap archived heap data at the specified range(s).
 712   // Verify that the MemRegions specified in the argument array are within the
 713   // reserved heap.
 714   bool check_archive_addresses(MemRegion* range, size_t count);
 715 
 716   // Commit the appropriate G1 regions containing the specified MemRegions
 717   // and mark them as 'archive' regions. The regions in the array must be
 718   // non-overlapping and in order of ascending address.
 719   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 720 
 721   // Insert any required filler objects in the G1 regions around the specified
 722   // ranges to make the regions parseable. This must be called after
 723   // alloc_archive_regions, and after class loading has occurred.
 724   void fill_archive_regions(MemRegion* range, size_t count);
 725 
 726   // For each of the specified MemRegions, uncommit the containing G1 regions
 727   // which had been allocated by alloc_archive_regions. This should be called
 728   // rather than fill_archive_regions at JVM init time if the archive file
 729   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 730   void dealloc_archive_regions(MemRegion* range, size_t count);
 731 
 732 protected:
 733 
 734   // Shrink the garbage-first heap by at most the given size (in bytes!).
 735   // (Rounds down to a HeapRegion boundary.)
 736   virtual void shrink(size_t expand_bytes);
 737   void shrink_helper(size_t expand_bytes);
 738 
 739   #if TASKQUEUE_STATS
 740   static void print_taskqueue_stats_hdr(outputStream* const st);
 741   void print_taskqueue_stats() const;
 742   void reset_taskqueue_stats();
 743   #endif // TASKQUEUE_STATS
 744 
 745   // Schedule the VM operation that will do an evacuation pause to
 746   // satisfy an allocation request of word_size. *succeeded will
 747   // return whether the VM operation was successful (it did do an
 748   // evacuation pause) or not (another thread beat us to it or the GC
 749   // locker was active). Given that we should not be holding the
 750   // Heap_lock when we enter this method, we will pass the
 751   // gc_count_before (i.e., total_collections()) as a parameter since
 752   // it has to be read while holding the Heap_lock. Currently, both
 753   // methods that call do_collection_pause() release the Heap_lock
 754   // before the call, so it's easy to read gc_count_before just before.
 755   HeapWord* do_collection_pause(size_t         word_size,
 756                                 uint           gc_count_before,
 757                                 bool*          succeeded,
 758                                 GCCause::Cause gc_cause);
 759 
 760   void wait_for_root_region_scanning();
 761 
 762   // The guts of the incremental collection pause, executed by the vm
 763   // thread. It returns false if it is unable to do the collection due
 764   // to the GC locker being active, true otherwise
 765   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 766 
 767   // Actually do the work of evacuating the collection set.
 768   virtual void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 769 
 770   void pre_evacuate_collection_set();
 771   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 772 
 773   // Print the header for the per-thread termination statistics.
 774   static void print_termination_stats_hdr();
 775   // Print actual per-thread termination statistics.
 776   void print_termination_stats(uint worker_id,
 777                                double elapsed_ms,
 778                                double strong_roots_ms,
 779                                double term_ms,
 780                                size_t term_attempts,
 781                                size_t alloc_buffer_waste,
 782                                size_t undo_waste) const;
 783   // Update object copying statistics.
 784   void record_obj_copy_mem_stats();
 785 
 786   // The hot card cache for remembered set insertion optimization.
 787   G1HotCardCache* _hot_card_cache;
 788 
 789   // The g1 remembered set of the heap.
 790   G1RemSet* _g1_rem_set;
 791 
 792   // A set of cards that cover the objects for which the Rsets should be updated
 793   // concurrently after the collection.
 794   DirtyCardQueueSet _dirty_card_queue_set;
 795 
 796   // After a collection pause, convert the regions in the collection set into free
 797   // regions.
 798   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 799 
 800   // Abandon the current collection set without recording policy
 801   // statistics or updating free lists.
 802   void abandon_collection_set(G1CollectionSet* collection_set);
 803 
 804   // The concurrent marker (and the thread it runs in.)
 805   G1ConcurrentMark* _cm;
 806   ConcurrentMarkThread* _cmThread;
 807 
 808   // The concurrent refiner.
 809   ConcurrentG1Refine* _cg1r;
 810 
 811   // The parallel task queues
 812   RefToScanQueueSet *_task_queues;
 813 
 814   // True iff a evacuation has failed in the current collection.
 815   bool _evacuation_failed;
 816 
 817   EvacuationFailedInfo* _evacuation_failed_info_array;
 818 
 819   // Failed evacuations cause some logical from-space objects to have
 820   // forwarding pointers to themselves.  Reset them.
 821   void remove_self_forwarding_pointers();
 822 
 823   // Restore the objects in the regions in the collection set after an
 824   // evacuation failure.
 825   void restore_after_evac_failure();
 826 
 827   PreservedMarksSet _preserved_marks_set;
 828 
 829   // Preserve the mark of "obj", if necessary, in preparation for its mark
 830   // word being overwritten with a self-forwarding-pointer.
 831   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 832 
 833 #ifndef PRODUCT
 834   // Support for forcing evacuation failures. Analogous to
 835   // PromotionFailureALot for the other collectors.
 836 
 837   // Records whether G1EvacuationFailureALot should be in effect
 838   // for the current GC
 839   bool _evacuation_failure_alot_for_current_gc;
 840 
 841   // Used to record the GC number for interval checking when
 842   // determining whether G1EvaucationFailureALot is in effect
 843   // for the current GC.
 844   size_t _evacuation_failure_alot_gc_number;
 845 
 846   // Count of the number of evacuations between failures.
 847   volatile size_t _evacuation_failure_alot_count;
 848 
 849   // Set whether G1EvacuationFailureALot should be in effect
 850   // for the current GC (based upon the type of GC and which
 851   // command line flags are set);
 852   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 853                                                   bool during_initial_mark,
 854                                                   bool during_marking);
 855 
 856   inline void set_evacuation_failure_alot_for_current_gc();
 857 
 858   // Return true if it's time to cause an evacuation failure.
 859   inline bool evacuation_should_fail();
 860 
 861   // Reset the G1EvacuationFailureALot counters.  Should be called at
 862   // the end of an evacuation pause in which an evacuation failure occurred.
 863   inline void reset_evacuation_should_fail();
 864 #endif // !PRODUCT
 865 
 866   // ("Weak") Reference processing support.
 867   //
 868   // G1 has 2 instances of the reference processor class. One
 869   // (_ref_processor_cm) handles reference object discovery
 870   // and subsequent processing during concurrent marking cycles.
 871   //
 872   // The other (_ref_processor_stw) handles reference object
 873   // discovery and processing during full GCs and incremental
 874   // evacuation pauses.
 875   //
 876   // During an incremental pause, reference discovery will be
 877   // temporarily disabled for _ref_processor_cm and will be
 878   // enabled for _ref_processor_stw. At the end of the evacuation
 879   // pause references discovered by _ref_processor_stw will be
 880   // processed and discovery will be disabled. The previous
 881   // setting for reference object discovery for _ref_processor_cm
 882   // will be re-instated.
 883   //
 884   // At the start of marking:
 885   //  * Discovery by the CM ref processor is verified to be inactive
 886   //    and it's discovered lists are empty.
 887   //  * Discovery by the CM ref processor is then enabled.
 888   //
 889   // At the end of marking:
 890   //  * Any references on the CM ref processor's discovered
 891   //    lists are processed (possibly MT).
 892   //
 893   // At the start of full GC we:
 894   //  * Disable discovery by the CM ref processor and
 895   //    empty CM ref processor's discovered lists
 896   //    (without processing any entries).
 897   //  * Verify that the STW ref processor is inactive and it's
 898   //    discovered lists are empty.
 899   //  * Temporarily set STW ref processor discovery as single threaded.
 900   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 901   //    field.
 902   //  * Finally enable discovery by the STW ref processor.
 903   //
 904   // The STW ref processor is used to record any discovered
 905   // references during the full GC.
 906   //
 907   // At the end of a full GC we:
 908   //  * Enqueue any reference objects discovered by the STW ref processor
 909   //    that have non-live referents. This has the side-effect of
 910   //    making the STW ref processor inactive by disabling discovery.
 911   //  * Verify that the CM ref processor is still inactive
 912   //    and no references have been placed on it's discovered
 913   //    lists (also checked as a precondition during initial marking).
 914 
 915   // The (stw) reference processor...
 916   ReferenceProcessor* _ref_processor_stw;
 917 
 918   // During reference object discovery, the _is_alive_non_header
 919   // closure (if non-null) is applied to the referent object to
 920   // determine whether the referent is live. If so then the
 921   // reference object does not need to be 'discovered' and can
 922   // be treated as a regular oop. This has the benefit of reducing
 923   // the number of 'discovered' reference objects that need to
 924   // be processed.
 925   //
 926   // Instance of the is_alive closure for embedding into the
 927   // STW reference processor as the _is_alive_non_header field.
 928   // Supplying a value for the _is_alive_non_header field is
 929   // optional but doing so prevents unnecessary additions to
 930   // the discovered lists during reference discovery.
 931   G1STWIsAliveClosure _is_alive_closure_stw;
 932 
 933   // The (concurrent marking) reference processor...
 934   ReferenceProcessor* _ref_processor_cm;
 935 
 936   // Instance of the concurrent mark is_alive closure for embedding
 937   // into the Concurrent Marking reference processor as the
 938   // _is_alive_non_header field. Supplying a value for the
 939   // _is_alive_non_header field is optional but doing so prevents
 940   // unnecessary additions to the discovered lists during reference
 941   // discovery.
 942   G1CMIsAliveClosure _is_alive_closure_cm;
 943 
 944   volatile bool _free_regions_coming;
 945 
 946 public:
 947 
 948   RefToScanQueue *task_queue(uint i) const;
 949 
 950   uint num_task_queues() const;
 951 
 952   // A set of cards where updates happened during the GC
 953   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 954 
 955   // Create a G1CollectedHeap with the specified policy.
 956   // Must call the initialize method afterwards.
 957   // May not return if something goes wrong.
 958   G1CollectedHeap(G1CollectorPolicy* policy);
 959 
 960 private:
 961   jint initialize_concurrent_refinement();
 962 public:
 963   // Initialize the G1CollectedHeap to have the initial and
 964   // maximum sizes and remembered and barrier sets
 965   // specified by the policy object.
 966   jint initialize();
 967 
 968   virtual void stop();
 969 
 970   // Return the (conservative) maximum heap alignment for any G1 heap
 971   static size_t conservative_max_heap_alignment();
 972 
 973   // Does operations required after initialization has been done.
 974   void post_initialize();
 975 
 976   // Initialize weak reference processing.
 977   void ref_processing_init();
 978 
 979   virtual Name kind() const {
 980     return CollectedHeap::G1CollectedHeap;
 981   }
 982 
 983   virtual const char* name() const {
 984     return "G1";
 985   }
 986 
 987   const G1CollectorState* collector_state() const { return &_collector_state; }
 988   G1CollectorState* collector_state() { return &_collector_state; }
 989 
 990   // The current policy object for the collector.
 991   G1Policy* g1_policy() const { return _g1_policy; }
 992 
 993   const G1CollectionSet* collection_set() const { return &_collection_set; }
 994   G1CollectionSet* collection_set() { return &_collection_set; }
 995 
 996   virtual CollectorPolicy* collector_policy() const;
 997 
 998   // Adaptive size policy.  No such thing for g1.
 999   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1000 
1001   // The rem set and barrier set.
1002   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1003 
1004   // Try to minimize the remembered set.
1005   void scrub_rem_set();
1006 
1007   uint get_gc_time_stamp() {
1008     return _gc_time_stamp;
1009   }
1010 
1011   inline void reset_gc_time_stamp();
1012 
1013   void check_gc_time_stamps() PRODUCT_RETURN;
1014 
1015   inline void increment_gc_time_stamp();
1016 
1017   // Reset the given region's GC timestamp. If it's starts humongous,
1018   // also reset the GC timestamp of its corresponding
1019   // continues humongous regions too.
1020   void reset_gc_time_stamps(HeapRegion* hr);
1021 
1022   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1023   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
1024 
1025   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
1026   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
1027 
1028   // The shared block offset table array.
1029   G1BlockOffsetTable* bot() const { return _bot; }
1030 
1031   // Reference Processing accessors
1032 
1033   // The STW reference processor....
1034   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1035 
1036   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1037 
1038   // The Concurrent Marking reference processor...
1039   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1040 
1041   virtual size_t capacity() const;
1042   virtual size_t used() const;
1043   // This should be called when we're not holding the heap lock. The
1044   // result might be a bit inaccurate.
1045   size_t used_unlocked() const;
1046   size_t recalculate_used() const;
1047 
1048   // These virtual functions do the actual allocation.
1049   // Some heaps may offer a contiguous region for shared non-blocking
1050   // allocation, via inlined code (by exporting the address of the top and
1051   // end fields defining the extent of the contiguous allocation region.)
1052   // But G1CollectedHeap doesn't yet support this.
1053 
1054   virtual bool is_maximal_no_gc() const {
1055     return _hrm.available() == 0;
1056   }
1057 
1058   // The current number of regions in the heap.
1059   uint num_regions() const { return _hrm.length(); }
1060 
1061   // The max number of regions in the heap.
1062   uint max_regions() const { return _hrm.max_length(); }
1063 
1064   // The number of regions that are completely free.
1065   uint num_free_regions() const { return _hrm.num_free_regions(); }
1066 
1067   MemoryUsage get_auxiliary_data_memory_usage() const {
1068     return _hrm.get_auxiliary_data_memory_usage();
1069   }
1070 
1071   // The number of regions that are not completely free.
1072   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1073 
1074 #ifdef ASSERT
1075   bool is_on_master_free_list(HeapRegion* hr) {
1076     return _hrm.is_free(hr);
1077   }
1078 #endif // ASSERT
1079 
1080   // Wrapper for the region list operations that can be called from
1081   // methods outside this class.
1082 
1083   void secondary_free_list_add(FreeRegionList* list) {
1084     _secondary_free_list.add_ordered(list);
1085   }
1086 
1087   void append_secondary_free_list() {
1088     _hrm.insert_list_into_free_list(&_secondary_free_list);
1089   }
1090 
1091   void append_secondary_free_list_if_not_empty_with_lock() {
1092     // If the secondary free list looks empty there's no reason to
1093     // take the lock and then try to append it.
1094     if (!_secondary_free_list.is_empty()) {
1095       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1096       append_secondary_free_list();
1097     }
1098   }
1099 
1100   inline void old_set_add(HeapRegion* hr);
1101   inline void old_set_remove(HeapRegion* hr);
1102 
1103   size_t non_young_capacity_bytes() {
1104     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1105   }
1106 
1107   void set_free_regions_coming();
1108   void reset_free_regions_coming();
1109   bool free_regions_coming() { return _free_regions_coming; }
1110   void wait_while_free_regions_coming();
1111 
1112   // Determine whether the given region is one that we are using as an
1113   // old GC alloc region.
1114   bool is_old_gc_alloc_region(HeapRegion* hr);
1115 
1116   // Perform a collection of the heap; intended for use in implementing
1117   // "System.gc".  This probably implies as full a collection as the
1118   // "CollectedHeap" supports.
1119   virtual void collect(GCCause::Cause cause);
1120 
1121   virtual bool copy_allocation_context_stats(const jint* contexts,
1122                                              jlong* totals,
1123                                              jbyte* accuracy,
1124                                              jint len);
1125 
1126   // True iff an evacuation has failed in the most-recent collection.
1127   bool evacuation_failed() { return _evacuation_failed; }
1128 
1129   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1130   void prepend_to_freelist(FreeRegionList* list);
1131   void decrement_summary_bytes(size_t bytes);
1132 
1133   virtual bool is_in(const void* p) const;
1134 #ifdef ASSERT
1135   // Returns whether p is in one of the available areas of the heap. Slow but
1136   // extensive version.
1137   bool is_in_exact(const void* p) const;
1138 #endif
1139 
1140   // Return "TRUE" iff the given object address is within the collection
1141   // set. Assumes that the reference points into the heap.
1142   inline bool is_in_cset(const HeapRegion *hr);
1143   inline bool is_in_cset(oop obj);
1144   inline bool is_in_cset(HeapWord* addr);
1145 
1146   inline bool is_in_cset_or_humongous(const oop obj);
1147 
1148  private:
1149   // This array is used for a quick test on whether a reference points into
1150   // the collection set or not. Each of the array's elements denotes whether the
1151   // corresponding region is in the collection set or not.
1152   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1153 
1154  public:
1155 
1156   inline InCSetState in_cset_state(const oop obj);
1157 
1158   // Return "TRUE" iff the given object address is in the reserved
1159   // region of g1.
1160   bool is_in_g1_reserved(const void* p) const {
1161     return _hrm.reserved().contains(p);
1162   }
1163 
1164   // Returns a MemRegion that corresponds to the space that has been
1165   // reserved for the heap
1166   MemRegion g1_reserved() const {
1167     return _hrm.reserved();
1168   }
1169 
1170   virtual bool is_in_closed_subset(const void* p) const;
1171 
1172   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1173     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1174   }
1175 
1176   // Iteration functions.
1177 
1178   // Iterate over all objects, calling "cl.do_object" on each.
1179   virtual void object_iterate(ObjectClosure* cl);
1180 
1181   virtual void safe_object_iterate(ObjectClosure* cl) {
1182     object_iterate(cl);
1183   }
1184 
1185   // Iterate over heap regions, in address order, terminating the
1186   // iteration early if the "doHeapRegion" method returns "true".
1187   void heap_region_iterate(HeapRegionClosure* blk) const;
1188 
1189   // Return the region with the given index. It assumes the index is valid.
1190   inline HeapRegion* region_at(uint index) const;
1191 
1192   // Return the next region (by index) that is part of the same
1193   // humongous object that hr is part of.
1194   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1195 
1196   // Calculate the region index of the given address. Given address must be
1197   // within the heap.
1198   inline uint addr_to_region(HeapWord* addr) const;
1199 
1200   inline HeapWord* bottom_addr_for_region(uint index) const;
1201 
1202   // Iterate over the heap regions in parallel. Assumes that this will be called
1203   // in parallel by a number of worker threads with distinct worker ids
1204   // in the range passed to the HeapRegionClaimer. Applies "blk->doHeapRegion"
1205   // to each of the regions, by attempting to claim the region using the
1206   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1207   // region.
1208   void heap_region_par_iterate(HeapRegionClosure* cl,
1209                                uint worker_id,
1210                                HeapRegionClaimer* hrclaimer) const;
1211 
1212   // Iterate over the regions (if any) in the current collection set.
1213   void collection_set_iterate(HeapRegionClosure* blk);
1214 
1215   // Iterate over the regions (if any) in the current collection set. Starts the
1216   // iteration over the entire collection set so that the start regions of a given
1217   // worker id over the set active_workers are evenly spread across the set of
1218   // collection set regions.
1219   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1220 
1221   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1222 
1223   // Returns the HeapRegion that contains addr. addr must not be NULL.
1224   template <class T>
1225   inline HeapRegion* heap_region_containing(const T addr) const;
1226 
1227   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1228   // each address in the (reserved) heap is a member of exactly
1229   // one block.  The defining characteristic of a block is that it is
1230   // possible to find its size, and thus to progress forward to the next
1231   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1232   // represent Java objects, or they might be free blocks in a
1233   // free-list-based heap (or subheap), as long as the two kinds are
1234   // distinguishable and the size of each is determinable.
1235 
1236   // Returns the address of the start of the "block" that contains the
1237   // address "addr".  We say "blocks" instead of "object" since some heaps
1238   // may not pack objects densely; a chunk may either be an object or a
1239   // non-object.
1240   virtual HeapWord* block_start(const void* addr) const;
1241 
1242   // Requires "addr" to be the start of a chunk, and returns its size.
1243   // "addr + size" is required to be the start of a new chunk, or the end
1244   // of the active area of the heap.
1245   virtual size_t block_size(const HeapWord* addr) const;
1246 
1247   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1248   // the block is an object.
1249   virtual bool block_is_obj(const HeapWord* addr) const;
1250 
1251   // Section on thread-local allocation buffers (TLABs)
1252   // See CollectedHeap for semantics.
1253 
1254   bool supports_tlab_allocation() const;
1255   size_t tlab_capacity(Thread* ignored) const;
1256   size_t tlab_used(Thread* ignored) const;
1257   size_t max_tlab_size() const;
1258   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1259 
1260   // Can a compiler initialize a new object without store barriers?
1261   // This permission only extends from the creation of a new object
1262   // via a TLAB up to the first subsequent safepoint. If such permission
1263   // is granted for this heap type, the compiler promises to call
1264   // defer_store_barrier() below on any slow path allocation of
1265   // a new object for which such initializing store barriers will
1266   // have been elided. G1, like CMS, allows this, but should be
1267   // ready to provide a compensating write barrier as necessary
1268   // if that storage came out of a non-young region. The efficiency
1269   // of this implementation depends crucially on being able to
1270   // answer very efficiently in constant time whether a piece of
1271   // storage in the heap comes from a young region or not.
1272   // See ReduceInitialCardMarks.
1273   virtual bool can_elide_tlab_store_barriers() const {
1274     return true;
1275   }
1276 
1277   virtual bool card_mark_must_follow_store() const {
1278     return true;
1279   }
1280 
1281   inline bool is_in_young(const oop obj);
1282 
1283   virtual bool is_scavengable(const void* addr);
1284 
1285   // We don't need barriers for initializing stores to objects
1286   // in the young gen: for the SATB pre-barrier, there is no
1287   // pre-value that needs to be remembered; for the remembered-set
1288   // update logging post-barrier, we don't maintain remembered set
1289   // information for young gen objects.
1290   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1291 
1292   // Returns "true" iff the given word_size is "very large".
1293   static bool is_humongous(size_t word_size) {
1294     // Note this has to be strictly greater-than as the TLABs
1295     // are capped at the humongous threshold and we want to
1296     // ensure that we don't try to allocate a TLAB as
1297     // humongous and that we don't allocate a humongous
1298     // object in a TLAB.
1299     return word_size > _humongous_object_threshold_in_words;
1300   }
1301 
1302   // Returns the humongous threshold for a specific region size
1303   static size_t humongous_threshold_for(size_t region_size) {
1304     return (region_size / 2);
1305   }
1306 
1307   // Returns the number of regions the humongous object of the given word size
1308   // requires.
1309   static size_t humongous_obj_size_in_regions(size_t word_size);
1310 
1311   // Print the maximum heap capacity.
1312   virtual size_t max_capacity() const;
1313 
1314   virtual jlong millis_since_last_gc();
1315 
1316 
1317   // Convenience function to be used in situations where the heap type can be
1318   // asserted to be this type.
1319   static G1CollectedHeap* heap();
1320 
1321   void set_region_short_lived_locked(HeapRegion* hr);
1322   // add appropriate methods for any other surv rate groups
1323 
1324   const G1SurvivorRegions* survivor() const { return &_survivor; }
1325 
1326   uint survivor_regions_count() const {
1327     return _survivor.length();
1328   }
1329 
1330   uint eden_regions_count() const {
1331     return _eden.length();
1332   }
1333 
1334   uint young_regions_count() const {
1335     return _eden.length() + _survivor.length();
1336   }
1337 
1338   uint old_regions_count() const { return _old_set.length(); }
1339 
1340   uint humongous_regions_count() const { return _humongous_set.length(); }
1341 
1342 #ifdef ASSERT
1343   bool check_young_list_empty();
1344 #endif
1345 
1346   // *** Stuff related to concurrent marking.  It's not clear to me that so
1347   // many of these need to be public.
1348 
1349   // The functions below are helper functions that a subclass of
1350   // "CollectedHeap" can use in the implementation of its virtual
1351   // functions.
1352   // This performs a concurrent marking of the live objects in a
1353   // bitmap off to the side.
1354   void doConcurrentMark();
1355 
1356   bool isMarkedNext(oop obj) const;
1357 
1358   // Determine if an object is dead, given the object and also
1359   // the region to which the object belongs. An object is dead
1360   // iff a) it was not allocated since the last mark, b) it
1361   // is not marked, and c) it is not in an archive region.
1362   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1363     return
1364       hr->is_obj_dead(obj, _cm->prevMarkBitMap()) &&
1365       !hr->is_archive();
1366   }
1367 
1368   // This function returns true when an object has been
1369   // around since the previous marking and hasn't yet
1370   // been marked during this marking, and is not in an archive region.
1371   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1372     return
1373       !hr->obj_allocated_since_next_marking(obj) &&
1374       !isMarkedNext(obj) &&
1375       !hr->is_archive();
1376   }
1377 
1378   // Determine if an object is dead, given only the object itself.
1379   // This will find the region to which the object belongs and
1380   // then call the region version of the same function.
1381 
1382   // Added if it is NULL it isn't dead.
1383 
1384   inline bool is_obj_dead(const oop obj) const;
1385 
1386   inline bool is_obj_ill(const oop obj) const;
1387 
1388   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1389 
1390   // Refinement
1391 
1392   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1393 
1394   // Optimized nmethod scanning support routines
1395 
1396   // Register the given nmethod with the G1 heap.
1397   virtual void register_nmethod(nmethod* nm);
1398 
1399   // Unregister the given nmethod from the G1 heap.
1400   virtual void unregister_nmethod(nmethod* nm);
1401 
1402   // Free up superfluous code root memory.
1403   void purge_code_root_memory();
1404 
1405   // Rebuild the strong code root lists for each region
1406   // after a full GC.
1407   void rebuild_strong_code_roots();
1408 
1409   // Partial cleaning used when class unloading is disabled.
1410   // Let the caller choose what structures to clean out:
1411   // - StringTable
1412   // - SymbolTable
1413   // - StringDeduplication structures
1414   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_symbols, bool unlink_string_dedup);
1415 
1416   // Complete cleaning used when class unloading is enabled.
1417   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1418   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1419 
1420   // Redirty logged cards in the refinement queue.
1421   void redirty_logged_cards();
1422   // Verification
1423 
1424   // Perform any cleanup actions necessary before allowing a verification.
1425   virtual void prepare_for_verify();
1426 
1427   // Perform verification.
1428 
1429   // vo == UsePrevMarking  -> use "prev" marking information,
1430   // vo == UseNextMarking -> use "next" marking information
1431   // vo == UseMarkWord    -> use the mark word in the object header
1432   //
1433   // NOTE: Only the "prev" marking information is guaranteed to be
1434   // consistent most of the time, so most calls to this should use
1435   // vo == UsePrevMarking.
1436   // Currently, there is only one case where this is called with
1437   // vo == UseNextMarking, which is to verify the "next" marking
1438   // information at the end of remark.
1439   // Currently there is only one place where this is called with
1440   // vo == UseMarkWord, which is to verify the marking during a
1441   // full GC.
1442   void verify(VerifyOption vo);
1443 
1444   // WhiteBox testing support.
1445   virtual bool supports_concurrent_phase_control() const;
1446   virtual const char* const* concurrent_phases() const;
1447   virtual bool request_concurrent_phase(const char* phase);
1448 
1449   // The methods below are here for convenience and dispatch the
1450   // appropriate method depending on value of the given VerifyOption
1451   // parameter. The values for that parameter, and their meanings,
1452   // are the same as those above.
1453 
1454   bool is_obj_dead_cond(const oop obj,
1455                         const HeapRegion* hr,
1456                         const VerifyOption vo) const;
1457 
1458   bool is_obj_dead_cond(const oop obj,
1459                         const VerifyOption vo) const;
1460 
1461   G1HeapSummary create_g1_heap_summary();
1462   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1463 
1464   // Printing
1465 private:
1466   void print_heap_regions() const;
1467   void print_regions_on(outputStream* st) const;
1468 
1469 public:
1470   virtual void print_on(outputStream* st) const;
1471   virtual void print_extended_on(outputStream* st) const;
1472   virtual void print_on_error(outputStream* st) const;
1473 
1474   virtual void print_gc_threads_on(outputStream* st) const;
1475   virtual void gc_threads_do(ThreadClosure* tc) const;
1476 
1477   // Override
1478   void print_tracing_info() const;
1479 
1480   // The following two methods are helpful for debugging RSet issues.
1481   void print_cset_rsets() PRODUCT_RETURN;
1482   void print_all_rsets() PRODUCT_RETURN;
1483 
1484 public:
1485   size_t pending_card_num();
1486 
1487 protected:
1488   size_t _max_heap_capacity;
1489 };
1490 
1491 class G1ParEvacuateFollowersClosure : public VoidClosure {
1492 private:
1493   double _start_term;
1494   double _term_time;
1495   size_t _term_attempts;
1496 
1497   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1498   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1499 protected:
1500   G1CollectedHeap*              _g1h;
1501   G1ParScanThreadState*         _par_scan_state;
1502   RefToScanQueueSet*            _queues;
1503   ParallelTaskTerminator*       _terminator;
1504 
1505   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1506   RefToScanQueueSet*      queues()         { return _queues; }
1507   ParallelTaskTerminator* terminator()     { return _terminator; }
1508 
1509 public:
1510   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1511                                 G1ParScanThreadState* par_scan_state,
1512                                 RefToScanQueueSet* queues,
1513                                 ParallelTaskTerminator* terminator)
1514     : _g1h(g1h), _par_scan_state(par_scan_state),
1515       _queues(queues), _terminator(terminator),
1516       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1517 
1518   void do_void();
1519 
1520   double term_time() const { return _term_time; }
1521   size_t term_attempts() const { return _term_attempts; }
1522 
1523 private:
1524   inline bool offer_termination();
1525 };
1526 
1527 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP