1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/parallel/parallelScavengeHeap.hpp"
  32 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  33 #include "gc/parallel/psMarkSweep.hpp"
  34 #include "gc/parallel/psMarkSweepDecorator.hpp"
  35 #include "gc/parallel/psOldGen.hpp"
  36 #include "gc/parallel/psScavenge.hpp"
  37 #include "gc/parallel/psYoungGen.hpp"
  38 #include "gc/serial/markSweep.hpp"
  39 #include "gc/shared/gcCause.hpp"
  40 #include "gc/shared/gcHeapSummary.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcLocker.inline.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/isGCActiveMark.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/referenceProcessor.hpp"
  49 #include "gc/shared/spaceDecorator.hpp"
  50 #include "logging/log.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/safepoint.hpp"
  54 #include "runtime/vmThread.hpp"
  55 #include "services/management.hpp"
  56 #include "services/memoryService.hpp"
  57 #include "utilities/align.hpp"
  58 #include "utilities/events.hpp"
  59 #include "utilities/stack.inline.hpp"
  60 
  61 elapsedTimer        PSMarkSweep::_accumulated_time;
  62 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  63 CollectorCounters*  PSMarkSweep::_counters = NULL;
  64 
  65 void PSMarkSweep::initialize() {
  66   MemRegion mr = ParallelScavengeHeap::heap()->reserved_region();
  67   set_ref_processor(new ReferenceProcessor(mr));     // a vanilla ref proc
  68   _counters = new CollectorCounters("PSMarkSweep", 1);
  69 }
  70 
  71 // This method contains all heap specific policy for invoking mark sweep.
  72 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  73 // the heap. It will do nothing further. If we need to bail out for policy
  74 // reasons, scavenge before full gc, or any other specialized behavior, it
  75 // needs to be added here.
  76 //
  77 // Note that this method should only be called from the vm_thread while
  78 // at a safepoint!
  79 //
  80 // Note that the all_soft_refs_clear flag in the collector policy
  81 // may be true because this method can be called without intervening
  82 // activity.  For example when the heap space is tight and full measure
  83 // are being taken to free space.
  84 
  85 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  86   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  87   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  88   assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
  89 
  90   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  91   GCCause::Cause gc_cause = heap->gc_cause();
  92   PSAdaptiveSizePolicy* policy = heap->size_policy();
  93   IsGCActiveMark mark;
  94 
  95   if (ScavengeBeforeFullGC) {
  96     PSScavenge::invoke_no_policy();
  97   }
  98 
  99   const bool clear_all_soft_refs =
 100     heap->collector_policy()->should_clear_all_soft_refs();
 101 
 102   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
 103   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
 104   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
 105 }
 106 
 107 // This method contains no policy. You should probably
 108 // be calling invoke() instead.
 109 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 110   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 111   assert(ref_processor() != NULL, "Sanity");
 112 
 113   if (GCLocker::check_active_before_gc()) {
 114     return false;
 115   }
 116 
 117   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 118   GCCause::Cause gc_cause = heap->gc_cause();
 119 
 120   GCIdMark gc_id_mark;
 121   _gc_timer->register_gc_start();
 122   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 123 
 124   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 125 
 126   // The scope of casr should end after code that can change
 127   // CollectorPolicy::_should_clear_all_soft_refs.
 128   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 129 
 130   PSYoungGen* young_gen = heap->young_gen();
 131   PSOldGen* old_gen = heap->old_gen();
 132 
 133   // Increment the invocation count
 134   heap->increment_total_collections(true /* full */);
 135 
 136   // Save information needed to minimize mangling
 137   heap->record_gen_tops_before_GC();
 138 
 139   // We need to track unique mark sweep invocations as well.
 140   _total_invocations++;
 141 
 142   heap->print_heap_before_gc();
 143   heap->trace_heap_before_gc(_gc_tracer);
 144 
 145   // Fill in TLABs
 146   heap->accumulate_statistics_all_tlabs();
 147   heap->ensure_parsability(true);  // retire TLABs
 148 
 149   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 150     HandleMark hm;  // Discard invalid handles created during verification
 151     Universe::verify("Before GC");
 152   }
 153 
 154   // Verify object start arrays
 155   if (VerifyObjectStartArray &&
 156       VerifyBeforeGC) {
 157     old_gen->verify_object_start_array();
 158   }
 159 
 160   // Filled in below to track the state of the young gen after the collection.
 161   bool eden_empty;
 162   bool survivors_empty;
 163   bool young_gen_empty;
 164 
 165   {
 166     HandleMark hm;
 167 
 168     GCTraceCPUTime tcpu;
 169     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause, true);
 170 
 171     heap->pre_full_gc_dump(_gc_timer);
 172 
 173     TraceCollectorStats tcs(counters());
 174     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 175 
 176     if (log_is_enabled(Debug, gc, heap, exit)) {
 177       accumulated_time()->start();
 178     }
 179 
 180     // Let the size policy know we're starting
 181     size_policy->major_collection_begin();
 182 
 183     CodeCache::gc_prologue();
 184     BiasedLocking::preserve_marks();
 185 
 186     // Capture metadata size before collection for sizing.
 187     size_t metadata_prev_used = MetaspaceAux::used_bytes();
 188 
 189     size_t old_gen_prev_used = old_gen->used_in_bytes();
 190     size_t young_gen_prev_used = young_gen->used_in_bytes();
 191 
 192     allocate_stacks();
 193 
 194 #if defined(COMPILER2) || INCLUDE_JVMCI
 195     DerivedPointerTable::clear();
 196 #endif
 197 
 198     ref_processor()->enable_discovery();
 199     ref_processor()->setup_policy(clear_all_softrefs);
 200 
 201     mark_sweep_phase1(clear_all_softrefs);
 202 
 203     mark_sweep_phase2();
 204 
 205 #if defined(COMPILER2) || INCLUDE_JVMCI
 206     // Don't add any more derived pointers during phase3
 207     assert(DerivedPointerTable::is_active(), "Sanity");
 208     DerivedPointerTable::set_active(false);
 209 #endif
 210 
 211     mark_sweep_phase3();
 212 
 213     mark_sweep_phase4();
 214 
 215     restore_marks();
 216 
 217     deallocate_stacks();
 218 
 219     if (ZapUnusedHeapArea) {
 220       // Do a complete mangle (top to end) because the usage for
 221       // scratch does not maintain a top pointer.
 222       young_gen->to_space()->mangle_unused_area_complete();
 223     }
 224 
 225     eden_empty = young_gen->eden_space()->is_empty();
 226     if (!eden_empty) {
 227       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 228     }
 229 
 230     // Update heap occupancy information which is used as
 231     // input to soft ref clearing policy at the next gc.
 232     Universe::update_heap_info_at_gc();
 233 
 234     survivors_empty = young_gen->from_space()->is_empty() &&
 235                       young_gen->to_space()->is_empty();
 236     young_gen_empty = eden_empty && survivors_empty;
 237 
 238     ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
 239     MemRegion old_mr = heap->old_gen()->reserved();
 240     if (young_gen_empty) {
 241       modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
 242     } else {
 243       modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
 244     }
 245 
 246     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 247     ClassLoaderDataGraph::purge();
 248     MetaspaceAux::verify_metrics();
 249 
 250     BiasedLocking::restore_marks();
 251     CodeCache::gc_epilogue();
 252     JvmtiExport::gc_epilogue();
 253 
 254 #if defined(COMPILER2) || INCLUDE_JVMCI
 255     DerivedPointerTable::update_pointers();
 256 #endif
 257 
 258     ReferenceProcessorPhaseTimes pt(_gc_timer, ref_processor()->num_q());
 259 
 260     ref_processor()->enqueue_discovered_references(NULL, &pt);
 261 
 262     pt.print_enqueue_phase();
 263 
 264     // Update time of last GC
 265     reset_millis_since_last_gc();
 266 
 267     // Let the size policy know we're done
 268     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 269 
 270     if (UseAdaptiveSizePolicy) {
 271 
 272      log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
 273      log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
 274                          old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 275 
 276       // Don't check if the size_policy is ready here.  Let
 277       // the size_policy check that internally.
 278       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 279           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
 280         // Swap the survivor spaces if from_space is empty. The
 281         // resize_young_gen() called below is normally used after
 282         // a successful young GC and swapping of survivor spaces;
 283         // otherwise, it will fail to resize the young gen with
 284         // the current implementation.
 285         if (young_gen->from_space()->is_empty()) {
 286           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 287           young_gen->swap_spaces();
 288         }
 289 
 290         // Calculate optimal free space amounts
 291         assert(young_gen->max_size() >
 292           young_gen->from_space()->capacity_in_bytes() +
 293           young_gen->to_space()->capacity_in_bytes(),
 294           "Sizes of space in young gen are out-of-bounds");
 295 
 296         size_t young_live = young_gen->used_in_bytes();
 297         size_t eden_live = young_gen->eden_space()->used_in_bytes();
 298         size_t old_live = old_gen->used_in_bytes();
 299         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
 300         size_t max_old_gen_size = old_gen->max_gen_size();
 301         size_t max_eden_size = young_gen->max_size() -
 302           young_gen->from_space()->capacity_in_bytes() -
 303           young_gen->to_space()->capacity_in_bytes();
 304 
 305         // Used for diagnostics
 306         size_policy->clear_generation_free_space_flags();
 307 
 308         size_policy->compute_generations_free_space(young_live,
 309                                                     eden_live,
 310                                                     old_live,
 311                                                     cur_eden,
 312                                                     max_old_gen_size,
 313                                                     max_eden_size,
 314                                                     true /* full gc*/);
 315 
 316         size_policy->check_gc_overhead_limit(young_live,
 317                                              eden_live,
 318                                              max_old_gen_size,
 319                                              max_eden_size,
 320                                              true /* full gc*/,
 321                                              gc_cause,
 322                                              heap->collector_policy());
 323 
 324         size_policy->decay_supplemental_growth(true /* full gc*/);
 325 
 326         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 327 
 328         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 329                                size_policy->calculated_survivor_size_in_bytes());
 330       }
 331       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
 332     }
 333 
 334     if (UsePerfData) {
 335       heap->gc_policy_counters()->update_counters();
 336       heap->gc_policy_counters()->update_old_capacity(
 337         old_gen->capacity_in_bytes());
 338       heap->gc_policy_counters()->update_young_capacity(
 339         young_gen->capacity_in_bytes());
 340     }
 341 
 342     heap->resize_all_tlabs();
 343 
 344     // We collected the heap, recalculate the metaspace capacity
 345     MetaspaceGC::compute_new_size();
 346 
 347     if (log_is_enabled(Debug, gc, heap, exit)) {
 348       accumulated_time()->stop();
 349     }
 350 
 351     young_gen->print_used_change(young_gen_prev_used);
 352     old_gen->print_used_change(old_gen_prev_used);
 353     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 354 
 355     // Track memory usage and detect low memory
 356     MemoryService::track_memory_usage();
 357     heap->update_counters();
 358 
 359     heap->post_full_gc_dump(_gc_timer);
 360   }
 361 
 362   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 363     HandleMark hm;  // Discard invalid handles created during verification
 364     Universe::verify("After GC");
 365   }
 366 
 367   // Re-verify object start arrays
 368   if (VerifyObjectStartArray &&
 369       VerifyAfterGC) {
 370     old_gen->verify_object_start_array();
 371   }
 372 
 373   if (ZapUnusedHeapArea) {
 374     old_gen->object_space()->check_mangled_unused_area_complete();
 375   }
 376 
 377   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 378 
 379   heap->print_heap_after_gc();
 380   heap->trace_heap_after_gc(_gc_tracer);
 381 
 382 #ifdef TRACESPINNING
 383   ParallelTaskTerminator::print_termination_counts();
 384 #endif
 385 
 386   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
 387 
 388   _gc_timer->register_gc_end();
 389 
 390   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 391 
 392   return true;
 393 }
 394 
 395 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 396                                              PSYoungGen* young_gen,
 397                                              PSOldGen* old_gen) {
 398   MutableSpace* const eden_space = young_gen->eden_space();
 399   assert(!eden_space->is_empty(), "eden must be non-empty");
 400   assert(young_gen->virtual_space()->alignment() ==
 401          old_gen->virtual_space()->alignment(), "alignments do not match");
 402 
 403   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 404     return false;
 405   }
 406 
 407   // Both generations must be completely committed.
 408   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 409     return false;
 410   }
 411   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 412     return false;
 413   }
 414 
 415   // Figure out how much to take from eden.  Include the average amount promoted
 416   // in the total; otherwise the next young gen GC will simply bail out to a
 417   // full GC.
 418   const size_t alignment = old_gen->virtual_space()->alignment();
 419   const size_t eden_used = eden_space->used_in_bytes();
 420   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 421   const size_t absorb_size = align_up(eden_used + promoted, alignment);
 422   const size_t eden_capacity = eden_space->capacity_in_bytes();
 423 
 424   if (absorb_size >= eden_capacity) {
 425     return false; // Must leave some space in eden.
 426   }
 427 
 428   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 429   if (new_young_size < young_gen->min_gen_size()) {
 430     return false; // Respect young gen minimum size.
 431   }
 432 
 433   log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
 434                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 435                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 436                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 437                         absorb_size / K,
 438                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 439                         young_gen->from_space()->used_in_bytes() / K,
 440                         young_gen->to_space()->used_in_bytes() / K,
 441                         young_gen->capacity_in_bytes() / K, new_young_size / K);
 442 
 443   // Fill the unused part of the old gen.
 444   MutableSpace* const old_space = old_gen->object_space();
 445   HeapWord* const unused_start = old_space->top();
 446   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 447 
 448   if (unused_words > 0) {
 449     if (unused_words < CollectedHeap::min_fill_size()) {
 450       return false;  // If the old gen cannot be filled, must give up.
 451     }
 452     CollectedHeap::fill_with_objects(unused_start, unused_words);
 453   }
 454 
 455   // Take the live data from eden and set both top and end in the old gen to
 456   // eden top.  (Need to set end because reset_after_change() mangles the region
 457   // from end to virtual_space->high() in debug builds).
 458   HeapWord* const new_top = eden_space->top();
 459   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 460                                         absorb_size);
 461   young_gen->reset_after_change();
 462   old_space->set_top(new_top);
 463   old_space->set_end(new_top);
 464   old_gen->reset_after_change();
 465 
 466   // Update the object start array for the filler object and the data from eden.
 467   ObjectStartArray* const start_array = old_gen->start_array();
 468   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 469     start_array->allocate_block(p);
 470   }
 471 
 472   // Could update the promoted average here, but it is not typically updated at
 473   // full GCs and the value to use is unclear.  Something like
 474   //
 475   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 476 
 477   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 478   return true;
 479 }
 480 
 481 void PSMarkSweep::allocate_stacks() {
 482   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 483   PSYoungGen* young_gen = heap->young_gen();
 484 
 485   MutableSpace* to_space = young_gen->to_space();
 486   _preserved_marks = (PreservedMark*)to_space->top();
 487   _preserved_count = 0;
 488 
 489   // We want to calculate the size in bytes first.
 490   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 491   // Now divide by the size of a PreservedMark
 492   _preserved_count_max /= sizeof(PreservedMark);
 493 }
 494 
 495 
 496 void PSMarkSweep::deallocate_stacks() {
 497   _preserved_mark_stack.clear(true);
 498   _preserved_oop_stack.clear(true);
 499   _marking_stack.clear();
 500   _objarray_stack.clear(true);
 501 }
 502 
 503 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 504   // Recursively traverse all live objects and mark them
 505   GCTraceTime(Info, gc, phases) tm("Phase 1: Mark live objects", _gc_timer);
 506 
 507   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 508 
 509   // Need to clear claim bits before the tracing starts.
 510   ClassLoaderDataGraph::clear_claimed_marks();
 511 
 512   // General strong roots.
 513   {
 514     ParallelScavengeHeap::ParStrongRootsScope psrs;
 515     Universe::oops_do(mark_and_push_closure());
 516     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 517     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
 518     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
 519     ObjectSynchronizer::oops_do(mark_and_push_closure());
 520     Management::oops_do(mark_and_push_closure());
 521     JvmtiExport::oops_do(mark_and_push_closure());
 522     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 523     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
 524     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 525     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 526     AOTLoader::oops_do(mark_and_push_closure());
 527   }
 528 
 529   // Flush marking stack.
 530   follow_stack();
 531 
 532   // Process reference objects found during marking
 533   {
 534     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer);
 535 
 536     ref_processor()->setup_policy(clear_all_softrefs);
 537     ReferenceProcessorPhaseTimes pt(_gc_timer, ref_processor()->num_q());
 538     const ReferenceProcessorStats& stats =
 539       ref_processor()->process_discovered_references(
 540         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, &pt);
 541     gc_tracer()->report_gc_reference_stats(stats);
 542     pt.print_all_references();
 543   }
 544 
 545   // This is the point where the entire marking should have completed.
 546   assert(_marking_stack.is_empty(), "Marking should have completed");
 547 
 548   {
 549     GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer);
 550 
 551     // Unload classes and purge the SystemDictionary.
 552     bool purged_class = SystemDictionary::do_unloading(is_alive_closure(), _gc_timer);
 553 
 554     // Unload nmethods.
 555     CodeCache::do_unloading(is_alive_closure(), purged_class);
 556 
 557     // Prune dead klasses from subklass/sibling/implementor lists.
 558     Klass::clean_weak_klass_links(is_alive_closure());
 559   }
 560 
 561   {
 562     GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer);
 563     // Delete entries for dead interned strings.
 564     StringTable::unlink(is_alive_closure());
 565   }
 566 
 567   {
 568     GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer);
 569     // Clean up unreferenced symbols in symbol table.
 570     SymbolTable::unlink();
 571   }
 572 
 573   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 574 }
 575 
 576 
 577 void PSMarkSweep::mark_sweep_phase2() {
 578   GCTraceTime(Info, gc, phases) tm("Phase 2: Compute new object addresses", _gc_timer);
 579 
 580   // Now all live objects are marked, compute the new object addresses.
 581 
 582   // It is not required that we traverse spaces in the same order in
 583   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 584   // tracking expects us to do so. See comment under phase4.
 585 
 586   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 587   PSOldGen* old_gen = heap->old_gen();
 588 
 589   // Begin compacting into the old gen
 590   PSMarkSweepDecorator::set_destination_decorator_tenured();
 591 
 592   // This will also compact the young gen spaces.
 593   old_gen->precompact();
 594 }
 595 
 596 void PSMarkSweep::mark_sweep_phase3() {
 597   // Adjust the pointers to reflect the new locations
 598   GCTraceTime(Info, gc, phases) tm("Phase 3: Adjust pointers", _gc_timer);
 599 
 600   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 601   PSYoungGen* young_gen = heap->young_gen();
 602   PSOldGen* old_gen = heap->old_gen();
 603 
 604   // Need to clear claim bits before the tracing starts.
 605   ClassLoaderDataGraph::clear_claimed_marks();
 606 
 607   // General strong roots.
 608   Universe::oops_do(adjust_pointer_closure());
 609   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 610   Threads::oops_do(adjust_pointer_closure(), NULL);
 611   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 612   Management::oops_do(adjust_pointer_closure());
 613   JvmtiExport::oops_do(adjust_pointer_closure());
 614   SystemDictionary::oops_do(adjust_pointer_closure());
 615   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
 616 
 617   // Now adjust pointers in remaining weak roots.  (All of which should
 618   // have been cleared if they pointed to non-surviving objects.)
 619   // Global (weak) JNI handles
 620   JNIHandles::weak_oops_do(adjust_pointer_closure());
 621 
 622   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
 623   CodeCache::blobs_do(&adjust_from_blobs);
 624   AOTLoader::oops_do(adjust_pointer_closure());
 625   StringTable::oops_do(adjust_pointer_closure());
 626   ref_processor()->weak_oops_do(adjust_pointer_closure());
 627   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 628 
 629   adjust_marks();
 630 
 631   young_gen->adjust_pointers();
 632   old_gen->adjust_pointers();
 633 }
 634 
 635 void PSMarkSweep::mark_sweep_phase4() {
 636   EventMark m("4 compact heap");
 637   GCTraceTime(Info, gc, phases) tm("Phase 4: Move objects", _gc_timer);
 638 
 639   // All pointers are now adjusted, move objects accordingly
 640 
 641   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 642   PSYoungGen* young_gen = heap->young_gen();
 643   PSOldGen* old_gen = heap->old_gen();
 644 
 645   old_gen->compact();
 646   young_gen->compact();
 647 }
 648 
 649 jlong PSMarkSweep::millis_since_last_gc() {
 650   // We need a monotonically non-decreasing time in ms but
 651   // os::javaTimeMillis() does not guarantee monotonicity.
 652   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 653   jlong ret_val = now - _time_of_last_gc;
 654   // XXX See note in genCollectedHeap::millis_since_last_gc().
 655   if (ret_val < 0) {
 656     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
 657     return 0;
 658   }
 659   return ret_val;
 660 }
 661 
 662 void PSMarkSweep::reset_millis_since_last_gc() {
 663   // We need a monotonically non-decreasing time in ms but
 664   // os::javaTimeMillis() does not guarantee monotonicity.
 665   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 666 }