1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "os_windows.inline.hpp"
  32 #include "runtime/handles.inline.hpp"
  33 #include "runtime/os.hpp"
  34 #include "runtime/perfMemory.hpp"
  35 #include "services/memTracker.hpp"
  36 #include "utilities/exceptions.hpp"
  37 
  38 #include <windows.h>
  39 #include <sys/types.h>
  40 #include <sys/stat.h>
  41 #include <errno.h>
  42 #include <lmcons.h>
  43 
  44 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
  45    IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
  46    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
  47    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
  48 
  49 // Standard Memory Implementation Details
  50 
  51 // create the PerfData memory region in standard memory.
  52 //
  53 static char* create_standard_memory(size_t size) {
  54 
  55   // allocate an aligned chuck of memory
  56   char* mapAddress = os::reserve_memory(size);
  57 
  58   if (mapAddress == NULL) {
  59     return NULL;
  60   }
  61 
  62   // commit memory
  63   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
  64     if (PrintMiscellaneous && Verbose) {
  65       warning("Could not commit PerfData memory\n");
  66     }
  67     os::release_memory(mapAddress, size);
  68     return NULL;
  69   }
  70 
  71   return mapAddress;
  72 }
  73 
  74 // delete the PerfData memory region
  75 //
  76 static void delete_standard_memory(char* addr, size_t size) {
  77 
  78   // there are no persistent external resources to cleanup for standard
  79   // memory. since DestroyJavaVM does not support unloading of the JVM,
  80   // cleanup of the memory resource is not performed. The memory will be
  81   // reclaimed by the OS upon termination of the process.
  82   //
  83   return;
  84 
  85 }
  86 
  87 // save the specified memory region to the given file
  88 //
  89 static void save_memory_to_file(char* addr, size_t size) {
  90 
  91   const char* destfile = PerfMemory::get_perfdata_file_path();
  92   assert(destfile[0] != '\0', "invalid Perfdata file path");
  93 
  94   int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
  95                    _S_IREAD|_S_IWRITE);
  96 
  97   if (fd == OS_ERR) {
  98     if (PrintMiscellaneous && Verbose) {
  99       warning("Could not create Perfdata save file: %s: %s\n",
 100               destfile, os::strerror(errno));
 101     }
 102   } else {
 103     for (size_t remaining = size; remaining > 0;) {
 104 
 105       int nbytes = ::_write(fd, addr, (unsigned int)remaining);
 106       if (nbytes == OS_ERR) {
 107         if (PrintMiscellaneous && Verbose) {
 108           warning("Could not write Perfdata save file: %s: %s\n",
 109                   destfile, os::strerror(errno));
 110         }
 111         break;
 112       }
 113 
 114       remaining -= (size_t)nbytes;
 115       addr += nbytes;
 116     }
 117 
 118     int result = ::_close(fd);
 119     if (PrintMiscellaneous && Verbose) {
 120       if (result == OS_ERR) {
 121         warning("Could not close %s: %s\n", destfile, os::strerror(errno));
 122       }
 123     }
 124   }
 125 
 126   FREE_C_HEAP_ARRAY(char, destfile);
 127 }
 128 
 129 // Shared Memory Implementation Details
 130 
 131 // Note: the win32 shared memory implementation uses two objects to represent
 132 // the shared memory: a windows kernel based file mapping object and a backing
 133 // store file. On windows, the name space for shared memory is a kernel
 134 // based name space that is disjoint from other win32 name spaces. Since Java
 135 // is unaware of this name space, a parallel file system based name space is
 136 // maintained, which provides a common file system based shared memory name
 137 // space across the supported platforms and one that Java apps can deal with
 138 // through simple file apis.
 139 //
 140 // For performance and resource cleanup reasons, it is recommended that the
 141 // user specific directory and the backing store file be stored in either a
 142 // RAM based file system or a local disk based file system. Network based
 143 // file systems are not recommended for performance reasons. In addition,
 144 // use of SMB network based file systems may result in unsuccesful cleanup
 145 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
 146 // environement variables, as used by the GetTempPath() Win32 API (see
 147 // os::get_temp_directory() in os_win32.cpp), control the location of the
 148 // user specific directory and the shared memory backing store file.
 149 
 150 static HANDLE sharedmem_fileMapHandle = NULL;
 151 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
 152 static char*  sharedmem_fileName = NULL;
 153 
 154 // return the user specific temporary directory name.
 155 //
 156 // the caller is expected to free the allocated memory.
 157 //
 158 static char* get_user_tmp_dir(const char* user) {
 159 
 160   const char* tmpdir = os::get_temp_directory();
 161   const char* perfdir = PERFDATA_NAME;
 162   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
 163   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 164 
 165   // construct the path name to user specific tmp directory
 166   _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
 167 
 168   return dirname;
 169 }
 170 
 171 // convert the given file name into a process id. if the file
 172 // does not meet the file naming constraints, return 0.
 173 //
 174 static int filename_to_pid(const char* filename) {
 175 
 176   // a filename that doesn't begin with a digit is not a
 177   // candidate for conversion.
 178   //
 179   if (!isdigit(*filename)) {
 180     return 0;
 181   }
 182 
 183   // check if file name can be converted to an integer without
 184   // any leftover characters.
 185   //
 186   char* remainder = NULL;
 187   errno = 0;
 188   int pid = (int)strtol(filename, &remainder, 10);
 189 
 190   if (errno != 0) {
 191     return 0;
 192   }
 193 
 194   // check for left over characters. If any, then the filename is
 195   // not a candidate for conversion.
 196   //
 197   if (remainder != NULL && *remainder != '\0') {
 198     return 0;
 199   }
 200 
 201   // successful conversion, return the pid
 202   return pid;
 203 }
 204 
 205 // check if the given path is considered a secure directory for
 206 // the backing store files. Returns true if the directory exists
 207 // and is considered a secure location. Returns false if the path
 208 // is a symbolic link or if an error occurred.
 209 //
 210 static bool is_directory_secure(const char* path) {
 211 
 212   DWORD fa;
 213 
 214   fa = GetFileAttributes(path);
 215   if (fa == 0xFFFFFFFF) {
 216     DWORD lasterror = GetLastError();
 217     if (lasterror == ERROR_FILE_NOT_FOUND) {
 218       return false;
 219     }
 220     else {
 221       // unexpected error, declare the path insecure
 222       if (PrintMiscellaneous && Verbose) {
 223         warning("could not get attributes for file %s: ",
 224                 " lasterror = %d\n", path, lasterror);
 225       }
 226       return false;
 227     }
 228   }
 229 
 230   if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
 231     // we don't accept any redirection for the user specific directory
 232     // so declare the path insecure. This may be too conservative,
 233     // as some types of reparse points might be acceptable, but it
 234     // is probably more secure to avoid these conditions.
 235     //
 236     if (PrintMiscellaneous && Verbose) {
 237       warning("%s is a reparse point\n", path);
 238     }
 239     return false;
 240   }
 241 
 242   if (fa & FILE_ATTRIBUTE_DIRECTORY) {
 243     // this is the expected case. Since windows supports symbolic
 244     // links to directories only, not to files, there is no need
 245     // to check for open write permissions on the directory. If the
 246     // directory has open write permissions, any files deposited that
 247     // are not expected will be removed by the cleanup code.
 248     //
 249     return true;
 250   }
 251   else {
 252     // this is either a regular file or some other type of file,
 253     // any of which are unexpected and therefore insecure.
 254     //
 255     if (PrintMiscellaneous && Verbose) {
 256       warning("%s is not a directory, file attributes = "
 257               INTPTR_FORMAT "\n", path, fa);
 258     }
 259     return false;
 260   }
 261 }
 262 
 263 // return the user name for the owner of this process
 264 //
 265 // the caller is expected to free the allocated memory.
 266 //
 267 static char* get_user_name() {
 268 
 269   /* get the user name. This code is adapted from code found in
 270    * the jdk in src/windows/native/java/lang/java_props_md.c
 271    * java_props_md.c  1.29 02/02/06. According to the original
 272    * source, the call to GetUserName is avoided because of a resulting
 273    * increase in footprint of 100K.
 274    */
 275   char* user = getenv("USERNAME");
 276   char buf[UNLEN+1];
 277   DWORD buflen = sizeof(buf);
 278   if (user == NULL || strlen(user) == 0) {
 279     if (GetUserName(buf, &buflen)) {
 280       user = buf;
 281     }
 282     else {
 283       return NULL;
 284     }
 285   }
 286 
 287   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 288   strcpy(user_name, user);
 289 
 290   return user_name;
 291 }
 292 
 293 // return the name of the user that owns the process identified by vmid.
 294 //
 295 // This method uses a slow directory search algorithm to find the backing
 296 // store file for the specified vmid and returns the user name, as determined
 297 // by the user name suffix of the hsperfdata_<username> directory name.
 298 //
 299 // the caller is expected to free the allocated memory.
 300 //
 301 static char* get_user_name_slow(int vmid) {
 302 
 303   // directory search
 304   char* latest_user = NULL;
 305   time_t latest_ctime = 0;
 306 
 307   const char* tmpdirname = os::get_temp_directory();
 308 
 309   DIR* tmpdirp = os::opendir(tmpdirname);
 310 
 311   if (tmpdirp == NULL) {
 312     return NULL;
 313   }
 314 
 315   // for each entry in the directory that matches the pattern hsperfdata_*,
 316   // open the directory and check if the file for the given vmid exists.
 317   // The file with the expected name and the latest creation date is used
 318   // to determine the user name for the process id.
 319   //
 320   struct dirent* dentry;
 321   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
 322   errno = 0;
 323   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
 324 
 325     // check if the directory entry is a hsperfdata file
 326     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
 327       continue;
 328     }
 329 
 330     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
 331         strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
 332     strcpy(usrdir_name, tmpdirname);
 333     strcat(usrdir_name, "\\");
 334     strcat(usrdir_name, dentry->d_name);
 335 
 336     DIR* subdirp = os::opendir(usrdir_name);
 337 
 338     if (subdirp == NULL) {
 339       FREE_C_HEAP_ARRAY(char, usrdir_name);
 340       continue;
 341     }
 342 
 343     // Since we don't create the backing store files in directories
 344     // pointed to by symbolic links, we also don't follow them when
 345     // looking for the files. We check for a symbolic link after the
 346     // call to opendir in order to eliminate a small window where the
 347     // symlink can be exploited.
 348     //
 349     if (!is_directory_secure(usrdir_name)) {
 350       FREE_C_HEAP_ARRAY(char, usrdir_name);
 351       os::closedir(subdirp);
 352       continue;
 353     }
 354 
 355     struct dirent* udentry;
 356     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
 357     errno = 0;
 358     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
 359 
 360       if (filename_to_pid(udentry->d_name) == vmid) {
 361         struct stat statbuf;
 362 
 363         char* filename = NEW_C_HEAP_ARRAY(char,
 364            strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
 365 
 366         strcpy(filename, usrdir_name);
 367         strcat(filename, "\\");
 368         strcat(filename, udentry->d_name);
 369 
 370         if (::stat(filename, &statbuf) == OS_ERR) {
 371            FREE_C_HEAP_ARRAY(char, filename);
 372            continue;
 373         }
 374 
 375         // skip over files that are not regular files.
 376         if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
 377           FREE_C_HEAP_ARRAY(char, filename);
 378           continue;
 379         }
 380 
 381         // If we found a matching file with a newer creation time, then
 382         // save the user name. The newer creation time indicates that
 383         // we found a newer incarnation of the process associated with
 384         // vmid. Due to the way that Windows recycles pids and the fact
 385         // that we can't delete the file from the file system namespace
 386         // until last close, it is possible for there to be more than
 387         // one hsperfdata file with a name matching vmid (diff users).
 388         //
 389         // We no longer ignore hsperfdata files where (st_size == 0).
 390         // In this function, all we're trying to do is determine the
 391         // name of the user that owns the process associated with vmid
 392         // so the size doesn't matter. Very rarely, we have observed
 393         // hsperfdata files where (st_size == 0) and the st_size field
 394         // later becomes the expected value.
 395         //
 396         if (statbuf.st_ctime > latest_ctime) {
 397           char* user = strchr(dentry->d_name, '_') + 1;
 398 
 399           if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user);
 400           latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 401 
 402           strcpy(latest_user, user);
 403           latest_ctime = statbuf.st_ctime;
 404         }
 405 
 406         FREE_C_HEAP_ARRAY(char, filename);
 407       }
 408     }
 409     os::closedir(subdirp);
 410     FREE_C_HEAP_ARRAY(char, udbuf);
 411     FREE_C_HEAP_ARRAY(char, usrdir_name);
 412   }
 413   os::closedir(tmpdirp);
 414   FREE_C_HEAP_ARRAY(char, tdbuf);
 415 
 416   return(latest_user);
 417 }
 418 
 419 // return the name of the user that owns the process identified by vmid.
 420 //
 421 // note: this method should only be used via the Perf native methods.
 422 // There are various costs to this method and limiting its use to the
 423 // Perf native methods limits the impact to monitoring applications only.
 424 //
 425 static char* get_user_name(int vmid) {
 426 
 427   // A fast implementation is not provided at this time. It's possible
 428   // to provide a fast process id to user name mapping function using
 429   // the win32 apis, but the default ACL for the process object only
 430   // allows processes with the same owner SID to acquire the process
 431   // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
 432   // to have the JVM change the ACL for the process object to allow arbitrary
 433   // users to access the process handle and the process security token.
 434   // The security ramifications need to be studied before providing this
 435   // mechanism.
 436   //
 437   return get_user_name_slow(vmid);
 438 }
 439 
 440 // return the name of the shared memory file mapping object for the
 441 // named shared memory region for the given user name and vmid.
 442 //
 443 // The file mapping object's name is not the file name. It is a name
 444 // in a separate name space.
 445 //
 446 // the caller is expected to free the allocated memory.
 447 //
 448 static char *get_sharedmem_objectname(const char* user, int vmid) {
 449 
 450   // construct file mapping object's name, add 3 for two '_' and a
 451   // null terminator.
 452   int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
 453 
 454   // the id is converted to an unsigned value here because win32 allows
 455   // negative process ids. However, OpenFileMapping API complains
 456   // about a name containing a '-' characters.
 457   //
 458   nbytes += UINT_CHARS;
 459   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 460   _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
 461 
 462   return name;
 463 }
 464 
 465 // return the file name of the backing store file for the named
 466 // shared memory region for the given user name and vmid.
 467 //
 468 // the caller is expected to free the allocated memory.
 469 //
 470 static char* get_sharedmem_filename(const char* dirname, int vmid) {
 471 
 472   // add 2 for the file separator and a null terminator.
 473   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
 474 
 475   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 476   _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
 477 
 478   return name;
 479 }
 480 
 481 // remove file
 482 //
 483 // this method removes the file with the given file name.
 484 //
 485 // Note: if the indicated file is on an SMB network file system, this
 486 // method may be unsuccessful in removing the file.
 487 //
 488 static void remove_file(const char* dirname, const char* filename) {
 489 
 490   size_t nbytes = strlen(dirname) + strlen(filename) + 2;
 491   char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 492 
 493   strcpy(path, dirname);
 494   strcat(path, "\\");
 495   strcat(path, filename);
 496 
 497   if (::unlink(path) == OS_ERR) {
 498     if (PrintMiscellaneous && Verbose) {
 499       if (errno != ENOENT) {
 500         warning("Could not unlink shared memory backing"
 501                 " store file %s : %s\n", path, os::strerror(errno));
 502       }
 503     }
 504   }
 505 
 506   FREE_C_HEAP_ARRAY(char, path);
 507 }
 508 
 509 // returns true if the process represented by pid is alive, otherwise
 510 // returns false. the validity of the result is only accurate if the
 511 // target process is owned by the same principal that owns this process.
 512 // this method should not be used if to test the status of an otherwise
 513 // arbitrary process unless it is know that this process has the appropriate
 514 // privileges to guarantee a result valid.
 515 //
 516 static bool is_alive(int pid) {
 517 
 518   HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
 519   if (ph == NULL) {
 520     // the process does not exist.
 521     if (PrintMiscellaneous && Verbose) {
 522       DWORD lastError = GetLastError();
 523       if (lastError != ERROR_INVALID_PARAMETER) {
 524         warning("OpenProcess failed: %d\n", GetLastError());
 525       }
 526     }
 527     return false;
 528   }
 529 
 530   DWORD exit_status;
 531   if (!GetExitCodeProcess(ph, &exit_status)) {
 532     if (PrintMiscellaneous && Verbose) {
 533       warning("GetExitCodeProcess failed: %d\n", GetLastError());
 534     }
 535     CloseHandle(ph);
 536     return false;
 537   }
 538 
 539   CloseHandle(ph);
 540   return (exit_status == STILL_ACTIVE) ? true : false;
 541 }
 542 
 543 // check if the file system is considered secure for the backing store files
 544 //
 545 static bool is_filesystem_secure(const char* path) {
 546 
 547   char root_path[MAX_PATH];
 548   char fs_type[MAX_PATH];
 549 
 550   if (PerfBypassFileSystemCheck) {
 551     if (PrintMiscellaneous && Verbose) {
 552       warning("bypassing file system criteria checks for %s\n", path);
 553     }
 554     return true;
 555   }
 556 
 557   char* first_colon = strchr((char *)path, ':');
 558   if (first_colon == NULL) {
 559     if (PrintMiscellaneous && Verbose) {
 560       warning("expected device specifier in path: %s\n", path);
 561     }
 562     return false;
 563   }
 564 
 565   size_t len = (size_t)(first_colon - path);
 566   assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
 567   strncpy(root_path, path, len + 1);
 568   root_path[len + 1] = '\\';
 569   root_path[len + 2] = '\0';
 570 
 571   // check that we have something like "C:\" or "AA:\"
 572   assert(strlen(root_path) >= 3, "device specifier too short");
 573   assert(strchr(root_path, ':') != NULL, "bad device specifier format");
 574   assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
 575 
 576   DWORD maxpath;
 577   DWORD flags;
 578 
 579   if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
 580                             &flags, fs_type, MAX_PATH)) {
 581     // we can't get information about the volume, so assume unsafe.
 582     if (PrintMiscellaneous && Verbose) {
 583       warning("could not get device information for %s: "
 584               " path = %s: lasterror = %d\n",
 585               root_path, path, GetLastError());
 586     }
 587     return false;
 588   }
 589 
 590   if ((flags & FS_PERSISTENT_ACLS) == 0) {
 591     // file system doesn't support ACLs, declare file system unsafe
 592     if (PrintMiscellaneous && Verbose) {
 593       warning("file system type %s on device %s does not support"
 594               " ACLs\n", fs_type, root_path);
 595     }
 596     return false;
 597   }
 598 
 599   if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
 600     // file system is compressed, declare file system unsafe
 601     if (PrintMiscellaneous && Verbose) {
 602       warning("file system type %s on device %s is compressed\n",
 603               fs_type, root_path);
 604     }
 605     return false;
 606   }
 607 
 608   return true;
 609 }
 610 
 611 // cleanup stale shared memory resources
 612 //
 613 // This method attempts to remove all stale shared memory files in
 614 // the named user temporary directory. It scans the named directory
 615 // for files matching the pattern ^$[0-9]*$. For each file found, the
 616 // process id is extracted from the file name and a test is run to
 617 // determine if the process is alive. If the process is not alive,
 618 // any stale file resources are removed.
 619 //
 620 static void cleanup_sharedmem_resources(const char* dirname) {
 621 
 622   // open the user temp directory
 623   DIR* dirp = os::opendir(dirname);
 624 
 625   if (dirp == NULL) {
 626     // directory doesn't exist, so there is nothing to cleanup
 627     return;
 628   }
 629 
 630   if (!is_directory_secure(dirname)) {
 631     // the directory is not secure, don't attempt any cleanup
 632     os::closedir(dirp);
 633     return;
 634   }
 635 
 636   // for each entry in the directory that matches the expected file
 637   // name pattern, determine if the file resources are stale and if
 638   // so, remove the file resources. Note, instrumented HotSpot processes
 639   // for this user may start and/or terminate during this search and
 640   // remove or create new files in this directory. The behavior of this
 641   // loop under these conditions is dependent upon the implementation of
 642   // opendir/readdir.
 643   //
 644   struct dirent* entry;
 645   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
 646   errno = 0;
 647   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
 648 
 649     int pid = filename_to_pid(entry->d_name);
 650 
 651     if (pid == 0) {
 652 
 653       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
 654 
 655         // attempt to remove all unexpected files, except "." and ".."
 656         remove_file(dirname, entry->d_name);
 657       }
 658 
 659       errno = 0;
 660       continue;
 661     }
 662 
 663     // we now have a file name that converts to a valid integer
 664     // that could represent a process id . if this process id
 665     // matches the current process id or the process is not running,
 666     // then remove the stale file resources.
 667     //
 668     // process liveness is detected by checking the exit status
 669     // of the process. if the process id is valid and the exit status
 670     // indicates that it is still running, the file file resources
 671     // are not removed. If the process id is invalid, or if we don't
 672     // have permissions to check the process status, or if the process
 673     // id is valid and the process has terminated, the the file resources
 674     // are assumed to be stale and are removed.
 675     //
 676     if (pid == os::current_process_id() || !is_alive(pid)) {
 677 
 678       // we can only remove the file resources. Any mapped views
 679       // of the file can only be unmapped by the processes that
 680       // opened those views and the file mapping object will not
 681       // get removed until all views are unmapped.
 682       //
 683       remove_file(dirname, entry->d_name);
 684     }
 685     errno = 0;
 686   }
 687   os::closedir(dirp);
 688   FREE_C_HEAP_ARRAY(char, dbuf);
 689 }
 690 
 691 // create a file mapping object with the requested name, and size
 692 // from the file represented by the given Handle object
 693 //
 694 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
 695 
 696   DWORD lowSize = (DWORD)size;
 697   DWORD highSize = 0;
 698   HANDLE fmh = NULL;
 699 
 700   // Create a file mapping object with the given name. This function
 701   // will grow the file to the specified size.
 702   //
 703   fmh = CreateFileMapping(
 704                fh,                 /* HANDLE file handle for backing store */
 705                fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
 706                PAGE_READWRITE,     /* DWORD protections */
 707                highSize,           /* DWORD High word of max size */
 708                lowSize,            /* DWORD Low word of max size */
 709                name);              /* LPCTSTR name for object */
 710 
 711   if (fmh == NULL) {
 712     if (PrintMiscellaneous && Verbose) {
 713       warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
 714     }
 715     return NULL;
 716   }
 717 
 718   if (GetLastError() == ERROR_ALREADY_EXISTS) {
 719 
 720     // a stale file mapping object was encountered. This object may be
 721     // owned by this or some other user and cannot be removed until
 722     // the other processes either exit or close their mapping objects
 723     // and/or mapped views of this mapping object.
 724     //
 725     if (PrintMiscellaneous && Verbose) {
 726       warning("file mapping already exists, lasterror = %d\n", GetLastError());
 727     }
 728 
 729     CloseHandle(fmh);
 730     return NULL;
 731   }
 732 
 733   return fmh;
 734 }
 735 
 736 
 737 // method to free the given security descriptor and the contained
 738 // access control list.
 739 //
 740 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
 741 
 742   BOOL success, exists, isdefault;
 743   PACL pACL;
 744 
 745   if (pSD != NULL) {
 746 
 747     // get the access control list from the security descriptor
 748     success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
 749 
 750     // if an ACL existed and it was not a default acl, then it must
 751     // be an ACL we enlisted. free the resources.
 752     //
 753     if (success && exists && pACL != NULL && !isdefault) {
 754       FREE_C_HEAP_ARRAY(char, pACL);
 755     }
 756 
 757     // free the security descriptor
 758     FREE_C_HEAP_ARRAY(char, pSD);
 759   }
 760 }
 761 
 762 // method to free up a security attributes structure and any
 763 // contained security descriptors and ACL
 764 //
 765 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
 766 
 767   if (lpSA != NULL) {
 768     // free the contained security descriptor and the ACL
 769     free_security_desc(lpSA->lpSecurityDescriptor);
 770     lpSA->lpSecurityDescriptor = NULL;
 771 
 772     // free the security attributes structure
 773     FREE_C_HEAP_ARRAY(char, lpSA);
 774   }
 775 }
 776 
 777 // get the user SID for the process indicated by the process handle
 778 //
 779 static PSID get_user_sid(HANDLE hProcess) {
 780 
 781   HANDLE hAccessToken;
 782   PTOKEN_USER token_buf = NULL;
 783   DWORD rsize = 0;
 784 
 785   if (hProcess == NULL) {
 786     return NULL;
 787   }
 788 
 789   // get the process token
 790   if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
 791     if (PrintMiscellaneous && Verbose) {
 792       warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
 793     }
 794     return NULL;
 795   }
 796 
 797   // determine the size of the token structured needed to retrieve
 798   // the user token information from the access token.
 799   //
 800   if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
 801     DWORD lasterror = GetLastError();
 802     if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
 803       if (PrintMiscellaneous && Verbose) {
 804         warning("GetTokenInformation failure: lasterror = %d,"
 805                 " rsize = %d\n", lasterror, rsize);
 806       }
 807       CloseHandle(hAccessToken);
 808       return NULL;
 809     }
 810   }
 811 
 812   token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize, mtInternal);
 813 
 814   // get the user token information
 815   if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
 816     if (PrintMiscellaneous && Verbose) {
 817       warning("GetTokenInformation failure: lasterror = %d,"
 818               " rsize = %d\n", GetLastError(), rsize);
 819     }
 820     FREE_C_HEAP_ARRAY(char, token_buf);
 821     CloseHandle(hAccessToken);
 822     return NULL;
 823   }
 824 
 825   DWORD nbytes = GetLengthSid(token_buf->User.Sid);
 826   PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 827 
 828   if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
 829     if (PrintMiscellaneous && Verbose) {
 830       warning("GetTokenInformation failure: lasterror = %d,"
 831               " rsize = %d\n", GetLastError(), rsize);
 832     }
 833     FREE_C_HEAP_ARRAY(char, token_buf);
 834     FREE_C_HEAP_ARRAY(char, pSID);
 835     CloseHandle(hAccessToken);
 836     return NULL;
 837   }
 838 
 839   // close the access token.
 840   CloseHandle(hAccessToken);
 841   FREE_C_HEAP_ARRAY(char, token_buf);
 842 
 843   return pSID;
 844 }
 845 
 846 // structure used to consolidate access control entry information
 847 //
 848 typedef struct ace_data {
 849   PSID pSid;      // SID of the ACE
 850   DWORD mask;     // mask for the ACE
 851 } ace_data_t;
 852 
 853 
 854 // method to add an allow access control entry with the access rights
 855 // indicated in mask for the principal indicated in SID to the given
 856 // security descriptor. Much of the DACL handling was adapted from
 857 // the example provided here:
 858 //      http://support.microsoft.com/kb/102102/EN-US/
 859 //
 860 
 861 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
 862                            ace_data_t aces[], int ace_count) {
 863   PACL newACL = NULL;
 864   PACL oldACL = NULL;
 865 
 866   if (pSD == NULL) {
 867     return false;
 868   }
 869 
 870   BOOL exists, isdefault;
 871 
 872   // retrieve any existing access control list.
 873   if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
 874     if (PrintMiscellaneous && Verbose) {
 875       warning("GetSecurityDescriptor failure: lasterror = %d \n",
 876               GetLastError());
 877     }
 878     return false;
 879   }
 880 
 881   // get the size of the DACL
 882   ACL_SIZE_INFORMATION aclinfo;
 883 
 884   // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
 885   // while oldACL is NULL for some case.
 886   if (oldACL == NULL) {
 887     exists = FALSE;
 888   }
 889 
 890   if (exists) {
 891     if (!GetAclInformation(oldACL, &aclinfo,
 892                            sizeof(ACL_SIZE_INFORMATION),
 893                            AclSizeInformation)) {
 894       if (PrintMiscellaneous && Verbose) {
 895         warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
 896         return false;
 897       }
 898     }
 899   } else {
 900     aclinfo.AceCount = 0; // assume NULL DACL
 901     aclinfo.AclBytesFree = 0;
 902     aclinfo.AclBytesInUse = sizeof(ACL);
 903   }
 904 
 905   // compute the size needed for the new ACL
 906   // initial size of ACL is sum of the following:
 907   //   * size of ACL structure.
 908   //   * size of each ACE structure that ACL is to contain minus the sid
 909   //     sidStart member (DWORD) of the ACE.
 910   //   * length of the SID that each ACE is to contain.
 911   DWORD newACLsize = aclinfo.AclBytesInUse +
 912                         (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
 913   for (int i = 0; i < ace_count; i++) {
 914      assert(aces[i].pSid != 0, "pSid should not be 0");
 915      newACLsize += GetLengthSid(aces[i].pSid);
 916   }
 917 
 918   // create the new ACL
 919   newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize, mtInternal);
 920 
 921   if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
 922     if (PrintMiscellaneous && Verbose) {
 923       warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 924     }
 925     FREE_C_HEAP_ARRAY(char, newACL);
 926     return false;
 927   }
 928 
 929   unsigned int ace_index = 0;
 930   // copy any existing ACEs from the old ACL (if any) to the new ACL.
 931   if (aclinfo.AceCount != 0) {
 932     while (ace_index < aclinfo.AceCount) {
 933       LPVOID ace;
 934       if (!GetAce(oldACL, ace_index, &ace)) {
 935         if (PrintMiscellaneous && Verbose) {
 936           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 937         }
 938         FREE_C_HEAP_ARRAY(char, newACL);
 939         return false;
 940       }
 941       if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
 942         // this is an inherited, allowed ACE; break from loop so we can
 943         // add the new access allowed, non-inherited ACE in the correct
 944         // position, immediately following all non-inherited ACEs.
 945         break;
 946       }
 947 
 948       // determine if the SID of this ACE matches any of the SIDs
 949       // for which we plan to set ACEs.
 950       int matches = 0;
 951       for (int i = 0; i < ace_count; i++) {
 952         if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
 953           matches++;
 954           break;
 955         }
 956       }
 957 
 958       // if there are no SID matches, then add this existing ACE to the new ACL
 959       if (matches == 0) {
 960         if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
 961                     ((PACE_HEADER)ace)->AceSize)) {
 962           if (PrintMiscellaneous && Verbose) {
 963             warning("AddAce failure: lasterror = %d \n", GetLastError());
 964           }
 965           FREE_C_HEAP_ARRAY(char, newACL);
 966           return false;
 967         }
 968       }
 969       ace_index++;
 970     }
 971   }
 972 
 973   // add the passed-in access control entries to the new ACL
 974   for (int i = 0; i < ace_count; i++) {
 975     if (!AddAccessAllowedAce(newACL, ACL_REVISION,
 976                              aces[i].mask, aces[i].pSid)) {
 977       if (PrintMiscellaneous && Verbose) {
 978         warning("AddAccessAllowedAce failure: lasterror = %d \n",
 979                 GetLastError());
 980       }
 981       FREE_C_HEAP_ARRAY(char, newACL);
 982       return false;
 983     }
 984   }
 985 
 986   // now copy the rest of the inherited ACEs from the old ACL
 987   if (aclinfo.AceCount != 0) {
 988     // picking up at ace_index, where we left off in the
 989     // previous ace_index loop
 990     while (ace_index < aclinfo.AceCount) {
 991       LPVOID ace;
 992       if (!GetAce(oldACL, ace_index, &ace)) {
 993         if (PrintMiscellaneous && Verbose) {
 994           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 995         }
 996         FREE_C_HEAP_ARRAY(char, newACL);
 997         return false;
 998       }
 999       if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
1000                   ((PACE_HEADER)ace)->AceSize)) {
1001         if (PrintMiscellaneous && Verbose) {
1002           warning("AddAce failure: lasterror = %d \n", GetLastError());
1003         }
1004         FREE_C_HEAP_ARRAY(char, newACL);
1005         return false;
1006       }
1007       ace_index++;
1008     }
1009   }
1010 
1011   // add the new ACL to the security descriptor.
1012   if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
1013     if (PrintMiscellaneous && Verbose) {
1014       warning("SetSecurityDescriptorDacl failure:"
1015               " lasterror = %d \n", GetLastError());
1016     }
1017     FREE_C_HEAP_ARRAY(char, newACL);
1018     return false;
1019   }
1020 
1021   // if running on windows 2000 or later, set the automatic inheritance
1022   // control flags.
1023   SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
1024   _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
1025        GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
1026                       "SetSecurityDescriptorControl");
1027 
1028   if (_SetSecurityDescriptorControl != NULL) {
1029     // We do not want to further propagate inherited DACLs, so making them
1030     // protected prevents that.
1031     if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
1032                                             SE_DACL_PROTECTED)) {
1033       if (PrintMiscellaneous && Verbose) {
1034         warning("SetSecurityDescriptorControl failure:"
1035                 " lasterror = %d \n", GetLastError());
1036       }
1037       FREE_C_HEAP_ARRAY(char, newACL);
1038       return false;
1039     }
1040   }
1041    // Note, the security descriptor maintains a reference to the newACL, not
1042    // a copy of it. Therefore, the newACL is not freed here. It is freed when
1043    // the security descriptor containing its reference is freed.
1044    //
1045    return true;
1046 }
1047 
1048 // method to create a security attributes structure, which contains a
1049 // security descriptor and an access control list comprised of 0 or more
1050 // access control entries. The method take an array of ace_data structures
1051 // that indicate the ACE to be added to the security descriptor.
1052 //
1053 // the caller must free the resources associated with the security
1054 // attributes structure created by this method by calling the
1055 // free_security_attr() method.
1056 //
1057 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
1058 
1059   // allocate space for a security descriptor
1060   PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
1061      NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH, mtInternal);
1062 
1063   // initialize the security descriptor
1064   if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
1065     if (PrintMiscellaneous && Verbose) {
1066       warning("InitializeSecurityDescriptor failure: "
1067               "lasterror = %d \n", GetLastError());
1068     }
1069     free_security_desc(pSD);
1070     return NULL;
1071   }
1072 
1073   // add the access control entries
1074   if (!add_allow_aces(pSD, aces, count)) {
1075     free_security_desc(pSD);
1076     return NULL;
1077   }
1078 
1079   // allocate and initialize the security attributes structure and
1080   // return it to the caller.
1081   //
1082   LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
1083     NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES), mtInternal);
1084   lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
1085   lpSA->lpSecurityDescriptor = pSD;
1086   lpSA->bInheritHandle = FALSE;
1087 
1088   return(lpSA);
1089 }
1090 
1091 // method to create a security attributes structure with a restrictive
1092 // access control list that creates a set access rights for the user/owner
1093 // of the securable object and a separate set access rights for everyone else.
1094 // also provides for full access rights for the administrator group.
1095 //
1096 // the caller must free the resources associated with the security
1097 // attributes structure created by this method by calling the
1098 // free_security_attr() method.
1099 //
1100 
1101 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
1102                                 DWORD umask, DWORD emask, DWORD amask) {
1103 
1104   ace_data_t aces[3];
1105 
1106   // initialize the user ace data
1107   aces[0].pSid = get_user_sid(GetCurrentProcess());
1108   aces[0].mask = umask;
1109 
1110   if (aces[0].pSid == 0)
1111     return NULL;
1112 
1113   // get the well known SID for BUILTIN\Administrators
1114   PSID administratorsSid = NULL;
1115   SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
1116 
1117   if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
1118            SECURITY_BUILTIN_DOMAIN_RID,
1119            DOMAIN_ALIAS_RID_ADMINS,
1120            0, 0, 0, 0, 0, 0, &administratorsSid)) {
1121 
1122     if (PrintMiscellaneous && Verbose) {
1123       warning("AllocateAndInitializeSid failure: "
1124               "lasterror = %d \n", GetLastError());
1125     }
1126     return NULL;
1127   }
1128 
1129   // initialize the ace data for administrator group
1130   aces[1].pSid = administratorsSid;
1131   aces[1].mask = amask;
1132 
1133   // get the well known SID for the universal Everybody
1134   PSID everybodySid = NULL;
1135   SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
1136 
1137   if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
1138            0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
1139 
1140     if (PrintMiscellaneous && Verbose) {
1141       warning("AllocateAndInitializeSid failure: "
1142               "lasterror = %d \n", GetLastError());
1143     }
1144     return NULL;
1145   }
1146 
1147   // initialize the ace data for everybody else.
1148   aces[2].pSid = everybodySid;
1149   aces[2].mask = emask;
1150 
1151   // create a security attributes structure with access control
1152   // entries as initialized above.
1153   LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
1154   FREE_C_HEAP_ARRAY(char, aces[0].pSid);
1155   FreeSid(everybodySid);
1156   FreeSid(administratorsSid);
1157   return(lpSA);
1158 }
1159 
1160 
1161 // method to create the security attributes structure for restricting
1162 // access to the user temporary directory.
1163 //
1164 // the caller must free the resources associated with the security
1165 // attributes structure created by this method by calling the
1166 // free_security_attr() method.
1167 //
1168 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
1169 
1170   // create full access rights for the user/owner of the directory
1171   // and read-only access rights for everybody else. This is
1172   // effectively equivalent to UNIX 755 permissions on a directory.
1173   //
1174   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
1175   DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1176   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1177 
1178   return make_user_everybody_admin_security_attr(umask, emask, amask);
1179 }
1180 
1181 // method to create the security attributes structure for restricting
1182 // access to the shared memory backing store file.
1183 //
1184 // the caller must free the resources associated with the security
1185 // attributes structure created by this method by calling the
1186 // free_security_attr() method.
1187 //
1188 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
1189 
1190   // create extensive access rights for the user/owner of the file
1191   // and attribute read-only access rights for everybody else. This
1192   // is effectively equivalent to UNIX 600 permissions on a file.
1193   //
1194   DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1195   DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
1196                  FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1197   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1198 
1199   return make_user_everybody_admin_security_attr(umask, emask, amask);
1200 }
1201 
1202 // method to create the security attributes structure for restricting
1203 // access to the name shared memory file mapping object.
1204 //
1205 // the caller must free the resources associated with the security
1206 // attributes structure created by this method by calling the
1207 // free_security_attr() method.
1208 //
1209 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
1210 
1211   // create extensive access rights for the user/owner of the shared
1212   // memory object and attribute read-only access rights for everybody
1213   // else. This is effectively equivalent to UNIX 600 permissions on
1214   // on the shared memory object.
1215   //
1216   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
1217   DWORD emask = STANDARD_RIGHTS_READ; // attributes only
1218   DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
1219 
1220   return make_user_everybody_admin_security_attr(umask, emask, amask);
1221 }
1222 
1223 // make the user specific temporary directory
1224 //
1225 static bool make_user_tmp_dir(const char* dirname) {
1226 
1227 
1228   LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
1229   if (pDirSA == NULL) {
1230     return false;
1231   }
1232 
1233 
1234   // create the directory with the given security attributes
1235   if (!CreateDirectory(dirname, pDirSA)) {
1236     DWORD lasterror = GetLastError();
1237     if (lasterror == ERROR_ALREADY_EXISTS) {
1238       // The directory already exists and was probably created by another
1239       // JVM instance. However, this could also be the result of a
1240       // deliberate symlink. Verify that the existing directory is safe.
1241       //
1242       if (!is_directory_secure(dirname)) {
1243         // directory is not secure
1244         if (PrintMiscellaneous && Verbose) {
1245           warning("%s directory is insecure\n", dirname);
1246         }
1247         return false;
1248       }
1249       // The administrator should be able to delete this directory.
1250       // But the directory created by previous version of JVM may not
1251       // have permission for administrators to delete this directory.
1252       // So add full permission to the administrator. Also setting new
1253       // DACLs might fix the corrupted the DACLs.
1254       SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
1255       if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
1256         if (PrintMiscellaneous && Verbose) {
1257           lasterror = GetLastError();
1258           warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
1259                                                         dirname, lasterror);
1260         }
1261       }
1262     }
1263     else {
1264       if (PrintMiscellaneous && Verbose) {
1265         warning("CreateDirectory failed: %d\n", GetLastError());
1266       }
1267       return false;
1268     }
1269   }
1270 
1271   // free the security attributes structure
1272   free_security_attr(pDirSA);
1273 
1274   return true;
1275 }
1276 
1277 // create the shared memory resources
1278 //
1279 // This function creates the shared memory resources. This includes
1280 // the backing store file and the file mapping shared memory object.
1281 //
1282 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
1283 
1284   HANDLE fh = INVALID_HANDLE_VALUE;
1285   HANDLE fmh = NULL;
1286 
1287 
1288   // create the security attributes for the backing store file
1289   LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
1290   if (lpFileSA == NULL) {
1291     return NULL;
1292   }
1293 
1294   // create the security attributes for the shared memory object
1295   LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
1296   if (lpSmoSA == NULL) {
1297     free_security_attr(lpFileSA);
1298     return NULL;
1299   }
1300 
1301   // create the user temporary directory
1302   if (!make_user_tmp_dir(dirname)) {
1303     // could not make/find the directory or the found directory
1304     // was not secure
1305     return NULL;
1306   }
1307 
1308   // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
1309   // file to be deleted by the last process that closes its handle to
1310   // the file. This is important as the apis do not allow a terminating
1311   // JVM being monitored by another process to remove the file name.
1312   //
1313   fh = CreateFile(
1314              filename,                          /* LPCTSTR file name */
1315 
1316              GENERIC_READ|GENERIC_WRITE,        /* DWORD desired access */
1317              FILE_SHARE_DELETE|FILE_SHARE_READ, /* DWORD share mode, future READONLY
1318                                                  * open operations allowed
1319                                                  */
1320              lpFileSA,                          /* LPSECURITY security attributes */
1321              CREATE_ALWAYS,                     /* DWORD creation disposition
1322                                                  * create file, if it already
1323                                                  * exists, overwrite it.
1324                                                  */
1325              FILE_FLAG_DELETE_ON_CLOSE,         /* DWORD flags and attributes */
1326 
1327              NULL);                             /* HANDLE template file access */
1328 
1329   free_security_attr(lpFileSA);
1330 
1331   if (fh == INVALID_HANDLE_VALUE) {
1332     DWORD lasterror = GetLastError();
1333     if (PrintMiscellaneous && Verbose) {
1334       warning("could not create file %s: %d\n", filename, lasterror);
1335     }
1336     return NULL;
1337   }
1338 
1339   // try to create the file mapping
1340   fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
1341 
1342   free_security_attr(lpSmoSA);
1343 
1344   if (fmh == NULL) {
1345     // closing the file handle here will decrement the reference count
1346     // on the file. When all processes accessing the file close their
1347     // handle to it, the reference count will decrement to 0 and the
1348     // OS will delete the file. These semantics are requested by the
1349     // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
1350     CloseHandle(fh);
1351     fh = NULL;
1352     return NULL;
1353   } else {
1354     // We created the file mapping, but rarely the size of the
1355     // backing store file is reported as zero (0) which can cause
1356     // failures when trying to use the hsperfdata file.
1357     struct stat statbuf;
1358     int ret_code = ::stat(filename, &statbuf);
1359     if (ret_code == OS_ERR) {
1360       if (PrintMiscellaneous && Verbose) {
1361         warning("Could not get status information from file %s: %s\n",
1362             filename, os::strerror(errno));
1363       }
1364       CloseHandle(fmh);
1365       CloseHandle(fh);
1366       fh = NULL;
1367       fmh = NULL;
1368       return NULL;
1369     }
1370 
1371     // We could always call FlushFileBuffers() but the Microsoft
1372     // docs indicate that it is considered expensive so we only
1373     // call it when we observe the size as zero (0).
1374     if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
1375       DWORD lasterror = GetLastError();
1376       if (PrintMiscellaneous && Verbose) {
1377         warning("could not flush file %s: %d\n", filename, lasterror);
1378       }
1379       CloseHandle(fmh);
1380       CloseHandle(fh);
1381       fh = NULL;
1382       fmh = NULL;
1383       return NULL;
1384     }
1385   }
1386 
1387   // the file has been successfully created and the file mapping
1388   // object has been created.
1389   sharedmem_fileHandle = fh;
1390   sharedmem_fileName = os::strdup(filename);
1391 
1392   return fmh;
1393 }
1394 
1395 // open the shared memory object for the given vmid.
1396 //
1397 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
1398 
1399   HANDLE fmh;
1400 
1401   // open the file mapping with the requested mode
1402   fmh = OpenFileMapping(
1403                ofm_access,       /* DWORD access mode */
1404                FALSE,            /* BOOL inherit flag - Do not allow inherit */
1405                objectname);      /* name for object */
1406 
1407   if (fmh == NULL) {
1408     DWORD lasterror = GetLastError();
1409     if (PrintMiscellaneous && Verbose) {
1410       warning("OpenFileMapping failed for shared memory object %s:"
1411               " lasterror = %d\n", objectname, lasterror);
1412     }
1413     THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
1414                err_msg("Could not open PerfMemory, error %d", lasterror),
1415                INVALID_HANDLE_VALUE);
1416   }
1417 
1418   return fmh;;
1419 }
1420 
1421 // create a named shared memory region
1422 //
1423 // On Win32, a named shared memory object has a name space that
1424 // is independent of the file system name space. Shared memory object,
1425 // or more precisely, file mapping objects, provide no mechanism to
1426 // inquire the size of the memory region. There is also no api to
1427 // enumerate the memory regions for various processes.
1428 //
1429 // This implementation utilizes the shared memory name space in parallel
1430 // with the file system name space. This allows us to determine the
1431 // size of the shared memory region from the size of the file and it
1432 // allows us to provide a common, file system based name space for
1433 // shared memory across platforms.
1434 //
1435 static char* mapping_create_shared(size_t size) {
1436 
1437   void *mapAddress;
1438   int vmid = os::current_process_id();
1439 
1440   // get the name of the user associated with this process
1441   char* user = get_user_name();
1442 
1443   if (user == NULL) {
1444     return NULL;
1445   }
1446 
1447   // construct the name of the user specific temporary directory
1448   char* dirname = get_user_tmp_dir(user);
1449 
1450   // check that the file system is secure - i.e. it supports ACLs.
1451   if (!is_filesystem_secure(dirname)) {
1452     FREE_C_HEAP_ARRAY(char, dirname);
1453     FREE_C_HEAP_ARRAY(char, user);
1454     return NULL;
1455   }
1456 
1457   // create the names of the backing store files and for the
1458   // share memory object.
1459   //
1460   char* filename = get_sharedmem_filename(dirname, vmid);
1461   char* objectname = get_sharedmem_objectname(user, vmid);
1462 
1463   // cleanup any stale shared memory resources
1464   cleanup_sharedmem_resources(dirname);
1465 
1466   assert(((size != 0) && (size % os::vm_page_size() == 0)),
1467          "unexpected PerfMemry region size");
1468 
1469   FREE_C_HEAP_ARRAY(char, user);
1470 
1471   // create the shared memory resources
1472   sharedmem_fileMapHandle =
1473                create_sharedmem_resources(dirname, filename, objectname, size);
1474 
1475   FREE_C_HEAP_ARRAY(char, filename);
1476   FREE_C_HEAP_ARRAY(char, objectname);
1477   FREE_C_HEAP_ARRAY(char, dirname);
1478 
1479   if (sharedmem_fileMapHandle == NULL) {
1480     return NULL;
1481   }
1482 
1483   // map the file into the address space
1484   mapAddress = MapViewOfFile(
1485                    sharedmem_fileMapHandle, /* HANDLE = file mapping object */
1486                    FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
1487                    0,                       /* DWORD High word of offset */
1488                    0,                       /* DWORD Low word of offset */
1489                    (DWORD)size);            /* DWORD Number of bytes to map */
1490 
1491   if (mapAddress == NULL) {
1492     if (PrintMiscellaneous && Verbose) {
1493       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1494     }
1495     CloseHandle(sharedmem_fileMapHandle);
1496     sharedmem_fileMapHandle = NULL;
1497     return NULL;
1498   }
1499 
1500   // clear the shared memory region
1501   (void)memset(mapAddress, '\0', size);
1502 
1503   // it does not go through os api, the operation has to record from here
1504   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1505     size, CURRENT_PC, mtInternal);
1506 
1507   return (char*) mapAddress;
1508 }
1509 
1510 // this method deletes the file mapping object.
1511 //
1512 static void delete_file_mapping(char* addr, size_t size) {
1513 
1514   // cleanup the persistent shared memory resources. since DestroyJavaVM does
1515   // not support unloading of the JVM, unmapping of the memory resource is not
1516   // performed. The memory will be reclaimed by the OS upon termination of all
1517   // processes mapping the resource. The file mapping handle and the file
1518   // handle are closed here to expedite the remove of the file by the OS. The
1519   // file is not removed directly because it was created with
1520   // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
1521   // be unsuccessful.
1522 
1523   // close the fileMapHandle. the file mapping will still be retained
1524   // by the OS as long as any other JVM processes has an open file mapping
1525   // handle or a mapped view of the file.
1526   //
1527   if (sharedmem_fileMapHandle != NULL) {
1528     CloseHandle(sharedmem_fileMapHandle);
1529     sharedmem_fileMapHandle = NULL;
1530   }
1531 
1532   // close the file handle. This will decrement the reference count on the
1533   // backing store file. When the reference count decrements to 0, the OS
1534   // will delete the file. These semantics apply because the file was
1535   // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
1536   //
1537   if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
1538     CloseHandle(sharedmem_fileHandle);
1539     sharedmem_fileHandle = INVALID_HANDLE_VALUE;
1540   }
1541 }
1542 
1543 // this method determines the size of the shared memory file
1544 //
1545 static size_t sharedmem_filesize(const char* filename, TRAPS) {
1546 
1547   struct stat statbuf;
1548 
1549   // get the file size
1550   //
1551   // on win95/98/me, _stat returns a file size of 0 bytes, but on
1552   // winnt/2k the appropriate file size is returned. support for
1553   // the sharable aspects of performance counters was abandonded
1554   // on the non-nt win32 platforms due to this and other api
1555   // inconsistencies
1556   //
1557   if (::stat(filename, &statbuf) == OS_ERR) {
1558     if (PrintMiscellaneous && Verbose) {
1559       warning("stat %s failed: %s\n", filename, os::strerror(errno));
1560     }
1561     THROW_MSG_0(vmSymbols::java_io_IOException(),
1562                 "Could not determine PerfMemory size");
1563   }
1564 
1565   if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
1566     if (PrintMiscellaneous && Verbose) {
1567       warning("unexpected file size: size = " SIZE_FORMAT "\n",
1568               statbuf.st_size);
1569     }
1570     THROW_MSG_0(vmSymbols::java_lang_Exception(),
1571                 "Invalid PerfMemory size");
1572   }
1573 
1574   return statbuf.st_size;
1575 }
1576 
1577 // this method opens a file mapping object and maps the object
1578 // into the address space of the process
1579 //
1580 static void open_file_mapping(const char* user, int vmid,
1581                               PerfMemory::PerfMemoryMode mode,
1582                               char** addrp, size_t* sizep, TRAPS) {
1583 
1584   ResourceMark rm;
1585 
1586   void *mapAddress = 0;
1587   size_t size = 0;
1588   HANDLE fmh;
1589   DWORD ofm_access;
1590   DWORD mv_access;
1591   const char* luser = NULL;
1592 
1593   if (mode == PerfMemory::PERF_MODE_RO) {
1594     ofm_access = FILE_MAP_READ;
1595     mv_access = FILE_MAP_READ;
1596   }
1597   else if (mode == PerfMemory::PERF_MODE_RW) {
1598 #ifdef LATER
1599     ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
1600     mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
1601 #else
1602     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1603               "Unsupported access mode");
1604 #endif
1605   }
1606   else {
1607     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1608               "Illegal access mode");
1609   }
1610 
1611   // if a user name wasn't specified, then find the user name for
1612   // the owner of the target vm.
1613   if (user == NULL || strlen(user) == 0) {
1614     luser = get_user_name(vmid);
1615   }
1616   else {
1617     luser = user;
1618   }
1619 
1620   if (luser == NULL) {
1621     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1622               "Could not map vmid to user name");
1623   }
1624 
1625   // get the names for the resources for the target vm
1626   char* dirname = get_user_tmp_dir(luser);
1627 
1628   // since we don't follow symbolic links when creating the backing
1629   // store file, we also don't following them when attaching
1630   //
1631   if (!is_directory_secure(dirname)) {
1632     FREE_C_HEAP_ARRAY(char, dirname);
1633     if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1634     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1635               "Process not found");
1636   }
1637 
1638   char* filename = get_sharedmem_filename(dirname, vmid);
1639   char* objectname = get_sharedmem_objectname(luser, vmid);
1640 
1641   // copy heap memory to resource memory. the objectname and
1642   // filename are passed to methods that may throw exceptions.
1643   // using resource arrays for these names prevents the leaks
1644   // that would otherwise occur.
1645   //
1646   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1647   char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
1648   strcpy(rfilename, filename);
1649   strcpy(robjectname, objectname);
1650 
1651   // free the c heap resources that are no longer needed
1652   if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1653   FREE_C_HEAP_ARRAY(char, dirname);
1654   FREE_C_HEAP_ARRAY(char, filename);
1655   FREE_C_HEAP_ARRAY(char, objectname);
1656 
1657   if (*sizep == 0) {
1658     size = sharedmem_filesize(rfilename, CHECK);
1659   } else {
1660     size = *sizep;
1661   }
1662 
1663   assert(size > 0, "unexpected size <= 0");
1664 
1665   // Open the file mapping object with the given name
1666   fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
1667 
1668   assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
1669 
1670   // map the entire file into the address space
1671   mapAddress = MapViewOfFile(
1672                  fmh,             /* HANDLE Handle of file mapping object */
1673                  mv_access,       /* DWORD access flags */
1674                  0,               /* DWORD High word of offset */
1675                  0,               /* DWORD Low word of offset */
1676                  size);           /* DWORD Number of bytes to map */
1677 
1678   if (mapAddress == NULL) {
1679     if (PrintMiscellaneous && Verbose) {
1680       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1681     }
1682     CloseHandle(fmh);
1683     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1684               "Could not map PerfMemory");
1685   }
1686 
1687   // it does not go through os api, the operation has to record from here
1688   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size,
1689     CURRENT_PC, mtInternal);
1690 
1691 
1692   *addrp = (char*)mapAddress;
1693   *sizep = size;
1694 
1695   // File mapping object can be closed at this time without
1696   // invalidating the mapped view of the file
1697   CloseHandle(fmh);
1698 
1699   log_debug(perf, memops)("mapped " SIZE_FORMAT " bytes for vmid %d at "
1700                           INTPTR_FORMAT "\n", size, vmid, mapAddress);
1701 }
1702 
1703 // this method unmaps the the mapped view of the the
1704 // file mapping object.
1705 //
1706 static void remove_file_mapping(char* addr) {
1707 
1708   // the file mapping object was closed in open_file_mapping()
1709   // after the file map view was created. We only need to
1710   // unmap the file view here.
1711   UnmapViewOfFile(addr);
1712 }
1713 
1714 // create the PerfData memory region in shared memory.
1715 static char* create_shared_memory(size_t size) {
1716 
1717   return mapping_create_shared(size);
1718 }
1719 
1720 // release a named, shared memory region
1721 //
1722 void delete_shared_memory(char* addr, size_t size) {
1723 
1724   delete_file_mapping(addr, size);
1725 }
1726 
1727 
1728 
1729 
1730 // create the PerfData memory region
1731 //
1732 // This method creates the memory region used to store performance
1733 // data for the JVM. The memory may be created in standard or
1734 // shared memory.
1735 //
1736 void PerfMemory::create_memory_region(size_t size) {
1737 
1738   if (PerfDisableSharedMem) {
1739     // do not share the memory for the performance data.
1740     PerfDisableSharedMem = true;
1741     _start = create_standard_memory(size);
1742   }
1743   else {
1744     _start = create_shared_memory(size);
1745     if (_start == NULL) {
1746 
1747       // creation of the shared memory region failed, attempt
1748       // to create a contiguous, non-shared memory region instead.
1749       //
1750       if (PrintMiscellaneous && Verbose) {
1751         warning("Reverting to non-shared PerfMemory region.\n");
1752       }
1753       PerfDisableSharedMem = true;
1754       _start = create_standard_memory(size);
1755     }
1756   }
1757 
1758   if (_start != NULL) _capacity = size;
1759 
1760 }
1761 
1762 // delete the PerfData memory region
1763 //
1764 // This method deletes the memory region used to store performance
1765 // data for the JVM. The memory region indicated by the <address, size>
1766 // tuple will be inaccessible after a call to this method.
1767 //
1768 void PerfMemory::delete_memory_region() {
1769 
1770   assert((start() != NULL && capacity() > 0), "verify proper state");
1771 
1772   // If user specifies PerfDataSaveFile, it will save the performance data
1773   // to the specified file name no matter whether PerfDataSaveToFile is specified
1774   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1775   // -XX:+PerfDataSaveToFile.
1776   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1777     save_memory_to_file(start(), capacity());
1778   }
1779 
1780   if (PerfDisableSharedMem) {
1781     delete_standard_memory(start(), capacity());
1782   }
1783   else {
1784     delete_shared_memory(start(), capacity());
1785   }
1786 }
1787 
1788 // attach to the PerfData memory region for another JVM
1789 //
1790 // This method returns an <address, size> tuple that points to
1791 // a memory buffer that is kept reasonably synchronized with
1792 // the PerfData memory region for the indicated JVM. This
1793 // buffer may be kept in synchronization via shared memory
1794 // or some other mechanism that keeps the buffer updated.
1795 //
1796 // If the JVM chooses not to support the attachability feature,
1797 // this method should throw an UnsupportedOperation exception.
1798 //
1799 // This implementation utilizes named shared memory to map
1800 // the indicated process's PerfData memory region into this JVMs
1801 // address space.
1802 //
1803 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
1804                         char** addrp, size_t* sizep, TRAPS) {
1805 
1806   if (vmid == 0 || vmid == os::current_process_id()) {
1807      *addrp = start();
1808      *sizep = capacity();
1809      return;
1810   }
1811 
1812   open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
1813 }
1814 
1815 // detach from the PerfData memory region of another JVM
1816 //
1817 // This method detaches the PerfData memory region of another
1818 // JVM, specified as an <address, size> tuple of a buffer
1819 // in this process's address space. This method may perform
1820 // arbitrary actions to accomplish the detachment. The memory
1821 // region specified by <address, size> will be inaccessible after
1822 // a call to this method.
1823 //
1824 // If the JVM chooses not to support the attachability feature,
1825 // this method should throw an UnsupportedOperation exception.
1826 //
1827 // This implementation utilizes named shared memory to detach
1828 // the indicated process's PerfData memory region from this
1829 // process's address space.
1830 //
1831 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1832 
1833   assert(addr != 0, "address sanity check");
1834   assert(bytes > 0, "capacity sanity check");
1835 
1836   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1837     // prevent accidental detachment of this process's PerfMemory region
1838     return;
1839   }
1840 
1841   if (MemTracker::tracking_level() > NMT_minimal) {
1842     // it does not go through os api, the operation has to record from here
1843     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1844     remove_file_mapping(addr);
1845     tkr.record((address)addr, bytes);
1846   } else {
1847     remove_file_mapping(addr);
1848   }
1849 }