1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/shared/cardTableRS.hpp"
  34 #include "gc/shared/collectedHeap.inline.hpp"
  35 #include "gc/shared/collectorCounters.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/gcTrace.hpp"
  39 #include "gc/shared/gcTraceTime.inline.hpp"
  40 #include "gc/shared/genCollectedHeap.hpp"
  41 #include "gc/shared/genOopClosures.inline.hpp"
  42 #include "gc/shared/generationSpec.hpp"
  43 #include "gc/shared/space.hpp"
  44 #include "gc/shared/strongRootsScope.hpp"
  45 #include "gc/shared/vmGCOperations.hpp"
  46 #include "gc/shared/weakProcessor.hpp"
  47 #include "gc/shared/workgroup.hpp"
  48 #include "memory/filemap.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/handles.hpp"
  53 #include "runtime/handles.inline.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/vmThread.hpp"
  56 #include "services/management.hpp"
  57 #include "services/memoryService.hpp"
  58 #include "utilities/debug.hpp"
  59 #include "utilities/formatBuffer.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/stack.inline.hpp"
  62 #include "utilities/vmError.hpp"
  63 
  64 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  65   CollectedHeap(),
  66   _rem_set(NULL),
  67   _gen_policy(policy),
  68   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  69   _full_collections_completed(0)
  70 {
  71   assert(policy != NULL, "Sanity check");
  72 }
  73 
  74 jint GenCollectedHeap::initialize() {
  75   // While there are no constraints in the GC code that HeapWordSize
  76   // be any particular value, there are multiple other areas in the
  77   // system which believe this to be true (e.g. oop->object_size in some
  78   // cases incorrectly returns the size in wordSize units rather than
  79   // HeapWordSize).
  80   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  81 
  82   // Allocate space for the heap.
  83 
  84   char* heap_address;
  85   ReservedSpace heap_rs;
  86 
  87   size_t heap_alignment = collector_policy()->heap_alignment();
  88 
  89   heap_address = allocate(heap_alignment, &heap_rs);
  90 
  91   if (!heap_rs.is_reserved()) {
  92     vm_shutdown_during_initialization(
  93       "Could not reserve enough space for object heap");
  94     return JNI_ENOMEM;
  95   }
  96 
  97   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  98 
  99   _rem_set = new CardTableRS(reserved_region());
 100   set_barrier_set(rem_set()->bs());
 101 
 102   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 103   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 104   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 105 
 106   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 107   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 108   clear_incremental_collection_failed();
 109 
 110   return JNI_OK;
 111 }
 112 
 113 char* GenCollectedHeap::allocate(size_t alignment,
 114                                  ReservedSpace* heap_rs){
 115   // Now figure out the total size.
 116   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 117   assert(alignment % pageSize == 0, "Must be");
 118 
 119   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 120   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 121 
 122   // Check for overflow.
 123   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 124   if (total_reserved < young_spec->max_size()) {
 125     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 126                                   "the maximum representable size");
 127   }
 128   assert(total_reserved % alignment == 0,
 129          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 130          SIZE_FORMAT, total_reserved, alignment);
 131 
 132   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 133 
 134   os::trace_page_sizes("Heap",
 135                        collector_policy()->min_heap_byte_size(),
 136                        total_reserved,
 137                        alignment,
 138                        heap_rs->base(),
 139                        heap_rs->size());
 140 
 141   return heap_rs->base();
 142 }
 143 
 144 void GenCollectedHeap::post_initialize() {
 145   CollectedHeap::post_initialize();
 146   ref_processing_init();
 147   check_gen_kinds();
 148   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 149 
 150   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 151                                       _old_gen->capacity(),
 152                                       def_new_gen->from()->capacity());
 153 
 154   // Connect the two policies.
 155   _soft_ref_gen_policy.set_size_policy(_gen_policy->size_policy());
 156 
 157   _gen_policy->initialize_gc_policy_counters();
 158 }
 159 
 160 void GenCollectedHeap::ref_processing_init() {
 161   _young_gen->ref_processor_init();
 162   _old_gen->ref_processor_init();
 163 }
 164 
 165 size_t GenCollectedHeap::capacity() const {
 166   return _young_gen->capacity() + _old_gen->capacity();
 167 }
 168 
 169 size_t GenCollectedHeap::used() const {
 170   return _young_gen->used() + _old_gen->used();
 171 }
 172 
 173 void GenCollectedHeap::save_used_regions() {
 174   _old_gen->save_used_region();
 175   _young_gen->save_used_region();
 176 }
 177 
 178 size_t GenCollectedHeap::max_capacity() const {
 179   return _young_gen->max_capacity() + _old_gen->max_capacity();
 180 }
 181 
 182 // Update the _full_collections_completed counter
 183 // at the end of a stop-world full GC.
 184 unsigned int GenCollectedHeap::update_full_collections_completed() {
 185   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 186   assert(_full_collections_completed <= _total_full_collections,
 187          "Can't complete more collections than were started");
 188   _full_collections_completed = _total_full_collections;
 189   ml.notify_all();
 190   return _full_collections_completed;
 191 }
 192 
 193 // Update the _full_collections_completed counter, as appropriate,
 194 // at the end of a concurrent GC cycle. Note the conditional update
 195 // below to allow this method to be called by a concurrent collector
 196 // without synchronizing in any manner with the VM thread (which
 197 // may already have initiated a STW full collection "concurrently").
 198 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 199   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 200   assert((_full_collections_completed <= _total_full_collections) &&
 201          (count <= _total_full_collections),
 202          "Can't complete more collections than were started");
 203   if (count > _full_collections_completed) {
 204     _full_collections_completed = count;
 205     ml.notify_all();
 206   }
 207   return _full_collections_completed;
 208 }
 209 
 210 // Return true if any of the following is true:
 211 // . the allocation won't fit into the current young gen heap
 212 // . gc locker is occupied (jni critical section)
 213 // . heap memory is tight -- the most recent previous collection
 214 //   was a full collection because a partial collection (would
 215 //   have) failed and is likely to fail again
 216 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 217   size_t young_capacity = young_gen()->capacity_before_gc();
 218   return    (word_size > heap_word_size(young_capacity))
 219          || GCLocker::is_active_and_needs_gc()
 220          || incremental_collection_failed();
 221 }
 222 
 223 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 224   HeapWord* result = NULL;
 225   if (old_gen()->should_allocate(size, is_tlab)) {
 226     result = old_gen()->expand_and_allocate(size, is_tlab);
 227   }
 228   if (result == NULL) {
 229     if (young_gen()->should_allocate(size, is_tlab)) {
 230       result = young_gen()->expand_and_allocate(size, is_tlab);
 231     }
 232   }
 233   assert(result == NULL || is_in_reserved(result), "result not in heap");
 234   return result;
 235 }
 236 
 237 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 238                                               bool is_tlab,
 239                                               bool* gc_overhead_limit_was_exceeded) {
 240   debug_only(check_for_valid_allocation_state());
 241   assert(no_gc_in_progress(), "Allocation during gc not allowed");
 242 
 243   // In general gc_overhead_limit_was_exceeded should be false so
 244   // set it so here and reset it to true only if the gc time
 245   // limit is being exceeded as checked below.
 246   *gc_overhead_limit_was_exceeded = false;
 247 
 248   HeapWord* result = NULL;
 249 
 250   // Loop until the allocation is satisfied, or unsatisfied after GC.
 251   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 252     HandleMark hm; // Discard any handles allocated in each iteration.
 253 
 254     // First allocation attempt is lock-free.
 255     Generation *young = young_gen();
 256     assert(young->supports_inline_contig_alloc(),
 257       "Otherwise, must do alloc within heap lock");
 258     if (young->should_allocate(size, is_tlab)) {
 259       result = young->par_allocate(size, is_tlab);
 260       if (result != NULL) {
 261         assert(is_in_reserved(result), "result not in heap");
 262         return result;
 263       }
 264     }
 265     uint gc_count_before;  // Read inside the Heap_lock locked region.
 266     {
 267       MutexLocker ml(Heap_lock);
 268       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 269       // Note that only large objects get a shot at being
 270       // allocated in later generations.
 271       bool first_only = ! should_try_older_generation_allocation(size);
 272 
 273       result = attempt_allocation(size, is_tlab, first_only);
 274       if (result != NULL) {
 275         assert(is_in_reserved(result), "result not in heap");
 276         return result;
 277       }
 278 
 279       if (GCLocker::is_active_and_needs_gc()) {
 280         if (is_tlab) {
 281           return NULL;  // Caller will retry allocating individual object.
 282         }
 283         if (!is_maximal_no_gc()) {
 284           // Try and expand heap to satisfy request.
 285           result = expand_heap_and_allocate(size, is_tlab);
 286           // Result could be null if we are out of space.
 287           if (result != NULL) {
 288             return result;
 289           }
 290         }
 291 
 292         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 293           return NULL; // We didn't get to do a GC and we didn't get any memory.
 294         }
 295 
 296         // If this thread is not in a jni critical section, we stall
 297         // the requestor until the critical section has cleared and
 298         // GC allowed. When the critical section clears, a GC is
 299         // initiated by the last thread exiting the critical section; so
 300         // we retry the allocation sequence from the beginning of the loop,
 301         // rather than causing more, now probably unnecessary, GC attempts.
 302         JavaThread* jthr = JavaThread::current();
 303         if (!jthr->in_critical()) {
 304           MutexUnlocker mul(Heap_lock);
 305           // Wait for JNI critical section to be exited
 306           GCLocker::stall_until_clear();
 307           gclocker_stalled_count += 1;
 308           continue;
 309         } else {
 310           if (CheckJNICalls) {
 311             fatal("Possible deadlock due to allocating while"
 312                   " in jni critical section");
 313           }
 314           return NULL;
 315         }
 316       }
 317 
 318       // Read the gc count while the heap lock is held.
 319       gc_count_before = total_collections();
 320     }
 321 
 322     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 323     VMThread::execute(&op);
 324     if (op.prologue_succeeded()) {
 325       result = op.result();
 326       if (op.gc_locked()) {
 327          assert(result == NULL, "must be NULL if gc_locked() is true");
 328          continue;  // Retry and/or stall as necessary.
 329       }
 330 
 331       // Allocation has failed and a collection
 332       // has been done.  If the gc time limit was exceeded the
 333       // this time, return NULL so that an out-of-memory
 334       // will be thrown.  Clear gc_overhead_limit_exceeded
 335       // so that the overhead exceeded does not persist.
 336 
 337       const bool limit_exceeded = gen_policy()->size_policy()->gc_overhead_limit_exceeded();
 338       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 339 
 340       if (limit_exceeded && softrefs_clear) {
 341         *gc_overhead_limit_was_exceeded = true;
 342         gen_policy()->size_policy()->set_gc_overhead_limit_exceeded(false);
 343         if (op.result() != NULL) {
 344           CollectedHeap::fill_with_object(op.result(), size);
 345         }
 346         return NULL;
 347       }
 348       assert(result == NULL || is_in_reserved(result),
 349              "result not in heap");
 350       return result;
 351     }
 352 
 353     // Give a warning if we seem to be looping forever.
 354     if ((QueuedAllocationWarningCount > 0) &&
 355         (try_count % QueuedAllocationWarningCount == 0)) {
 356           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 357                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 358     }
 359   }
 360 }
 361 
 362 #ifndef PRODUCT
 363 // Override of memory state checking method in CollectedHeap:
 364 // Some collectors (CMS for example) can't have badHeapWordVal written
 365 // in the first two words of an object. (For instance , in the case of
 366 // CMS these words hold state used to synchronize between certain
 367 // (concurrent) GC steps and direct allocating mutators.)
 368 // The skip_header_HeapWords() method below, allows us to skip
 369 // over the requisite number of HeapWord's. Note that (for
 370 // generational collectors) this means that those many words are
 371 // skipped in each object, irrespective of the generation in which
 372 // that object lives. The resultant loss of precision seems to be
 373 // harmless and the pain of avoiding that imprecision appears somewhat
 374 // higher than we are prepared to pay for such rudimentary debugging
 375 // support.
 376 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 377                                                          size_t size) {
 378   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 379     // We are asked to check a size in HeapWords,
 380     // but the memory is mangled in juint words.
 381     juint* start = (juint*) (addr + skip_header_HeapWords());
 382     juint* end   = (juint*) (addr + size);
 383     for (juint* slot = start; slot < end; slot += 1) {
 384       assert(*slot == badHeapWordVal,
 385              "Found non badHeapWordValue in pre-allocation check");
 386     }
 387   }
 388 }
 389 #endif
 390 
 391 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 392                                                bool is_tlab,
 393                                                bool first_only) {
 394   HeapWord* res = NULL;
 395 
 396   if (_young_gen->should_allocate(size, is_tlab)) {
 397     res = _young_gen->allocate(size, is_tlab);
 398     if (res != NULL || first_only) {
 399       return res;
 400     }
 401   }
 402 
 403   if (_old_gen->should_allocate(size, is_tlab)) {
 404     res = _old_gen->allocate(size, is_tlab);
 405   }
 406 
 407   return res;
 408 }
 409 
 410 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 411                                          bool* gc_overhead_limit_was_exceeded) {
 412   return mem_allocate_work(size,
 413                            false /* is_tlab */,
 414                            gc_overhead_limit_was_exceeded);
 415 }
 416 
 417 bool GenCollectedHeap::must_clear_all_soft_refs() {
 418   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 419          _gc_cause == GCCause::_wb_full_gc;
 420 }
 421 
 422 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 423                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 424                                           bool restore_marks_for_biased_locking) {
 425   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 426   GCTraceTime(Trace, gc, phases) t1(title);
 427   TraceCollectorStats tcs(gen->counters());
 428   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 429 
 430   gen->stat_record()->invocations++;
 431   gen->stat_record()->accumulated_time.start();
 432 
 433   // Must be done anew before each collection because
 434   // a previous collection will do mangling and will
 435   // change top of some spaces.
 436   record_gen_tops_before_GC();
 437 
 438   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 439 
 440   if (run_verification && VerifyBeforeGC) {
 441     HandleMark hm;  // Discard invalid handles created during verification
 442     Universe::verify("Before GC");
 443   }
 444   COMPILER2_PRESENT(DerivedPointerTable::clear());
 445 
 446   if (restore_marks_for_biased_locking) {
 447     // We perform this mark word preservation work lazily
 448     // because it's only at this point that we know whether we
 449     // absolutely have to do it; we want to avoid doing it for
 450     // scavenge-only collections where it's unnecessary
 451     BiasedLocking::preserve_marks();
 452   }
 453 
 454   // Do collection work
 455   {
 456     // Note on ref discovery: For what appear to be historical reasons,
 457     // GCH enables and disabled (by enqueing) refs discovery.
 458     // In the future this should be moved into the generation's
 459     // collect method so that ref discovery and enqueueing concerns
 460     // are local to a generation. The collect method could return
 461     // an appropriate indication in the case that notification on
 462     // the ref lock was needed. This will make the treatment of
 463     // weak refs more uniform (and indeed remove such concerns
 464     // from GCH). XXX
 465 
 466     HandleMark hm;  // Discard invalid handles created during gc
 467     save_marks();   // save marks for all gens
 468     // We want to discover references, but not process them yet.
 469     // This mode is disabled in process_discovered_references if the
 470     // generation does some collection work, or in
 471     // enqueue_discovered_references if the generation returns
 472     // without doing any work.
 473     ReferenceProcessor* rp = gen->ref_processor();
 474     // If the discovery of ("weak") refs in this generation is
 475     // atomic wrt other collectors in this configuration, we
 476     // are guaranteed to have empty discovered ref lists.
 477     if (rp->discovery_is_atomic()) {
 478       rp->enable_discovery();
 479       rp->setup_policy(clear_soft_refs);
 480     } else {
 481       // collect() below will enable discovery as appropriate
 482     }
 483     gen->collect(full, clear_soft_refs, size, is_tlab);
 484     if (!rp->enqueuing_is_done()) {
 485       ReferenceProcessorPhaseTimes pt(NULL, rp->num_q());
 486       rp->enqueue_discovered_references(NULL, &pt);
 487       pt.print_enqueue_phase();
 488     } else {
 489       rp->set_enqueuing_is_done(false);
 490     }
 491     rp->verify_no_references_recorded();
 492   }
 493 
 494   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 495 
 496   gen->stat_record()->accumulated_time.stop();
 497 
 498   update_gc_stats(gen, full);
 499 
 500   if (run_verification && VerifyAfterGC) {
 501     HandleMark hm;  // Discard invalid handles created during verification
 502     Universe::verify("After GC");
 503   }
 504 }
 505 
 506 void GenCollectedHeap::do_collection(bool           full,
 507                                      bool           clear_all_soft_refs,
 508                                      size_t         size,
 509                                      bool           is_tlab,
 510                                      GenerationType max_generation) {
 511   ResourceMark rm;
 512   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 513 
 514   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 515   assert(my_thread->is_VM_thread() ||
 516          my_thread->is_ConcurrentGC_thread(),
 517          "incorrect thread type capability");
 518   assert(Heap_lock->is_locked(),
 519          "the requesting thread should have the Heap_lock");
 520   guarantee(!is_gc_active(), "collection is not reentrant");
 521 
 522   if (GCLocker::check_active_before_gc()) {
 523     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 524   }
 525 
 526   GCIdMark gc_id_mark;
 527 
 528   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 529                           soft_ref_policy()->should_clear_all_soft_refs();
 530 
 531   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 532 
 533   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 534 
 535   print_heap_before_gc();
 536 
 537   {
 538     FlagSetting fl(_is_gc_active, true);
 539 
 540     bool complete = full && (max_generation == OldGen);
 541     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 542     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 543 
 544     FormatBuffer<> gc_string("%s", "Pause ");
 545     if (do_young_collection) {
 546       gc_string.append("Young");
 547     } else {
 548       gc_string.append("Full");
 549     }
 550 
 551     GCTraceCPUTime tcpu;
 552     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 553 
 554     gc_prologue(complete);
 555     increment_total_collections(complete);
 556 
 557     size_t young_prev_used = _young_gen->used();
 558     size_t old_prev_used = _old_gen->used();
 559 
 560     bool run_verification = total_collections() >= VerifyGCStartAt;
 561 
 562     bool prepared_for_verification = false;
 563     bool collected_old = false;
 564 
 565     if (do_young_collection) {
 566       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 567         prepare_for_verify();
 568         prepared_for_verification = true;
 569       }
 570 
 571       collect_generation(_young_gen,
 572                          full,
 573                          size,
 574                          is_tlab,
 575                          run_verification && VerifyGCLevel <= 0,
 576                          do_clear_all_soft_refs,
 577                          false);
 578 
 579       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 580           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 581         // Allocation request was met by young GC.
 582         size = 0;
 583       }
 584     }
 585 
 586     bool must_restore_marks_for_biased_locking = false;
 587 
 588     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 589       if (!complete) {
 590         // The full_collections increment was missed above.
 591         increment_total_full_collections();
 592       }
 593 
 594       if (!prepared_for_verification && run_verification &&
 595           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 596         prepare_for_verify();
 597       }
 598 
 599       if (do_young_collection) {
 600         // We did a young GC. Need a new GC id for the old GC.
 601         GCIdMark gc_id_mark;
 602         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 603         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 604       } else {
 605         // No young GC done. Use the same GC id as was set up earlier in this method.
 606         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 607       }
 608 
 609       must_restore_marks_for_biased_locking = true;
 610       collected_old = true;
 611     }
 612 
 613     // Update "complete" boolean wrt what actually transpired --
 614     // for instance, a promotion failure could have led to
 615     // a whole heap collection.
 616     complete = complete || collected_old;
 617 
 618     print_heap_change(young_prev_used, old_prev_used);
 619     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 620 
 621     // Adjust generation sizes.
 622     if (collected_old) {
 623       _old_gen->compute_new_size();
 624     }
 625     _young_gen->compute_new_size();
 626 
 627     if (complete) {
 628       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 629       ClassLoaderDataGraph::purge();
 630       MetaspaceAux::verify_metrics();
 631       // Resize the metaspace capacity after full collections
 632       MetaspaceGC::compute_new_size();
 633       update_full_collections_completed();
 634     }
 635 
 636     // Track memory usage and detect low memory after GC finishes
 637     MemoryService::track_memory_usage();
 638 
 639     gc_epilogue(complete);
 640 
 641     if (must_restore_marks_for_biased_locking) {
 642       BiasedLocking::restore_marks();
 643     }
 644   }
 645 
 646   print_heap_after_gc();
 647 
 648 #ifdef TRACESPINNING
 649   ParallelTaskTerminator::print_termination_counts();
 650 #endif
 651 }
 652 
 653 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 654   CodeCache::register_scavenge_root_nmethod(nm);
 655 }
 656 
 657 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 658   CodeCache::verify_scavenge_root_nmethod(nm);
 659 }
 660 
 661 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 662   GCCauseSetter x(this, GCCause::_allocation_failure);
 663   HeapWord* result = NULL;
 664 
 665   assert(size != 0, "Precondition violated");
 666   if (GCLocker::is_active_and_needs_gc()) {
 667     // GC locker is active; instead of a collection we will attempt
 668     // to expand the heap, if there's room for expansion.
 669     if (!is_maximal_no_gc()) {
 670       result = expand_heap_and_allocate(size, is_tlab);
 671     }
 672     return result;   // Could be null if we are out of space.
 673   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 674     // Do an incremental collection.
 675     do_collection(false,                     // full
 676                   false,                     // clear_all_soft_refs
 677                   size,                      // size
 678                   is_tlab,                   // is_tlab
 679                   GenCollectedHeap::OldGen); // max_generation
 680   } else {
 681     log_trace(gc)(" :: Trying full because partial may fail :: ");
 682     // Try a full collection; see delta for bug id 6266275
 683     // for the original code and why this has been simplified
 684     // with from-space allocation criteria modified and
 685     // such allocation moved out of the safepoint path.
 686     do_collection(true,                      // full
 687                   false,                     // clear_all_soft_refs
 688                   size,                      // size
 689                   is_tlab,                   // is_tlab
 690                   GenCollectedHeap::OldGen); // max_generation
 691   }
 692 
 693   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 694 
 695   if (result != NULL) {
 696     assert(is_in_reserved(result), "result not in heap");
 697     return result;
 698   }
 699 
 700   // OK, collection failed, try expansion.
 701   result = expand_heap_and_allocate(size, is_tlab);
 702   if (result != NULL) {
 703     return result;
 704   }
 705 
 706   // If we reach this point, we're really out of memory. Try every trick
 707   // we can to reclaim memory. Force collection of soft references. Force
 708   // a complete compaction of the heap. Any additional methods for finding
 709   // free memory should be here, especially if they are expensive. If this
 710   // attempt fails, an OOM exception will be thrown.
 711   {
 712     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 713 
 714     do_collection(true,                      // full
 715                   true,                      // clear_all_soft_refs
 716                   size,                      // size
 717                   is_tlab,                   // is_tlab
 718                   GenCollectedHeap::OldGen); // max_generation
 719   }
 720 
 721   result = attempt_allocation(size, is_tlab, false /* first_only */);
 722   if (result != NULL) {
 723     assert(is_in_reserved(result), "result not in heap");
 724     return result;
 725   }
 726 
 727   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 728     "Flag should have been handled and cleared prior to this point");
 729 
 730   // What else?  We might try synchronous finalization later.  If the total
 731   // space available is large enough for the allocation, then a more
 732   // complete compaction phase than we've tried so far might be
 733   // appropriate.
 734   return NULL;
 735 }
 736 
 737 #ifdef ASSERT
 738 class AssertNonScavengableClosure: public OopClosure {
 739 public:
 740   virtual void do_oop(oop* p) {
 741     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 742       "Referent should not be scavengable.");  }
 743   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 744 };
 745 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 746 #endif
 747 
 748 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 749                                      ScanningOption so,
 750                                      OopClosure* strong_roots,
 751                                      OopClosure* weak_roots,
 752                                      CLDClosure* strong_cld_closure,
 753                                      CLDClosure* weak_cld_closure,
 754                                      CodeBlobToOopClosure* code_roots) {
 755   // General roots.
 756   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 757   assert(code_roots != NULL, "code root closure should always be set");
 758   // _n_termination for _process_strong_tasks should be set up stream
 759   // in a method not running in a GC worker.  Otherwise the GC worker
 760   // could be trying to change the termination condition while the task
 761   // is executing in another GC worker.
 762 
 763   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 764     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 765   }
 766 
 767   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 768   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 769 
 770   bool is_par = scope->n_threads() > 1;
 771   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 772 
 773   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 774     Universe::oops_do(strong_roots);
 775   }
 776   // Global (strong) JNI handles
 777   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 778     JNIHandles::oops_do(strong_roots);
 779   }
 780 
 781   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 782     ObjectSynchronizer::oops_do(strong_roots);
 783   }
 784   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 785     Management::oops_do(strong_roots);
 786   }
 787   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 788     JvmtiExport::oops_do(strong_roots);
 789   }
 790   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 791     AOTLoader::oops_do(strong_roots);
 792   }
 793 
 794   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 795     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 796   }
 797 
 798   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 799     if (so & SO_ScavengeCodeCache) {
 800       assert(code_roots != NULL, "must supply closure for code cache");
 801 
 802       // We only visit parts of the CodeCache when scavenging.
 803       CodeCache::scavenge_root_nmethods_do(code_roots);
 804     }
 805     if (so & SO_AllCodeCache) {
 806       assert(code_roots != NULL, "must supply closure for code cache");
 807 
 808       // CMSCollector uses this to do intermediate-strength collections.
 809       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 810       CodeCache::blobs_do(code_roots);
 811     }
 812     // Verify that the code cache contents are not subject to
 813     // movement by a scavenging collection.
 814     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 815     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 816   }
 817 }
 818 
 819 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 820                                                   OopClosure* root_closure) {
 821   assert(root_closure != NULL, "Must be set");
 822   // All threads execute the following. A specific chunk of buckets
 823   // from the StringTable are the individual tasks.
 824   if (scope->n_threads() > 1) {
 825     StringTable::possibly_parallel_oops_do(root_closure);
 826   } else {
 827     StringTable::oops_do(root_closure);
 828   }
 829 }
 830 
 831 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 832                                            OopsInGenClosure* root_closure,
 833                                            OopsInGenClosure* old_gen_closure,
 834                                            CLDClosure* cld_closure) {
 835   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 836 
 837   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 838                 cld_closure, cld_closure, &mark_code_closure);
 839   process_string_table_roots(scope, root_closure);
 840 
 841   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 842     root_closure->reset_generation();
 843   }
 844 
 845   // When collection is parallel, all threads get to cooperate to do
 846   // old generation scanning.
 847   old_gen_closure->set_generation(_old_gen);
 848   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 849   old_gen_closure->reset_generation();
 850 
 851   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 852 }
 853 
 854 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 855                                           bool is_adjust_phase,
 856                                           ScanningOption so,
 857                                           bool only_strong_roots,
 858                                           OopsInGenClosure* root_closure,
 859                                           CLDClosure* cld_closure) {
 860   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 861   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 862   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 863 
 864   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 865   if (is_adjust_phase) {
 866     // We never treat the string table as roots during marking
 867     // for the full gc, so we only need to process it during
 868     // the adjust phase.
 869     process_string_table_roots(scope, root_closure);
 870   }
 871 
 872   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 873 }
 874 
 875 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 876   WeakProcessor::oops_do(root_closure);
 877   _young_gen->ref_processor()->weak_oops_do(root_closure);
 878   _old_gen->ref_processor()->weak_oops_do(root_closure);
 879 }
 880 
 881 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 882 void GenCollectedHeap::                                                 \
 883 oop_since_save_marks_iterate(GenerationType gen,                        \
 884                              OopClosureType* cur,                       \
 885                              OopClosureType* older) {                   \
 886   if (gen == YoungGen) {                              \
 887     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 888     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 889   } else {                                                              \
 890     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 891   }                                                                     \
 892 }
 893 
 894 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 895 
 896 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 897 
 898 bool GenCollectedHeap::no_allocs_since_save_marks() {
 899   return _young_gen->no_allocs_since_save_marks() &&
 900          _old_gen->no_allocs_since_save_marks();
 901 }
 902 
 903 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 904   return _young_gen->supports_inline_contig_alloc();
 905 }
 906 
 907 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 908   return _young_gen->top_addr();
 909 }
 910 
 911 HeapWord** GenCollectedHeap::end_addr() const {
 912   return _young_gen->end_addr();
 913 }
 914 
 915 // public collection interfaces
 916 
 917 void GenCollectedHeap::collect(GCCause::Cause cause) {
 918   if (cause == GCCause::_wb_young_gc) {
 919     // Young collection for the WhiteBox API.
 920     collect(cause, YoungGen);
 921   } else {
 922 #ifdef ASSERT
 923   if (cause == GCCause::_scavenge_alot) {
 924     // Young collection only.
 925     collect(cause, YoungGen);
 926   } else {
 927     // Stop-the-world full collection.
 928     collect(cause, OldGen);
 929   }
 930 #else
 931     // Stop-the-world full collection.
 932     collect(cause, OldGen);
 933 #endif
 934   }
 935 }
 936 
 937 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 938   // The caller doesn't have the Heap_lock
 939   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 940   MutexLocker ml(Heap_lock);
 941   collect_locked(cause, max_generation);
 942 }
 943 
 944 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 945   // The caller has the Heap_lock
 946   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 947   collect_locked(cause, OldGen);
 948 }
 949 
 950 // this is the private collection interface
 951 // The Heap_lock is expected to be held on entry.
 952 
 953 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 954   // Read the GC count while holding the Heap_lock
 955   unsigned int gc_count_before      = total_collections();
 956   unsigned int full_gc_count_before = total_full_collections();
 957   {
 958     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 959     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 960                          cause, max_generation);
 961     VMThread::execute(&op);
 962   }
 963 }
 964 
 965 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 966    do_full_collection(clear_all_soft_refs, OldGen);
 967 }
 968 
 969 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 970                                           GenerationType last_generation) {
 971   GenerationType local_last_generation;
 972   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 973       gc_cause() == GCCause::_gc_locker) {
 974     local_last_generation = YoungGen;
 975   } else {
 976     local_last_generation = last_generation;
 977   }
 978 
 979   do_collection(true,                   // full
 980                 clear_all_soft_refs,    // clear_all_soft_refs
 981                 0,                      // size
 982                 false,                  // is_tlab
 983                 local_last_generation); // last_generation
 984   // Hack XXX FIX ME !!!
 985   // A scavenge may not have been attempted, or may have
 986   // been attempted and failed, because the old gen was too full
 987   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 988       incremental_collection_will_fail(false /* don't consult_young */)) {
 989     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 990     // This time allow the old gen to be collected as well
 991     do_collection(true,                // full
 992                   clear_all_soft_refs, // clear_all_soft_refs
 993                   0,                   // size
 994                   false,               // is_tlab
 995                   OldGen);             // last_generation
 996   }
 997 }
 998 
 999 bool GenCollectedHeap::is_in_young(oop p) {
1000   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
1001   assert(result == _young_gen->is_in_reserved(p),
1002          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1003   return result;
1004 }
1005 
1006 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1007 bool GenCollectedHeap::is_in(const void* p) const {
1008   return _young_gen->is_in(p) || _old_gen->is_in(p);
1009 }
1010 
1011 #ifdef ASSERT
1012 // Don't implement this by using is_in_young().  This method is used
1013 // in some cases to check that is_in_young() is correct.
1014 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1015   assert(is_in_reserved(p) || p == NULL,
1016     "Does not work if address is non-null and outside of the heap");
1017   return p < _young_gen->reserved().end() && p != NULL;
1018 }
1019 #endif
1020 
1021 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
1022   NoHeaderExtendedOopClosure no_header_cl(cl);
1023   oop_iterate(&no_header_cl);
1024 }
1025 
1026 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
1027   _young_gen->oop_iterate(cl);
1028   _old_gen->oop_iterate(cl);
1029 }
1030 
1031 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1032   _young_gen->object_iterate(cl);
1033   _old_gen->object_iterate(cl);
1034 }
1035 
1036 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
1037   _young_gen->safe_object_iterate(cl);
1038   _old_gen->safe_object_iterate(cl);
1039 }
1040 
1041 Space* GenCollectedHeap::space_containing(const void* addr) const {
1042   Space* res = _young_gen->space_containing(addr);
1043   if (res != NULL) {
1044     return res;
1045   }
1046   res = _old_gen->space_containing(addr);
1047   assert(res != NULL, "Could not find containing space");
1048   return res;
1049 }
1050 
1051 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1052   assert(is_in_reserved(addr), "block_start of address outside of heap");
1053   if (_young_gen->is_in_reserved(addr)) {
1054     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1055     return _young_gen->block_start(addr);
1056   }
1057 
1058   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1059   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1060   return _old_gen->block_start(addr);
1061 }
1062 
1063 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1064   assert(is_in_reserved(addr), "block_size of address outside of heap");
1065   if (_young_gen->is_in_reserved(addr)) {
1066     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1067     return _young_gen->block_size(addr);
1068   }
1069 
1070   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1071   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1072   return _old_gen->block_size(addr);
1073 }
1074 
1075 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1076   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1077   assert(block_start(addr) == addr, "addr must be a block start");
1078   if (_young_gen->is_in_reserved(addr)) {
1079     return _young_gen->block_is_obj(addr);
1080   }
1081 
1082   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1083   return _old_gen->block_is_obj(addr);
1084 }
1085 
1086 bool GenCollectedHeap::supports_tlab_allocation() const {
1087   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1088   return _young_gen->supports_tlab_allocation();
1089 }
1090 
1091 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1092   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1093   if (_young_gen->supports_tlab_allocation()) {
1094     return _young_gen->tlab_capacity();
1095   }
1096   return 0;
1097 }
1098 
1099 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1100   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1101   if (_young_gen->supports_tlab_allocation()) {
1102     return _young_gen->tlab_used();
1103   }
1104   return 0;
1105 }
1106 
1107 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1108   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1109   if (_young_gen->supports_tlab_allocation()) {
1110     return _young_gen->unsafe_max_tlab_alloc();
1111   }
1112   return 0;
1113 }
1114 
1115 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1116   bool gc_overhead_limit_was_exceeded;
1117   return mem_allocate_work(size /* size */,
1118                            true /* is_tlab */,
1119                            &gc_overhead_limit_was_exceeded);
1120 }
1121 
1122 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1123 // from the list headed by "*prev_ptr".
1124 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1125   bool first = true;
1126   size_t min_size = 0;   // "first" makes this conceptually infinite.
1127   ScratchBlock **smallest_ptr, *smallest;
1128   ScratchBlock  *cur = *prev_ptr;
1129   while (cur) {
1130     assert(*prev_ptr == cur, "just checking");
1131     if (first || cur->num_words < min_size) {
1132       smallest_ptr = prev_ptr;
1133       smallest     = cur;
1134       min_size     = smallest->num_words;
1135       first        = false;
1136     }
1137     prev_ptr = &cur->next;
1138     cur     =  cur->next;
1139   }
1140   smallest      = *smallest_ptr;
1141   *smallest_ptr = smallest->next;
1142   return smallest;
1143 }
1144 
1145 // Sort the scratch block list headed by res into decreasing size order,
1146 // and set "res" to the result.
1147 static void sort_scratch_list(ScratchBlock*& list) {
1148   ScratchBlock* sorted = NULL;
1149   ScratchBlock* unsorted = list;
1150   while (unsorted) {
1151     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1152     smallest->next  = sorted;
1153     sorted          = smallest;
1154   }
1155   list = sorted;
1156 }
1157 
1158 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1159                                                size_t max_alloc_words) {
1160   ScratchBlock* res = NULL;
1161   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1162   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1163   sort_scratch_list(res);
1164   return res;
1165 }
1166 
1167 void GenCollectedHeap::release_scratch() {
1168   _young_gen->reset_scratch();
1169   _old_gen->reset_scratch();
1170 }
1171 
1172 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1173   void do_generation(Generation* gen) {
1174     gen->prepare_for_verify();
1175   }
1176 };
1177 
1178 void GenCollectedHeap::prepare_for_verify() {
1179   ensure_parsability(false);        // no need to retire TLABs
1180   GenPrepareForVerifyClosure blk;
1181   generation_iterate(&blk, false);
1182 }
1183 
1184 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1185                                           bool old_to_young) {
1186   if (old_to_young) {
1187     cl->do_generation(_old_gen);
1188     cl->do_generation(_young_gen);
1189   } else {
1190     cl->do_generation(_young_gen);
1191     cl->do_generation(_old_gen);
1192   }
1193 }
1194 
1195 bool GenCollectedHeap::is_maximal_no_gc() const {
1196   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1197 }
1198 
1199 void GenCollectedHeap::save_marks() {
1200   _young_gen->save_marks();
1201   _old_gen->save_marks();
1202 }
1203 
1204 GenCollectedHeap* GenCollectedHeap::heap() {
1205   CollectedHeap* heap = Universe::heap();
1206   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1207   assert(heap->kind() == CollectedHeap::SerialHeap ||
1208          heap->kind() == CollectedHeap::CMSHeap, "Not a GenCollectedHeap");
1209   return (GenCollectedHeap*) heap;
1210 }
1211 
1212 void GenCollectedHeap::prepare_for_compaction() {
1213   // Start by compacting into same gen.
1214   CompactPoint cp(_old_gen);
1215   _old_gen->prepare_for_compaction(&cp);
1216   _young_gen->prepare_for_compaction(&cp);
1217 }
1218 
1219 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1220   log_debug(gc, verify)("%s", _old_gen->name());
1221   _old_gen->verify();
1222 
1223   log_debug(gc, verify)("%s", _old_gen->name());
1224   _young_gen->verify();
1225 
1226   log_debug(gc, verify)("RemSet");
1227   rem_set()->verify();
1228 }
1229 
1230 void GenCollectedHeap::print_on(outputStream* st) const {
1231   _young_gen->print_on(st);
1232   _old_gen->print_on(st);
1233   MetaspaceAux::print_on(st);
1234 }
1235 
1236 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1237 }
1238 
1239 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1240 }
1241 
1242 void GenCollectedHeap::print_tracing_info() const {
1243   if (log_is_enabled(Debug, gc, heap, exit)) {
1244     LogStreamHandle(Debug, gc, heap, exit) lsh;
1245     _young_gen->print_summary_info_on(&lsh);
1246     _old_gen->print_summary_info_on(&lsh);
1247   }
1248 }
1249 
1250 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1251   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1252                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1253   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1254                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1255 }
1256 
1257 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1258  private:
1259   bool _full;
1260  public:
1261   void do_generation(Generation* gen) {
1262     gen->gc_prologue(_full);
1263   }
1264   GenGCPrologueClosure(bool full) : _full(full) {};
1265 };
1266 
1267 void GenCollectedHeap::gc_prologue(bool full) {
1268   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1269 
1270   // Fill TLAB's and such
1271   CollectedHeap::accumulate_statistics_all_tlabs();
1272   ensure_parsability(true);   // retire TLABs
1273 
1274   // Walk generations
1275   GenGCPrologueClosure blk(full);
1276   generation_iterate(&blk, false);  // not old-to-young.
1277 };
1278 
1279 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1280  private:
1281   bool _full;
1282  public:
1283   void do_generation(Generation* gen) {
1284     gen->gc_epilogue(_full);
1285   }
1286   GenGCEpilogueClosure(bool full) : _full(full) {};
1287 };
1288 
1289 void GenCollectedHeap::gc_epilogue(bool full) {
1290 #if COMPILER2_OR_JVMCI
1291   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1292   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1293   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1294 #endif // COMPILER2_OR_JVMCI
1295 
1296   resize_all_tlabs();
1297 
1298   GenGCEpilogueClosure blk(full);
1299   generation_iterate(&blk, false);  // not old-to-young.
1300 
1301   if (!CleanChunkPoolAsync) {
1302     Chunk::clean_chunk_pool();
1303   }
1304 
1305   MetaspaceCounters::update_performance_counters();
1306   CompressedClassSpaceCounters::update_performance_counters();
1307 };
1308 
1309 #ifndef PRODUCT
1310 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1311  private:
1312  public:
1313   void do_generation(Generation* gen) {
1314     gen->record_spaces_top();
1315   }
1316 };
1317 
1318 void GenCollectedHeap::record_gen_tops_before_GC() {
1319   if (ZapUnusedHeapArea) {
1320     GenGCSaveTopsBeforeGCClosure blk;
1321     generation_iterate(&blk, false);  // not old-to-young.
1322   }
1323 }
1324 #endif  // not PRODUCT
1325 
1326 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1327  public:
1328   void do_generation(Generation* gen) {
1329     gen->ensure_parsability();
1330   }
1331 };
1332 
1333 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1334   CollectedHeap::ensure_parsability(retire_tlabs);
1335   GenEnsureParsabilityClosure ep_cl;
1336   generation_iterate(&ep_cl, false);
1337 }
1338 
1339 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1340                                               oop obj,
1341                                               size_t obj_size) {
1342   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1343   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1344   HeapWord* result = NULL;
1345 
1346   result = old_gen->expand_and_allocate(obj_size, false);
1347 
1348   if (result != NULL) {
1349     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1350   }
1351   return oop(result);
1352 }
1353 
1354 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1355   jlong _time;   // in ms
1356   jlong _now;    // in ms
1357 
1358  public:
1359   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1360 
1361   jlong time() { return _time; }
1362 
1363   void do_generation(Generation* gen) {
1364     _time = MIN2(_time, gen->time_of_last_gc(_now));
1365   }
1366 };
1367 
1368 jlong GenCollectedHeap::millis_since_last_gc() {
1369   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1370   // provided the underlying platform provides such a time source
1371   // (and it is bug free). So we still have to guard against getting
1372   // back a time later than 'now'.
1373   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1374   GenTimeOfLastGCClosure tolgc_cl(now);
1375   // iterate over generations getting the oldest
1376   // time that a generation was collected
1377   generation_iterate(&tolgc_cl, false);
1378 
1379   jlong retVal = now - tolgc_cl.time();
1380   if (retVal < 0) {
1381     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1382        ". returning zero instead.", retVal);
1383     return 0;
1384   }
1385   return retVal;
1386 }