1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/adaptiveSizePolicy.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectorPolicy.hpp"
  31 #include "gc/shared/generation.hpp"
  32 #include "gc/shared/softRefGenPolicy.hpp"
  33 
  34 class StrongRootsScope;
  35 class SubTasksDone;
  36 class WorkGang;
  37 
  38 // A "GenCollectedHeap" is a CollectedHeap that uses generational
  39 // collection.  It has two generations, young and old.
  40 class GenCollectedHeap : public CollectedHeap {
  41   friend class GenCollectorPolicy;
  42   friend class Generation;
  43   friend class DefNewGeneration;
  44   friend class TenuredGeneration;
  45   friend class ConcurrentMarkSweepGeneration;
  46   friend class CMSCollector;
  47   friend class GenMarkSweep;
  48   friend class VM_GenCollectForAllocation;
  49   friend class VM_GenCollectFull;
  50   friend class VM_GenCollectFullConcurrent;
  51   friend class VM_GC_HeapInspection;
  52   friend class VM_HeapDumper;
  53   friend class HeapInspection;
  54   friend class GCCauseSetter;
  55   friend class VMStructs;
  56 public:
  57   friend class VM_PopulateDumpSharedSpace;
  58 
  59   enum GenerationType {
  60     YoungGen,
  61     OldGen
  62   };
  63 
  64 private:
  65   Generation* _young_gen;
  66   Generation* _old_gen;
  67 
  68   // The singleton CardTable Remembered Set.
  69   CardTableRS* _rem_set;
  70 
  71   // The generational collector policy.
  72   GenCollectorPolicy* _gen_policy;
  73 
  74   SoftRefGenPolicy _soft_ref_gen_policy;
  75 
  76   // Indicates that the most recent previous incremental collection failed.
  77   // The flag is cleared when an action is taken that might clear the
  78   // condition that caused that incremental collection to fail.
  79   bool _incremental_collection_failed;
  80 
  81   // In support of ExplicitGCInvokesConcurrent functionality
  82   unsigned int _full_collections_completed;
  83 
  84   // Collects the given generation.
  85   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  86                           bool run_verification, bool clear_soft_refs,
  87                           bool restore_marks_for_biased_locking);
  88 
  89   // Reserve aligned space for the heap as needed by the contained generations.
  90   char* allocate(size_t alignment, ReservedSpace* heap_rs);
  91 
  92   // Initialize ("weak") refs processing support
  93   void ref_processing_init();
  94 
  95 protected:
  96 
  97   // The set of potentially parallel tasks in root scanning.
  98   enum GCH_strong_roots_tasks {
  99     GCH_PS_Universe_oops_do,
 100     GCH_PS_JNIHandles_oops_do,
 101     GCH_PS_ObjectSynchronizer_oops_do,
 102     GCH_PS_FlatProfiler_oops_do,
 103     GCH_PS_Management_oops_do,
 104     GCH_PS_SystemDictionary_oops_do,
 105     GCH_PS_ClassLoaderDataGraph_oops_do,
 106     GCH_PS_jvmti_oops_do,
 107     GCH_PS_CodeCache_oops_do,
 108     GCH_PS_aot_oops_do,
 109     GCH_PS_younger_gens,
 110     // Leave this one last.
 111     GCH_PS_NumElements
 112   };
 113 
 114   // Data structure for claiming the (potentially) parallel tasks in
 115   // (gen-specific) roots processing.
 116   SubTasksDone* _process_strong_tasks;
 117 
 118   GCMemoryManager* _young_manager;
 119   GCMemoryManager* _old_manager;
 120 
 121   // Helper functions for allocation
 122   HeapWord* attempt_allocation(size_t size,
 123                                bool   is_tlab,
 124                                bool   first_only);
 125 
 126   // Helper function for two callbacks below.
 127   // Considers collection of the first max_level+1 generations.
 128   void do_collection(bool           full,
 129                      bool           clear_all_soft_refs,
 130                      size_t         size,
 131                      bool           is_tlab,
 132                      GenerationType max_generation);
 133 
 134   // Callback from VM_GenCollectForAllocation operation.
 135   // This function does everything necessary/possible to satisfy an
 136   // allocation request that failed in the youngest generation that should
 137   // have handled it (including collection, expansion, etc.)
 138   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 139 
 140   // Callback from VM_GenCollectFull operation.
 141   // Perform a full collection of the first max_level+1 generations.
 142   virtual void do_full_collection(bool clear_all_soft_refs);
 143   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
 144 
 145   // Does the "cause" of GC indicate that
 146   // we absolutely __must__ clear soft refs?
 147   bool must_clear_all_soft_refs();
 148 
 149   GenCollectedHeap(GenCollectorPolicy *policy);
 150 
 151   virtual void check_gen_kinds() = 0;
 152 
 153 public:
 154 
 155   // Returns JNI_OK on success
 156   virtual jint initialize();
 157 
 158   // Does operations required after initialization has been done.
 159   void post_initialize();
 160 
 161   Generation* young_gen() const { return _young_gen; }
 162   Generation* old_gen()   const { return _old_gen; }
 163 
 164   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 165   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 166 
 167   // The generational collector policy.
 168   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 169 
 170   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 171 
 172   virtual SoftRefPolicy* soft_ref_policy() { return &_soft_ref_gen_policy; }
 173 
 174   // Adaptive size policy
 175   virtual AdaptiveSizePolicy* size_policy() {
 176     return gen_policy()->size_policy();
 177   }
 178 
 179   // Return the (conservative) maximum heap alignment
 180   static size_t conservative_max_heap_alignment() {
 181     return Generation::GenGrain;
 182   }
 183 
 184   size_t capacity() const;
 185   size_t used() const;
 186 
 187   // Save the "used_region" for both generations.
 188   void save_used_regions();
 189 
 190   size_t max_capacity() const;
 191 
 192   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 193 
 194   // We may support a shared contiguous allocation area, if the youngest
 195   // generation does.
 196   bool supports_inline_contig_alloc() const;
 197   HeapWord* volatile* top_addr() const;
 198   HeapWord** end_addr() const;
 199 
 200   // Perform a full collection of the heap; intended for use in implementing
 201   // "System.gc". This implies as full a collection as the CollectedHeap
 202   // supports. Caller does not hold the Heap_lock on entry.
 203   virtual void collect(GCCause::Cause cause);
 204 
 205   // The same as above but assume that the caller holds the Heap_lock.
 206   void collect_locked(GCCause::Cause cause);
 207 
 208   // Perform a full collection of generations up to and including max_generation.
 209   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 210   void collect(GCCause::Cause cause, GenerationType max_generation);
 211 
 212   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 213   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 214   // be expensive to compute in general, so, to prevent
 215   // their inadvertent use in product jvm's, we restrict their use to
 216   // assertion checking or verification only.
 217   bool is_in(const void* p) const;
 218 
 219   // Returns true if the reference is to an object in the reserved space
 220   // for the young generation.
 221   // Assumes the the young gen address range is less than that of the old gen.
 222   bool is_in_young(oop p);
 223 
 224 #ifdef ASSERT
 225   bool is_in_partial_collection(const void* p);
 226 #endif
 227 
 228   virtual bool is_scavengable(oop obj) {
 229     return is_in_young(obj);
 230   }
 231 
 232   // Optimized nmethod scanning support routines
 233   virtual void register_nmethod(nmethod* nm);
 234   virtual void verify_nmethod(nmethod* nmethod);
 235 
 236   // Iteration functions.
 237   void oop_iterate_no_header(OopClosure* cl);
 238   void oop_iterate(ExtendedOopClosure* cl);
 239   void object_iterate(ObjectClosure* cl);
 240   void safe_object_iterate(ObjectClosure* cl);
 241   Space* space_containing(const void* addr) const;
 242 
 243   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 244   // each address in the (reserved) heap is a member of exactly
 245   // one block.  The defining characteristic of a block is that it is
 246   // possible to find its size, and thus to progress forward to the next
 247   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 248   // represent Java objects, or they might be free blocks in a
 249   // free-list-based heap (or subheap), as long as the two kinds are
 250   // distinguishable and the size of each is determinable.
 251 
 252   // Returns the address of the start of the "block" that contains the
 253   // address "addr".  We say "blocks" instead of "object" since some heaps
 254   // may not pack objects densely; a chunk may either be an object or a
 255   // non-object.
 256   virtual HeapWord* block_start(const void* addr) const;
 257 
 258   // Requires "addr" to be the start of a chunk, and returns its size.
 259   // "addr + size" is required to be the start of a new chunk, or the end
 260   // of the active area of the heap. Assumes (and verifies in non-product
 261   // builds) that addr is in the allocated part of the heap and is
 262   // the start of a chunk.
 263   virtual size_t block_size(const HeapWord* addr) const;
 264 
 265   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 266   // the block is an object. Assumes (and verifies in non-product
 267   // builds) that addr is in the allocated part of the heap and is
 268   // the start of a chunk.
 269   virtual bool block_is_obj(const HeapWord* addr) const;
 270 
 271   // Section on TLAB's.
 272   virtual bool supports_tlab_allocation() const;
 273   virtual size_t tlab_capacity(Thread* thr) const;
 274   virtual size_t tlab_used(Thread* thr) const;
 275   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 276   virtual HeapWord* allocate_new_tlab(size_t size);
 277 
 278   // The "requestor" generation is performing some garbage collection
 279   // action for which it would be useful to have scratch space.  The
 280   // requestor promises to allocate no more than "max_alloc_words" in any
 281   // older generation (via promotion say.)   Any blocks of space that can
 282   // be provided are returned as a list of ScratchBlocks, sorted by
 283   // decreasing size.
 284   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 285   // Allow each generation to reset any scratch space that it has
 286   // contributed as it needs.
 287   void release_scratch();
 288 
 289   // Ensure parsability: override
 290   virtual void ensure_parsability(bool retire_tlabs);
 291 
 292   // Time in ms since the longest time a collector ran in
 293   // in any generation.
 294   virtual jlong millis_since_last_gc();
 295 
 296   // Total number of full collections completed.
 297   unsigned int total_full_collections_completed() {
 298     assert(_full_collections_completed <= _total_full_collections,
 299            "Can't complete more collections than were started");
 300     return _full_collections_completed;
 301   }
 302 
 303   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 304   unsigned int update_full_collections_completed();
 305   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 306   unsigned int update_full_collections_completed(unsigned int count);
 307 
 308   // Update "time of last gc" for all generations to "now".
 309   void update_time_of_last_gc(jlong now) {
 310     _young_gen->update_time_of_last_gc(now);
 311     _old_gen->update_time_of_last_gc(now);
 312   }
 313 
 314   // Update the gc statistics for each generation.
 315   void update_gc_stats(Generation* current_generation, bool full) {
 316     _old_gen->update_gc_stats(current_generation, full);
 317   }
 318 
 319   bool no_gc_in_progress() { return !is_gc_active(); }
 320 
 321   // Override.
 322   void prepare_for_verify();
 323 
 324   // Override.
 325   void verify(VerifyOption option);
 326 
 327   // Override.
 328   virtual void print_on(outputStream* st) const;
 329   virtual void print_gc_threads_on(outputStream* st) const;
 330   virtual void gc_threads_do(ThreadClosure* tc) const;
 331   virtual void print_tracing_info() const;
 332 
 333   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 334 
 335   // The functions below are helper functions that a subclass of
 336   // "CollectedHeap" can use in the implementation of its virtual
 337   // functions.
 338 
 339   class GenClosure : public StackObj {
 340    public:
 341     virtual void do_generation(Generation* gen) = 0;
 342   };
 343 
 344   // Apply "cl.do_generation" to all generations in the heap
 345   // If "old_to_young" determines the order.
 346   void generation_iterate(GenClosure* cl, bool old_to_young);
 347 
 348   // Return "true" if all generations have reached the
 349   // maximal committed limit that they can reach, without a garbage
 350   // collection.
 351   virtual bool is_maximal_no_gc() const;
 352 
 353   // This function returns the CardTableRS object that allows us to scan
 354   // generations in a fully generational heap.
 355   CardTableRS* rem_set() { return _rem_set; }
 356 
 357   // Convenience function to be used in situations where the heap type can be
 358   // asserted to be this type.
 359   static GenCollectedHeap* heap();
 360 
 361   // The ScanningOption determines which of the roots
 362   // the closure is applied to:
 363   // "SO_None" does none;
 364   enum ScanningOption {
 365     SO_None                =  0x0,
 366     SO_AllCodeCache        =  0x8,
 367     SO_ScavengeCodeCache   = 0x10
 368   };
 369 
 370  protected:
 371   void process_roots(StrongRootsScope* scope,
 372                      ScanningOption so,
 373                      OopClosure* strong_roots,
 374                      OopClosure* weak_roots,
 375                      CLDClosure* strong_cld_closure,
 376                      CLDClosure* weak_cld_closure,
 377                      CodeBlobToOopClosure* code_roots);
 378 
 379   void process_string_table_roots(StrongRootsScope* scope,
 380                                   OopClosure* root_closure);
 381 
 382   // Accessor for memory state verification support
 383   NOT_PRODUCT(
 384     virtual size_t skip_header_HeapWords() { return 0; }
 385   )
 386 
 387   virtual void gc_prologue(bool full);
 388   virtual void gc_epilogue(bool full);
 389 
 390  public:
 391   void young_process_roots(StrongRootsScope* scope,
 392                            OopsInGenClosure* root_closure,
 393                            OopsInGenClosure* old_gen_closure,
 394                            CLDClosure* cld_closure);
 395 
 396   void full_process_roots(StrongRootsScope* scope,
 397                           bool is_adjust_phase,
 398                           ScanningOption so,
 399                           bool only_strong_roots,
 400                           OopsInGenClosure* root_closure,
 401                           CLDClosure* cld_closure);
 402 
 403   // Apply "root_closure" to all the weak roots of the system.
 404   // These include JNI weak roots, string table,
 405   // and referents of reachable weak refs.
 406   void gen_process_weak_roots(OopClosure* root_closure);
 407 
 408   // Set the saved marks of generations, if that makes sense.
 409   // In particular, if any generation might iterate over the oops
 410   // in other generations, it should call this method.
 411   void save_marks();
 412 
 413   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 414   // allocated since the last call to save_marks in generations at or above
 415   // "level".  The "cur" closure is
 416   // applied to references in the generation at "level", and the "older"
 417   // closure to older generations.
 418 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 419   void oop_since_save_marks_iterate(GenerationType start_gen,           \
 420                                     OopClosureType* cur,                \
 421                                     OopClosureType* older);
 422 
 423   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 424 
 425 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 426 
 427   // Returns "true" iff no allocations have occurred since the last
 428   // call to "save_marks".
 429   bool no_allocs_since_save_marks();
 430 
 431   // Returns true if an incremental collection is likely to fail.
 432   // We optionally consult the young gen, if asked to do so;
 433   // otherwise we base our answer on whether the previous incremental
 434   // collection attempt failed with no corrective action as of yet.
 435   bool incremental_collection_will_fail(bool consult_young) {
 436     // The first disjunct remembers if an incremental collection failed, even
 437     // when we thought (second disjunct) that it would not.
 438     return incremental_collection_failed() ||
 439            (consult_young && !_young_gen->collection_attempt_is_safe());
 440   }
 441 
 442   // If a generation bails out of an incremental collection,
 443   // it sets this flag.
 444   bool incremental_collection_failed() const {
 445     return _incremental_collection_failed;
 446   }
 447   void set_incremental_collection_failed() {
 448     _incremental_collection_failed = true;
 449   }
 450   void clear_incremental_collection_failed() {
 451     _incremental_collection_failed = false;
 452   }
 453 
 454   // Promotion of obj into gen failed.  Try to promote obj to higher
 455   // gens in ascending order; return the new location of obj if successful.
 456   // Otherwise, try expand-and-allocate for obj in both the young and old
 457   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 458   oop handle_failed_promotion(Generation* old_gen,
 459                               oop obj,
 460                               size_t obj_size);
 461 
 462 
 463 private:
 464   // Return true if an allocation should be attempted in the older generation
 465   // if it fails in the younger generation.  Return false, otherwise.
 466   bool should_try_older_generation_allocation(size_t word_size) const;
 467 
 468   // Try to allocate space by expanding the heap.
 469   HeapWord* expand_heap_and_allocate(size_t size, bool is_tlab);
 470 
 471   HeapWord* mem_allocate_work(size_t size,
 472                               bool is_tlab,
 473                               bool* gc_overhead_limit_was_exceeded);
 474 
 475   // Override
 476   void check_for_non_bad_heap_word_value(HeapWord* addr,
 477     size_t size) PRODUCT_RETURN;
 478 
 479   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 480   // in an essential way: compaction is performed across generations, by
 481   // iterating over spaces.
 482   void prepare_for_compaction();
 483 
 484   // Perform a full collection of the generations up to and including max_generation.
 485   // This is the low level interface used by the public versions of
 486   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 487   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
 488 
 489   // Save the tops of the spaces in all generations
 490   void record_gen_tops_before_GC() PRODUCT_RETURN;
 491 };
 492 
 493 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP