1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/shared/adaptiveSizePolicy.hpp"
  34 #include "gc/shared/cardTableRS.hpp"
  35 #include "gc/shared/collectedHeap.inline.hpp"
  36 #include "gc/shared/collectorCounters.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/gcTrace.hpp"
  40 #include "gc/shared/gcTraceTime.inline.hpp"
  41 #include "gc/shared/genCollectedHeap.hpp"
  42 #include "gc/shared/genOopClosures.inline.hpp"
  43 #include "gc/shared/generationSpec.hpp"
  44 #include "gc/shared/space.hpp"
  45 #include "gc/shared/strongRootsScope.hpp"
  46 #include "gc/shared/vmGCOperations.hpp"
  47 #include "gc/shared/weakProcessor.hpp"
  48 #include "gc/shared/workgroup.hpp"
  49 #include "memory/filemap.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/handles.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/vmThread.hpp"
  57 #include "services/management.hpp"
  58 #include "services/memoryService.hpp"
  59 #include "utilities/debug.hpp"
  60 #include "utilities/formatBuffer.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/stack.inline.hpp"
  63 #include "utilities/vmError.hpp"
  64 
  65 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy,
  66                                    Generation::Name young,
  67                                    Generation::Name old) :
  68   CollectedHeap(),
  69   _rem_set(NULL),
  70   _young_gen_spec(new GenerationSpec(young,
  71                                      policy->initial_young_size(),
  72                                      policy->max_young_size(),
  73                                      policy->gen_alignment())),
  74   _old_gen_spec(new GenerationSpec(old,
  75                                    policy->initial_old_size(),
  76                                    policy->max_old_size(),
  77                                    policy->gen_alignment())),
  78   _gen_policy(policy),
  79   _soft_ref_gen_policy(),
  80   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  81   _full_collections_completed(0) {
  82 }
  83 
  84 jint GenCollectedHeap::initialize() {
  85   // While there are no constraints in the GC code that HeapWordSize
  86   // be any particular value, there are multiple other areas in the
  87   // system which believe this to be true (e.g. oop->object_size in some
  88   // cases incorrectly returns the size in wordSize units rather than
  89   // HeapWordSize).
  90   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  91 
  92   // Allocate space for the heap.
  93 
  94   char* heap_address;
  95   ReservedSpace heap_rs;
  96 
  97   size_t heap_alignment = collector_policy()->heap_alignment();
  98 
  99   heap_address = allocate(heap_alignment, &heap_rs);
 100 
 101   if (!heap_rs.is_reserved()) {
 102     vm_shutdown_during_initialization(
 103       "Could not reserve enough space for object heap");
 104     return JNI_ENOMEM;
 105   }
 106 
 107   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 108 
 109   _rem_set = new CardTableRS(reserved_region());
 110   set_barrier_set(rem_set()->bs());
 111 
 112   ReservedSpace young_rs = heap_rs.first_part(young_gen_spec()->max_size(), false, false);
 113   _young_gen = young_gen_spec()->init(young_rs, rem_set());
 114   heap_rs = heap_rs.last_part(young_gen_spec()->max_size());
 115 
 116   ReservedSpace old_rs = heap_rs.first_part(old_gen_spec()->max_size(), false, false);
 117   _old_gen = old_gen_spec()->init(old_rs, rem_set());
 118   clear_incremental_collection_failed();
 119 
 120   return JNI_OK;
 121 }
 122 
 123 void GenCollectedHeap::initialize_generations(Generation::Name young,
 124                                               Generation::Name old) {
 125 }
 126 
 127 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 128                                               size_t init_promo_size,
 129                                               size_t init_survivor_size) {
 130   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 131   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 132                                         init_promo_size,
 133                                         init_survivor_size,
 134                                         max_gc_pause_sec,
 135                                         GCTimeRatio);
 136 }
 137 
 138 char* GenCollectedHeap::allocate(size_t alignment,
 139                                  ReservedSpace* heap_rs){
 140   // Now figure out the total size.
 141   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 142   assert(alignment % pageSize == 0, "Must be");
 143 
 144   GenerationSpec* young_spec = young_gen_spec();
 145   GenerationSpec* old_spec = old_gen_spec();
 146 
 147   // Check for overflow.
 148   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 149   if (total_reserved < young_spec->max_size()) {
 150     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 151                                   "the maximum representable size");
 152   }
 153   assert(total_reserved % alignment == 0,
 154          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 155          SIZE_FORMAT, total_reserved, alignment);
 156 
 157   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 158 
 159   os::trace_page_sizes("Heap",
 160                        collector_policy()->min_heap_byte_size(),
 161                        total_reserved,
 162                        alignment,
 163                        heap_rs->base(),
 164                        heap_rs->size());
 165 
 166   return heap_rs->base();
 167 }
 168 
 169 void GenCollectedHeap::post_initialize() {
 170   CollectedHeap::post_initialize();
 171   ref_processing_init();
 172   check_gen_kinds();
 173   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 174 
 175   initialize_size_policy(def_new_gen->eden()->capacity(),
 176                          _old_gen->capacity(),
 177                          def_new_gen->from()->capacity());
 178 
 179   _gen_policy->initialize_gc_policy_counters();
 180 }
 181 
 182 void GenCollectedHeap::ref_processing_init() {
 183   _young_gen->ref_processor_init();
 184   _old_gen->ref_processor_init();
 185 }
 186 
 187 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 188   assert(_young_gen_spec != NULL, "_young_gen_spec should have been initialized");
 189   return _young_gen_spec;
 190 }
 191 
 192 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 193   assert(_old_gen_spec != NULL, "_old_gen_spec should have been initialized");
 194   return _old_gen_spec;
 195 }
 196 
 197 size_t GenCollectedHeap::capacity() const {
 198   return _young_gen->capacity() + _old_gen->capacity();
 199 }
 200 
 201 size_t GenCollectedHeap::used() const {
 202   return _young_gen->used() + _old_gen->used();
 203 }
 204 
 205 void GenCollectedHeap::save_used_regions() {
 206   _old_gen->save_used_region();
 207   _young_gen->save_used_region();
 208 }
 209 
 210 size_t GenCollectedHeap::max_capacity() const {
 211   return _young_gen->max_capacity() + _old_gen->max_capacity();
 212 }
 213 
 214 // Update the _full_collections_completed counter
 215 // at the end of a stop-world full GC.
 216 unsigned int GenCollectedHeap::update_full_collections_completed() {
 217   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 218   assert(_full_collections_completed <= _total_full_collections,
 219          "Can't complete more collections than were started");
 220   _full_collections_completed = _total_full_collections;
 221   ml.notify_all();
 222   return _full_collections_completed;
 223 }
 224 
 225 // Update the _full_collections_completed counter, as appropriate,
 226 // at the end of a concurrent GC cycle. Note the conditional update
 227 // below to allow this method to be called by a concurrent collector
 228 // without synchronizing in any manner with the VM thread (which
 229 // may already have initiated a STW full collection "concurrently").
 230 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 231   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 232   assert((_full_collections_completed <= _total_full_collections) &&
 233          (count <= _total_full_collections),
 234          "Can't complete more collections than were started");
 235   if (count > _full_collections_completed) {
 236     _full_collections_completed = count;
 237     ml.notify_all();
 238   }
 239   return _full_collections_completed;
 240 }
 241 
 242 // Return true if any of the following is true:
 243 // . the allocation won't fit into the current young gen heap
 244 // . gc locker is occupied (jni critical section)
 245 // . heap memory is tight -- the most recent previous collection
 246 //   was a full collection because a partial collection (would
 247 //   have) failed and is likely to fail again
 248 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 249   size_t young_capacity = young_gen()->capacity_before_gc();
 250   return    (word_size > heap_word_size(young_capacity))
 251          || GCLocker::is_active_and_needs_gc()
 252          || incremental_collection_failed();
 253 }
 254 
 255 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 256   HeapWord* result = NULL;
 257   if (old_gen()->should_allocate(size, is_tlab)) {
 258     result = old_gen()->expand_and_allocate(size, is_tlab);
 259   }
 260   if (result == NULL) {
 261     if (young_gen()->should_allocate(size, is_tlab)) {
 262       result = young_gen()->expand_and_allocate(size, is_tlab);
 263     }
 264   }
 265   assert(result == NULL || is_in_reserved(result), "result not in heap");
 266   return result;
 267 }
 268 
 269 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 270                                               bool is_tlab,
 271                                               bool* gc_overhead_limit_was_exceeded) {
 272   debug_only(check_for_valid_allocation_state());
 273   assert(no_gc_in_progress(), "Allocation during gc not allowed");
 274 
 275   // In general gc_overhead_limit_was_exceeded should be false so
 276   // set it so here and reset it to true only if the gc time
 277   // limit is being exceeded as checked below.
 278   *gc_overhead_limit_was_exceeded = false;
 279 
 280   HeapWord* result = NULL;
 281 
 282   // Loop until the allocation is satisfied, or unsatisfied after GC.
 283   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 284     HandleMark hm; // Discard any handles allocated in each iteration.
 285 
 286     // First allocation attempt is lock-free.
 287     Generation *young = young_gen();
 288     assert(young->supports_inline_contig_alloc(),
 289       "Otherwise, must do alloc within heap lock");
 290     if (young->should_allocate(size, is_tlab)) {
 291       result = young->par_allocate(size, is_tlab);
 292       if (result != NULL) {
 293         assert(is_in_reserved(result), "result not in heap");
 294         return result;
 295       }
 296     }
 297     uint gc_count_before;  // Read inside the Heap_lock locked region.
 298     {
 299       MutexLocker ml(Heap_lock);
 300       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 301       // Note that only large objects get a shot at being
 302       // allocated in later generations.
 303       bool first_only = !should_try_older_generation_allocation(size);
 304 
 305       result = attempt_allocation(size, is_tlab, first_only);
 306       if (result != NULL) {
 307         assert(is_in_reserved(result), "result not in heap");
 308         return result;
 309       }
 310 
 311       if (GCLocker::is_active_and_needs_gc()) {
 312         if (is_tlab) {
 313           return NULL;  // Caller will retry allocating individual object.
 314         }
 315         if (!is_maximal_no_gc()) {
 316           // Try and expand heap to satisfy request.
 317           result = expand_heap_and_allocate(size, is_tlab);
 318           // Result could be null if we are out of space.
 319           if (result != NULL) {
 320             return result;
 321           }
 322         }
 323 
 324         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 325           return NULL; // We didn't get to do a GC and we didn't get any memory.
 326         }
 327 
 328         // If this thread is not in a jni critical section, we stall
 329         // the requestor until the critical section has cleared and
 330         // GC allowed. When the critical section clears, a GC is
 331         // initiated by the last thread exiting the critical section; so
 332         // we retry the allocation sequence from the beginning of the loop,
 333         // rather than causing more, now probably unnecessary, GC attempts.
 334         JavaThread* jthr = JavaThread::current();
 335         if (!jthr->in_critical()) {
 336           MutexUnlocker mul(Heap_lock);
 337           // Wait for JNI critical section to be exited
 338           GCLocker::stall_until_clear();
 339           gclocker_stalled_count += 1;
 340           continue;
 341         } else {
 342           if (CheckJNICalls) {
 343             fatal("Possible deadlock due to allocating while"
 344                   " in jni critical section");
 345           }
 346           return NULL;
 347         }
 348       }
 349 
 350       // Read the gc count while the heap lock is held.
 351       gc_count_before = total_collections();
 352     }
 353 
 354     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 355     VMThread::execute(&op);
 356     if (op.prologue_succeeded()) {
 357       result = op.result();
 358       if (op.gc_locked()) {
 359          assert(result == NULL, "must be NULL if gc_locked() is true");
 360          continue;  // Retry and/or stall as necessary.
 361       }
 362 
 363       // Allocation has failed and a collection
 364       // has been done.  If the gc time limit was exceeded the
 365       // this time, return NULL so that an out-of-memory
 366       // will be thrown.  Clear gc_overhead_limit_exceeded
 367       // so that the overhead exceeded does not persist.
 368 
 369       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 370       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 371 
 372       if (limit_exceeded && softrefs_clear) {
 373         *gc_overhead_limit_was_exceeded = true;
 374         size_policy()->set_gc_overhead_limit_exceeded(false);
 375         if (op.result() != NULL) {
 376           CollectedHeap::fill_with_object(op.result(), size);
 377         }
 378         return NULL;
 379       }
 380       assert(result == NULL || is_in_reserved(result),
 381              "result not in heap");
 382       return result;
 383     }
 384 
 385     // Give a warning if we seem to be looping forever.
 386     if ((QueuedAllocationWarningCount > 0) &&
 387         (try_count % QueuedAllocationWarningCount == 0)) {
 388           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 389                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 390     }
 391   }
 392 }
 393 
 394 #ifndef PRODUCT
 395 // Override of memory state checking method in CollectedHeap:
 396 // Some collectors (CMS for example) can't have badHeapWordVal written
 397 // in the first two words of an object. (For instance , in the case of
 398 // CMS these words hold state used to synchronize between certain
 399 // (concurrent) GC steps and direct allocating mutators.)
 400 // The skip_header_HeapWords() method below, allows us to skip
 401 // over the requisite number of HeapWord's. Note that (for
 402 // generational collectors) this means that those many words are
 403 // skipped in each object, irrespective of the generation in which
 404 // that object lives. The resultant loss of precision seems to be
 405 // harmless and the pain of avoiding that imprecision appears somewhat
 406 // higher than we are prepared to pay for such rudimentary debugging
 407 // support.
 408 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 409                                                          size_t size) {
 410   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 411     // We are asked to check a size in HeapWords,
 412     // but the memory is mangled in juint words.
 413     juint* start = (juint*) (addr + skip_header_HeapWords());
 414     juint* end   = (juint*) (addr + size);
 415     for (juint* slot = start; slot < end; slot += 1) {
 416       assert(*slot == badHeapWordVal,
 417              "Found non badHeapWordValue in pre-allocation check");
 418     }
 419   }
 420 }
 421 #endif
 422 
 423 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 424                                                bool is_tlab,
 425                                                bool first_only) {
 426   HeapWord* res = NULL;
 427 
 428   if (_young_gen->should_allocate(size, is_tlab)) {
 429     res = _young_gen->allocate(size, is_tlab);
 430     if (res != NULL || first_only) {
 431       return res;
 432     }
 433   }
 434 
 435   if (_old_gen->should_allocate(size, is_tlab)) {
 436     res = _old_gen->allocate(size, is_tlab);
 437   }
 438 
 439   return res;
 440 }
 441 
 442 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 443                                          bool* gc_overhead_limit_was_exceeded) {
 444   return mem_allocate_work(size,
 445                            false /* is_tlab */,
 446                            gc_overhead_limit_was_exceeded);
 447 }
 448 
 449 bool GenCollectedHeap::must_clear_all_soft_refs() {
 450   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 451          _gc_cause == GCCause::_wb_full_gc;
 452 }
 453 
 454 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 455                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 456                                           bool restore_marks_for_biased_locking) {
 457   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 458   GCTraceTime(Trace, gc, phases) t1(title);
 459   TraceCollectorStats tcs(gen->counters());
 460   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 461 
 462   gen->stat_record()->invocations++;
 463   gen->stat_record()->accumulated_time.start();
 464 
 465   // Must be done anew before each collection because
 466   // a previous collection will do mangling and will
 467   // change top of some spaces.
 468   record_gen_tops_before_GC();
 469 
 470   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 471 
 472   if (run_verification && VerifyBeforeGC) {
 473     HandleMark hm;  // Discard invalid handles created during verification
 474     Universe::verify("Before GC");
 475   }
 476   COMPILER2_PRESENT(DerivedPointerTable::clear());
 477 
 478   if (restore_marks_for_biased_locking) {
 479     // We perform this mark word preservation work lazily
 480     // because it's only at this point that we know whether we
 481     // absolutely have to do it; we want to avoid doing it for
 482     // scavenge-only collections where it's unnecessary
 483     BiasedLocking::preserve_marks();
 484   }
 485 
 486   // Do collection work
 487   {
 488     // Note on ref discovery: For what appear to be historical reasons,
 489     // GCH enables and disabled (by enqueing) refs discovery.
 490     // In the future this should be moved into the generation's
 491     // collect method so that ref discovery and enqueueing concerns
 492     // are local to a generation. The collect method could return
 493     // an appropriate indication in the case that notification on
 494     // the ref lock was needed. This will make the treatment of
 495     // weak refs more uniform (and indeed remove such concerns
 496     // from GCH). XXX
 497 
 498     HandleMark hm;  // Discard invalid handles created during gc
 499     save_marks();   // save marks for all gens
 500     // We want to discover references, but not process them yet.
 501     // This mode is disabled in process_discovered_references if the
 502     // generation does some collection work, or in
 503     // enqueue_discovered_references if the generation returns
 504     // without doing any work.
 505     ReferenceProcessor* rp = gen->ref_processor();
 506     // If the discovery of ("weak") refs in this generation is
 507     // atomic wrt other collectors in this configuration, we
 508     // are guaranteed to have empty discovered ref lists.
 509     if (rp->discovery_is_atomic()) {
 510       rp->enable_discovery();
 511       rp->setup_policy(clear_soft_refs);
 512     } else {
 513       // collect() below will enable discovery as appropriate
 514     }
 515     gen->collect(full, clear_soft_refs, size, is_tlab);
 516     if (!rp->enqueuing_is_done()) {
 517       ReferenceProcessorPhaseTimes pt(NULL, rp->num_q());
 518       rp->enqueue_discovered_references(NULL, &pt);
 519       pt.print_enqueue_phase();
 520     } else {
 521       rp->set_enqueuing_is_done(false);
 522     }
 523     rp->verify_no_references_recorded();
 524   }
 525 
 526   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 527 
 528   gen->stat_record()->accumulated_time.stop();
 529 
 530   update_gc_stats(gen, full);
 531 
 532   if (run_verification && VerifyAfterGC) {
 533     HandleMark hm;  // Discard invalid handles created during verification
 534     Universe::verify("After GC");
 535   }
 536 }
 537 
 538 void GenCollectedHeap::do_collection(bool           full,
 539                                      bool           clear_all_soft_refs,
 540                                      size_t         size,
 541                                      bool           is_tlab,
 542                                      GenerationType max_generation) {
 543   ResourceMark rm;
 544   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 545 
 546   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 547   assert(my_thread->is_VM_thread() ||
 548          my_thread->is_ConcurrentGC_thread(),
 549          "incorrect thread type capability");
 550   assert(Heap_lock->is_locked(),
 551          "the requesting thread should have the Heap_lock");
 552   guarantee(!is_gc_active(), "collection is not reentrant");
 553 
 554   if (GCLocker::check_active_before_gc()) {
 555     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 556   }
 557 
 558   GCIdMark gc_id_mark;
 559 
 560   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 561                           soft_ref_policy()->should_clear_all_soft_refs();
 562 
 563   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 564 
 565   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 566 
 567   print_heap_before_gc();
 568 
 569   {
 570     FlagSetting fl(_is_gc_active, true);
 571 
 572     bool complete = full && (max_generation == OldGen);
 573     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 574     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 575 
 576     FormatBuffer<> gc_string("%s", "Pause ");
 577     if (do_young_collection) {
 578       gc_string.append("Young");
 579     } else {
 580       gc_string.append("Full");
 581     }
 582 
 583     GCTraceCPUTime tcpu;
 584     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 585 
 586     gc_prologue(complete);
 587     increment_total_collections(complete);
 588 
 589     size_t young_prev_used = _young_gen->used();
 590     size_t old_prev_used = _old_gen->used();
 591 
 592     bool run_verification = total_collections() >= VerifyGCStartAt;
 593 
 594     bool prepared_for_verification = false;
 595     bool collected_old = false;
 596 
 597     if (do_young_collection) {
 598       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 599         prepare_for_verify();
 600         prepared_for_verification = true;
 601       }
 602 
 603       collect_generation(_young_gen,
 604                          full,
 605                          size,
 606                          is_tlab,
 607                          run_verification && VerifyGCLevel <= 0,
 608                          do_clear_all_soft_refs,
 609                          false);
 610 
 611       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 612           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 613         // Allocation request was met by young GC.
 614         size = 0;
 615       }
 616     }
 617 
 618     bool must_restore_marks_for_biased_locking = false;
 619 
 620     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 621       if (!complete) {
 622         // The full_collections increment was missed above.
 623         increment_total_full_collections();
 624       }
 625 
 626       if (!prepared_for_verification && run_verification &&
 627           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 628         prepare_for_verify();
 629       }
 630 
 631       if (do_young_collection) {
 632         // We did a young GC. Need a new GC id for the old GC.
 633         GCIdMark gc_id_mark;
 634         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 635         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 636       } else {
 637         // No young GC done. Use the same GC id as was set up earlier in this method.
 638         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 639       }
 640 
 641       must_restore_marks_for_biased_locking = true;
 642       collected_old = true;
 643     }
 644 
 645     // Update "complete" boolean wrt what actually transpired --
 646     // for instance, a promotion failure could have led to
 647     // a whole heap collection.
 648     complete = complete || collected_old;
 649 
 650     print_heap_change(young_prev_used, old_prev_used);
 651     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 652 
 653     // Adjust generation sizes.
 654     if (collected_old) {
 655       _old_gen->compute_new_size();
 656     }
 657     _young_gen->compute_new_size();
 658 
 659     if (complete) {
 660       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 661       ClassLoaderDataGraph::purge();
 662       MetaspaceAux::verify_metrics();
 663       // Resize the metaspace capacity after full collections
 664       MetaspaceGC::compute_new_size();
 665       update_full_collections_completed();
 666     }
 667 
 668     // Track memory usage and detect low memory after GC finishes
 669     MemoryService::track_memory_usage();
 670 
 671     gc_epilogue(complete);
 672 
 673     if (must_restore_marks_for_biased_locking) {
 674       BiasedLocking::restore_marks();
 675     }
 676   }
 677 
 678   print_heap_after_gc();
 679 
 680 #ifdef TRACESPINNING
 681   ParallelTaskTerminator::print_termination_counts();
 682 #endif
 683 }
 684 
 685 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 686   CodeCache::register_scavenge_root_nmethod(nm);
 687 }
 688 
 689 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 690   CodeCache::verify_scavenge_root_nmethod(nm);
 691 }
 692 
 693 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 694   GCCauseSetter x(this, GCCause::_allocation_failure);
 695   HeapWord* result = NULL;
 696 
 697   assert(size != 0, "Precondition violated");
 698   if (GCLocker::is_active_and_needs_gc()) {
 699     // GC locker is active; instead of a collection we will attempt
 700     // to expand the heap, if there's room for expansion.
 701     if (!is_maximal_no_gc()) {
 702       result = expand_heap_and_allocate(size, is_tlab);
 703     }
 704     return result;   // Could be null if we are out of space.
 705   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 706     // Do an incremental collection.
 707     do_collection(false,                     // full
 708                   false,                     // clear_all_soft_refs
 709                   size,                      // size
 710                   is_tlab,                   // is_tlab
 711                   GenCollectedHeap::OldGen); // max_generation
 712   } else {
 713     log_trace(gc)(" :: Trying full because partial may fail :: ");
 714     // Try a full collection; see delta for bug id 6266275
 715     // for the original code and why this has been simplified
 716     // with from-space allocation criteria modified and
 717     // such allocation moved out of the safepoint path.
 718     do_collection(true,                      // full
 719                   false,                     // clear_all_soft_refs
 720                   size,                      // size
 721                   is_tlab,                   // is_tlab
 722                   GenCollectedHeap::OldGen); // max_generation
 723   }
 724 
 725   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 726 
 727   if (result != NULL) {
 728     assert(is_in_reserved(result), "result not in heap");
 729     return result;
 730   }
 731 
 732   // OK, collection failed, try expansion.
 733   result = expand_heap_and_allocate(size, is_tlab);
 734   if (result != NULL) {
 735     return result;
 736   }
 737 
 738   // If we reach this point, we're really out of memory. Try every trick
 739   // we can to reclaim memory. Force collection of soft references. Force
 740   // a complete compaction of the heap. Any additional methods for finding
 741   // free memory should be here, especially if they are expensive. If this
 742   // attempt fails, an OOM exception will be thrown.
 743   {
 744     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 745 
 746     do_collection(true,                      // full
 747                   true,                      // clear_all_soft_refs
 748                   size,                      // size
 749                   is_tlab,                   // is_tlab
 750                   GenCollectedHeap::OldGen); // max_generation
 751   }
 752 
 753   result = attempt_allocation(size, is_tlab, false /* first_only */);
 754   if (result != NULL) {
 755     assert(is_in_reserved(result), "result not in heap");
 756     return result;
 757   }
 758 
 759   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 760     "Flag should have been handled and cleared prior to this point");
 761 
 762   // What else?  We might try synchronous finalization later.  If the total
 763   // space available is large enough for the allocation, then a more
 764   // complete compaction phase than we've tried so far might be
 765   // appropriate.
 766   return NULL;
 767 }
 768 
 769 #ifdef ASSERT
 770 class AssertNonScavengableClosure: public OopClosure {
 771 public:
 772   virtual void do_oop(oop* p) {
 773     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 774       "Referent should not be scavengable.");  }
 775   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 776 };
 777 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 778 #endif
 779 
 780 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 781                                      ScanningOption so,
 782                                      OopClosure* strong_roots,
 783                                      OopClosure* weak_roots,
 784                                      CLDClosure* strong_cld_closure,
 785                                      CLDClosure* weak_cld_closure,
 786                                      CodeBlobToOopClosure* code_roots) {
 787   // General roots.
 788   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 789   assert(code_roots != NULL, "code root closure should always be set");
 790   // _n_termination for _process_strong_tasks should be set up stream
 791   // in a method not running in a GC worker.  Otherwise the GC worker
 792   // could be trying to change the termination condition while the task
 793   // is executing in another GC worker.
 794 
 795   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 796     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 797   }
 798 
 799   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 800   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 801 
 802   bool is_par = scope->n_threads() > 1;
 803   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 804 
 805   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 806     Universe::oops_do(strong_roots);
 807   }
 808   // Global (strong) JNI handles
 809   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 810     JNIHandles::oops_do(strong_roots);
 811   }
 812 
 813   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 814     ObjectSynchronizer::oops_do(strong_roots);
 815   }
 816   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 817     Management::oops_do(strong_roots);
 818   }
 819   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 820     JvmtiExport::oops_do(strong_roots);
 821   }
 822   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 823     AOTLoader::oops_do(strong_roots);
 824   }
 825 
 826   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 827     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 828   }
 829 
 830   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 831     if (so & SO_ScavengeCodeCache) {
 832       assert(code_roots != NULL, "must supply closure for code cache");
 833 
 834       // We only visit parts of the CodeCache when scavenging.
 835       CodeCache::scavenge_root_nmethods_do(code_roots);
 836     }
 837     if (so & SO_AllCodeCache) {
 838       assert(code_roots != NULL, "must supply closure for code cache");
 839 
 840       // CMSCollector uses this to do intermediate-strength collections.
 841       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 842       CodeCache::blobs_do(code_roots);
 843     }
 844     // Verify that the code cache contents are not subject to
 845     // movement by a scavenging collection.
 846     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 847     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 848   }
 849 }
 850 
 851 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 852                                                   OopClosure* root_closure) {
 853   assert(root_closure != NULL, "Must be set");
 854   // All threads execute the following. A specific chunk of buckets
 855   // from the StringTable are the individual tasks.
 856   if (scope->n_threads() > 1) {
 857     StringTable::possibly_parallel_oops_do(root_closure);
 858   } else {
 859     StringTable::oops_do(root_closure);
 860   }
 861 }
 862 
 863 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 864                                            OopsInGenClosure* root_closure,
 865                                            OopsInGenClosure* old_gen_closure,
 866                                            CLDClosure* cld_closure) {
 867   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 868 
 869   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 870                 cld_closure, cld_closure, &mark_code_closure);
 871   process_string_table_roots(scope, root_closure);
 872 
 873   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 874     root_closure->reset_generation();
 875   }
 876 
 877   // When collection is parallel, all threads get to cooperate to do
 878   // old generation scanning.
 879   old_gen_closure->set_generation(_old_gen);
 880   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 881   old_gen_closure->reset_generation();
 882 
 883   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 884 }
 885 
 886 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 887                                           bool is_adjust_phase,
 888                                           ScanningOption so,
 889                                           bool only_strong_roots,
 890                                           OopsInGenClosure* root_closure,
 891                                           CLDClosure* cld_closure) {
 892   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 893   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 894   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 895 
 896   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 897   if (is_adjust_phase) {
 898     // We never treat the string table as roots during marking
 899     // for the full gc, so we only need to process it during
 900     // the adjust phase.
 901     process_string_table_roots(scope, root_closure);
 902   }
 903 
 904   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 905 }
 906 
 907 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 908   WeakProcessor::oops_do(root_closure);
 909   _young_gen->ref_processor()->weak_oops_do(root_closure);
 910   _old_gen->ref_processor()->weak_oops_do(root_closure);
 911 }
 912 
 913 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 914 void GenCollectedHeap::                                                 \
 915 oop_since_save_marks_iterate(GenerationType gen,                        \
 916                              OopClosureType* cur,                       \
 917                              OopClosureType* older) {                   \
 918   if (gen == YoungGen) {                              \
 919     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 920     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 921   } else {                                                              \
 922     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 923   }                                                                     \
 924 }
 925 
 926 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 927 
 928 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 929 
 930 bool GenCollectedHeap::no_allocs_since_save_marks() {
 931   return _young_gen->no_allocs_since_save_marks() &&
 932          _old_gen->no_allocs_since_save_marks();
 933 }
 934 
 935 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 936   return _young_gen->supports_inline_contig_alloc();
 937 }
 938 
 939 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 940   return _young_gen->top_addr();
 941 }
 942 
 943 HeapWord** GenCollectedHeap::end_addr() const {
 944   return _young_gen->end_addr();
 945 }
 946 
 947 // public collection interfaces
 948 
 949 void GenCollectedHeap::collect(GCCause::Cause cause) {
 950   if (cause == GCCause::_wb_young_gc) {
 951     // Young collection for the WhiteBox API.
 952     collect(cause, YoungGen);
 953   } else {
 954 #ifdef ASSERT
 955   if (cause == GCCause::_scavenge_alot) {
 956     // Young collection only.
 957     collect(cause, YoungGen);
 958   } else {
 959     // Stop-the-world full collection.
 960     collect(cause, OldGen);
 961   }
 962 #else
 963     // Stop-the-world full collection.
 964     collect(cause, OldGen);
 965 #endif
 966   }
 967 }
 968 
 969 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 970   // The caller doesn't have the Heap_lock
 971   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 972   MutexLocker ml(Heap_lock);
 973   collect_locked(cause, max_generation);
 974 }
 975 
 976 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 977   // The caller has the Heap_lock
 978   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 979   collect_locked(cause, OldGen);
 980 }
 981 
 982 // this is the private collection interface
 983 // The Heap_lock is expected to be held on entry.
 984 
 985 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 986   // Read the GC count while holding the Heap_lock
 987   unsigned int gc_count_before      = total_collections();
 988   unsigned int full_gc_count_before = total_full_collections();
 989   {
 990     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 991     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 992                          cause, max_generation);
 993     VMThread::execute(&op);
 994   }
 995 }
 996 
 997 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 998    do_full_collection(clear_all_soft_refs, OldGen);
 999 }
1000 
1001 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
1002                                           GenerationType last_generation) {
1003   GenerationType local_last_generation;
1004   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
1005       gc_cause() == GCCause::_gc_locker) {
1006     local_last_generation = YoungGen;
1007   } else {
1008     local_last_generation = last_generation;
1009   }
1010 
1011   do_collection(true,                   // full
1012                 clear_all_soft_refs,    // clear_all_soft_refs
1013                 0,                      // size
1014                 false,                  // is_tlab
1015                 local_last_generation); // last_generation
1016   // Hack XXX FIX ME !!!
1017   // A scavenge may not have been attempted, or may have
1018   // been attempted and failed, because the old gen was too full
1019   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
1020       incremental_collection_will_fail(false /* don't consult_young */)) {
1021     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
1022     // This time allow the old gen to be collected as well
1023     do_collection(true,                // full
1024                   clear_all_soft_refs, // clear_all_soft_refs
1025                   0,                   // size
1026                   false,               // is_tlab
1027                   OldGen);             // last_generation
1028   }
1029 }
1030 
1031 bool GenCollectedHeap::is_in_young(oop p) {
1032   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
1033   assert(result == _young_gen->is_in_reserved(p),
1034          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1035   return result;
1036 }
1037 
1038 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1039 bool GenCollectedHeap::is_in(const void* p) const {
1040   return _young_gen->is_in(p) || _old_gen->is_in(p);
1041 }
1042 
1043 #ifdef ASSERT
1044 // Don't implement this by using is_in_young().  This method is used
1045 // in some cases to check that is_in_young() is correct.
1046 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1047   assert(is_in_reserved(p) || p == NULL,
1048     "Does not work if address is non-null and outside of the heap");
1049   return p < _young_gen->reserved().end() && p != NULL;
1050 }
1051 #endif
1052 
1053 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
1054   NoHeaderExtendedOopClosure no_header_cl(cl);
1055   oop_iterate(&no_header_cl);
1056 }
1057 
1058 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
1059   _young_gen->oop_iterate(cl);
1060   _old_gen->oop_iterate(cl);
1061 }
1062 
1063 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1064   _young_gen->object_iterate(cl);
1065   _old_gen->object_iterate(cl);
1066 }
1067 
1068 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
1069   _young_gen->safe_object_iterate(cl);
1070   _old_gen->safe_object_iterate(cl);
1071 }
1072 
1073 Space* GenCollectedHeap::space_containing(const void* addr) const {
1074   Space* res = _young_gen->space_containing(addr);
1075   if (res != NULL) {
1076     return res;
1077   }
1078   res = _old_gen->space_containing(addr);
1079   assert(res != NULL, "Could not find containing space");
1080   return res;
1081 }
1082 
1083 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1084   assert(is_in_reserved(addr), "block_start of address outside of heap");
1085   if (_young_gen->is_in_reserved(addr)) {
1086     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1087     return _young_gen->block_start(addr);
1088   }
1089 
1090   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1091   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1092   return _old_gen->block_start(addr);
1093 }
1094 
1095 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1096   assert(is_in_reserved(addr), "block_size of address outside of heap");
1097   if (_young_gen->is_in_reserved(addr)) {
1098     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1099     return _young_gen->block_size(addr);
1100   }
1101 
1102   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1103   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1104   return _old_gen->block_size(addr);
1105 }
1106 
1107 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1108   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1109   assert(block_start(addr) == addr, "addr must be a block start");
1110   if (_young_gen->is_in_reserved(addr)) {
1111     return _young_gen->block_is_obj(addr);
1112   }
1113 
1114   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1115   return _old_gen->block_is_obj(addr);
1116 }
1117 
1118 bool GenCollectedHeap::supports_tlab_allocation() const {
1119   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1120   return _young_gen->supports_tlab_allocation();
1121 }
1122 
1123 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1124   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1125   if (_young_gen->supports_tlab_allocation()) {
1126     return _young_gen->tlab_capacity();
1127   }
1128   return 0;
1129 }
1130 
1131 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1132   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1133   if (_young_gen->supports_tlab_allocation()) {
1134     return _young_gen->tlab_used();
1135   }
1136   return 0;
1137 }
1138 
1139 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1140   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1141   if (_young_gen->supports_tlab_allocation()) {
1142     return _young_gen->unsafe_max_tlab_alloc();
1143   }
1144   return 0;
1145 }
1146 
1147 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1148   bool gc_overhead_limit_was_exceeded;
1149   return mem_allocate_work(size /* size */,
1150                            true /* is_tlab */,
1151                            &gc_overhead_limit_was_exceeded);
1152 }
1153 
1154 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1155 // from the list headed by "*prev_ptr".
1156 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1157   bool first = true;
1158   size_t min_size = 0;   // "first" makes this conceptually infinite.
1159   ScratchBlock **smallest_ptr, *smallest;
1160   ScratchBlock  *cur = *prev_ptr;
1161   while (cur) {
1162     assert(*prev_ptr == cur, "just checking");
1163     if (first || cur->num_words < min_size) {
1164       smallest_ptr = prev_ptr;
1165       smallest     = cur;
1166       min_size     = smallest->num_words;
1167       first        = false;
1168     }
1169     prev_ptr = &cur->next;
1170     cur     =  cur->next;
1171   }
1172   smallest      = *smallest_ptr;
1173   *smallest_ptr = smallest->next;
1174   return smallest;
1175 }
1176 
1177 // Sort the scratch block list headed by res into decreasing size order,
1178 // and set "res" to the result.
1179 static void sort_scratch_list(ScratchBlock*& list) {
1180   ScratchBlock* sorted = NULL;
1181   ScratchBlock* unsorted = list;
1182   while (unsorted) {
1183     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1184     smallest->next  = sorted;
1185     sorted          = smallest;
1186   }
1187   list = sorted;
1188 }
1189 
1190 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1191                                                size_t max_alloc_words) {
1192   ScratchBlock* res = NULL;
1193   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1194   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1195   sort_scratch_list(res);
1196   return res;
1197 }
1198 
1199 void GenCollectedHeap::release_scratch() {
1200   _young_gen->reset_scratch();
1201   _old_gen->reset_scratch();
1202 }
1203 
1204 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1205   void do_generation(Generation* gen) {
1206     gen->prepare_for_verify();
1207   }
1208 };
1209 
1210 void GenCollectedHeap::prepare_for_verify() {
1211   ensure_parsability(false);        // no need to retire TLABs
1212   GenPrepareForVerifyClosure blk;
1213   generation_iterate(&blk, false);
1214 }
1215 
1216 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1217                                           bool old_to_young) {
1218   if (old_to_young) {
1219     cl->do_generation(_old_gen);
1220     cl->do_generation(_young_gen);
1221   } else {
1222     cl->do_generation(_young_gen);
1223     cl->do_generation(_old_gen);
1224   }
1225 }
1226 
1227 bool GenCollectedHeap::is_maximal_no_gc() const {
1228   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1229 }
1230 
1231 void GenCollectedHeap::save_marks() {
1232   _young_gen->save_marks();
1233   _old_gen->save_marks();
1234 }
1235 
1236 GenCollectedHeap* GenCollectedHeap::heap() {
1237   CollectedHeap* heap = Universe::heap();
1238   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1239   assert(heap->kind() == CollectedHeap::SerialHeap ||
1240          heap->kind() == CollectedHeap::CMSHeap, "Not a GenCollectedHeap");
1241   return (GenCollectedHeap*) heap;
1242 }
1243 
1244 void GenCollectedHeap::prepare_for_compaction() {
1245   // Start by compacting into same gen.
1246   CompactPoint cp(_old_gen);
1247   _old_gen->prepare_for_compaction(&cp);
1248   _young_gen->prepare_for_compaction(&cp);
1249 }
1250 
1251 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1252   log_debug(gc, verify)("%s", _old_gen->name());
1253   _old_gen->verify();
1254 
1255   log_debug(gc, verify)("%s", _old_gen->name());
1256   _young_gen->verify();
1257 
1258   log_debug(gc, verify)("RemSet");
1259   rem_set()->verify();
1260 }
1261 
1262 void GenCollectedHeap::print_on(outputStream* st) const {
1263   _young_gen->print_on(st);
1264   _old_gen->print_on(st);
1265   MetaspaceAux::print_on(st);
1266 }
1267 
1268 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1269 }
1270 
1271 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1272 }
1273 
1274 void GenCollectedHeap::print_tracing_info() const {
1275   if (log_is_enabled(Debug, gc, heap, exit)) {
1276     LogStreamHandle(Debug, gc, heap, exit) lsh;
1277     _young_gen->print_summary_info_on(&lsh);
1278     _old_gen->print_summary_info_on(&lsh);
1279   }
1280 }
1281 
1282 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1283   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1284                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1285   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1286                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1287 }
1288 
1289 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1290  private:
1291   bool _full;
1292  public:
1293   void do_generation(Generation* gen) {
1294     gen->gc_prologue(_full);
1295   }
1296   GenGCPrologueClosure(bool full) : _full(full) {};
1297 };
1298 
1299 void GenCollectedHeap::gc_prologue(bool full) {
1300   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1301 
1302   // Fill TLAB's and such
1303   CollectedHeap::accumulate_statistics_all_tlabs();
1304   ensure_parsability(true);   // retire TLABs
1305 
1306   // Walk generations
1307   GenGCPrologueClosure blk(full);
1308   generation_iterate(&blk, false);  // not old-to-young.
1309 };
1310 
1311 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1312  private:
1313   bool _full;
1314  public:
1315   void do_generation(Generation* gen) {
1316     gen->gc_epilogue(_full);
1317   }
1318   GenGCEpilogueClosure(bool full) : _full(full) {};
1319 };
1320 
1321 void GenCollectedHeap::gc_epilogue(bool full) {
1322 #if COMPILER2_OR_JVMCI
1323   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1324   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1325   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1326 #endif // COMPILER2_OR_JVMCI
1327 
1328   resize_all_tlabs();
1329 
1330   GenGCEpilogueClosure blk(full);
1331   generation_iterate(&blk, false);  // not old-to-young.
1332 
1333   if (!CleanChunkPoolAsync) {
1334     Chunk::clean_chunk_pool();
1335   }
1336 
1337   MetaspaceCounters::update_performance_counters();
1338   CompressedClassSpaceCounters::update_performance_counters();
1339 };
1340 
1341 #ifndef PRODUCT
1342 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1343  private:
1344  public:
1345   void do_generation(Generation* gen) {
1346     gen->record_spaces_top();
1347   }
1348 };
1349 
1350 void GenCollectedHeap::record_gen_tops_before_GC() {
1351   if (ZapUnusedHeapArea) {
1352     GenGCSaveTopsBeforeGCClosure blk;
1353     generation_iterate(&blk, false);  // not old-to-young.
1354   }
1355 }
1356 #endif  // not PRODUCT
1357 
1358 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1359  public:
1360   void do_generation(Generation* gen) {
1361     gen->ensure_parsability();
1362   }
1363 };
1364 
1365 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1366   CollectedHeap::ensure_parsability(retire_tlabs);
1367   GenEnsureParsabilityClosure ep_cl;
1368   generation_iterate(&ep_cl, false);
1369 }
1370 
1371 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1372                                               oop obj,
1373                                               size_t obj_size) {
1374   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1375   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1376   HeapWord* result = NULL;
1377 
1378   result = old_gen->expand_and_allocate(obj_size, false);
1379 
1380   if (result != NULL) {
1381     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1382   }
1383   return oop(result);
1384 }
1385 
1386 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1387   jlong _time;   // in ms
1388   jlong _now;    // in ms
1389 
1390  public:
1391   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1392 
1393   jlong time() { return _time; }
1394 
1395   void do_generation(Generation* gen) {
1396     _time = MIN2(_time, gen->time_of_last_gc(_now));
1397   }
1398 };
1399 
1400 jlong GenCollectedHeap::millis_since_last_gc() {
1401   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1402   // provided the underlying platform provides such a time source
1403   // (and it is bug free). So we still have to guard against getting
1404   // back a time later than 'now'.
1405   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1406   GenTimeOfLastGCClosure tolgc_cl(now);
1407   // iterate over generations getting the oldest
1408   // time that a generation was collected
1409   generation_iterate(&tolgc_cl, false);
1410 
1411   jlong retVal = now - tolgc_cl.time();
1412   if (retVal < 0) {
1413     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1414        ". returning zero instead.", retVal);
1415     return 0;
1416   }
1417   return retVal;
1418 }