1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectorPolicy.hpp"
  30 #include "gc/shared/generation.hpp"
  31 #include "gc/shared/softRefGenPolicy.hpp"
  32 
  33 class AdaptiveSizePolicy;
  34 class GenerationSpec;
  35 class StrongRootsScope;
  36 class SubTasksDone;
  37 class WorkGang;
  38 
  39 // A "GenCollectedHeap" is a CollectedHeap that uses generational
  40 // collection.  It has two generations, young and old.
  41 class GenCollectedHeap : public CollectedHeap {
  42   friend class GenCollectorPolicy;
  43   friend class Generation;
  44   friend class DefNewGeneration;
  45   friend class TenuredGeneration;
  46   friend class ConcurrentMarkSweepGeneration;
  47   friend class CMSCollector;
  48   friend class GenMarkSweep;
  49   friend class VM_GenCollectForAllocation;
  50   friend class VM_GenCollectFull;
  51   friend class VM_GenCollectFullConcurrent;
  52   friend class VM_GC_HeapInspection;
  53   friend class VM_HeapDumper;
  54   friend class HeapInspection;
  55   friend class GCCauseSetter;
  56   friend class VMStructs;
  57 public:
  58   friend class VM_PopulateDumpSharedSpace;
  59 
  60   enum GenerationType {
  61     YoungGen,
  62     OldGen
  63   };
  64 
  65 private:
  66   Generation* _young_gen;
  67   Generation* _old_gen;
  68 
  69   GenerationSpec* _young_gen_spec;
  70   GenerationSpec* _old_gen_spec;
  71 
  72   // The singleton CardTable Remembered Set.
  73   CardTableRS* _rem_set;
  74 
  75   // The generational collector policy.
  76   GenCollectorPolicy* _gen_policy;
  77 
  78   SoftRefGenPolicy _soft_ref_gen_policy;
  79 
  80   // The sizing of the heap is controlled by a sizing policy.
  81   AdaptiveSizePolicy* _size_policy;
  82 
  83   // Indicates that the most recent previous incremental collection failed.
  84   // The flag is cleared when an action is taken that might clear the
  85   // condition that caused that incremental collection to fail.
  86   bool _incremental_collection_failed;
  87 
  88   // In support of ExplicitGCInvokesConcurrent functionality
  89   unsigned int _full_collections_completed;
  90 
  91   // Collects the given generation.
  92   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  93                           bool run_verification, bool clear_soft_refs,
  94                           bool restore_marks_for_biased_locking);
  95 
  96   // Reserve aligned space for the heap as needed by the contained generations.
  97   char* allocate(size_t alignment, ReservedSpace* heap_rs);
  98 
  99   // Initialize ("weak") refs processing support
 100   void ref_processing_init();
 101 
 102 protected:
 103 
 104   // The set of potentially parallel tasks in root scanning.
 105   enum GCH_strong_roots_tasks {
 106     GCH_PS_Universe_oops_do,
 107     GCH_PS_JNIHandles_oops_do,
 108     GCH_PS_ObjectSynchronizer_oops_do,
 109     GCH_PS_FlatProfiler_oops_do,
 110     GCH_PS_Management_oops_do,
 111     GCH_PS_SystemDictionary_oops_do,
 112     GCH_PS_ClassLoaderDataGraph_oops_do,
 113     GCH_PS_jvmti_oops_do,
 114     GCH_PS_CodeCache_oops_do,
 115     GCH_PS_aot_oops_do,
 116     GCH_PS_younger_gens,
 117     // Leave this one last.
 118     GCH_PS_NumElements
 119   };
 120 
 121   // Data structure for claiming the (potentially) parallel tasks in
 122   // (gen-specific) roots processing.
 123   SubTasksDone* _process_strong_tasks;
 124 
 125   GCMemoryManager* _young_manager;
 126   GCMemoryManager* _old_manager;
 127 
 128   // Helper functions for allocation
 129   HeapWord* attempt_allocation(size_t size,
 130                                bool   is_tlab,
 131                                bool   first_only);
 132 
 133   // Helper function for two callbacks below.
 134   // Considers collection of the first max_level+1 generations.
 135   void do_collection(bool           full,
 136                      bool           clear_all_soft_refs,
 137                      size_t         size,
 138                      bool           is_tlab,
 139                      GenerationType max_generation);
 140 
 141   // Callback from VM_GenCollectForAllocation operation.
 142   // This function does everything necessary/possible to satisfy an
 143   // allocation request that failed in the youngest generation that should
 144   // have handled it (including collection, expansion, etc.)
 145   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 146 
 147   // Callback from VM_GenCollectFull operation.
 148   // Perform a full collection of the first max_level+1 generations.
 149   virtual void do_full_collection(bool clear_all_soft_refs);
 150   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
 151 
 152   // Does the "cause" of GC indicate that
 153   // we absolutely __must__ clear soft refs?
 154   bool must_clear_all_soft_refs();
 155 
 156   GenCollectedHeap(GenCollectorPolicy *policy,
 157                    Generation::Name young,
 158                    Generation::Name old);
 159 
 160   virtual void check_gen_kinds() = 0;
 161 
 162 public:
 163 
 164   // Returns JNI_OK on success
 165   virtual jint initialize();
 166 
 167   void initialize_size_policy(size_t init_eden_size,
 168                               size_t init_promo_size,
 169                               size_t init_survivor_size);
 170 
 171   // Does operations required after initialization has been done.
 172   void post_initialize();
 173 
 174   Generation* young_gen() const { return _young_gen; }
 175   Generation* old_gen()   const { return _old_gen; }
 176 
 177   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 178   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 179 
 180   GenerationSpec* young_gen_spec() const;
 181   GenerationSpec* old_gen_spec() const;
 182 
 183   // The generational collector policy.
 184   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 185 
 186   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 187 
 188   virtual SoftRefPolicy* soft_ref_policy() { return &_soft_ref_gen_policy; }
 189 
 190   // Adaptive size policy
 191   virtual AdaptiveSizePolicy* size_policy() {
 192     return _size_policy;
 193   }
 194 
 195   // Return the (conservative) maximum heap alignment
 196   static size_t conservative_max_heap_alignment() {
 197     return Generation::GenGrain;
 198   }
 199 
 200   size_t capacity() const;
 201   size_t used() const;
 202 
 203   // Save the "used_region" for both generations.
 204   void save_used_regions();
 205 
 206   size_t max_capacity() const;
 207 
 208   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 209 
 210   // We may support a shared contiguous allocation area, if the youngest
 211   // generation does.
 212   bool supports_inline_contig_alloc() const;
 213   HeapWord* volatile* top_addr() const;
 214   HeapWord** end_addr() const;
 215 
 216   // Perform a full collection of the heap; intended for use in implementing
 217   // "System.gc". This implies as full a collection as the CollectedHeap
 218   // supports. Caller does not hold the Heap_lock on entry.
 219   virtual void collect(GCCause::Cause cause);
 220 
 221   // The same as above but assume that the caller holds the Heap_lock.
 222   void collect_locked(GCCause::Cause cause);
 223 
 224   // Perform a full collection of generations up to and including max_generation.
 225   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 226   void collect(GCCause::Cause cause, GenerationType max_generation);
 227 
 228   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 229   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 230   // be expensive to compute in general, so, to prevent
 231   // their inadvertent use in product jvm's, we restrict their use to
 232   // assertion checking or verification only.
 233   bool is_in(const void* p) const;
 234 
 235   // Returns true if the reference is to an object in the reserved space
 236   // for the young generation.
 237   // Assumes the the young gen address range is less than that of the old gen.
 238   bool is_in_young(oop p);
 239 
 240 #ifdef ASSERT
 241   bool is_in_partial_collection(const void* p);
 242 #endif
 243 
 244   virtual bool is_scavengable(oop obj) {
 245     return is_in_young(obj);
 246   }
 247 
 248   // Optimized nmethod scanning support routines
 249   virtual void register_nmethod(nmethod* nm);
 250   virtual void verify_nmethod(nmethod* nmethod);
 251 
 252   // Iteration functions.
 253   void oop_iterate_no_header(OopClosure* cl);
 254   void oop_iterate(ExtendedOopClosure* cl);
 255   void object_iterate(ObjectClosure* cl);
 256   void safe_object_iterate(ObjectClosure* cl);
 257   Space* space_containing(const void* addr) const;
 258 
 259   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 260   // each address in the (reserved) heap is a member of exactly
 261   // one block.  The defining characteristic of a block is that it is
 262   // possible to find its size, and thus to progress forward to the next
 263   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 264   // represent Java objects, or they might be free blocks in a
 265   // free-list-based heap (or subheap), as long as the two kinds are
 266   // distinguishable and the size of each is determinable.
 267 
 268   // Returns the address of the start of the "block" that contains the
 269   // address "addr".  We say "blocks" instead of "object" since some heaps
 270   // may not pack objects densely; a chunk may either be an object or a
 271   // non-object.
 272   virtual HeapWord* block_start(const void* addr) const;
 273 
 274   // Requires "addr" to be the start of a chunk, and returns its size.
 275   // "addr + size" is required to be the start of a new chunk, or the end
 276   // of the active area of the heap. Assumes (and verifies in non-product
 277   // builds) that addr is in the allocated part of the heap and is
 278   // the start of a chunk.
 279   virtual size_t block_size(const HeapWord* addr) const;
 280 
 281   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 282   // the block is an object. Assumes (and verifies in non-product
 283   // builds) that addr is in the allocated part of the heap and is
 284   // the start of a chunk.
 285   virtual bool block_is_obj(const HeapWord* addr) const;
 286 
 287   // Section on TLAB's.
 288   virtual bool supports_tlab_allocation() const;
 289   virtual size_t tlab_capacity(Thread* thr) const;
 290   virtual size_t tlab_used(Thread* thr) const;
 291   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 292   virtual HeapWord* allocate_new_tlab(size_t size);
 293 
 294   // The "requestor" generation is performing some garbage collection
 295   // action for which it would be useful to have scratch space.  The
 296   // requestor promises to allocate no more than "max_alloc_words" in any
 297   // older generation (via promotion say.)   Any blocks of space that can
 298   // be provided are returned as a list of ScratchBlocks, sorted by
 299   // decreasing size.
 300   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 301   // Allow each generation to reset any scratch space that it has
 302   // contributed as it needs.
 303   void release_scratch();
 304 
 305   // Ensure parsability: override
 306   virtual void ensure_parsability(bool retire_tlabs);
 307 
 308   // Time in ms since the longest time a collector ran in
 309   // in any generation.
 310   virtual jlong millis_since_last_gc();
 311 
 312   // Total number of full collections completed.
 313   unsigned int total_full_collections_completed() {
 314     assert(_full_collections_completed <= _total_full_collections,
 315            "Can't complete more collections than were started");
 316     return _full_collections_completed;
 317   }
 318 
 319   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 320   unsigned int update_full_collections_completed();
 321   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 322   unsigned int update_full_collections_completed(unsigned int count);
 323 
 324   // Update "time of last gc" for all generations to "now".
 325   void update_time_of_last_gc(jlong now) {
 326     _young_gen->update_time_of_last_gc(now);
 327     _old_gen->update_time_of_last_gc(now);
 328   }
 329 
 330   // Update the gc statistics for each generation.
 331   void update_gc_stats(Generation* current_generation, bool full) {
 332     _old_gen->update_gc_stats(current_generation, full);
 333   }
 334 
 335   bool no_gc_in_progress() { return !is_gc_active(); }
 336 
 337   // Override.
 338   void prepare_for_verify();
 339 
 340   // Override.
 341   void verify(VerifyOption option);
 342 
 343   // Override.
 344   virtual void print_on(outputStream* st) const;
 345   virtual void print_gc_threads_on(outputStream* st) const;
 346   virtual void gc_threads_do(ThreadClosure* tc) const;
 347   virtual void print_tracing_info() const;
 348 
 349   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 350 
 351   // The functions below are helper functions that a subclass of
 352   // "CollectedHeap" can use in the implementation of its virtual
 353   // functions.
 354 
 355   class GenClosure : public StackObj {
 356    public:
 357     virtual void do_generation(Generation* gen) = 0;
 358   };
 359 
 360   // Apply "cl.do_generation" to all generations in the heap
 361   // If "old_to_young" determines the order.
 362   void generation_iterate(GenClosure* cl, bool old_to_young);
 363 
 364   // Return "true" if all generations have reached the
 365   // maximal committed limit that they can reach, without a garbage
 366   // collection.
 367   virtual bool is_maximal_no_gc() const;
 368 
 369   // This function returns the CardTableRS object that allows us to scan
 370   // generations in a fully generational heap.
 371   CardTableRS* rem_set() { return _rem_set; }
 372 
 373   // Convenience function to be used in situations where the heap type can be
 374   // asserted to be this type.
 375   static GenCollectedHeap* heap();
 376 
 377   // The ScanningOption determines which of the roots
 378   // the closure is applied to:
 379   // "SO_None" does none;
 380   enum ScanningOption {
 381     SO_None                =  0x0,
 382     SO_AllCodeCache        =  0x8,
 383     SO_ScavengeCodeCache   = 0x10
 384   };
 385 
 386  protected:
 387   void process_roots(StrongRootsScope* scope,
 388                      ScanningOption so,
 389                      OopClosure* strong_roots,
 390                      OopClosure* weak_roots,
 391                      CLDClosure* strong_cld_closure,
 392                      CLDClosure* weak_cld_closure,
 393                      CodeBlobToOopClosure* code_roots);
 394 
 395   void process_string_table_roots(StrongRootsScope* scope,
 396                                   OopClosure* root_closure);
 397 
 398   // Accessor for memory state verification support
 399   NOT_PRODUCT(
 400     virtual size_t skip_header_HeapWords() { return 0; }
 401   )
 402 
 403   virtual void gc_prologue(bool full);
 404   virtual void gc_epilogue(bool full);
 405 
 406  public:
 407   void young_process_roots(StrongRootsScope* scope,
 408                            OopsInGenClosure* root_closure,
 409                            OopsInGenClosure* old_gen_closure,
 410                            CLDClosure* cld_closure);
 411 
 412   void full_process_roots(StrongRootsScope* scope,
 413                           bool is_adjust_phase,
 414                           ScanningOption so,
 415                           bool only_strong_roots,
 416                           OopsInGenClosure* root_closure,
 417                           CLDClosure* cld_closure);
 418 
 419   // Apply "root_closure" to all the weak roots of the system.
 420   // These include JNI weak roots, string table,
 421   // and referents of reachable weak refs.
 422   void gen_process_weak_roots(OopClosure* root_closure);
 423 
 424   // Set the saved marks of generations, if that makes sense.
 425   // In particular, if any generation might iterate over the oops
 426   // in other generations, it should call this method.
 427   void save_marks();
 428 
 429   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 430   // allocated since the last call to save_marks in generations at or above
 431   // "level".  The "cur" closure is
 432   // applied to references in the generation at "level", and the "older"
 433   // closure to older generations.
 434 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 435   void oop_since_save_marks_iterate(GenerationType start_gen,           \
 436                                     OopClosureType* cur,                \
 437                                     OopClosureType* older);
 438 
 439   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 440 
 441 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 442 
 443   // Returns "true" iff no allocations have occurred since the last
 444   // call to "save_marks".
 445   bool no_allocs_since_save_marks();
 446 
 447   // Returns true if an incremental collection is likely to fail.
 448   // We optionally consult the young gen, if asked to do so;
 449   // otherwise we base our answer on whether the previous incremental
 450   // collection attempt failed with no corrective action as of yet.
 451   bool incremental_collection_will_fail(bool consult_young) {
 452     // The first disjunct remembers if an incremental collection failed, even
 453     // when we thought (second disjunct) that it would not.
 454     return incremental_collection_failed() ||
 455            (consult_young && !_young_gen->collection_attempt_is_safe());
 456   }
 457 
 458   // If a generation bails out of an incremental collection,
 459   // it sets this flag.
 460   bool incremental_collection_failed() const {
 461     return _incremental_collection_failed;
 462   }
 463   void set_incremental_collection_failed() {
 464     _incremental_collection_failed = true;
 465   }
 466   void clear_incremental_collection_failed() {
 467     _incremental_collection_failed = false;
 468   }
 469 
 470   // Promotion of obj into gen failed.  Try to promote obj to higher
 471   // gens in ascending order; return the new location of obj if successful.
 472   // Otherwise, try expand-and-allocate for obj in both the young and old
 473   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 474   oop handle_failed_promotion(Generation* old_gen,
 475                               oop obj,
 476                               size_t obj_size);
 477 
 478 
 479 private:
 480   // Return true if an allocation should be attempted in the older generation
 481   // if it fails in the younger generation.  Return false, otherwise.
 482   bool should_try_older_generation_allocation(size_t word_size) const;
 483 
 484   // Try to allocate space by expanding the heap.
 485   HeapWord* expand_heap_and_allocate(size_t size, bool is_tlab);
 486 
 487   HeapWord* mem_allocate_work(size_t size,
 488                               bool is_tlab,
 489                               bool* gc_overhead_limit_was_exceeded);
 490 
 491   // Override
 492   void check_for_non_bad_heap_word_value(HeapWord* addr,
 493     size_t size) PRODUCT_RETURN;
 494 
 495   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 496   // in an essential way: compaction is performed across generations, by
 497   // iterating over spaces.
 498   void prepare_for_compaction();
 499 
 500   // Perform a full collection of the generations up to and including max_generation.
 501   // This is the low level interface used by the public versions of
 502   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 503   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
 504 
 505   // Save the tops of the spaces in all generations
 506   void record_gen_tops_before_GC() PRODUCT_RETURN;
 507 };
 508 
 509 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP