1 /*
   2  * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/cms/compactibleFreeListSpace.hpp"
  27 #include "gc/cms/concurrentMarkSweepGeneration.hpp"
  28 #include "gc/cms/concurrentMarkSweepThread.hpp"
  29 #include "gc/cms/cmsHeap.hpp"
  30 #include "gc/cms/parNewGeneration.hpp"
  31 #include "gc/cms/vmCMSOperations.hpp"
  32 #include "gc/shared/genMemoryPools.hpp"
  33 #include "gc/shared/genOopClosures.inline.hpp"
  34 #include "gc/shared/strongRootsScope.hpp"
  35 #include "gc/shared/workgroup.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/vmThread.hpp"
  38 #include "services/memoryManager.hpp"
  39 #include "utilities/stack.inline.hpp"
  40 
  41 class CompactibleFreeListSpacePool : public CollectedMemoryPool {
  42 private:
  43   CompactibleFreeListSpace* _space;
  44 public:
  45   CompactibleFreeListSpacePool(CompactibleFreeListSpace* space,
  46                                const char* name,
  47                                size_t max_size,
  48                                bool support_usage_threshold) :
  49     CollectedMemoryPool(name, space->capacity(), max_size, support_usage_threshold),
  50     _space(space) {
  51   }
  52 
  53   MemoryUsage get_memory_usage() {
  54     size_t max_heap_size   = (available_for_allocation() ? max_size() : 0);
  55     size_t used      = used_in_bytes();
  56     size_t committed = _space->capacity();
  57 
  58     return MemoryUsage(initial_size(), used, committed, max_heap_size);
  59   }
  60 
  61   size_t used_in_bytes() {
  62     return _space->used();
  63   }
  64 };
  65 
  66 CMSHeap::CMSHeap(GenCollectorPolicy *policy) :
  67   GenCollectedHeap(policy), _eden_pool(NULL), _survivor_pool(NULL), _old_pool(NULL) {
  68   _workers = new WorkGang("GC Thread", ParallelGCThreads,
  69                           /* are_GC_task_threads */true,
  70                           /* are_ConcurrentGC_threads */false);
  71   _workers->initialize_workers();
  72 }
  73 
  74 jint CMSHeap::initialize() {
  75   jint status = GenCollectedHeap::initialize();
  76   if (status != JNI_OK) return status;
  77 
  78   // If we are running CMS, create the collector responsible
  79   // for collecting the CMS generations.
  80   if (!create_cms_collector()) {
  81     return JNI_ENOMEM;
  82   }
  83 
  84   return JNI_OK;
  85 }
  86 
  87 void CMSHeap::initialize_serviceability() {
  88   _young_manager = new GCMemoryManager("ParNew", "end of minor GC");
  89   _old_manager = new GCMemoryManager("ConcurrentMarkSweep", "end of major GC");
  90 
  91   ParNewGeneration* young = (ParNewGeneration*) young_gen();
  92   _eden_pool = new ContiguousSpacePool(young->eden(),
  93                                        "Par Eden Space",
  94                                        young->max_eden_size(),
  95                                        false);
  96 
  97   _survivor_pool = new SurvivorContiguousSpacePool(young,
  98                                                    "Par Survivor Space",
  99                                                    young->max_survivor_size(),
 100                                                    false);
 101 
 102   ConcurrentMarkSweepGeneration* old = (ConcurrentMarkSweepGeneration*) old_gen();
 103   _old_pool = new CompactibleFreeListSpacePool(old->cmsSpace(),
 104                                                "CMS Old Gen",
 105                                                old->reserved().byte_size(),
 106                                                true);
 107 
 108   _young_manager->add_pool(_eden_pool);
 109   _young_manager->add_pool(_survivor_pool);
 110   young->set_gc_manager(_young_manager);
 111 
 112   _old_manager->add_pool(_eden_pool);
 113   _old_manager->add_pool(_survivor_pool);
 114   _old_manager->add_pool(_old_pool);
 115   old ->set_gc_manager(_old_manager);
 116 
 117 }
 118 
 119 void CMSHeap::check_gen_kinds() {
 120   assert(young_gen()->kind() == Generation::ParNew,
 121          "Wrong youngest generation type");
 122   assert(old_gen()->kind() == Generation::ConcurrentMarkSweep,
 123          "Wrong generation kind");
 124 }
 125 
 126 CMSHeap* CMSHeap::heap() {
 127   CollectedHeap* heap = Universe::heap();
 128   assert(heap != NULL, "Uninitialized access to CMSHeap::heap()");
 129   assert(heap->kind() == CollectedHeap::CMSHeap, "Not a CMSHeap");
 130   return (CMSHeap*) heap;
 131 }
 132 
 133 void CMSHeap::gc_threads_do(ThreadClosure* tc) const {
 134   assert(workers() != NULL, "should have workers here");
 135   workers()->threads_do(tc);
 136   ConcurrentMarkSweepThread::threads_do(tc);
 137 }
 138 
 139 void CMSHeap::print_gc_threads_on(outputStream* st) const {
 140   assert(workers() != NULL, "should have workers here");
 141   workers()->print_worker_threads_on(st);
 142   ConcurrentMarkSweepThread::print_all_on(st);
 143 }
 144 
 145 void CMSHeap::print_on_error(outputStream* st) const {
 146   GenCollectedHeap::print_on_error(st);
 147   st->cr();
 148   CMSCollector::print_on_error(st);
 149 }
 150 
 151 bool CMSHeap::create_cms_collector() {
 152   assert(old_gen()->kind() == Generation::ConcurrentMarkSweep,
 153          "Unexpected generation kinds");
 154   CMSCollector* collector =
 155     new CMSCollector((ConcurrentMarkSweepGeneration*) old_gen(),
 156                      rem_set(),
 157                      (ConcurrentMarkSweepPolicy*) gen_policy());
 158 
 159   if (collector == NULL || !collector->completed_initialization()) {
 160     if (collector) {
 161       delete collector; // Be nice in embedded situation
 162     }
 163     vm_shutdown_during_initialization("Could not create CMS collector");
 164     return false;
 165   }
 166   return true; // success
 167 }
 168 
 169 void CMSHeap::collect(GCCause::Cause cause) {
 170   if (should_do_concurrent_full_gc(cause)) {
 171     // Mostly concurrent full collection.
 172     collect_mostly_concurrent(cause);
 173   } else {
 174     GenCollectedHeap::collect(cause);
 175   }
 176 }
 177 
 178 bool CMSHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 179   switch (cause) {
 180     case GCCause::_gc_locker:           return GCLockerInvokesConcurrent;
 181     case GCCause::_java_lang_system_gc:
 182     case GCCause::_dcmd_gc_run:         return ExplicitGCInvokesConcurrent;
 183     default:                            return false;
 184   }
 185 }
 186 
 187 void CMSHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 188   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 189 
 190   MutexLocker ml(Heap_lock);
 191   // Read the GC counts while holding the Heap_lock
 192   unsigned int full_gc_count_before = total_full_collections();
 193   unsigned int gc_count_before      = total_collections();
 194   {
 195     MutexUnlocker mu(Heap_lock);
 196     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 197     VMThread::execute(&op);
 198   }
 199 }
 200 
 201 void CMSHeap::stop() {
 202   ConcurrentMarkSweepThread::cmst()->stop();
 203 }
 204 
 205 void CMSHeap::safepoint_synchronize_begin() {
 206   ConcurrentMarkSweepThread::synchronize(false);
 207 }
 208 
 209 void CMSHeap::safepoint_synchronize_end() {
 210   ConcurrentMarkSweepThread::desynchronize(false);
 211 }
 212 
 213 void CMSHeap::cms_process_roots(StrongRootsScope* scope,
 214                                 bool young_gen_as_roots,
 215                                 ScanningOption so,
 216                                 bool only_strong_roots,
 217                                 OopsInGenClosure* root_closure,
 218                                 CLDClosure* cld_closure) {
 219   MarkingCodeBlobClosure mark_code_closure(root_closure, !CodeBlobToOopClosure::FixRelocations);
 220   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 221   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 222 
 223   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 224   if (!only_strong_roots) {
 225     process_string_table_roots(scope, root_closure);
 226   }
 227 
 228   if (young_gen_as_roots &&
 229       !_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 230     root_closure->set_generation(young_gen());
 231     young_gen()->oop_iterate(root_closure);
 232     root_closure->reset_generation();
 233   }
 234 
 235   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 236 }
 237 
 238 void CMSHeap::gc_prologue(bool full) {
 239   always_do_update_barrier = false;
 240   GenCollectedHeap::gc_prologue(full);
 241 };
 242 
 243 void CMSHeap::gc_epilogue(bool full) {
 244   GenCollectedHeap::gc_epilogue(full);
 245   always_do_update_barrier = true;
 246 };
 247 
 248 GrowableArray<GCMemoryManager*> CMSHeap::memory_managers() {
 249   GrowableArray<GCMemoryManager*> memory_managers(2);
 250   memory_managers.append(_young_manager);
 251   memory_managers.append(_old_manager);
 252   return memory_managers;
 253 }
 254 
 255 GrowableArray<MemoryPool*> CMSHeap::memory_pools() {
 256   GrowableArray<MemoryPool*> memory_pools(3);
 257   memory_pools.append(_eden_pool);
 258   memory_pools.append(_survivor_pool);
 259   memory_pools.append(_old_pool);
 260   return memory_pools;
 261 }