1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/shared/adaptiveSizePolicy.hpp"
  34 #include "gc/shared/cardTableRS.hpp"
  35 #include "gc/shared/collectedHeap.inline.hpp"
  36 #include "gc/shared/collectorCounters.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/gcTrace.hpp"
  40 #include "gc/shared/gcTraceTime.inline.hpp"
  41 #include "gc/shared/genCollectedHeap.hpp"
  42 #include "gc/shared/genOopClosures.inline.hpp"
  43 #include "gc/shared/generationSpec.hpp"
  44 #include "gc/shared/space.hpp"
  45 #include "gc/shared/strongRootsScope.hpp"
  46 #include "gc/shared/vmGCOperations.hpp"
  47 #include "gc/shared/weakProcessor.hpp"
  48 #include "gc/shared/workgroup.hpp"
  49 #include "memory/filemap.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/handles.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/vmThread.hpp"
  57 #include "services/management.hpp"
  58 #include "services/memoryService.hpp"
  59 #include "utilities/debug.hpp"
  60 #include "utilities/formatBuffer.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/stack.inline.hpp"
  63 #include "utilities/vmError.hpp"
  64 
  65 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy,
  66                                    Generation::Name young,
  67                                    Generation::Name old) :
  68   CollectedHeap(),
  69   _rem_set(NULL),
  70   _young_gen_spec(new GenerationSpec(young,
  71                                      policy->initial_young_size(),
  72                                      policy->max_young_size(),
  73                                      policy->gen_alignment())),
  74   _old_gen_spec(new GenerationSpec(old,
  75                                    policy->initial_old_size(),
  76                                    policy->max_old_size(),
  77                                    policy->gen_alignment())),
  78   _gen_policy(policy),
  79   _soft_ref_gen_policy(),
  80   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  81   _full_collections_completed(0) {
  82 }
  83 
  84 jint GenCollectedHeap::initialize() {
  85   // While there are no constraints in the GC code that HeapWordSize
  86   // be any particular value, there are multiple other areas in the
  87   // system which believe this to be true (e.g. oop->object_size in some
  88   // cases incorrectly returns the size in wordSize units rather than
  89   // HeapWordSize).
  90   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  91 
  92   // Allocate space for the heap.
  93 
  94   char* heap_address;
  95   ReservedSpace heap_rs;
  96 
  97   size_t heap_alignment = collector_policy()->heap_alignment();
  98 
  99   heap_address = allocate(heap_alignment, &heap_rs);
 100 
 101   if (!heap_rs.is_reserved()) {
 102     vm_shutdown_during_initialization(
 103       "Could not reserve enough space for object heap");
 104     return JNI_ENOMEM;
 105   }
 106 
 107   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 108 
 109   _rem_set = new CardTableRS(reserved_region());
 110   set_barrier_set(rem_set()->bs());
 111 
 112   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size(), false, false);
 113   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 114   heap_rs = heap_rs.last_part(_young_gen_spec->max_size());
 115 
 116   ReservedSpace old_rs = heap_rs.first_part(_old_gen_spec->max_size(), false, false);
 117   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 118   clear_incremental_collection_failed();
 119 
 120   return JNI_OK;
 121 }
 122 
 123 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 124                                               size_t init_promo_size,
 125                                               size_t init_survivor_size) {
 126   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 127   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 128                                         init_promo_size,
 129                                         init_survivor_size,
 130                                         max_gc_pause_sec,
 131                                         GCTimeRatio);
 132 }
 133 
 134 char* GenCollectedHeap::allocate(size_t alignment,
 135                                  ReservedSpace* heap_rs){
 136   // Now figure out the total size.
 137   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 138   assert(alignment % pageSize == 0, "Must be");
 139 
 140   // Check for overflow.
 141   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 142   if (total_reserved < _young_gen_spec->max_size()) {
 143     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 144                                   "the maximum representable size");
 145   }
 146   assert(total_reserved % alignment == 0,
 147          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 148          SIZE_FORMAT, total_reserved, alignment);
 149 
 150   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 151 
 152   os::trace_page_sizes("Heap",
 153                        collector_policy()->min_heap_byte_size(),
 154                        total_reserved,
 155                        alignment,
 156                        heap_rs->base(),
 157                        heap_rs->size());
 158 
 159   return heap_rs->base();
 160 }
 161 
 162 void GenCollectedHeap::post_initialize() {
 163   CollectedHeap::post_initialize();
 164   ref_processing_init();
 165   check_gen_kinds();
 166   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 167 
 168   initialize_size_policy(def_new_gen->eden()->capacity(),
 169                          _old_gen->capacity(),
 170                          def_new_gen->from()->capacity());
 171 
 172   _gen_policy->initialize_gc_policy_counters();
 173 }
 174 
 175 void GenCollectedHeap::ref_processing_init() {
 176   _young_gen->ref_processor_init();
 177   _old_gen->ref_processor_init();
 178 }
 179 
 180 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 181   return _young_gen_spec;
 182 }
 183 
 184 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 185   return _old_gen_spec;
 186 }
 187 
 188 size_t GenCollectedHeap::capacity() const {
 189   return _young_gen->capacity() + _old_gen->capacity();
 190 }
 191 
 192 size_t GenCollectedHeap::used() const {
 193   return _young_gen->used() + _old_gen->used();
 194 }
 195 
 196 void GenCollectedHeap::save_used_regions() {
 197   _old_gen->save_used_region();
 198   _young_gen->save_used_region();
 199 }
 200 
 201 size_t GenCollectedHeap::max_capacity() const {
 202   return _young_gen->max_capacity() + _old_gen->max_capacity();
 203 }
 204 
 205 // Update the _full_collections_completed counter
 206 // at the end of a stop-world full GC.
 207 unsigned int GenCollectedHeap::update_full_collections_completed() {
 208   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 209   assert(_full_collections_completed <= _total_full_collections,
 210          "Can't complete more collections than were started");
 211   _full_collections_completed = _total_full_collections;
 212   ml.notify_all();
 213   return _full_collections_completed;
 214 }
 215 
 216 // Update the _full_collections_completed counter, as appropriate,
 217 // at the end of a concurrent GC cycle. Note the conditional update
 218 // below to allow this method to be called by a concurrent collector
 219 // without synchronizing in any manner with the VM thread (which
 220 // may already have initiated a STW full collection "concurrently").
 221 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 222   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 223   assert((_full_collections_completed <= _total_full_collections) &&
 224          (count <= _total_full_collections),
 225          "Can't complete more collections than were started");
 226   if (count > _full_collections_completed) {
 227     _full_collections_completed = count;
 228     ml.notify_all();
 229   }
 230   return _full_collections_completed;
 231 }
 232 
 233 // Return true if any of the following is true:
 234 // . the allocation won't fit into the current young gen heap
 235 // . gc locker is occupied (jni critical section)
 236 // . heap memory is tight -- the most recent previous collection
 237 //   was a full collection because a partial collection (would
 238 //   have) failed and is likely to fail again
 239 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 240   size_t young_capacity = young_gen()->capacity_before_gc();
 241   return    (word_size > heap_word_size(young_capacity))
 242          || GCLocker::is_active_and_needs_gc()
 243          || incremental_collection_failed();
 244 }
 245 
 246 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 247   HeapWord* result = NULL;
 248   if (old_gen()->should_allocate(size, is_tlab)) {
 249     result = old_gen()->expand_and_allocate(size, is_tlab);
 250   }
 251   if (result == NULL) {
 252     if (young_gen()->should_allocate(size, is_tlab)) {
 253       result = young_gen()->expand_and_allocate(size, is_tlab);
 254     }
 255   }
 256   assert(result == NULL || is_in_reserved(result), "result not in heap");
 257   return result;
 258 }
 259 
 260 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 261                                               bool is_tlab,
 262                                               bool* gc_overhead_limit_was_exceeded) {
 263   debug_only(check_for_valid_allocation_state());
 264   assert(no_gc_in_progress(), "Allocation during gc not allowed");
 265 
 266   // In general gc_overhead_limit_was_exceeded should be false so
 267   // set it so here and reset it to true only if the gc time
 268   // limit is being exceeded as checked below.
 269   *gc_overhead_limit_was_exceeded = false;
 270 
 271   HeapWord* result = NULL;
 272 
 273   // Loop until the allocation is satisfied, or unsatisfied after GC.
 274   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 275     HandleMark hm; // Discard any handles allocated in each iteration.
 276 
 277     // First allocation attempt is lock-free.
 278     Generation *young = young_gen();
 279     assert(young->supports_inline_contig_alloc(),
 280       "Otherwise, must do alloc within heap lock");
 281     if (young->should_allocate(size, is_tlab)) {
 282       result = young->par_allocate(size, is_tlab);
 283       if (result != NULL) {
 284         assert(is_in_reserved(result), "result not in heap");
 285         return result;
 286       }
 287     }
 288     uint gc_count_before;  // Read inside the Heap_lock locked region.
 289     {
 290       MutexLocker ml(Heap_lock);
 291       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 292       // Note that only large objects get a shot at being
 293       // allocated in later generations.
 294       bool first_only = !should_try_older_generation_allocation(size);
 295 
 296       result = attempt_allocation(size, is_tlab, first_only);
 297       if (result != NULL) {
 298         assert(is_in_reserved(result), "result not in heap");
 299         return result;
 300       }
 301 
 302       if (GCLocker::is_active_and_needs_gc()) {
 303         if (is_tlab) {
 304           return NULL;  // Caller will retry allocating individual object.
 305         }
 306         if (!is_maximal_no_gc()) {
 307           // Try and expand heap to satisfy request.
 308           result = expand_heap_and_allocate(size, is_tlab);
 309           // Result could be null if we are out of space.
 310           if (result != NULL) {
 311             return result;
 312           }
 313         }
 314 
 315         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 316           return NULL; // We didn't get to do a GC and we didn't get any memory.
 317         }
 318 
 319         // If this thread is not in a jni critical section, we stall
 320         // the requestor until the critical section has cleared and
 321         // GC allowed. When the critical section clears, a GC is
 322         // initiated by the last thread exiting the critical section; so
 323         // we retry the allocation sequence from the beginning of the loop,
 324         // rather than causing more, now probably unnecessary, GC attempts.
 325         JavaThread* jthr = JavaThread::current();
 326         if (!jthr->in_critical()) {
 327           MutexUnlocker mul(Heap_lock);
 328           // Wait for JNI critical section to be exited
 329           GCLocker::stall_until_clear();
 330           gclocker_stalled_count += 1;
 331           continue;
 332         } else {
 333           if (CheckJNICalls) {
 334             fatal("Possible deadlock due to allocating while"
 335                   " in jni critical section");
 336           }
 337           return NULL;
 338         }
 339       }
 340 
 341       // Read the gc count while the heap lock is held.
 342       gc_count_before = total_collections();
 343     }
 344 
 345     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 346     VMThread::execute(&op);
 347     if (op.prologue_succeeded()) {
 348       result = op.result();
 349       if (op.gc_locked()) {
 350          assert(result == NULL, "must be NULL if gc_locked() is true");
 351          continue;  // Retry and/or stall as necessary.
 352       }
 353 
 354       // Allocation has failed and a collection
 355       // has been done.  If the gc time limit was exceeded the
 356       // this time, return NULL so that an out-of-memory
 357       // will be thrown.  Clear gc_overhead_limit_exceeded
 358       // so that the overhead exceeded does not persist.
 359 
 360       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 361       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 362 
 363       if (limit_exceeded && softrefs_clear) {
 364         *gc_overhead_limit_was_exceeded = true;
 365         size_policy()->set_gc_overhead_limit_exceeded(false);
 366         if (op.result() != NULL) {
 367           CollectedHeap::fill_with_object(op.result(), size);
 368         }
 369         return NULL;
 370       }
 371       assert(result == NULL || is_in_reserved(result),
 372              "result not in heap");
 373       return result;
 374     }
 375 
 376     // Give a warning if we seem to be looping forever.
 377     if ((QueuedAllocationWarningCount > 0) &&
 378         (try_count % QueuedAllocationWarningCount == 0)) {
 379           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 380                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 381     }
 382   }
 383 }
 384 
 385 #ifndef PRODUCT
 386 // Override of memory state checking method in CollectedHeap:
 387 // Some collectors (CMS for example) can't have badHeapWordVal written
 388 // in the first two words of an object. (For instance , in the case of
 389 // CMS these words hold state used to synchronize between certain
 390 // (concurrent) GC steps and direct allocating mutators.)
 391 // The skip_header_HeapWords() method below, allows us to skip
 392 // over the requisite number of HeapWord's. Note that (for
 393 // generational collectors) this means that those many words are
 394 // skipped in each object, irrespective of the generation in which
 395 // that object lives. The resultant loss of precision seems to be
 396 // harmless and the pain of avoiding that imprecision appears somewhat
 397 // higher than we are prepared to pay for such rudimentary debugging
 398 // support.
 399 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 400                                                          size_t size) {
 401   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 402     // We are asked to check a size in HeapWords,
 403     // but the memory is mangled in juint words.
 404     juint* start = (juint*) (addr + skip_header_HeapWords());
 405     juint* end   = (juint*) (addr + size);
 406     for (juint* slot = start; slot < end; slot += 1) {
 407       assert(*slot == badHeapWordVal,
 408              "Found non badHeapWordValue in pre-allocation check");
 409     }
 410   }
 411 }
 412 #endif
 413 
 414 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 415                                                bool is_tlab,
 416                                                bool first_only) {
 417   HeapWord* res = NULL;
 418 
 419   if (_young_gen->should_allocate(size, is_tlab)) {
 420     res = _young_gen->allocate(size, is_tlab);
 421     if (res != NULL || first_only) {
 422       return res;
 423     }
 424   }
 425 
 426   if (_old_gen->should_allocate(size, is_tlab)) {
 427     res = _old_gen->allocate(size, is_tlab);
 428   }
 429 
 430   return res;
 431 }
 432 
 433 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 434                                          bool* gc_overhead_limit_was_exceeded) {
 435   return mem_allocate_work(size,
 436                            false /* is_tlab */,
 437                            gc_overhead_limit_was_exceeded);
 438 }
 439 
 440 bool GenCollectedHeap::must_clear_all_soft_refs() {
 441   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 442          _gc_cause == GCCause::_wb_full_gc;
 443 }
 444 
 445 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 446                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 447                                           bool restore_marks_for_biased_locking) {
 448   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 449   GCTraceTime(Trace, gc, phases) t1(title);
 450   TraceCollectorStats tcs(gen->counters());
 451   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 452 
 453   gen->stat_record()->invocations++;
 454   gen->stat_record()->accumulated_time.start();
 455 
 456   // Must be done anew before each collection because
 457   // a previous collection will do mangling and will
 458   // change top of some spaces.
 459   record_gen_tops_before_GC();
 460 
 461   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 462 
 463   if (run_verification && VerifyBeforeGC) {
 464     HandleMark hm;  // Discard invalid handles created during verification
 465     Universe::verify("Before GC");
 466   }
 467   COMPILER2_PRESENT(DerivedPointerTable::clear());
 468 
 469   if (restore_marks_for_biased_locking) {
 470     // We perform this mark word preservation work lazily
 471     // because it's only at this point that we know whether we
 472     // absolutely have to do it; we want to avoid doing it for
 473     // scavenge-only collections where it's unnecessary
 474     BiasedLocking::preserve_marks();
 475   }
 476 
 477   // Do collection work
 478   {
 479     // Note on ref discovery: For what appear to be historical reasons,
 480     // GCH enables and disabled (by enqueing) refs discovery.
 481     // In the future this should be moved into the generation's
 482     // collect method so that ref discovery and enqueueing concerns
 483     // are local to a generation. The collect method could return
 484     // an appropriate indication in the case that notification on
 485     // the ref lock was needed. This will make the treatment of
 486     // weak refs more uniform (and indeed remove such concerns
 487     // from GCH). XXX
 488 
 489     HandleMark hm;  // Discard invalid handles created during gc
 490     save_marks();   // save marks for all gens
 491     // We want to discover references, but not process them yet.
 492     // This mode is disabled in process_discovered_references if the
 493     // generation does some collection work, or in
 494     // enqueue_discovered_references if the generation returns
 495     // without doing any work.
 496     ReferenceProcessor* rp = gen->ref_processor();
 497     // If the discovery of ("weak") refs in this generation is
 498     // atomic wrt other collectors in this configuration, we
 499     // are guaranteed to have empty discovered ref lists.
 500     if (rp->discovery_is_atomic()) {
 501       rp->enable_discovery();
 502       rp->setup_policy(clear_soft_refs);
 503     } else {
 504       // collect() below will enable discovery as appropriate
 505     }
 506     gen->collect(full, clear_soft_refs, size, is_tlab);
 507     if (!rp->enqueuing_is_done()) {
 508       ReferenceProcessorPhaseTimes pt(NULL, rp->num_q());
 509       rp->enqueue_discovered_references(NULL, &pt);
 510       pt.print_enqueue_phase();
 511     } else {
 512       rp->set_enqueuing_is_done(false);
 513     }
 514     rp->verify_no_references_recorded();
 515   }
 516 
 517   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 518 
 519   gen->stat_record()->accumulated_time.stop();
 520 
 521   update_gc_stats(gen, full);
 522 
 523   if (run_verification && VerifyAfterGC) {
 524     HandleMark hm;  // Discard invalid handles created during verification
 525     Universe::verify("After GC");
 526   }
 527 }
 528 
 529 void GenCollectedHeap::do_collection(bool           full,
 530                                      bool           clear_all_soft_refs,
 531                                      size_t         size,
 532                                      bool           is_tlab,
 533                                      GenerationType max_generation) {
 534   ResourceMark rm;
 535   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 536 
 537   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 538   assert(my_thread->is_VM_thread() ||
 539          my_thread->is_ConcurrentGC_thread(),
 540          "incorrect thread type capability");
 541   assert(Heap_lock->is_locked(),
 542          "the requesting thread should have the Heap_lock");
 543   guarantee(!is_gc_active(), "collection is not reentrant");
 544 
 545   if (GCLocker::check_active_before_gc()) {
 546     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 547   }
 548 
 549   GCIdMark gc_id_mark;
 550 
 551   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 552                           soft_ref_policy()->should_clear_all_soft_refs();
 553 
 554   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 555 
 556   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 557 
 558   print_heap_before_gc();
 559 
 560   {
 561     FlagSetting fl(_is_gc_active, true);
 562 
 563     bool complete = full && (max_generation == OldGen);
 564     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 565     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 566 
 567     FormatBuffer<> gc_string("%s", "Pause ");
 568     if (do_young_collection) {
 569       gc_string.append("Young");
 570     } else {
 571       gc_string.append("Full");
 572     }
 573 
 574     GCTraceCPUTime tcpu;
 575     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 576 
 577     gc_prologue(complete);
 578     increment_total_collections(complete);
 579 
 580     size_t young_prev_used = _young_gen->used();
 581     size_t old_prev_used = _old_gen->used();
 582 
 583     bool run_verification = total_collections() >= VerifyGCStartAt;
 584 
 585     bool prepared_for_verification = false;
 586     bool collected_old = false;
 587 
 588     if (do_young_collection) {
 589       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 590         prepare_for_verify();
 591         prepared_for_verification = true;
 592       }
 593 
 594       collect_generation(_young_gen,
 595                          full,
 596                          size,
 597                          is_tlab,
 598                          run_verification && VerifyGCLevel <= 0,
 599                          do_clear_all_soft_refs,
 600                          false);
 601 
 602       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 603           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 604         // Allocation request was met by young GC.
 605         size = 0;
 606       }
 607     }
 608 
 609     bool must_restore_marks_for_biased_locking = false;
 610 
 611     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 612       if (!complete) {
 613         // The full_collections increment was missed above.
 614         increment_total_full_collections();
 615       }
 616 
 617       if (!prepared_for_verification && run_verification &&
 618           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 619         prepare_for_verify();
 620       }
 621 
 622       if (do_young_collection) {
 623         // We did a young GC. Need a new GC id for the old GC.
 624         GCIdMark gc_id_mark;
 625         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 626         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 627       } else {
 628         // No young GC done. Use the same GC id as was set up earlier in this method.
 629         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 630       }
 631 
 632       must_restore_marks_for_biased_locking = true;
 633       collected_old = true;
 634     }
 635 
 636     // Update "complete" boolean wrt what actually transpired --
 637     // for instance, a promotion failure could have led to
 638     // a whole heap collection.
 639     complete = complete || collected_old;
 640 
 641     print_heap_change(young_prev_used, old_prev_used);
 642     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 643 
 644     // Adjust generation sizes.
 645     if (collected_old) {
 646       _old_gen->compute_new_size();
 647     }
 648     _young_gen->compute_new_size();
 649 
 650     if (complete) {
 651       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 652       ClassLoaderDataGraph::purge();
 653       MetaspaceAux::verify_metrics();
 654       // Resize the metaspace capacity after full collections
 655       MetaspaceGC::compute_new_size();
 656       update_full_collections_completed();
 657     }
 658 
 659     // Track memory usage and detect low memory after GC finishes
 660     MemoryService::track_memory_usage();
 661 
 662     gc_epilogue(complete);
 663 
 664     if (must_restore_marks_for_biased_locking) {
 665       BiasedLocking::restore_marks();
 666     }
 667   }
 668 
 669   print_heap_after_gc();
 670 
 671 #ifdef TRACESPINNING
 672   ParallelTaskTerminator::print_termination_counts();
 673 #endif
 674 }
 675 
 676 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 677   CodeCache::register_scavenge_root_nmethod(nm);
 678 }
 679 
 680 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 681   CodeCache::verify_scavenge_root_nmethod(nm);
 682 }
 683 
 684 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 685   GCCauseSetter x(this, GCCause::_allocation_failure);
 686   HeapWord* result = NULL;
 687 
 688   assert(size != 0, "Precondition violated");
 689   if (GCLocker::is_active_and_needs_gc()) {
 690     // GC locker is active; instead of a collection we will attempt
 691     // to expand the heap, if there's room for expansion.
 692     if (!is_maximal_no_gc()) {
 693       result = expand_heap_and_allocate(size, is_tlab);
 694     }
 695     return result;   // Could be null if we are out of space.
 696   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 697     // Do an incremental collection.
 698     do_collection(false,                     // full
 699                   false,                     // clear_all_soft_refs
 700                   size,                      // size
 701                   is_tlab,                   // is_tlab
 702                   GenCollectedHeap::OldGen); // max_generation
 703   } else {
 704     log_trace(gc)(" :: Trying full because partial may fail :: ");
 705     // Try a full collection; see delta for bug id 6266275
 706     // for the original code and why this has been simplified
 707     // with from-space allocation criteria modified and
 708     // such allocation moved out of the safepoint path.
 709     do_collection(true,                      // full
 710                   false,                     // clear_all_soft_refs
 711                   size,                      // size
 712                   is_tlab,                   // is_tlab
 713                   GenCollectedHeap::OldGen); // max_generation
 714   }
 715 
 716   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 717 
 718   if (result != NULL) {
 719     assert(is_in_reserved(result), "result not in heap");
 720     return result;
 721   }
 722 
 723   // OK, collection failed, try expansion.
 724   result = expand_heap_and_allocate(size, is_tlab);
 725   if (result != NULL) {
 726     return result;
 727   }
 728 
 729   // If we reach this point, we're really out of memory. Try every trick
 730   // we can to reclaim memory. Force collection of soft references. Force
 731   // a complete compaction of the heap. Any additional methods for finding
 732   // free memory should be here, especially if they are expensive. If this
 733   // attempt fails, an OOM exception will be thrown.
 734   {
 735     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 736 
 737     do_collection(true,                      // full
 738                   true,                      // clear_all_soft_refs
 739                   size,                      // size
 740                   is_tlab,                   // is_tlab
 741                   GenCollectedHeap::OldGen); // max_generation
 742   }
 743 
 744   result = attempt_allocation(size, is_tlab, false /* first_only */);
 745   if (result != NULL) {
 746     assert(is_in_reserved(result), "result not in heap");
 747     return result;
 748   }
 749 
 750   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 751     "Flag should have been handled and cleared prior to this point");
 752 
 753   // What else?  We might try synchronous finalization later.  If the total
 754   // space available is large enough for the allocation, then a more
 755   // complete compaction phase than we've tried so far might be
 756   // appropriate.
 757   return NULL;
 758 }
 759 
 760 #ifdef ASSERT
 761 class AssertNonScavengableClosure: public OopClosure {
 762 public:
 763   virtual void do_oop(oop* p) {
 764     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 765       "Referent should not be scavengable.");  }
 766   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 767 };
 768 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 769 #endif
 770 
 771 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 772                                      ScanningOption so,
 773                                      OopClosure* strong_roots,
 774                                      OopClosure* weak_roots,
 775                                      CLDClosure* strong_cld_closure,
 776                                      CLDClosure* weak_cld_closure,
 777                                      CodeBlobToOopClosure* code_roots) {
 778   // General roots.
 779   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 780   assert(code_roots != NULL, "code root closure should always be set");
 781   // _n_termination for _process_strong_tasks should be set up stream
 782   // in a method not running in a GC worker.  Otherwise the GC worker
 783   // could be trying to change the termination condition while the task
 784   // is executing in another GC worker.
 785 
 786   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 787     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 788   }
 789 
 790   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 791   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 792 
 793   bool is_par = scope->n_threads() > 1;
 794   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 795 
 796   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 797     Universe::oops_do(strong_roots);
 798   }
 799   // Global (strong) JNI handles
 800   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 801     JNIHandles::oops_do(strong_roots);
 802   }
 803 
 804   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 805     ObjectSynchronizer::oops_do(strong_roots);
 806   }
 807   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 808     Management::oops_do(strong_roots);
 809   }
 810   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 811     JvmtiExport::oops_do(strong_roots);
 812   }
 813   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 814     AOTLoader::oops_do(strong_roots);
 815   }
 816 
 817   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 818     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 819   }
 820 
 821   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 822     if (so & SO_ScavengeCodeCache) {
 823       assert(code_roots != NULL, "must supply closure for code cache");
 824 
 825       // We only visit parts of the CodeCache when scavenging.
 826       CodeCache::scavenge_root_nmethods_do(code_roots);
 827     }
 828     if (so & SO_AllCodeCache) {
 829       assert(code_roots != NULL, "must supply closure for code cache");
 830 
 831       // CMSCollector uses this to do intermediate-strength collections.
 832       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 833       CodeCache::blobs_do(code_roots);
 834     }
 835     // Verify that the code cache contents are not subject to
 836     // movement by a scavenging collection.
 837     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 838     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 839   }
 840 }
 841 
 842 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 843                                                   OopClosure* root_closure) {
 844   assert(root_closure != NULL, "Must be set");
 845   // All threads execute the following. A specific chunk of buckets
 846   // from the StringTable are the individual tasks.
 847   if (scope->n_threads() > 1) {
 848     StringTable::possibly_parallel_oops_do(root_closure);
 849   } else {
 850     StringTable::oops_do(root_closure);
 851   }
 852 }
 853 
 854 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 855                                            OopsInGenClosure* root_closure,
 856                                            OopsInGenClosure* old_gen_closure,
 857                                            CLDClosure* cld_closure) {
 858   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 859 
 860   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 861                 cld_closure, cld_closure, &mark_code_closure);
 862   process_string_table_roots(scope, root_closure);
 863 
 864   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 865     root_closure->reset_generation();
 866   }
 867 
 868   // When collection is parallel, all threads get to cooperate to do
 869   // old generation scanning.
 870   old_gen_closure->set_generation(_old_gen);
 871   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 872   old_gen_closure->reset_generation();
 873 
 874   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 875 }
 876 
 877 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 878                                           bool is_adjust_phase,
 879                                           ScanningOption so,
 880                                           bool only_strong_roots,
 881                                           OopsInGenClosure* root_closure,
 882                                           CLDClosure* cld_closure) {
 883   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 884   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 885   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 886 
 887   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 888   if (is_adjust_phase) {
 889     // We never treat the string table as roots during marking
 890     // for the full gc, so we only need to process it during
 891     // the adjust phase.
 892     process_string_table_roots(scope, root_closure);
 893   }
 894 
 895   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 896 }
 897 
 898 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 899   WeakProcessor::oops_do(root_closure);
 900   _young_gen->ref_processor()->weak_oops_do(root_closure);
 901   _old_gen->ref_processor()->weak_oops_do(root_closure);
 902 }
 903 
 904 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 905 void GenCollectedHeap::                                                 \
 906 oop_since_save_marks_iterate(GenerationType gen,                        \
 907                              OopClosureType* cur,                       \
 908                              OopClosureType* older) {                   \
 909   if (gen == YoungGen) {                              \
 910     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 911     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 912   } else {                                                              \
 913     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 914   }                                                                     \
 915 }
 916 
 917 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 918 
 919 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 920 
 921 bool GenCollectedHeap::no_allocs_since_save_marks() {
 922   return _young_gen->no_allocs_since_save_marks() &&
 923          _old_gen->no_allocs_since_save_marks();
 924 }
 925 
 926 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 927   return _young_gen->supports_inline_contig_alloc();
 928 }
 929 
 930 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 931   return _young_gen->top_addr();
 932 }
 933 
 934 HeapWord** GenCollectedHeap::end_addr() const {
 935   return _young_gen->end_addr();
 936 }
 937 
 938 // public collection interfaces
 939 
 940 void GenCollectedHeap::collect(GCCause::Cause cause) {
 941   if (cause == GCCause::_wb_young_gc) {
 942     // Young collection for the WhiteBox API.
 943     collect(cause, YoungGen);
 944   } else {
 945 #ifdef ASSERT
 946   if (cause == GCCause::_scavenge_alot) {
 947     // Young collection only.
 948     collect(cause, YoungGen);
 949   } else {
 950     // Stop-the-world full collection.
 951     collect(cause, OldGen);
 952   }
 953 #else
 954     // Stop-the-world full collection.
 955     collect(cause, OldGen);
 956 #endif
 957   }
 958 }
 959 
 960 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 961   // The caller doesn't have the Heap_lock
 962   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 963   MutexLocker ml(Heap_lock);
 964   collect_locked(cause, max_generation);
 965 }
 966 
 967 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 968   // The caller has the Heap_lock
 969   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 970   collect_locked(cause, OldGen);
 971 }
 972 
 973 // this is the private collection interface
 974 // The Heap_lock is expected to be held on entry.
 975 
 976 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 977   // Read the GC count while holding the Heap_lock
 978   unsigned int gc_count_before      = total_collections();
 979   unsigned int full_gc_count_before = total_full_collections();
 980   {
 981     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 982     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 983                          cause, max_generation);
 984     VMThread::execute(&op);
 985   }
 986 }
 987 
 988 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 989    do_full_collection(clear_all_soft_refs, OldGen);
 990 }
 991 
 992 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 993                                           GenerationType last_generation) {
 994   GenerationType local_last_generation;
 995   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 996       gc_cause() == GCCause::_gc_locker) {
 997     local_last_generation = YoungGen;
 998   } else {
 999     local_last_generation = last_generation;
1000   }
1001 
1002   do_collection(true,                   // full
1003                 clear_all_soft_refs,    // clear_all_soft_refs
1004                 0,                      // size
1005                 false,                  // is_tlab
1006                 local_last_generation); // last_generation
1007   // Hack XXX FIX ME !!!
1008   // A scavenge may not have been attempted, or may have
1009   // been attempted and failed, because the old gen was too full
1010   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
1011       incremental_collection_will_fail(false /* don't consult_young */)) {
1012     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
1013     // This time allow the old gen to be collected as well
1014     do_collection(true,                // full
1015                   clear_all_soft_refs, // clear_all_soft_refs
1016                   0,                   // size
1017                   false,               // is_tlab
1018                   OldGen);             // last_generation
1019   }
1020 }
1021 
1022 bool GenCollectedHeap::is_in_young(oop p) {
1023   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
1024   assert(result == _young_gen->is_in_reserved(p),
1025          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1026   return result;
1027 }
1028 
1029 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1030 bool GenCollectedHeap::is_in(const void* p) const {
1031   return _young_gen->is_in(p) || _old_gen->is_in(p);
1032 }
1033 
1034 #ifdef ASSERT
1035 // Don't implement this by using is_in_young().  This method is used
1036 // in some cases to check that is_in_young() is correct.
1037 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1038   assert(is_in_reserved(p) || p == NULL,
1039     "Does not work if address is non-null and outside of the heap");
1040   return p < _young_gen->reserved().end() && p != NULL;
1041 }
1042 #endif
1043 
1044 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
1045   NoHeaderExtendedOopClosure no_header_cl(cl);
1046   oop_iterate(&no_header_cl);
1047 }
1048 
1049 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
1050   _young_gen->oop_iterate(cl);
1051   _old_gen->oop_iterate(cl);
1052 }
1053 
1054 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1055   _young_gen->object_iterate(cl);
1056   _old_gen->object_iterate(cl);
1057 }
1058 
1059 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
1060   _young_gen->safe_object_iterate(cl);
1061   _old_gen->safe_object_iterate(cl);
1062 }
1063 
1064 Space* GenCollectedHeap::space_containing(const void* addr) const {
1065   Space* res = _young_gen->space_containing(addr);
1066   if (res != NULL) {
1067     return res;
1068   }
1069   res = _old_gen->space_containing(addr);
1070   assert(res != NULL, "Could not find containing space");
1071   return res;
1072 }
1073 
1074 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1075   assert(is_in_reserved(addr), "block_start of address outside of heap");
1076   if (_young_gen->is_in_reserved(addr)) {
1077     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1078     return _young_gen->block_start(addr);
1079   }
1080 
1081   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1082   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1083   return _old_gen->block_start(addr);
1084 }
1085 
1086 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1087   assert(is_in_reserved(addr), "block_size of address outside of heap");
1088   if (_young_gen->is_in_reserved(addr)) {
1089     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1090     return _young_gen->block_size(addr);
1091   }
1092 
1093   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1094   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1095   return _old_gen->block_size(addr);
1096 }
1097 
1098 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1099   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1100   assert(block_start(addr) == addr, "addr must be a block start");
1101   if (_young_gen->is_in_reserved(addr)) {
1102     return _young_gen->block_is_obj(addr);
1103   }
1104 
1105   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1106   return _old_gen->block_is_obj(addr);
1107 }
1108 
1109 bool GenCollectedHeap::supports_tlab_allocation() const {
1110   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1111   return _young_gen->supports_tlab_allocation();
1112 }
1113 
1114 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1115   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1116   if (_young_gen->supports_tlab_allocation()) {
1117     return _young_gen->tlab_capacity();
1118   }
1119   return 0;
1120 }
1121 
1122 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1123   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1124   if (_young_gen->supports_tlab_allocation()) {
1125     return _young_gen->tlab_used();
1126   }
1127   return 0;
1128 }
1129 
1130 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1131   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1132   if (_young_gen->supports_tlab_allocation()) {
1133     return _young_gen->unsafe_max_tlab_alloc();
1134   }
1135   return 0;
1136 }
1137 
1138 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1139   bool gc_overhead_limit_was_exceeded;
1140   return mem_allocate_work(size /* size */,
1141                            true /* is_tlab */,
1142                            &gc_overhead_limit_was_exceeded);
1143 }
1144 
1145 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1146 // from the list headed by "*prev_ptr".
1147 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1148   bool first = true;
1149   size_t min_size = 0;   // "first" makes this conceptually infinite.
1150   ScratchBlock **smallest_ptr, *smallest;
1151   ScratchBlock  *cur = *prev_ptr;
1152   while (cur) {
1153     assert(*prev_ptr == cur, "just checking");
1154     if (first || cur->num_words < min_size) {
1155       smallest_ptr = prev_ptr;
1156       smallest     = cur;
1157       min_size     = smallest->num_words;
1158       first        = false;
1159     }
1160     prev_ptr = &cur->next;
1161     cur     =  cur->next;
1162   }
1163   smallest      = *smallest_ptr;
1164   *smallest_ptr = smallest->next;
1165   return smallest;
1166 }
1167 
1168 // Sort the scratch block list headed by res into decreasing size order,
1169 // and set "res" to the result.
1170 static void sort_scratch_list(ScratchBlock*& list) {
1171   ScratchBlock* sorted = NULL;
1172   ScratchBlock* unsorted = list;
1173   while (unsorted) {
1174     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1175     smallest->next  = sorted;
1176     sorted          = smallest;
1177   }
1178   list = sorted;
1179 }
1180 
1181 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1182                                                size_t max_alloc_words) {
1183   ScratchBlock* res = NULL;
1184   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1185   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1186   sort_scratch_list(res);
1187   return res;
1188 }
1189 
1190 void GenCollectedHeap::release_scratch() {
1191   _young_gen->reset_scratch();
1192   _old_gen->reset_scratch();
1193 }
1194 
1195 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1196   void do_generation(Generation* gen) {
1197     gen->prepare_for_verify();
1198   }
1199 };
1200 
1201 void GenCollectedHeap::prepare_for_verify() {
1202   ensure_parsability(false);        // no need to retire TLABs
1203   GenPrepareForVerifyClosure blk;
1204   generation_iterate(&blk, false);
1205 }
1206 
1207 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1208                                           bool old_to_young) {
1209   if (old_to_young) {
1210     cl->do_generation(_old_gen);
1211     cl->do_generation(_young_gen);
1212   } else {
1213     cl->do_generation(_young_gen);
1214     cl->do_generation(_old_gen);
1215   }
1216 }
1217 
1218 bool GenCollectedHeap::is_maximal_no_gc() const {
1219   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1220 }
1221 
1222 void GenCollectedHeap::save_marks() {
1223   _young_gen->save_marks();
1224   _old_gen->save_marks();
1225 }
1226 
1227 GenCollectedHeap* GenCollectedHeap::heap() {
1228   CollectedHeap* heap = Universe::heap();
1229   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1230   assert(heap->kind() == CollectedHeap::SerialHeap ||
1231          heap->kind() == CollectedHeap::CMSHeap, "Not a GenCollectedHeap");
1232   return (GenCollectedHeap*) heap;
1233 }
1234 
1235 void GenCollectedHeap::prepare_for_compaction() {
1236   // Start by compacting into same gen.
1237   CompactPoint cp(_old_gen);
1238   _old_gen->prepare_for_compaction(&cp);
1239   _young_gen->prepare_for_compaction(&cp);
1240 }
1241 
1242 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1243   log_debug(gc, verify)("%s", _old_gen->name());
1244   _old_gen->verify();
1245 
1246   log_debug(gc, verify)("%s", _old_gen->name());
1247   _young_gen->verify();
1248 
1249   log_debug(gc, verify)("RemSet");
1250   rem_set()->verify();
1251 }
1252 
1253 void GenCollectedHeap::print_on(outputStream* st) const {
1254   _young_gen->print_on(st);
1255   _old_gen->print_on(st);
1256   MetaspaceAux::print_on(st);
1257 }
1258 
1259 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1260 }
1261 
1262 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1263 }
1264 
1265 void GenCollectedHeap::print_tracing_info() const {
1266   if (log_is_enabled(Debug, gc, heap, exit)) {
1267     LogStreamHandle(Debug, gc, heap, exit) lsh;
1268     _young_gen->print_summary_info_on(&lsh);
1269     _old_gen->print_summary_info_on(&lsh);
1270   }
1271 }
1272 
1273 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1274   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1275                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1276   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1277                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1278 }
1279 
1280 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1281  private:
1282   bool _full;
1283  public:
1284   void do_generation(Generation* gen) {
1285     gen->gc_prologue(_full);
1286   }
1287   GenGCPrologueClosure(bool full) : _full(full) {};
1288 };
1289 
1290 void GenCollectedHeap::gc_prologue(bool full) {
1291   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1292 
1293   // Fill TLAB's and such
1294   CollectedHeap::accumulate_statistics_all_tlabs();
1295   ensure_parsability(true);   // retire TLABs
1296 
1297   // Walk generations
1298   GenGCPrologueClosure blk(full);
1299   generation_iterate(&blk, false);  // not old-to-young.
1300 };
1301 
1302 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1303  private:
1304   bool _full;
1305  public:
1306   void do_generation(Generation* gen) {
1307     gen->gc_epilogue(_full);
1308   }
1309   GenGCEpilogueClosure(bool full) : _full(full) {};
1310 };
1311 
1312 void GenCollectedHeap::gc_epilogue(bool full) {
1313 #if COMPILER2_OR_JVMCI
1314   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1315   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1316   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1317 #endif // COMPILER2_OR_JVMCI
1318 
1319   resize_all_tlabs();
1320 
1321   GenGCEpilogueClosure blk(full);
1322   generation_iterate(&blk, false);  // not old-to-young.
1323 
1324   if (!CleanChunkPoolAsync) {
1325     Chunk::clean_chunk_pool();
1326   }
1327 
1328   MetaspaceCounters::update_performance_counters();
1329   CompressedClassSpaceCounters::update_performance_counters();
1330 };
1331 
1332 #ifndef PRODUCT
1333 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1334  private:
1335  public:
1336   void do_generation(Generation* gen) {
1337     gen->record_spaces_top();
1338   }
1339 };
1340 
1341 void GenCollectedHeap::record_gen_tops_before_GC() {
1342   if (ZapUnusedHeapArea) {
1343     GenGCSaveTopsBeforeGCClosure blk;
1344     generation_iterate(&blk, false);  // not old-to-young.
1345   }
1346 }
1347 #endif  // not PRODUCT
1348 
1349 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1350  public:
1351   void do_generation(Generation* gen) {
1352     gen->ensure_parsability();
1353   }
1354 };
1355 
1356 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1357   CollectedHeap::ensure_parsability(retire_tlabs);
1358   GenEnsureParsabilityClosure ep_cl;
1359   generation_iterate(&ep_cl, false);
1360 }
1361 
1362 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1363                                               oop obj,
1364                                               size_t obj_size) {
1365   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1366   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1367   HeapWord* result = NULL;
1368 
1369   result = old_gen->expand_and_allocate(obj_size, false);
1370 
1371   if (result != NULL) {
1372     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1373   }
1374   return oop(result);
1375 }
1376 
1377 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1378   jlong _time;   // in ms
1379   jlong _now;    // in ms
1380 
1381  public:
1382   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1383 
1384   jlong time() { return _time; }
1385 
1386   void do_generation(Generation* gen) {
1387     _time = MIN2(_time, gen->time_of_last_gc(_now));
1388   }
1389 };
1390 
1391 jlong GenCollectedHeap::millis_since_last_gc() {
1392   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1393   // provided the underlying platform provides such a time source
1394   // (and it is bug free). So we still have to guard against getting
1395   // back a time later than 'now'.
1396   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1397   GenTimeOfLastGCClosure tolgc_cl(now);
1398   // iterate over generations getting the oldest
1399   // time that a generation was collected
1400   generation_iterate(&tolgc_cl, false);
1401 
1402   jlong retVal = now - tolgc_cl.time();
1403   if (retVal < 0) {
1404     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1405        ". returning zero instead.", retVal);
1406     return 0;
1407   }
1408   return retVal;
1409 }