/* * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "prims/jvmtiRawMonitor.hpp" #include "runtime/atomic.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/orderAccess.inline.hpp" #include "runtime/thread.inline.hpp" GrowableArray *JvmtiPendingMonitors::_monitors = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(1,true); void JvmtiPendingMonitors::transition_raw_monitors() { assert((Threads::number_of_threads()==1), "Java thread has not created yet or more than one java thread \ is running. Raw monitor transition will not work"); JavaThread *current_java_thread = JavaThread::current(); assert(current_java_thread->thread_state() == _thread_in_vm, "Must be in vm"); { ThreadBlockInVM __tbivm(current_java_thread); for(int i=0; i< count(); i++) { JvmtiRawMonitor *rmonitor = monitors()->at(i); int r = rmonitor->raw_enter(current_java_thread); assert(r == ObjectMonitor::OM_OK, "raw_enter should have worked"); } } // pending monitors are converted to real monitor so delete them all. dispose(); } // // class JvmtiRawMonitor // JvmtiRawMonitor::JvmtiRawMonitor(const char *name) { #ifdef ASSERT _name = strcpy(NEW_C_HEAP_ARRAY(char, strlen(name) + 1, mtInternal), name); #else _name = NULL; #endif _magic = JVMTI_RM_MAGIC; } JvmtiRawMonitor::~JvmtiRawMonitor() { #ifdef ASSERT FreeHeap(_name); #endif _magic = 0; } bool JvmtiRawMonitor::is_valid() { int value = 0; // This object might not be a JvmtiRawMonitor so we can't assume // the _magic field is properly aligned. Get the value in a safe // way and then check against JVMTI_RM_MAGIC. switch (sizeof(_magic)) { case 2: value = Bytes::get_native_u2((address)&_magic); break; case 4: value = Bytes::get_native_u4((address)&_magic); break; case 8: value = Bytes::get_native_u8((address)&_magic); break; default: guarantee(false, "_magic field is an unexpected size"); } return value == JVMTI_RM_MAGIC; } // ------------------------------------------------------------------------- // The raw monitor subsystem is entirely distinct from normal // java-synchronization or jni-synchronization. raw monitors are not // associated with objects. They can be implemented in any manner // that makes sense. The original implementors decided to piggy-back // the raw-monitor implementation on the existing Java objectMonitor mechanism. // This flaw needs to fixed. We should reimplement raw monitors as sui-generis. // Specifically, we should not implement raw monitors via java monitors. // Time permitting, we should disentangle and deconvolve the two implementations // and move the resulting raw monitor implementation over to the JVMTI directories. // Ideally, the raw monitor implementation would be built on top of // park-unpark and nothing else. // // raw monitors are used mainly by JVMTI // The raw monitor implementation borrows the ObjectMonitor structure, // but the operators are degenerate and extremely simple. // // Mixed use of a single objectMonitor instance -- as both a raw monitor // and a normal java monitor -- is not permissible. // // Note that we use the single RawMonitor_lock to protect queue operations for // _all_ raw monitors. This is a scalability impediment, but since raw monitor usage // is deprecated and rare, this is not of concern. The RawMonitor_lock can not // be held indefinitely. The critical sections must be short and bounded. // // ------------------------------------------------------------------------- int JvmtiRawMonitor::SimpleEnter (Thread * Self) { for (;;) { if (Atomic::replace_if_null(Self, &_owner)) { return OS_OK ; } ObjectWaiter Node (Self) ; Self->_ParkEvent->reset() ; // strictly optional Node.TState = ObjectWaiter::TS_ENTER ; RawMonitor_lock->lock_without_safepoint_check() ; Node._next = _EntryList ; _EntryList = &Node ; OrderAccess::fence() ; if (_owner == NULL && Atomic::replace_if_null(Self, &_owner)) { _EntryList = Node._next ; RawMonitor_lock->unlock() ; return OS_OK ; } RawMonitor_lock->unlock() ; while (Node.TState == ObjectWaiter::TS_ENTER) { Self->_ParkEvent->park() ; } } } int JvmtiRawMonitor::SimpleExit (Thread * Self) { guarantee (_owner == Self, "invariant") ; OrderAccess::release_store(&_owner, (void*)NULL) ; OrderAccess::fence() ; if (_EntryList == NULL) return OS_OK ; ObjectWaiter * w ; RawMonitor_lock->lock_without_safepoint_check() ; w = _EntryList ; if (w != NULL) { _EntryList = w->_next ; } RawMonitor_lock->unlock() ; if (w != NULL) { guarantee (w ->TState == ObjectWaiter::TS_ENTER, "invariant") ; ParkEvent * ev = w->_event ; w->TState = ObjectWaiter::TS_RUN ; OrderAccess::fence() ; ev->unpark() ; } return OS_OK ; } int JvmtiRawMonitor::SimpleWait (Thread * Self, jlong millis) { guarantee (_owner == Self , "invariant") ; guarantee (_recursions == 0, "invariant") ; ObjectWaiter Node (Self) ; Node._notified = 0 ; Node.TState = ObjectWaiter::TS_WAIT ; RawMonitor_lock->lock_without_safepoint_check() ; Node._next = _WaitSet ; _WaitSet = &Node ; RawMonitor_lock->unlock() ; SimpleExit (Self) ; guarantee (_owner != Self, "invariant") ; int ret = OS_OK ; if (millis <= 0) { Self->_ParkEvent->park(); } else { ret = Self->_ParkEvent->park(millis); } // If thread still resides on the waitset then unlink it. // Double-checked locking -- the usage is safe in this context // as we TState is volatile and the lock-unlock operators are // serializing (barrier-equivalent). if (Node.TState == ObjectWaiter::TS_WAIT) { RawMonitor_lock->lock_without_safepoint_check() ; if (Node.TState == ObjectWaiter::TS_WAIT) { // Simple O(n) unlink, but performance isn't critical here. ObjectWaiter * p ; ObjectWaiter * q = NULL ; for (p = _WaitSet ; p != &Node; p = p->_next) { q = p ; } guarantee (p == &Node, "invariant") ; if (q == NULL) { guarantee (p == _WaitSet, "invariant") ; _WaitSet = p->_next ; } else { guarantee (p == q->_next, "invariant") ; q->_next = p->_next ; } Node.TState = ObjectWaiter::TS_RUN ; } RawMonitor_lock->unlock() ; } guarantee (Node.TState == ObjectWaiter::TS_RUN, "invariant") ; SimpleEnter (Self) ; guarantee (_owner == Self, "invariant") ; guarantee (_recursions == 0, "invariant") ; return ret ; } int JvmtiRawMonitor::SimpleNotify (Thread * Self, bool All) { guarantee (_owner == Self, "invariant") ; if (_WaitSet == NULL) return OS_OK ; // We have two options: // A. Transfer the threads from the WaitSet to the EntryList // B. Remove the thread from the WaitSet and unpark() it. // // We use (B), which is crude and results in lots of futile // context switching. In particular (B) induces lots of contention. ParkEvent * ev = NULL ; // consider using a small auto array ... RawMonitor_lock->lock_without_safepoint_check() ; for (;;) { ObjectWaiter * w = _WaitSet ; if (w == NULL) break ; _WaitSet = w->_next ; if (ev != NULL) { ev->unpark(); ev = NULL; } ev = w->_event ; OrderAccess::loadstore() ; w->TState = ObjectWaiter::TS_RUN ; OrderAccess::storeload(); if (!All) break ; } RawMonitor_lock->unlock() ; if (ev != NULL) ev->unpark(); return OS_OK ; } // Any JavaThread will enter here with state _thread_blocked int JvmtiRawMonitor::raw_enter(TRAPS) { TEVENT (raw_enter) ; void * Contended ; // don't enter raw monitor if thread is being externally suspended, it will // surprise the suspender if a "suspended" thread can still enter monitor JavaThread * jt = (JavaThread *)THREAD; if (THREAD->is_Java_thread()) { jt->SR_lock()->lock_without_safepoint_check(); while (jt->is_external_suspend()) { jt->SR_lock()->unlock(); jt->java_suspend_self(); jt->SR_lock()->lock_without_safepoint_check(); } // guarded by SR_lock to avoid racing with new external suspend requests. Contended = Atomic::cmpxchg(THREAD, &_owner, (void*)NULL); jt->SR_lock()->unlock(); } else { Contended = Atomic::cmpxchg(THREAD, &_owner, (void*)NULL); } if (Contended == THREAD) { _recursions ++ ; return OM_OK ; } if (Contended == NULL) { guarantee (_owner == THREAD, "invariant") ; guarantee (_recursions == 0, "invariant") ; return OM_OK ; } THREAD->set_current_pending_monitor(this); if (!THREAD->is_Java_thread()) { // No other non-Java threads besides VM thread would acquire // a raw monitor. assert(THREAD->is_VM_thread(), "must be VM thread"); SimpleEnter (THREAD) ; } else { guarantee (jt->thread_state() == _thread_blocked, "invariant") ; for (;;) { jt->set_suspend_equivalent(); // cleared by handle_special_suspend_equivalent_condition() or // java_suspend_self() SimpleEnter (THREAD) ; // were we externally suspended while we were waiting? if (!jt->handle_special_suspend_equivalent_condition()) break ; // This thread was externally suspended // // This logic isn't needed for JVMTI raw monitors, // but doesn't hurt just in case the suspend rules change. This // logic is needed for the JvmtiRawMonitor.wait() reentry phase. // We have reentered the contended monitor, but while we were // waiting another thread suspended us. We don't want to reenter // the monitor while suspended because that would surprise the // thread that suspended us. // // Drop the lock - SimpleExit (THREAD) ; jt->java_suspend_self(); } assert(_owner == THREAD, "Fatal error with monitor owner!"); assert(_recursions == 0, "Fatal error with monitor recursions!"); } THREAD->set_current_pending_monitor(NULL); guarantee (_recursions == 0, "invariant") ; return OM_OK; } // Used mainly for JVMTI raw monitor implementation // Also used for JvmtiRawMonitor::wait(). int JvmtiRawMonitor::raw_exit(TRAPS) { TEVENT (raw_exit) ; if (THREAD != _owner) { return OM_ILLEGAL_MONITOR_STATE; } if (_recursions > 0) { --_recursions ; return OM_OK ; } void * List = _EntryList ; SimpleExit (THREAD) ; return OM_OK; } // Used for JVMTI raw monitor implementation. // All JavaThreads will enter here with state _thread_blocked int JvmtiRawMonitor::raw_wait(jlong millis, bool interruptible, TRAPS) { TEVENT (raw_wait) ; if (THREAD != _owner) { return OM_ILLEGAL_MONITOR_STATE; } // To avoid spurious wakeups we reset the parkevent -- This is strictly optional. // The caller must be able to tolerate spurious returns from raw_wait(). THREAD->_ParkEvent->reset() ; OrderAccess::fence() ; // check interrupt event if (interruptible && Thread::is_interrupted(THREAD, true)) { return OM_INTERRUPTED; } intptr_t save = _recursions ; _recursions = 0 ; _waiters ++ ; if (THREAD->is_Java_thread()) { guarantee (((JavaThread *) THREAD)->thread_state() == _thread_blocked, "invariant") ; ((JavaThread *)THREAD)->set_suspend_equivalent(); } int rv = SimpleWait (THREAD, millis) ; _recursions = save ; _waiters -- ; guarantee (THREAD == _owner, "invariant") ; if (THREAD->is_Java_thread()) { JavaThread * jSelf = (JavaThread *) THREAD ; for (;;) { if (!jSelf->handle_special_suspend_equivalent_condition()) break ; SimpleExit (THREAD) ; jSelf->java_suspend_self(); SimpleEnter (THREAD) ; jSelf->set_suspend_equivalent() ; } } guarantee (THREAD == _owner, "invariant") ; if (interruptible && Thread::is_interrupted(THREAD, true)) { return OM_INTERRUPTED; } return OM_OK ; } int JvmtiRawMonitor::raw_notify(TRAPS) { TEVENT (raw_notify) ; if (THREAD != _owner) { return OM_ILLEGAL_MONITOR_STATE; } SimpleNotify (THREAD, false) ; return OM_OK; } int JvmtiRawMonitor::raw_notifyAll(TRAPS) { TEVENT (raw_notifyAll) ; if (THREAD != _owner) { return OM_ILLEGAL_MONITOR_STATE; } SimpleNotify (THREAD, true) ; return OM_OK; }