1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc/shared/allocTracer.hpp"
  28 #include "gc/shared/barrierSet.inline.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "gc/shared/gcLocker.inline.hpp"
  32 #include "gc/shared/gcHeapSummary.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/gcWhen.hpp"
  36 #include "gc/shared/vmGCOperations.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/metaspace.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "oops/instanceMirrorKlass.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/init.hpp"
  43 #include "runtime/thread.inline.hpp"
  44 #include "runtime/threadSMR.hpp"
  45 #include "runtime/vmThread.hpp"
  46 #include "services/heapDumper.hpp"
  47 #include "utilities/align.hpp"
  48 
  49 class ClassLoaderData;
  50 
  51 #ifdef ASSERT
  52 int CollectedHeap::_fire_out_of_memory_count = 0;
  53 #endif
  54 
  55 size_t CollectedHeap::_filler_array_max_size = 0;
  56 
  57 template <>
  58 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
  59   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
  60   st->print_raw(m);
  61 }
  62 
  63 void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
  64   if (!should_log()) {
  65     return;
  66   }
  67 
  68   double timestamp = fetch_timestamp();
  69   MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
  70   int index = compute_log_index();
  71   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
  72   _records[index].timestamp = timestamp;
  73   _records[index].data.is_before = before;
  74   stringStream st(_records[index].data.buffer(), _records[index].data.size());
  75 
  76   st.print_cr("{Heap %s GC invocations=%u (full %u):",
  77                  before ? "before" : "after",
  78                  heap->total_collections(),
  79                  heap->total_full_collections());
  80 
  81   heap->print_on(&st);
  82   st.print_cr("}");
  83 }
  84 
  85 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
  86   size_t capacity_in_words = capacity() / HeapWordSize;
  87 
  88   return VirtualSpaceSummary(
  89     reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
  90 }
  91 
  92 GCHeapSummary CollectedHeap::create_heap_summary() {
  93   VirtualSpaceSummary heap_space = create_heap_space_summary();
  94   return GCHeapSummary(heap_space, used());
  95 }
  96 
  97 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
  98   const MetaspaceSizes meta_space(
  99       MetaspaceAux::committed_bytes(),
 100       MetaspaceAux::used_bytes(),
 101       MetaspaceAux::reserved_bytes());
 102   const MetaspaceSizes data_space(
 103       MetaspaceAux::committed_bytes(Metaspace::NonClassType),
 104       MetaspaceAux::used_bytes(Metaspace::NonClassType),
 105       MetaspaceAux::reserved_bytes(Metaspace::NonClassType));
 106   const MetaspaceSizes class_space(
 107       MetaspaceAux::committed_bytes(Metaspace::ClassType),
 108       MetaspaceAux::used_bytes(Metaspace::ClassType),
 109       MetaspaceAux::reserved_bytes(Metaspace::ClassType));
 110 
 111   const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
 112     MetaspaceAux::chunk_free_list_summary(Metaspace::NonClassType);
 113   const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
 114     MetaspaceAux::chunk_free_list_summary(Metaspace::ClassType);
 115 
 116   return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
 117                           ms_chunk_free_list_summary, class_chunk_free_list_summary);
 118 }
 119 
 120 void CollectedHeap::print_heap_before_gc() {
 121   Universe::print_heap_before_gc();
 122   if (_gc_heap_log != NULL) {
 123     _gc_heap_log->log_heap_before(this);
 124   }
 125 }
 126 
 127 void CollectedHeap::print_heap_after_gc() {
 128   Universe::print_heap_after_gc();
 129   if (_gc_heap_log != NULL) {
 130     _gc_heap_log->log_heap_after(this);
 131   }
 132 }
 133 
 134 void CollectedHeap::print_on_error(outputStream* st) const {
 135   st->print_cr("Heap:");
 136   print_extended_on(st);
 137   st->cr();
 138 
 139   _barrier_set->print_on(st);
 140 }
 141 
 142 void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 143   const GCHeapSummary& heap_summary = create_heap_summary();
 144   gc_tracer->report_gc_heap_summary(when, heap_summary);
 145 
 146   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 147   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 148 }
 149 
 150 void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
 151   trace_heap(GCWhen::BeforeGC, gc_tracer);
 152 }
 153 
 154 void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
 155   trace_heap(GCWhen::AfterGC, gc_tracer);
 156 }
 157 
 158 // WhiteBox API support for concurrent collectors.  These are the
 159 // default implementations, for collectors which don't support this
 160 // feature.
 161 bool CollectedHeap::supports_concurrent_phase_control() const {
 162   return false;
 163 }
 164 
 165 const char* const* CollectedHeap::concurrent_phases() const {
 166   static const char* const result[] = { NULL };
 167   return result;
 168 }
 169 
 170 bool CollectedHeap::request_concurrent_phase(const char* phase) {
 171   return false;
 172 }
 173 
 174 // Memory state functions.
 175 
 176 
 177 CollectedHeap::CollectedHeap() :
 178   _barrier_set(NULL),
 179   _is_gc_active(false),
 180   _total_collections(0),
 181   _total_full_collections(0),
 182   _gc_cause(GCCause::_no_gc),
 183   _gc_lastcause(GCCause::_no_gc)
 184 {
 185   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
 186   const size_t elements_per_word = HeapWordSize / sizeof(jint);
 187   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
 188                                              max_len / elements_per_word);
 189 
 190   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
 191   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
 192 
 193   if (UsePerfData) {
 194     EXCEPTION_MARK;
 195 
 196     // create the gc cause jvmstat counters
 197     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
 198                              80, GCCause::to_string(_gc_cause), CHECK);
 199 
 200     _perf_gc_lastcause =
 201                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
 202                              80, GCCause::to_string(_gc_lastcause), CHECK);
 203   }
 204 
 205   // Create the ring log
 206   if (LogEvents) {
 207     _gc_heap_log = new GCHeapLog();
 208   } else {
 209     _gc_heap_log = NULL;
 210   }
 211 }
 212 
 213 // This interface assumes that it's being called by the
 214 // vm thread. It collects the heap assuming that the
 215 // heap lock is already held and that we are executing in
 216 // the context of the vm thread.
 217 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 218   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 219   assert(Heap_lock->is_locked(), "Precondition#2");
 220   GCCauseSetter gcs(this, cause);
 221   switch (cause) {
 222     case GCCause::_heap_inspection:
 223     case GCCause::_heap_dump:
 224     case GCCause::_metadata_GC_threshold : {
 225       HandleMark hm;
 226       do_full_collection(false);        // don't clear all soft refs
 227       break;
 228     }
 229     case GCCause::_metadata_GC_clear_soft_refs: {
 230       HandleMark hm;
 231       do_full_collection(true);         // do clear all soft refs
 232       break;
 233     }
 234     default:
 235       ShouldNotReachHere(); // Unexpected use of this function
 236   }
 237 }
 238 
 239 MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 240                                                             size_t word_size,
 241                                                             Metaspace::MetadataType mdtype) {
 242   uint loop_count = 0;
 243   uint gc_count = 0;
 244   uint full_gc_count = 0;
 245 
 246   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 247 
 248   do {
 249     MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
 250     if (result != NULL) {
 251       return result;
 252     }
 253 
 254     if (GCLocker::is_active_and_needs_gc()) {
 255       // If the GCLocker is active, just expand and allocate.
 256       // If that does not succeed, wait if this thread is not
 257       // in a critical section itself.
 258       result = loader_data->metaspace_non_null()->expand_and_allocate(word_size, mdtype);
 259       if (result != NULL) {
 260         return result;
 261       }
 262       JavaThread* jthr = JavaThread::current();
 263       if (!jthr->in_critical()) {
 264         // Wait for JNI critical section to be exited
 265         GCLocker::stall_until_clear();
 266         // The GC invoked by the last thread leaving the critical
 267         // section will be a young collection and a full collection
 268         // is (currently) needed for unloading classes so continue
 269         // to the next iteration to get a full GC.
 270         continue;
 271       } else {
 272         if (CheckJNICalls) {
 273           fatal("Possible deadlock due to allocating while"
 274                 " in jni critical section");
 275         }
 276         return NULL;
 277       }
 278     }
 279 
 280     {  // Need lock to get self consistent gc_count's
 281       MutexLocker ml(Heap_lock);
 282       gc_count      = Universe::heap()->total_collections();
 283       full_gc_count = Universe::heap()->total_full_collections();
 284     }
 285 
 286     // Generate a VM operation
 287     VM_CollectForMetadataAllocation op(loader_data,
 288                                        word_size,
 289                                        mdtype,
 290                                        gc_count,
 291                                        full_gc_count,
 292                                        GCCause::_metadata_GC_threshold);
 293     VMThread::execute(&op);
 294 
 295     // If GC was locked out, try again. Check before checking success because the
 296     // prologue could have succeeded and the GC still have been locked out.
 297     if (op.gc_locked()) {
 298       continue;
 299     }
 300 
 301     if (op.prologue_succeeded()) {
 302       return op.result();
 303     }
 304     loop_count++;
 305     if ((QueuedAllocationWarningCount > 0) &&
 306         (loop_count % QueuedAllocationWarningCount == 0)) {
 307       log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times,"
 308                             " size=" SIZE_FORMAT, loop_count, word_size);
 309     }
 310   } while (true);  // Until a GC is done
 311 }
 312 
 313 void CollectedHeap::set_barrier_set(BarrierSet* barrier_set) {
 314   _barrier_set = barrier_set;
 315   BarrierSet::set_bs(barrier_set);
 316 }
 317 
 318 #ifndef PRODUCT
 319 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
 320   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 321     for (size_t slot = 0; slot < size; slot += 1) {
 322       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
 323              "Found badHeapWordValue in post-allocation check");
 324     }
 325   }
 326 }
 327 
 328 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 329   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 330     for (size_t slot = 0; slot < size; slot += 1) {
 331       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 332              "Found non badHeapWordValue in pre-allocation check");
 333     }
 334   }
 335 }
 336 #endif // PRODUCT
 337 
 338 #ifdef ASSERT
 339 void CollectedHeap::check_for_valid_allocation_state() {
 340   Thread *thread = Thread::current();
 341   // How to choose between a pending exception and a potential
 342   // OutOfMemoryError?  Don't allow pending exceptions.
 343   // This is a VM policy failure, so how do we exhaustively test it?
 344   assert(!thread->has_pending_exception(),
 345          "shouldn't be allocating with pending exception");
 346   if (StrictSafepointChecks) {
 347     assert(thread->allow_allocation(),
 348            "Allocation done by thread for which allocation is blocked "
 349            "by No_Allocation_Verifier!");
 350     // Allocation of an oop can always invoke a safepoint,
 351     // hence, the true argument
 352     thread->check_for_valid_safepoint_state(true);
 353   }
 354 }
 355 #endif
 356 
 357 HeapWord* CollectedHeap::allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size) {
 358 
 359   // Retain tlab and allocate object in shared space if
 360   // the amount free in the tlab is too large to discard.
 361   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 362     thread->tlab().record_slow_allocation(size);
 363     return NULL;
 364   }
 365 
 366   // Discard tlab and allocate a new one.
 367   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 368   size_t new_tlab_size = thread->tlab().compute_size(size);
 369 
 370   thread->tlab().clear_before_allocation();
 371 
 372   if (new_tlab_size == 0) {
 373     return NULL;
 374   }
 375 
 376   // Allocate a new TLAB...
 377   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 378   if (obj == NULL) {
 379     return NULL;
 380   }
 381 
 382   AllocTracer::send_allocation_in_new_tlab(klass, obj, new_tlab_size * HeapWordSize, size * HeapWordSize, thread);
 383 
 384   if (ZeroTLAB) {
 385     // ..and clear it.
 386     Copy::zero_to_words(obj, new_tlab_size);
 387   } else {
 388     // ...and zap just allocated object.
 389 #ifdef ASSERT
 390     // Skip mangling the space corresponding to the object header to
 391     // ensure that the returned space is not considered parsable by
 392     // any concurrent GC thread.
 393     size_t hdr_size = oopDesc::header_size();
 394     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
 395 #endif // ASSERT
 396   }
 397   thread->tlab().fill(obj, obj + size, new_tlab_size);
 398   return obj;
 399 }
 400 
 401 size_t CollectedHeap::max_tlab_size() const {
 402   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
 403   // This restriction could be removed by enabling filling with multiple arrays.
 404   // If we compute that the reasonable way as
 405   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
 406   // we'll overflow on the multiply, so we do the divide first.
 407   // We actually lose a little by dividing first,
 408   // but that just makes the TLAB  somewhat smaller than the biggest array,
 409   // which is fine, since we'll be able to fill that.
 410   size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
 411               sizeof(jint) *
 412               ((juint) max_jint / (size_t) HeapWordSize);
 413   return align_down(max_int_size, MinObjAlignment);
 414 }
 415 
 416 size_t CollectedHeap::filler_array_hdr_size() {
 417   return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long
 418 }
 419 
 420 size_t CollectedHeap::filler_array_min_size() {
 421   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 422 }
 423 
 424 #ifdef ASSERT
 425 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 426 {
 427   assert(words >= min_fill_size(), "too small to fill");
 428   assert(is_object_aligned(words), "unaligned size");
 429   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 430   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 431 }
 432 
 433 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 434 {
 435   if (ZapFillerObjects && zap) {
 436     Copy::fill_to_words(start + filler_array_hdr_size(),
 437                         words - filler_array_hdr_size(), 0XDEAFBABE);
 438   }
 439 }
 440 #endif // ASSERT
 441 
 442 void
 443 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 444 {
 445   assert(words >= filler_array_min_size(), "too small for an array");
 446   assert(words <= filler_array_max_size(), "too big for a single object");
 447 
 448   const size_t payload_size = words - filler_array_hdr_size();
 449   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 450   assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len);
 451 
 452   // Set the length first for concurrent GC.
 453   ((arrayOop)start)->set_length((int)len);
 454   post_allocation_setup_common(Universe::intArrayKlassObj(), start);
 455   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 456 }
 457 
 458 void
 459 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 460 {
 461   assert(words <= filler_array_max_size(), "too big for a single object");
 462 
 463   if (words >= filler_array_min_size()) {
 464     fill_with_array(start, words, zap);
 465   } else if (words > 0) {
 466     assert(words == min_fill_size(), "unaligned size");
 467     post_allocation_setup_common(SystemDictionary::Object_klass(), start);
 468   }
 469 }
 470 
 471 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 472 {
 473   DEBUG_ONLY(fill_args_check(start, words);)
 474   HandleMark hm;  // Free handles before leaving.
 475   fill_with_object_impl(start, words, zap);
 476 }
 477 
 478 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 479 {
 480   DEBUG_ONLY(fill_args_check(start, words);)
 481   HandleMark hm;  // Free handles before leaving.
 482 
 483   // Multiple objects may be required depending on the filler array maximum size. Fill
 484   // the range up to that with objects that are filler_array_max_size sized. The
 485   // remainder is filled with a single object.
 486   const size_t min = min_fill_size();
 487   const size_t max = filler_array_max_size();
 488   while (words > max) {
 489     const size_t cur = (words - max) >= min ? max : max - min;
 490     fill_with_array(start, cur, zap);
 491     start += cur;
 492     words -= cur;
 493   }
 494 
 495   fill_with_object_impl(start, words, zap);
 496 }
 497 
 498 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 499   guarantee(false, "thread-local allocation buffers not supported");
 500   return NULL;
 501 }
 502 
 503 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 504   // The second disjunct in the assertion below makes a concession
 505   // for the start-up verification done while the VM is being
 506   // created. Callers be careful that you know that mutators
 507   // aren't going to interfere -- for instance, this is permissible
 508   // if we are still single-threaded and have either not yet
 509   // started allocating (nothing much to verify) or we have
 510   // started allocating but are now a full-fledged JavaThread
 511   // (and have thus made our TLAB's) available for filling.
 512   assert(SafepointSynchronize::is_at_safepoint() ||
 513          !is_init_completed(),
 514          "Should only be called at a safepoint or at start-up"
 515          " otherwise concurrent mutator activity may make heap "
 516          " unparsable again");
 517   const bool use_tlab = UseTLAB;
 518   // The main thread starts allocating via a TLAB even before it
 519   // has added itself to the threads list at vm boot-up.
 520   JavaThreadIteratorWithHandle jtiwh;
 521   assert(!use_tlab || jtiwh.length() > 0,
 522          "Attempt to fill tlabs before main thread has been added"
 523          " to threads list is doomed to failure!");
 524   BarrierSet *bs = barrier_set();
 525   for (; JavaThread *thread = jtiwh.next(); ) {
 526      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 527      bs->make_parsable(thread);
 528   }
 529 }
 530 
 531 void CollectedHeap::accumulate_statistics_all_tlabs() {
 532   if (UseTLAB) {
 533     assert(SafepointSynchronize::is_at_safepoint() ||
 534          !is_init_completed(),
 535          "should only accumulate statistics on tlabs at safepoint");
 536 
 537     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 538   }
 539 }
 540 
 541 void CollectedHeap::resize_all_tlabs() {
 542   if (UseTLAB) {
 543     assert(SafepointSynchronize::is_at_safepoint() ||
 544          !is_init_completed(),
 545          "should only resize tlabs at safepoint");
 546 
 547     ThreadLocalAllocBuffer::resize_all_tlabs();
 548   }
 549 }
 550 
 551 void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
 552   assert(timer != NULL, "timer is null");
 553   if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
 554     GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
 555     HeapDumper::dump_heap();
 556   }
 557 
 558   LogTarget(Trace, gc, classhisto) lt;
 559   if (lt.is_enabled()) {
 560     GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
 561     ResourceMark rm;
 562     LogStream ls(lt);
 563     VM_GC_HeapInspection inspector(&ls, false /* ! full gc */);
 564     inspector.doit();
 565   }
 566 }
 567 
 568 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
 569   full_gc_dump(timer, true);
 570 }
 571 
 572 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
 573   full_gc_dump(timer, false);
 574 }
 575 
 576 void CollectedHeap::initialize_reserved_region(HeapWord *start, HeapWord *end) {
 577   // It is important to do this in a way such that concurrent readers can't
 578   // temporarily think something is in the heap.  (Seen this happen in asserts.)
 579   _reserved.set_word_size(0);
 580   _reserved.set_start(start);
 581   _reserved.set_end(end);
 582 }
 583 
 584 void CollectedHeap::post_initialize() {
 585   initialize_serviceability();
 586 }