1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
  26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
  27 
  28 #include "runtime/globals.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include <new>
  33 
  34 class AllocFailStrategy {
  35 public:
  36   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
  37 };
  38 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
  39 
  40 // The virtual machine must never call one of the implicitly declared
  41 // global allocation or deletion functions.  (Such calls may result in
  42 // link-time or run-time errors.)  For convenience and documentation of
  43 // intended use, classes in the virtual machine may be derived from one
  44 // of the following allocation classes, some of which define allocation
  45 // and deletion functions.
  46 // Note: std::malloc and std::free should never called directly.
  47 
  48 //
  49 // For objects allocated in the resource area (see resourceArea.hpp).
  50 // - ResourceObj
  51 //
  52 // For objects allocated in the C-heap (managed by: free & malloc and tracked with NMT)
  53 // - CHeapObj
  54 //
  55 // For objects allocated on the stack.
  56 // - StackObj
  57 //
  58 // For classes used as name spaces.
  59 // - AllStatic
  60 //
  61 // For classes in Metaspace (class data)
  62 // - MetaspaceObj
  63 //
  64 // The printable subclasses are used for debugging and define virtual
  65 // member functions for printing. Classes that avoid allocating the
  66 // vtbl entries in the objects should therefore not be the printable
  67 // subclasses.
  68 //
  69 // The following macros and function should be used to allocate memory
  70 // directly in the resource area or in the C-heap, The _OBJ variants
  71 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
  72 // objects which are not inherited from CHeapObj, note constructor and
  73 // destructor are not called. The preferable way to allocate objects
  74 // is using the new operator.
  75 //
  76 // WARNING: The array variant must only be used for a homogenous array
  77 // where all objects are of the exact type specified. If subtypes are
  78 // stored in the array then must pay attention to calling destructors
  79 // at needed.
  80 //
  81 //   NEW_RESOURCE_ARRAY(type, size)
  82 //   NEW_RESOURCE_OBJ(type)
  83 //   NEW_C_HEAP_ARRAY(type, size)
  84 //   NEW_C_HEAP_OBJ(type, memflags)
  85 //   FREE_C_HEAP_ARRAY(type, old)
  86 //   FREE_C_HEAP_OBJ(objname, type, memflags)
  87 //   char* AllocateHeap(size_t size, const char* name);
  88 //   void  FreeHeap(void* p);
  89 //
  90 
  91 // In non product mode we introduce a super class for all allocation classes
  92 // that supports printing.
  93 // We avoid the superclass in product mode to save space.
  94 
  95 #ifdef PRODUCT
  96 #define ALLOCATION_SUPER_CLASS_SPEC
  97 #else
  98 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
  99 class AllocatedObj {
 100  public:
 101   // Printing support
 102   void print() const;
 103   void print_value() const;
 104 
 105   virtual void print_on(outputStream* st) const;
 106   virtual void print_value_on(outputStream* st) const;
 107 };
 108 #endif
 109 
 110 
 111 /*
 112  * Memory types
 113  */
 114 enum MemoryType {
 115   // Memory type by sub systems. It occupies lower byte.
 116   mtJavaHeap          = 0x00,  // Java heap
 117   mtClass             = 0x01,  // memory class for Java classes
 118   mtThread            = 0x02,  // memory for thread objects
 119   mtThreadStack       = 0x03,
 120   mtCode              = 0x04,  // memory for generated code
 121   mtGC                = 0x05,  // memory for GC
 122   mtCompiler          = 0x06,  // memory for compiler
 123   mtInternal          = 0x07,  // memory used by VM, but does not belong to
 124                                  // any of above categories, and not used for
 125                                  // native memory tracking
 126   mtOther             = 0x08,  // memory not used by VM
 127   mtSymbol            = 0x09,  // symbol
 128   mtNMT               = 0x0A,  // memory used by native memory tracking
 129   mtClassShared       = 0x0B,  // class data sharing
 130   mtChunk             = 0x0C,  // chunk that holds content of arenas
 131   mtTest              = 0x0D,  // Test type for verifying NMT
 132   mtTracing           = 0x0E,  // memory used for Tracing
 133   mtLogging           = 0x0F,  // memory for logging
 134   mtArguments         = 0x10,  // memory for argument processing
 135   mtModule            = 0x11,  // memory for module processing
 136   mtNone              = 0x12,  // undefined
 137   mt_number_of_types  = 0x13   // number of memory types (mtDontTrack
 138                                  // is not included as validate type)
 139 };
 140 
 141 typedef MemoryType MEMFLAGS;
 142 
 143 
 144 #if INCLUDE_NMT
 145 
 146 extern bool NMT_track_callsite;
 147 
 148 #else
 149 
 150 const bool NMT_track_callsite = false;
 151 
 152 #endif // INCLUDE_NMT
 153 
 154 class NativeCallStack;
 155 
 156 
 157 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
 158  public:
 159   NOINLINE void* operator new(size_t size, const NativeCallStack& stack) throw();
 160   NOINLINE void* operator new(size_t size) throw();
 161   NOINLINE void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
 162                                const NativeCallStack& stack) throw();
 163   NOINLINE void* operator new (size_t size, const std::nothrow_t&  nothrow_constant)
 164                                throw();
 165   NOINLINE void* operator new [](size_t size, const NativeCallStack& stack) throw();
 166   NOINLINE void* operator new [](size_t size) throw();
 167   NOINLINE void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 168                                const NativeCallStack& stack) throw();
 169   NOINLINE void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant)
 170                                throw();
 171   void  operator delete(void* p);
 172   void  operator delete [] (void* p);
 173 };
 174 
 175 // Base class for objects allocated on the stack only.
 176 // Calling new or delete will result in fatal error.
 177 
 178 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
 179  private:
 180   void* operator new(size_t size) throw();
 181   void* operator new [](size_t size) throw();
 182 #ifdef __IBMCPP__
 183  public:
 184 #endif
 185   void  operator delete(void* p);
 186   void  operator delete [](void* p);
 187 };
 188 
 189 // Base class for objects stored in Metaspace.
 190 // Calling delete will result in fatal error.
 191 //
 192 // Do not inherit from something with a vptr because this class does
 193 // not introduce one.  This class is used to allocate both shared read-only
 194 // and shared read-write classes.
 195 //
 196 
 197 class ClassLoaderData;
 198 class MetaspaceClosure;
 199 
 200 class MetaspaceObj {
 201   friend class MetaspaceShared;
 202   // When CDS is enabled, all shared metaspace objects are mapped
 203   // into a single contiguous memory block, so we can use these
 204   // two pointers to quickly determine if something is in the
 205   // shared metaspace.
 206   //
 207   // When CDS is not enabled, both pointers are set to NULL.
 208   static void* _shared_metaspace_base; // (inclusive) low address
 209   static void* _shared_metaspace_top;  // (exclusive) high address
 210 
 211  public:
 212   bool is_metaspace_object() const;
 213   bool is_shared() const {
 214     // If no shared metaspace regions are mapped, _shared_metaspace_{base,top} will
 215     // both be NULL and all values of p will be rejected quickly.
 216     return (((void*)this) < _shared_metaspace_top && ((void*)this) >= _shared_metaspace_base);
 217   }
 218   void print_address_on(outputStream* st) const;  // nonvirtual address printing
 219 
 220 #define METASPACE_OBJ_TYPES_DO(f) \
 221   f(Class) \
 222   f(Symbol) \
 223   f(TypeArrayU1) \
 224   f(TypeArrayU2) \
 225   f(TypeArrayU4) \
 226   f(TypeArrayU8) \
 227   f(TypeArrayOther) \
 228   f(Method) \
 229   f(ConstMethod) \
 230   f(MethodData) \
 231   f(ConstantPool) \
 232   f(ConstantPoolCache) \
 233   f(Annotations) \
 234   f(MethodCounters)
 235 
 236 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
 237 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
 238 
 239   enum Type {
 240     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
 241     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
 242     _number_of_types
 243   };
 244 
 245   static const char * type_name(Type type) {
 246     switch(type) {
 247     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
 248     default:
 249       ShouldNotReachHere();
 250       return NULL;
 251     }
 252   }
 253 
 254   static MetaspaceObj::Type array_type(size_t elem_size) {
 255     switch (elem_size) {
 256     case 1: return TypeArrayU1Type;
 257     case 2: return TypeArrayU2Type;
 258     case 4: return TypeArrayU4Type;
 259     case 8: return TypeArrayU8Type;
 260     default:
 261       return TypeArrayOtherType;
 262     }
 263   }
 264 
 265   void* operator new(size_t size, ClassLoaderData* loader_data,
 266                      size_t word_size,
 267                      Type type, Thread* thread) throw();
 268                      // can't use TRAPS from this header file.
 269   void operator delete(void* p) { ShouldNotCallThis(); }
 270 
 271   // Declare a *static* method with the same signature in any subclass of MetaspaceObj
 272   // that should be read-only by default. See symbol.hpp for an example. This function
 273   // is used by the templates in metaspaceClosure.hpp
 274   static bool is_read_only_by_default() { return false; }
 275 };
 276 
 277 // Base class for classes that constitute name spaces.
 278 
 279 class Arena;
 280 
 281 class AllStatic {
 282  public:
 283   AllStatic()  { ShouldNotCallThis(); }
 284   ~AllStatic() { ShouldNotCallThis(); }
 285 };
 286 
 287 
 288 extern char* resource_allocate_bytes(size_t size,
 289     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 290 extern char* resource_allocate_bytes(Thread* thread, size_t size,
 291     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 292 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
 293     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 294 extern void resource_free_bytes( char *old, size_t size );
 295 
 296 //----------------------------------------------------------------------
 297 // Base class for objects allocated in the resource area per default.
 298 // Optionally, objects may be allocated on the C heap with
 299 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
 300 // ResourceObj's can be allocated within other objects, but don't use
 301 // new or delete (allocation_type is unknown).  If new is used to allocate,
 302 // use delete to deallocate.
 303 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 304  public:
 305   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
 306   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
 307 #ifdef ASSERT
 308  private:
 309   // When this object is allocated on stack the new() operator is not
 310   // called but garbage on stack may look like a valid allocation_type.
 311   // Store negated 'this' pointer when new() is called to distinguish cases.
 312   // Use second array's element for verification value to distinguish garbage.
 313   uintptr_t _allocation_t[2];
 314   bool is_type_set() const;
 315  public:
 316   allocation_type get_allocation_type() const;
 317   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
 318   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
 319   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
 320   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
 321   ResourceObj(); // default constructor
 322   ResourceObj(const ResourceObj& r); // default copy constructor
 323   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
 324   ~ResourceObj();
 325 #endif // ASSERT
 326 
 327  public:
 328   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
 329   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
 330   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
 331       allocation_type type, MEMFLAGS flags) throw();
 332   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 333       allocation_type type, MEMFLAGS flags) throw();
 334 
 335   void* operator new(size_t size, Arena *arena) throw();
 336 
 337   void* operator new [](size_t size, Arena *arena) throw();
 338 
 339   void* operator new(size_t size) throw() {
 340       address res = (address)resource_allocate_bytes(size);
 341       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 342       return res;
 343   }
 344 
 345   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
 346       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 347       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 348       return res;
 349   }
 350 
 351   void* operator new [](size_t size) throw() {
 352       address res = (address)resource_allocate_bytes(size);
 353       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 354       return res;
 355   }
 356 
 357   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
 358       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 359       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 360       return res;
 361   }
 362 
 363   void  operator delete(void* p);
 364   void  operator delete [](void* p);
 365 };
 366 
 367 // One of the following macros must be used when allocating an array
 368 // or object to determine whether it should reside in the C heap on in
 369 // the resource area.
 370 
 371 #define NEW_RESOURCE_ARRAY(type, size)\
 372   (type*) resource_allocate_bytes((size) * sizeof(type))
 373 
 374 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
 375   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 376 
 377 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
 378   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
 379 
 380 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
 381   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 382 
 383 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
 384   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
 385 
 386 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
 387   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
 388                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 389 
 390 #define FREE_RESOURCE_ARRAY(type, old, size)\
 391   resource_free_bytes((char*)(old), (size) * sizeof(type))
 392 
 393 #define FREE_FAST(old)\
 394     /* nop */
 395 
 396 #define NEW_RESOURCE_OBJ(type)\
 397   NEW_RESOURCE_ARRAY(type, 1)
 398 
 399 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
 400   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
 401 
 402 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
 403   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
 404 
 405 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
 406   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
 407 
 408 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
 409   (type*) (AllocateHeap((size) * sizeof(type), memflags))
 410 
 411 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
 412   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
 413 
 414 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
 415   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
 416 
 417 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
 418   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
 419 
 420 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
 421   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
 422 
 423 #define FREE_C_HEAP_ARRAY(type, old) \
 424   FreeHeap((char*)(old))
 425 
 426 // allocate type in heap without calling ctor
 427 #define NEW_C_HEAP_OBJ(type, memflags)\
 428   NEW_C_HEAP_ARRAY(type, 1, memflags)
 429 
 430 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
 431   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
 432 
 433 // deallocate obj of type in heap without calling dtor
 434 #define FREE_C_HEAP_OBJ(objname)\
 435   FreeHeap((char*)objname);
 436 
 437 // for statistics
 438 #ifndef PRODUCT
 439 class AllocStats : StackObj {
 440   julong start_mallocs, start_frees;
 441   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
 442  public:
 443   AllocStats();
 444 
 445   julong num_mallocs();    // since creation of receiver
 446   julong alloc_bytes();
 447   julong num_frees();
 448   julong free_bytes();
 449   julong resource_bytes();
 450   void   print();
 451 };
 452 #endif
 453 
 454 
 455 //------------------------------ReallocMark---------------------------------
 456 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
 457 // ReallocMark, which is declared in the same scope as the reallocated
 458 // pointer.  Any operation that could __potentially__ cause a reallocation
 459 // should check the ReallocMark.
 460 class ReallocMark: public StackObj {
 461 protected:
 462   NOT_PRODUCT(int _nesting;)
 463 
 464 public:
 465   ReallocMark()   PRODUCT_RETURN;
 466   void check()    PRODUCT_RETURN;
 467 };
 468 
 469 // Helper class to allocate arrays that may become large.
 470 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
 471 // and uses mapped memory for larger allocations.
 472 // Most OS mallocs do something similar but Solaris malloc does not revert
 473 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
 474 // is set so that we always use malloc except for Solaris where we set the
 475 // limit to get mapped memory.
 476 template <class E>
 477 class ArrayAllocator : public AllStatic {
 478  private:
 479   static bool should_use_malloc(size_t length);
 480 
 481   static E* allocate_malloc(size_t length, MEMFLAGS flags);
 482   static E* allocate_mmap(size_t length, MEMFLAGS flags);
 483 
 484   static void free_malloc(E* addr, size_t length);
 485   static void free_mmap(E* addr, size_t length);
 486 
 487  public:
 488   static E* allocate(size_t length, MEMFLAGS flags);
 489   static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
 490   static void free(E* addr, size_t length);
 491 };
 492 
 493 // Uses mmaped memory for all allocations. All allocations are initially
 494 // zero-filled. No pre-touching.
 495 template <class E>
 496 class MmapArrayAllocator : public AllStatic {
 497  private:
 498   static size_t size_for(size_t length);
 499 
 500  public:
 501   static E* allocate_or_null(size_t length, MEMFLAGS flags);
 502   static E* allocate(size_t length, MEMFLAGS flags);
 503   static void free(E* addr, size_t length);
 504 };
 505 
 506 // Uses malloc:ed memory for all allocations.
 507 template <class E>
 508 class MallocArrayAllocator : public AllStatic {
 509  public:
 510   static size_t size_for(size_t length);
 511 
 512   static E* allocate(size_t length, MEMFLAGS flags);
 513   static void free(E* addr, size_t length);
 514 };
 515 
 516 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP