/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP #define SHARE_VM_OOPS_OOP_INLINE_HPP #include "gc/shared/ageTable.hpp" #include "gc/shared/collectedHeap.inline.hpp" #include "gc/shared/genCollectedHeap.hpp" #include "gc/shared/generation.hpp" #include "oops/access.inline.hpp" #include "oops/arrayKlass.hpp" #include "oops/arrayOop.hpp" #include "oops/klass.inline.hpp" #include "oops/markOop.inline.hpp" #include "oops/oop.hpp" #include "runtime/atomic.hpp" #include "runtime/orderAccess.inline.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/macros.hpp" // Implementation of all inlined member functions defined in oop.hpp // We need a separate file to avoid circular references void oopDesc::release_set_mark(markOop m) { OrderAccess::release_store(&_mark, m); } markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) { return Atomic::cmpxchg(new_mark, &_mark, old_mark); } void oopDesc::init_mark() { set_mark(markOopDesc::prototype_for_object(this)); } Klass* oopDesc::klass() const { if (UseCompressedClassPointers) { return Klass::decode_klass_not_null(_metadata._compressed_klass); } else { return _metadata._klass; } } Klass* oopDesc::klass_or_null() const volatile { if (UseCompressedClassPointers) { return Klass::decode_klass(_metadata._compressed_klass); } else { return _metadata._klass; } } Klass* oopDesc::klass_or_null_acquire() const volatile { if (UseCompressedClassPointers) { // Workaround for non-const load_acquire parameter. const volatile narrowKlass* addr = &_metadata._compressed_klass; volatile narrowKlass* xaddr = const_cast(addr); return Klass::decode_klass(OrderAccess::load_acquire(xaddr)); } else { return OrderAccess::load_acquire(&_metadata._klass); } } Klass** oopDesc::klass_addr() { // Only used internally and with CMS and will not work with // UseCompressedOops assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers"); return (Klass**) &_metadata._klass; } narrowKlass* oopDesc::compressed_klass_addr() { assert(UseCompressedClassPointers, "only called by compressed klass pointers"); return &_metadata._compressed_klass; } #define CHECK_SET_KLASS(k) \ do { \ assert(Universe::is_bootstrapping() || k != NULL, "NULL Klass"); \ assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass"); \ } while (0) void oopDesc::set_klass(Klass* k) { CHECK_SET_KLASS(k); if (UseCompressedClassPointers) { *compressed_klass_addr() = Klass::encode_klass_not_null(k); } else { *klass_addr() = k; } } void oopDesc::release_set_klass(Klass* k) { CHECK_SET_KLASS(k); if (UseCompressedClassPointers) { OrderAccess::release_store(compressed_klass_addr(), Klass::encode_klass_not_null(k)); } else { OrderAccess::release_store(klass_addr(), k); } } #undef CHECK_SET_KLASS int oopDesc::klass_gap() const { return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()); } void oopDesc::set_klass_gap(int v) { if (UseCompressedClassPointers) { *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v; } } void oopDesc::set_klass_to_list_ptr(oop k) { // This is only to be used during GC, for from-space objects, so no // barrier is needed. if (UseCompressedClassPointers) { _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k); // may be null (parnew overflow handling) } else { _metadata._klass = (Klass*)(address)k; } } oop oopDesc::list_ptr_from_klass() { // This is only to be used during GC, for from-space objects. if (UseCompressedClassPointers) { return decode_heap_oop((narrowOop)_metadata._compressed_klass); } else { // Special case for GC return (oop)(address)_metadata._klass; } } bool oopDesc::is_a(Klass* k) const { return klass()->is_subtype_of(k); } int oopDesc::size() { return size_given_klass(klass()); } int oopDesc::size_given_klass(Klass* klass) { int lh = klass->layout_helper(); int s; // lh is now a value computed at class initialization that may hint // at the size. For instances, this is positive and equal to the // size. For arrays, this is negative and provides log2 of the // array element size. For other oops, it is zero and thus requires // a virtual call. // // We go to all this trouble because the size computation is at the // heart of phase 2 of mark-compaction, and called for every object, // alive or dead. So the speed here is equal in importance to the // speed of allocation. if (lh > Klass::_lh_neutral_value) { if (!Klass::layout_helper_needs_slow_path(lh)) { s = lh >> LogHeapWordSize; // deliver size scaled by wordSize } else { s = klass->oop_size(this); } } else if (lh <= Klass::_lh_neutral_value) { // The most common case is instances; fall through if so. if (lh < Klass::_lh_neutral_value) { // Second most common case is arrays. We have to fetch the // length of the array, shift (multiply) it appropriately, // up to wordSize, add the header, and align to object size. size_t size_in_bytes; size_t array_length = (size_t) ((arrayOop)this)->length(); size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh); size_in_bytes += Klass::layout_helper_header_size(lh); // This code could be simplified, but by keeping array_header_in_bytes // in units of bytes and doing it this way we can round up just once, // skipping the intermediate round to HeapWordSize. s = (int)(align_up(size_in_bytes, MinObjAlignmentInBytes) / HeapWordSize); // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field // of an "old copy" of an object array in the young gen so it indicates // the grey portion of an already copied array. This will cause the first // disjunct below to fail if the two comparands are computed across such // a concurrent change. // ParNew also runs with promotion labs (which look like int // filler arrays) which are subject to changing their declared size // when finally retiring a PLAB; this also can cause the first disjunct // to fail for another worker thread that is concurrently walking the block // offset table. Both these invariant failures are benign for their // current uses; we relax the assertion checking to cover these two cases below: // is_objArray() && is_forwarded() // covers first scenario above // || is_typeArray() // covers second scenario above // If and when UseParallelGC uses the same obj array oop stealing/chunking // technique, we will need to suitably modify the assertion. assert((s == klass->oop_size(this)) || (Universe::heap()->is_gc_active() && ((is_typeArray() && UseConcMarkSweepGC) || (is_objArray() && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))), "wrong array object size"); } else { // Must be zero, so bite the bullet and take the virtual call. s = klass->oop_size(this); } } assert(s > 0, "Oop size must be greater than zero, not %d", s); assert(is_object_aligned(s), "Oop size is not properly aligned: %d", s); return s; } bool oopDesc::is_instance() const { return klass()->is_instance_klass(); } bool oopDesc::is_array() const { return klass()->is_array_klass(); } bool oopDesc::is_objArray() const { return klass()->is_objArray_klass(); } bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); } void* oopDesc::field_addr_raw(int offset) const { return reinterpret_cast(cast_from_oop(as_oop()) + offset); } void* oopDesc::field_addr(int offset) const { return Access<>::resolve(as_oop())->field_addr_raw(offset); } template T* oopDesc::obj_field_addr_raw(int offset) const { return (T*) field_addr_raw(offset); } // Functions for getting and setting oops within instance objects. // If the oops are compressed, the type passed to these overloaded functions // is narrowOop. All functions are overloaded so they can be called by // template functions without conditionals (the compiler instantiates via // the right type and inlines the appopriate code). // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit // offset from the heap base. Saving the check for null can save instructions // in inner GC loops so these are separated. inline bool check_obj_alignment(oop obj) { return (cast_from_oop(obj) & MinObjAlignmentInBytesMask) == 0; } oop oopDesc::decode_heap_oop_not_null(narrowOop v) { assert(!is_null(v), "narrow oop value can never be zero"); address base = Universe::narrow_oop_base(); int shift = Universe::narrow_oop_shift(); oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift)); assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result)); return result; } oop oopDesc::decode_heap_oop(narrowOop v) { return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v); } narrowOop oopDesc::encode_heap_oop_not_null(oop v) { assert(!is_null(v), "oop value can never be zero"); assert(check_obj_alignment(v), "Address not aligned"); assert(Universe::heap()->is_in_reserved(v), "Address not in heap"); address base = Universe::narrow_oop_base(); int shift = Universe::narrow_oop_shift(); uint64_t pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1)); assert(OopEncodingHeapMax > pd, "change encoding max if new encoding"); uint64_t result = pd >> shift; assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow"); assert(decode_heap_oop(result) == v, "reversibility"); return (narrowOop)result; } narrowOop oopDesc::encode_heap_oop(oop v) { return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v); } narrowOop oopDesc::load_heap_oop(narrowOop* p) { return *p; } oop oopDesc::load_heap_oop(oop* p) { return *p; } void oopDesc::store_heap_oop(narrowOop* p, narrowOop v) { *p = v; } void oopDesc::store_heap_oop(oop* p, oop v) { *p = v; } // Load and decode an oop out of the Java heap into a wide oop. oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) { return decode_heap_oop_not_null(load_heap_oop(p)); } // Load and decode an oop out of the heap accepting null oop oopDesc::load_decode_heap_oop(narrowOop* p) { return decode_heap_oop(load_heap_oop(p)); } oop oopDesc::load_decode_heap_oop_not_null(oop* p) { return *p; } oop oopDesc::load_decode_heap_oop(oop* p) { return *p; } void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; } void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; } // Encode and store a heap oop. void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) { *p = encode_heap_oop_not_null(v); } // Encode and store a heap oop allowing for null. void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) { *p = encode_heap_oop(v); } template inline oop oopDesc::obj_field_access(int offset) const { return HeapAccess::oop_load_at(as_oop(), offset); } inline oop oopDesc::obj_field(int offset) const { return HeapAccess<>::oop_load_at(as_oop(), offset); } inline void oopDesc::obj_field_put(int offset, oop value) { HeapAccess<>::oop_store_at(as_oop(), offset, value); } inline jbyte oopDesc::byte_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::byte_field_put(int offset, jbyte value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jchar oopDesc::char_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::char_field_put(int offset, jchar value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jboolean oopDesc::bool_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::bool_field_put(int offset, jboolean value) { HeapAccess<>::store_at(as_oop(), offset, jboolean(value & 1)); } inline jshort oopDesc::short_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::short_field_put(int offset, jshort value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jint oopDesc::int_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::int_field_put(int offset, jint value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jlong oopDesc::long_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::long_field_put(int offset, jlong value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jfloat oopDesc::float_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::float_field_put(int offset, jfloat value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jdouble oopDesc::double_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::double_field_put(int offset, jdouble value) { HeapAccess<>::store_at(as_oop(), offset, value); } bool oopDesc::is_locked() const { return mark()->is_locked(); } bool oopDesc::is_unlocked() const { return mark()->is_unlocked(); } bool oopDesc::has_bias_pattern() const { return mark()->has_bias_pattern(); } // Used only for markSweep, scavenging bool oopDesc::is_gc_marked() const { return mark()->is_marked(); } // Used by scavengers bool oopDesc::is_forwarded() const { // The extra heap check is needed since the obj might be locked, in which case the // mark would point to a stack location and have the sentinel bit cleared return mark()->is_marked(); } // Used by scavengers void oopDesc::forward_to(oop p) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); assert(!is_archive_object(oop(this)) && !is_archive_object(p), "forwarding archive object"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); set_mark(m); } // Used by parallel scavengers bool oopDesc::cas_forward_to(oop p, markOop compare) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); return cas_set_mark(m, compare) == compare; } #if INCLUDE_ALL_GCS oop oopDesc::forward_to_atomic(oop p) { markOop oldMark = mark(); markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p); markOop curMark; assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable"); assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this."); while (!oldMark->is_marked()) { curMark = Atomic::cmpxchg(forwardPtrMark, &_mark, oldMark); assert(is_forwarded(), "object should have been forwarded"); if (curMark == oldMark) { return NULL; } // If the CAS was unsuccessful then curMark->is_marked() // should return true as another thread has CAS'd in another // forwarding pointer. oldMark = curMark; } return forwardee(); } #endif // Note that the forwardee is not the same thing as the displaced_mark. // The forwardee is used when copying during scavenge and mark-sweep. // It does need to clear the low two locking- and GC-related bits. oop oopDesc::forwardee() const { return (oop) mark()->decode_pointer(); } // The following method needs to be MT safe. uint oopDesc::age() const { assert(!is_forwarded(), "Attempt to read age from forwarded mark"); if (has_displaced_mark()) { return displaced_mark()->age(); } else { return mark()->age(); } } void oopDesc::incr_age() { assert(!is_forwarded(), "Attempt to increment age of forwarded mark"); if (has_displaced_mark()) { set_displaced_mark(displaced_mark()->incr_age()); } else { set_mark(mark()->incr_age()); } } #if INCLUDE_ALL_GCS void oopDesc::pc_follow_contents(ParCompactionManager* cm) { klass()->oop_pc_follow_contents(this, cm); } void oopDesc::pc_update_contents(ParCompactionManager* cm) { Klass* k = klass(); if (!k->is_typeArray_klass()) { // It might contain oops beyond the header, so take the virtual call. k->oop_pc_update_pointers(this, cm); } // Else skip it. The TypeArrayKlass in the header never needs scavenging. } void oopDesc::ps_push_contents(PSPromotionManager* pm) { Klass* k = klass(); if (!k->is_typeArray_klass()) { // It might contain oops beyond the header, so take the virtual call. k->oop_ps_push_contents(this, pm); } // Else skip it. The TypeArrayKlass in the header never needs scavenging. } #endif // INCLUDE_ALL_GCS #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \ \ void oopDesc::oop_iterate(OopClosureType* blk) { \ klass()->oop_oop_iterate##nv_suffix(this, blk); \ } \ \ void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) { \ klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr); \ } #define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix) \ \ int oopDesc::oop_iterate_size(OopClosureType* blk) { \ Klass* k = klass(); \ int size = size_given_klass(k); \ k->oop_oop_iterate##nv_suffix(this, blk); \ return size; \ } \ \ int oopDesc::oop_iterate_size(OopClosureType* blk, MemRegion mr) { \ Klass* k = klass(); \ int size = size_given_klass(k); \ k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr); \ return size; \ } int oopDesc::oop_iterate_no_header(OopClosure* blk) { // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all // the do_oop calls, but turns off all other features in ExtendedOopClosure. NoHeaderExtendedOopClosure cl(blk); return oop_iterate_size(&cl); } int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) { NoHeaderExtendedOopClosure cl(blk); return oop_iterate_size(&cl, mr); } #if INCLUDE_ALL_GCS #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) \ \ inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) { \ klass()->oop_oop_iterate_backwards##nv_suffix(this, blk); \ } #else #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) #endif // INCLUDE_ALL_GCS #define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix) \ OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \ OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix) \ OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE) ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE) intptr_t oopDesc::identity_hash() { // Fast case; if the object is unlocked and the hash value is set, no locking is needed // Note: The mark must be read into local variable to avoid concurrent updates. markOop mrk = mark(); if (mrk->is_unlocked() && !mrk->has_no_hash()) { return mrk->hash(); } else if (mrk->is_marked()) { return mrk->hash(); } else { return slow_identity_hash(); } } bool oopDesc::has_displaced_mark() const { return mark()->has_displaced_mark_helper(); } markOop oopDesc::displaced_mark() const { return mark()->displaced_mark_helper(); } void oopDesc::set_displaced_mark(markOop m) { mark()->set_displaced_mark_helper(m); } #endif // SHARE_VM_OOPS_OOP_INLINE_HPP