1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1Allocator.inline.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  58 #include "gc/g1/heapRegion.inline.hpp"
  59 #include "gc/g1/heapRegionRemSet.hpp"
  60 #include "gc/g1/heapRegionSet.inline.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/adaptiveSizePolicy.hpp"
  63 #include "gc/shared/gcHeapSummary.hpp"
  64 #include "gc/shared/gcId.hpp"
  65 #include "gc/shared/gcLocker.inline.hpp"
  66 #include "gc/shared/gcTimer.hpp"
  67 #include "gc/shared/gcTrace.hpp"
  68 #include "gc/shared/gcTraceTime.inline.hpp"
  69 #include "gc/shared/generationSpec.hpp"
  70 #include "gc/shared/isGCActiveMark.hpp"
  71 #include "gc/shared/preservedMarks.inline.hpp"
  72 #include "gc/shared/suspendibleThreadSet.hpp"
  73 #include "gc/shared/referenceProcessor.inline.hpp"
  74 #include "gc/shared/taskqueue.inline.hpp"
  75 #include "gc/shared/weakProcessor.hpp"
  76 #include "logging/log.hpp"
  77 #include "memory/allocation.hpp"
  78 #include "memory/iterator.hpp"
  79 #include "memory/resourceArea.hpp"
  80 #include "oops/access.inline.hpp"
  81 #include "oops/compressedOops.inline.hpp"
  82 #include "oops/oop.inline.hpp"
  83 #include "prims/resolvedMethodTable.hpp"
  84 #include "runtime/atomic.hpp"
  85 #include "runtime/handles.inline.hpp"
  86 #include "runtime/init.hpp"
  87 #include "runtime/orderAccess.inline.hpp"
  88 #include "runtime/threadSMR.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "utilities/align.hpp"
  91 #include "utilities/globalDefinitions.hpp"
  92 #include "utilities/stack.inline.hpp"
  93 
  94 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  95 
  96 // INVARIANTS/NOTES
  97 //
  98 // All allocation activity covered by the G1CollectedHeap interface is
  99 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 100 // and allocate_new_tlab, which are the "entry" points to the
 101 // allocation code from the rest of the JVM.  (Note that this does not
 102 // apply to TLAB allocation, which is not part of this interface: it
 103 // is done by clients of this interface.)
 104 
 105 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 106  private:
 107   size_t _num_dirtied;
 108   G1CollectedHeap* _g1h;
 109   G1CardTable* _g1_ct;
 110 
 111   HeapRegion* region_for_card(jbyte* card_ptr) const {
 112     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 113   }
 114 
 115   bool will_become_free(HeapRegion* hr) const {
 116     // A region will be freed by free_collection_set if the region is in the
 117     // collection set and has not had an evacuation failure.
 118     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 119   }
 120 
 121  public:
 122   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 123     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 124 
 125   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 126     HeapRegion* hr = region_for_card(card_ptr);
 127 
 128     // Should only dirty cards in regions that won't be freed.
 129     if (!will_become_free(hr)) {
 130       *card_ptr = G1CardTable::dirty_card_val();
 131       _num_dirtied++;
 132     }
 133 
 134     return true;
 135   }
 136 
 137   size_t num_dirtied()   const { return _num_dirtied; }
 138 };
 139 
 140 
 141 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 142   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 143 }
 144 
 145 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 146   // The from card cache is not the memory that is actually committed. So we cannot
 147   // take advantage of the zero_filled parameter.
 148   reset_from_card_cache(start_idx, num_regions);
 149 }
 150 
 151 
 152 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 153                                              MemRegion mr) {
 154   return new HeapRegion(hrs_index, bot(), mr);
 155 }
 156 
 157 // Private methods.
 158 
 159 HeapRegion*
 160 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 161   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 162   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 163     if (!_secondary_free_list.is_empty()) {
 164       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 165                                       "secondary_free_list has %u entries",
 166                                       _secondary_free_list.length());
 167       // It looks as if there are free regions available on the
 168       // secondary_free_list. Let's move them to the free_list and try
 169       // again to allocate from it.
 170       append_secondary_free_list();
 171 
 172       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 173              "empty we should have moved at least one entry to the free_list");
 174       HeapRegion* res = _hrm.allocate_free_region(is_old);
 175       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 176                                       "allocated " HR_FORMAT " from secondary_free_list",
 177                                       HR_FORMAT_PARAMS(res));
 178       return res;
 179     }
 180 
 181     // Wait here until we get notified either when (a) there are no
 182     // more free regions coming or (b) some regions have been moved on
 183     // the secondary_free_list.
 184     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 185   }
 186 
 187   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 188                                   "could not allocate from secondary_free_list");
 189   return NULL;
 190 }
 191 
 192 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 193   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 194          "the only time we use this to allocate a humongous region is "
 195          "when we are allocating a single humongous region");
 196 
 197   HeapRegion* res;
 198   if (G1StressConcRegionFreeing) {
 199     if (!_secondary_free_list.is_empty()) {
 200       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 201                                       "forced to look at the secondary_free_list");
 202       res = new_region_try_secondary_free_list(is_old);
 203       if (res != NULL) {
 204         return res;
 205       }
 206     }
 207   }
 208 
 209   res = _hrm.allocate_free_region(is_old);
 210 
 211   if (res == NULL) {
 212     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 213                                     "res == NULL, trying the secondary_free_list");
 214     res = new_region_try_secondary_free_list(is_old);
 215   }
 216   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 217     // Currently, only attempts to allocate GC alloc regions set
 218     // do_expand to true. So, we should only reach here during a
 219     // safepoint. If this assumption changes we might have to
 220     // reconsider the use of _expand_heap_after_alloc_failure.
 221     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 222 
 223     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 224                               word_size * HeapWordSize);
 225 
 226     if (expand(word_size * HeapWordSize)) {
 227       // Given that expand() succeeded in expanding the heap, and we
 228       // always expand the heap by an amount aligned to the heap
 229       // region size, the free list should in theory not be empty.
 230       // In either case allocate_free_region() will check for NULL.
 231       res = _hrm.allocate_free_region(is_old);
 232     } else {
 233       _expand_heap_after_alloc_failure = false;
 234     }
 235   }
 236   return res;
 237 }
 238 
 239 HeapWord*
 240 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 241                                                            uint num_regions,
 242                                                            size_t word_size) {
 243   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 244   assert(is_humongous(word_size), "word_size should be humongous");
 245   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 246 
 247   // Index of last region in the series.
 248   uint last = first + num_regions - 1;
 249 
 250   // We need to initialize the region(s) we just discovered. This is
 251   // a bit tricky given that it can happen concurrently with
 252   // refinement threads refining cards on these regions and
 253   // potentially wanting to refine the BOT as they are scanning
 254   // those cards (this can happen shortly after a cleanup; see CR
 255   // 6991377). So we have to set up the region(s) carefully and in
 256   // a specific order.
 257 
 258   // The word size sum of all the regions we will allocate.
 259   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 260   assert(word_size <= word_size_sum, "sanity");
 261 
 262   // This will be the "starts humongous" region.
 263   HeapRegion* first_hr = region_at(first);
 264   // The header of the new object will be placed at the bottom of
 265   // the first region.
 266   HeapWord* new_obj = first_hr->bottom();
 267   // This will be the new top of the new object.
 268   HeapWord* obj_top = new_obj + word_size;
 269 
 270   // First, we need to zero the header of the space that we will be
 271   // allocating. When we update top further down, some refinement
 272   // threads might try to scan the region. By zeroing the header we
 273   // ensure that any thread that will try to scan the region will
 274   // come across the zero klass word and bail out.
 275   //
 276   // NOTE: It would not have been correct to have used
 277   // CollectedHeap::fill_with_object() and make the space look like
 278   // an int array. The thread that is doing the allocation will
 279   // later update the object header to a potentially different array
 280   // type and, for a very short period of time, the klass and length
 281   // fields will be inconsistent. This could cause a refinement
 282   // thread to calculate the object size incorrectly.
 283   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 284 
 285   // Next, pad out the unused tail of the last region with filler
 286   // objects, for improved usage accounting.
 287   // How many words we use for filler objects.
 288   size_t word_fill_size = word_size_sum - word_size;
 289 
 290   // How many words memory we "waste" which cannot hold a filler object.
 291   size_t words_not_fillable = 0;
 292 
 293   if (word_fill_size >= min_fill_size()) {
 294     fill_with_objects(obj_top, word_fill_size);
 295   } else if (word_fill_size > 0) {
 296     // We have space to fill, but we cannot fit an object there.
 297     words_not_fillable = word_fill_size;
 298     word_fill_size = 0;
 299   }
 300 
 301   // We will set up the first region as "starts humongous". This
 302   // will also update the BOT covering all the regions to reflect
 303   // that there is a single object that starts at the bottom of the
 304   // first region.
 305   first_hr->set_starts_humongous(obj_top, word_fill_size);
 306   // Then, if there are any, we will set up the "continues
 307   // humongous" regions.
 308   HeapRegion* hr = NULL;
 309   for (uint i = first + 1; i <= last; ++i) {
 310     hr = region_at(i);
 311     hr->set_continues_humongous(first_hr);
 312   }
 313 
 314   // Up to this point no concurrent thread would have been able to
 315   // do any scanning on any region in this series. All the top
 316   // fields still point to bottom, so the intersection between
 317   // [bottom,top] and [card_start,card_end] will be empty. Before we
 318   // update the top fields, we'll do a storestore to make sure that
 319   // no thread sees the update to top before the zeroing of the
 320   // object header and the BOT initialization.
 321   OrderAccess::storestore();
 322 
 323   // Now, we will update the top fields of the "continues humongous"
 324   // regions except the last one.
 325   for (uint i = first; i < last; ++i) {
 326     hr = region_at(i);
 327     hr->set_top(hr->end());
 328   }
 329 
 330   hr = region_at(last);
 331   // If we cannot fit a filler object, we must set top to the end
 332   // of the humongous object, otherwise we cannot iterate the heap
 333   // and the BOT will not be complete.
 334   hr->set_top(hr->end() - words_not_fillable);
 335 
 336   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 337          "obj_top should be in last region");
 338 
 339   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 340 
 341   assert(words_not_fillable == 0 ||
 342          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 343          "Miscalculation in humongous allocation");
 344 
 345   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 346 
 347   for (uint i = first; i <= last; ++i) {
 348     hr = region_at(i);
 349     _humongous_set.add(hr);
 350     _hr_printer.alloc(hr);
 351   }
 352 
 353   return new_obj;
 354 }
 355 
 356 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 357   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 358   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 359 }
 360 
 361 // If could fit into free regions w/o expansion, try.
 362 // Otherwise, if can expand, do so.
 363 // Otherwise, if using ex regions might help, try with ex given back.
 364 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 365   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 366 
 367   _verifier->verify_region_sets_optional();
 368 
 369   uint first = G1_NO_HRM_INDEX;
 370   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 371 
 372   if (obj_regions == 1) {
 373     // Only one region to allocate, try to use a fast path by directly allocating
 374     // from the free lists. Do not try to expand here, we will potentially do that
 375     // later.
 376     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 377     if (hr != NULL) {
 378       first = hr->hrm_index();
 379     }
 380   } else {
 381     // We can't allocate humongous regions spanning more than one region while
 382     // cleanupComplete() is running, since some of the regions we find to be
 383     // empty might not yet be added to the free list. It is not straightforward
 384     // to know in which list they are on so that we can remove them. We only
 385     // need to do this if we need to allocate more than one region to satisfy the
 386     // current humongous allocation request. If we are only allocating one region
 387     // we use the one-region region allocation code (see above), that already
 388     // potentially waits for regions from the secondary free list.
 389     wait_while_free_regions_coming();
 390     append_secondary_free_list_if_not_empty_with_lock();
 391 
 392     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 393     // are lucky enough to find some.
 394     first = _hrm.find_contiguous_only_empty(obj_regions);
 395     if (first != G1_NO_HRM_INDEX) {
 396       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 397     }
 398   }
 399 
 400   if (first == G1_NO_HRM_INDEX) {
 401     // Policy: We could not find enough regions for the humongous object in the
 402     // free list. Look through the heap to find a mix of free and uncommitted regions.
 403     // If so, try expansion.
 404     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 405     if (first != G1_NO_HRM_INDEX) {
 406       // We found something. Make sure these regions are committed, i.e. expand
 407       // the heap. Alternatively we could do a defragmentation GC.
 408       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 409                                     word_size * HeapWordSize);
 410 
 411       _hrm.expand_at(first, obj_regions, workers());
 412       g1_policy()->record_new_heap_size(num_regions());
 413 
 414 #ifdef ASSERT
 415       for (uint i = first; i < first + obj_regions; ++i) {
 416         HeapRegion* hr = region_at(i);
 417         assert(hr->is_free(), "sanity");
 418         assert(hr->is_empty(), "sanity");
 419         assert(is_on_master_free_list(hr), "sanity");
 420       }
 421 #endif
 422       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 423     } else {
 424       // Policy: Potentially trigger a defragmentation GC.
 425     }
 426   }
 427 
 428   HeapWord* result = NULL;
 429   if (first != G1_NO_HRM_INDEX) {
 430     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 431     assert(result != NULL, "it should always return a valid result");
 432 
 433     // A successful humongous object allocation changes the used space
 434     // information of the old generation so we need to recalculate the
 435     // sizes and update the jstat counters here.
 436     g1mm()->update_sizes();
 437   }
 438 
 439   _verifier->verify_region_sets_optional();
 440 
 441   return result;
 442 }
 443 
 444 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 445   assert_heap_not_locked_and_not_at_safepoint();
 446   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 447 
 448   return attempt_allocation(word_size);
 449 }
 450 
 451 HeapWord*
 452 G1CollectedHeap::mem_allocate(size_t word_size,
 453                               bool*  gc_overhead_limit_was_exceeded) {
 454   assert_heap_not_locked_and_not_at_safepoint();
 455 
 456   if (is_humongous(word_size)) {
 457     return attempt_allocation_humongous(word_size);
 458   }
 459   return attempt_allocation(word_size);
 460 }
 461 
 462 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 463   ResourceMark rm; // For retrieving the thread names in log messages.
 464 
 465   // Make sure you read the note in attempt_allocation_humongous().
 466 
 467   assert_heap_not_locked_and_not_at_safepoint();
 468   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 469          "be called for humongous allocation requests");
 470 
 471   // We should only get here after the first-level allocation attempt
 472   // (attempt_allocation()) failed to allocate.
 473 
 474   // We will loop until a) we manage to successfully perform the
 475   // allocation or b) we successfully schedule a collection which
 476   // fails to perform the allocation. b) is the only case when we'll
 477   // return NULL.
 478   HeapWord* result = NULL;
 479   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 480     bool should_try_gc;
 481     uint gc_count_before;
 482 
 483     {
 484       MutexLockerEx x(Heap_lock);
 485       result = _allocator->attempt_allocation_locked(word_size);
 486       if (result != NULL) {
 487         return result;
 488       }
 489 
 490       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 491       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 492       // waiting because the GCLocker is active to not wait too long.
 493       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 494         // No need for an ergo message here, can_expand_young_list() does this when
 495         // it returns true.
 496         result = _allocator->attempt_allocation_force(word_size);
 497         if (result != NULL) {
 498           return result;
 499         }
 500       }
 501       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 502       // the GCLocker initiated GC has been performed and then retry. This includes
 503       // the case when the GC Locker is not active but has not been performed.
 504       should_try_gc = !GCLocker::needs_gc();
 505       // Read the GC count while still holding the Heap_lock.
 506       gc_count_before = total_collections();
 507     }
 508 
 509     if (should_try_gc) {
 510       bool succeeded;
 511       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 512                                    GCCause::_g1_inc_collection_pause);
 513       if (result != NULL) {
 514         assert(succeeded, "only way to get back a non-NULL result");
 515         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 516                              Thread::current()->name(), p2i(result));
 517         return result;
 518       }
 519 
 520       if (succeeded) {
 521         // We successfully scheduled a collection which failed to allocate. No
 522         // point in trying to allocate further. We'll just return NULL.
 523         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 524                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 525         return NULL;
 526       }
 527       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 528                            Thread::current()->name(), word_size);
 529     } else {
 530       // Failed to schedule a collection.
 531       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 532         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 533                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 534         return NULL;
 535       }
 536       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 537       // The GCLocker is either active or the GCLocker initiated
 538       // GC has not yet been performed. Stall until it is and
 539       // then retry the allocation.
 540       GCLocker::stall_until_clear();
 541       gclocker_retry_count += 1;
 542     }
 543 
 544     // We can reach here if we were unsuccessful in scheduling a
 545     // collection (because another thread beat us to it) or if we were
 546     // stalled due to the GC locker. In either can we should retry the
 547     // allocation attempt in case another thread successfully
 548     // performed a collection and reclaimed enough space. We do the
 549     // first attempt (without holding the Heap_lock) here and the
 550     // follow-on attempt will be at the start of the next loop
 551     // iteration (after taking the Heap_lock).
 552 
 553     result = _allocator->attempt_allocation(word_size);
 554     if (result != NULL) {
 555       return result;
 556     }
 557 
 558     // Give a warning if we seem to be looping forever.
 559     if ((QueuedAllocationWarningCount > 0) &&
 560         (try_count % QueuedAllocationWarningCount == 0)) {
 561       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 562                              Thread::current()->name(), try_count, word_size);
 563     }
 564   }
 565 
 566   ShouldNotReachHere();
 567   return NULL;
 568 }
 569 
 570 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 571   assert_at_safepoint_on_vm_thread();
 572   if (_archive_allocator == NULL) {
 573     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 574   }
 575 }
 576 
 577 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 578   // Allocations in archive regions cannot be of a size that would be considered
 579   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 580   // may be different at archive-restore time.
 581   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 582 }
 583 
 584 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 585   assert_at_safepoint_on_vm_thread();
 586   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 587   if (is_archive_alloc_too_large(word_size)) {
 588     return NULL;
 589   }
 590   return _archive_allocator->archive_mem_allocate(word_size);
 591 }
 592 
 593 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 594                                               size_t end_alignment_in_bytes) {
 595   assert_at_safepoint_on_vm_thread();
 596   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 597 
 598   // Call complete_archive to do the real work, filling in the MemRegion
 599   // array with the archive regions.
 600   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 601   delete _archive_allocator;
 602   _archive_allocator = NULL;
 603 }
 604 
 605 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 606   assert(ranges != NULL, "MemRegion array NULL");
 607   assert(count != 0, "No MemRegions provided");
 608   MemRegion reserved = _hrm.reserved();
 609   for (size_t i = 0; i < count; i++) {
 610     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 611       return false;
 612     }
 613   }
 614   return true;
 615 }
 616 
 617 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 618                                             size_t count,
 619                                             bool open) {
 620   assert(!is_init_completed(), "Expect to be called at JVM init time");
 621   assert(ranges != NULL, "MemRegion array NULL");
 622   assert(count != 0, "No MemRegions provided");
 623   MutexLockerEx x(Heap_lock);
 624 
 625   MemRegion reserved = _hrm.reserved();
 626   HeapWord* prev_last_addr = NULL;
 627   HeapRegion* prev_last_region = NULL;
 628 
 629   // Temporarily disable pretouching of heap pages. This interface is used
 630   // when mmap'ing archived heap data in, so pre-touching is wasted.
 631   FlagSetting fs(AlwaysPreTouch, false);
 632 
 633   // Enable archive object checking used by G1MarkSweep. We have to let it know
 634   // about each archive range, so that objects in those ranges aren't marked.
 635   G1ArchiveAllocator::enable_archive_object_check();
 636 
 637   // For each specified MemRegion range, allocate the corresponding G1
 638   // regions and mark them as archive regions. We expect the ranges
 639   // in ascending starting address order, without overlap.
 640   for (size_t i = 0; i < count; i++) {
 641     MemRegion curr_range = ranges[i];
 642     HeapWord* start_address = curr_range.start();
 643     size_t word_size = curr_range.word_size();
 644     HeapWord* last_address = curr_range.last();
 645     size_t commits = 0;
 646 
 647     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 648               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 649               p2i(start_address), p2i(last_address));
 650     guarantee(start_address > prev_last_addr,
 651               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 652               p2i(start_address), p2i(prev_last_addr));
 653     prev_last_addr = last_address;
 654 
 655     // Check for ranges that start in the same G1 region in which the previous
 656     // range ended, and adjust the start address so we don't try to allocate
 657     // the same region again. If the current range is entirely within that
 658     // region, skip it, just adjusting the recorded top.
 659     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 660     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 661       start_address = start_region->end();
 662       if (start_address > last_address) {
 663         increase_used(word_size * HeapWordSize);
 664         start_region->set_top(last_address + 1);
 665         continue;
 666       }
 667       start_region->set_top(start_address);
 668       curr_range = MemRegion(start_address, last_address + 1);
 669       start_region = _hrm.addr_to_region(start_address);
 670     }
 671 
 672     // Perform the actual region allocation, exiting if it fails.
 673     // Then note how much new space we have allocated.
 674     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 675       return false;
 676     }
 677     increase_used(word_size * HeapWordSize);
 678     if (commits != 0) {
 679       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 680                                 HeapRegion::GrainWords * HeapWordSize * commits);
 681 
 682     }
 683 
 684     // Mark each G1 region touched by the range as archive, add it to
 685     // the old set, and set top.
 686     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 687     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 688     prev_last_region = last_region;
 689 
 690     while (curr_region != NULL) {
 691       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 692              "Region already in use (index %u)", curr_region->hrm_index());
 693       if (open) {
 694         curr_region->set_open_archive();
 695       } else {
 696         curr_region->set_closed_archive();
 697       }
 698       _hr_printer.alloc(curr_region);
 699       _old_set.add(curr_region);
 700       HeapWord* top;
 701       HeapRegion* next_region;
 702       if (curr_region != last_region) {
 703         top = curr_region->end();
 704         next_region = _hrm.next_region_in_heap(curr_region);
 705       } else {
 706         top = last_address + 1;
 707         next_region = NULL;
 708       }
 709       curr_region->set_top(top);
 710       curr_region->set_first_dead(top);
 711       curr_region->set_end_of_live(top);
 712       curr_region = next_region;
 713     }
 714 
 715     // Notify mark-sweep of the archive
 716     G1ArchiveAllocator::set_range_archive(curr_range, open);
 717   }
 718   return true;
 719 }
 720 
 721 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 722   assert(!is_init_completed(), "Expect to be called at JVM init time");
 723   assert(ranges != NULL, "MemRegion array NULL");
 724   assert(count != 0, "No MemRegions provided");
 725   MemRegion reserved = _hrm.reserved();
 726   HeapWord *prev_last_addr = NULL;
 727   HeapRegion* prev_last_region = NULL;
 728 
 729   // For each MemRegion, create filler objects, if needed, in the G1 regions
 730   // that contain the address range. The address range actually within the
 731   // MemRegion will not be modified. That is assumed to have been initialized
 732   // elsewhere, probably via an mmap of archived heap data.
 733   MutexLockerEx x(Heap_lock);
 734   for (size_t i = 0; i < count; i++) {
 735     HeapWord* start_address = ranges[i].start();
 736     HeapWord* last_address = ranges[i].last();
 737 
 738     assert(reserved.contains(start_address) && reserved.contains(last_address),
 739            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 740            p2i(start_address), p2i(last_address));
 741     assert(start_address > prev_last_addr,
 742            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 743            p2i(start_address), p2i(prev_last_addr));
 744 
 745     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 746     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 747     HeapWord* bottom_address = start_region->bottom();
 748 
 749     // Check for a range beginning in the same region in which the
 750     // previous one ended.
 751     if (start_region == prev_last_region) {
 752       bottom_address = prev_last_addr + 1;
 753     }
 754 
 755     // Verify that the regions were all marked as archive regions by
 756     // alloc_archive_regions.
 757     HeapRegion* curr_region = start_region;
 758     while (curr_region != NULL) {
 759       guarantee(curr_region->is_archive(),
 760                 "Expected archive region at index %u", curr_region->hrm_index());
 761       if (curr_region != last_region) {
 762         curr_region = _hrm.next_region_in_heap(curr_region);
 763       } else {
 764         curr_region = NULL;
 765       }
 766     }
 767 
 768     prev_last_addr = last_address;
 769     prev_last_region = last_region;
 770 
 771     // Fill the memory below the allocated range with dummy object(s),
 772     // if the region bottom does not match the range start, or if the previous
 773     // range ended within the same G1 region, and there is a gap.
 774     if (start_address != bottom_address) {
 775       size_t fill_size = pointer_delta(start_address, bottom_address);
 776       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 777       increase_used(fill_size * HeapWordSize);
 778     }
 779   }
 780 }
 781 
 782 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size) {
 783   assert_heap_not_locked_and_not_at_safepoint();
 784   assert(!is_humongous(word_size), "attempt_allocation() should not "
 785          "be called for humongous allocation requests");
 786 
 787   HeapWord* result = _allocator->attempt_allocation(word_size);
 788 
 789   if (result == NULL) {
 790     result = attempt_allocation_slow(word_size);
 791   }
 792   assert_heap_not_locked();
 793   if (result != NULL) {
 794     dirty_young_block(result, word_size);
 795   }
 796   return result;
 797 }
 798 
 799 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 800   assert(!is_init_completed(), "Expect to be called at JVM init time");
 801   assert(ranges != NULL, "MemRegion array NULL");
 802   assert(count != 0, "No MemRegions provided");
 803   MemRegion reserved = _hrm.reserved();
 804   HeapWord* prev_last_addr = NULL;
 805   HeapRegion* prev_last_region = NULL;
 806   size_t size_used = 0;
 807   size_t uncommitted_regions = 0;
 808 
 809   // For each Memregion, free the G1 regions that constitute it, and
 810   // notify mark-sweep that the range is no longer to be considered 'archive.'
 811   MutexLockerEx x(Heap_lock);
 812   for (size_t i = 0; i < count; i++) {
 813     HeapWord* start_address = ranges[i].start();
 814     HeapWord* last_address = ranges[i].last();
 815 
 816     assert(reserved.contains(start_address) && reserved.contains(last_address),
 817            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 818            p2i(start_address), p2i(last_address));
 819     assert(start_address > prev_last_addr,
 820            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 821            p2i(start_address), p2i(prev_last_addr));
 822     size_used += ranges[i].byte_size();
 823     prev_last_addr = last_address;
 824 
 825     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 826     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 827 
 828     // Check for ranges that start in the same G1 region in which the previous
 829     // range ended, and adjust the start address so we don't try to free
 830     // the same region again. If the current range is entirely within that
 831     // region, skip it.
 832     if (start_region == prev_last_region) {
 833       start_address = start_region->end();
 834       if (start_address > last_address) {
 835         continue;
 836       }
 837       start_region = _hrm.addr_to_region(start_address);
 838     }
 839     prev_last_region = last_region;
 840 
 841     // After verifying that each region was marked as an archive region by
 842     // alloc_archive_regions, set it free and empty and uncommit it.
 843     HeapRegion* curr_region = start_region;
 844     while (curr_region != NULL) {
 845       guarantee(curr_region->is_archive(),
 846                 "Expected archive region at index %u", curr_region->hrm_index());
 847       uint curr_index = curr_region->hrm_index();
 848       _old_set.remove(curr_region);
 849       curr_region->set_free();
 850       curr_region->set_top(curr_region->bottom());
 851       if (curr_region != last_region) {
 852         curr_region = _hrm.next_region_in_heap(curr_region);
 853       } else {
 854         curr_region = NULL;
 855       }
 856       _hrm.shrink_at(curr_index, 1);
 857       uncommitted_regions++;
 858     }
 859 
 860     // Notify mark-sweep that this is no longer an archive range.
 861     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 862   }
 863 
 864   if (uncommitted_regions != 0) {
 865     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 866                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 867   }
 868   decrease_used(size_used);
 869 }
 870 
 871 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 872   ResourceMark rm; // For retrieving the thread names in log messages.
 873 
 874   // The structure of this method has a lot of similarities to
 875   // attempt_allocation_slow(). The reason these two were not merged
 876   // into a single one is that such a method would require several "if
 877   // allocation is not humongous do this, otherwise do that"
 878   // conditional paths which would obscure its flow. In fact, an early
 879   // version of this code did use a unified method which was harder to
 880   // follow and, as a result, it had subtle bugs that were hard to
 881   // track down. So keeping these two methods separate allows each to
 882   // be more readable. It will be good to keep these two in sync as
 883   // much as possible.
 884 
 885   assert_heap_not_locked_and_not_at_safepoint();
 886   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 887          "should only be called for humongous allocations");
 888 
 889   // Humongous objects can exhaust the heap quickly, so we should check if we
 890   // need to start a marking cycle at each humongous object allocation. We do
 891   // the check before we do the actual allocation. The reason for doing it
 892   // before the allocation is that we avoid having to keep track of the newly
 893   // allocated memory while we do a GC.
 894   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 895                                            word_size)) {
 896     collect(GCCause::_g1_humongous_allocation);
 897   }
 898 
 899   // We will loop until a) we manage to successfully perform the
 900   // allocation or b) we successfully schedule a collection which
 901   // fails to perform the allocation. b) is the only case when we'll
 902   // return NULL.
 903   HeapWord* result = NULL;
 904   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 905     bool should_try_gc;
 906     uint gc_count_before;
 907 
 908 
 909     {
 910       MutexLockerEx x(Heap_lock);
 911 
 912       // Given that humongous objects are not allocated in young
 913       // regions, we'll first try to do the allocation without doing a
 914       // collection hoping that there's enough space in the heap.
 915       result = humongous_obj_allocate(word_size);
 916       if (result != NULL) {
 917         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 918         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 919         return result;
 920       }
 921 
 922       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 923       // the GCLocker initiated GC has been performed and then retry. This includes
 924       // the case when the GC Locker is not active but has not been performed.
 925       should_try_gc = !GCLocker::needs_gc();
 926       // Read the GC count while still holding the Heap_lock.
 927       gc_count_before = total_collections();
 928     }
 929 
 930     if (should_try_gc) {
 931       bool succeeded;
 932       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 933                                    GCCause::_g1_humongous_allocation);
 934       if (result != NULL) {
 935         assert(succeeded, "only way to get back a non-NULL result");
 936         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 937                              Thread::current()->name(), p2i(result));
 938         return result;
 939       }
 940 
 941       if (succeeded) {
 942         // We successfully scheduled a collection which failed to allocate. No
 943         // point in trying to allocate further. We'll just return NULL.
 944         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 945                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 946         return NULL;
 947       }
 948       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 949                            Thread::current()->name(), word_size);
 950     } else {
 951       // Failed to schedule a collection.
 952       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 953         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 954                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 955         return NULL;
 956       }
 957       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 958       // The GCLocker is either active or the GCLocker initiated
 959       // GC has not yet been performed. Stall until it is and
 960       // then retry the allocation.
 961       GCLocker::stall_until_clear();
 962       gclocker_retry_count += 1;
 963     }
 964 
 965 
 966     // We can reach here if we were unsuccessful in scheduling a
 967     // collection (because another thread beat us to it) or if we were
 968     // stalled due to the GC locker. In either can we should retry the
 969     // allocation attempt in case another thread successfully
 970     // performed a collection and reclaimed enough space.
 971     // Humongous object allocation always needs a lock, so we wait for the retry
 972     // in the next iteration of the loop, unlike for the regular iteration case.
 973     // Give a warning if we seem to be looping forever.
 974 
 975     if ((QueuedAllocationWarningCount > 0) &&
 976         (try_count % QueuedAllocationWarningCount == 0)) {
 977       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 978                              Thread::current()->name(), try_count, word_size);
 979     }
 980   }
 981 
 982   ShouldNotReachHere();
 983   return NULL;
 984 }
 985 
 986 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 987                                                            bool expect_null_mutator_alloc_region) {
 988   assert_at_safepoint_on_vm_thread();
 989   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 990          "the current alloc region was unexpectedly found to be non-NULL");
 991 
 992   if (!is_humongous(word_size)) {
 993     return _allocator->attempt_allocation_locked(word_size);
 994   } else {
 995     HeapWord* result = humongous_obj_allocate(word_size);
 996     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 997       collector_state()->set_initiate_conc_mark_if_possible(true);
 998     }
 999     return result;
1000   }
1001 
1002   ShouldNotReachHere();
1003 }
1004 
1005 class PostCompactionPrinterClosure: public HeapRegionClosure {
1006 private:
1007   G1HRPrinter* _hr_printer;
1008 public:
1009   bool do_heap_region(HeapRegion* hr) {
1010     assert(!hr->is_young(), "not expecting to find young regions");
1011     _hr_printer->post_compaction(hr);
1012     return false;
1013   }
1014 
1015   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1016     : _hr_printer(hr_printer) { }
1017 };
1018 
1019 void G1CollectedHeap::print_hrm_post_compaction() {
1020   if (_hr_printer.is_active()) {
1021     PostCompactionPrinterClosure cl(hr_printer());
1022     heap_region_iterate(&cl);
1023   }
1024 }
1025 
1026 void G1CollectedHeap::abort_concurrent_cycle() {
1027   // Note: When we have a more flexible GC logging framework that
1028   // allows us to add optional attributes to a GC log record we
1029   // could consider timing and reporting how long we wait in the
1030   // following two methods.
1031   wait_while_free_regions_coming();
1032   // If we start the compaction before the CM threads finish
1033   // scanning the root regions we might trip them over as we'll
1034   // be moving objects / updating references. So let's wait until
1035   // they are done. By telling them to abort, they should complete
1036   // early.
1037   _cm->root_regions()->abort();
1038   _cm->root_regions()->wait_until_scan_finished();
1039   append_secondary_free_list_if_not_empty_with_lock();
1040 
1041   // Disable discovery and empty the discovered lists
1042   // for the CM ref processor.
1043   ref_processor_cm()->disable_discovery();
1044   ref_processor_cm()->abandon_partial_discovery();
1045   ref_processor_cm()->verify_no_references_recorded();
1046 
1047   // Abandon current iterations of concurrent marking and concurrent
1048   // refinement, if any are in progress.
1049   concurrent_mark()->abort();
1050 }
1051 
1052 void G1CollectedHeap::prepare_heap_for_full_collection() {
1053   // Make sure we'll choose a new allocation region afterwards.
1054   _allocator->release_mutator_alloc_region();
1055   _allocator->abandon_gc_alloc_regions();
1056   g1_rem_set()->cleanupHRRS();
1057 
1058   // We may have added regions to the current incremental collection
1059   // set between the last GC or pause and now. We need to clear the
1060   // incremental collection set and then start rebuilding it afresh
1061   // after this full GC.
1062   abandon_collection_set(collection_set());
1063 
1064   tear_down_region_sets(false /* free_list_only */);
1065   collector_state()->set_gcs_are_young(true);
1066 }
1067 
1068 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1069   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1070   assert(used() == recalculate_used(), "Should be equal");
1071   _verifier->verify_region_sets_optional();
1072   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1073   _verifier->check_bitmaps("Full GC Start");
1074 }
1075 
1076 void G1CollectedHeap::prepare_heap_for_mutators() {
1077   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1078   ClassLoaderDataGraph::purge();
1079   MetaspaceUtils::verify_metrics();
1080 
1081   // Prepare heap for normal collections.
1082   assert(num_free_regions() == 0, "we should not have added any free regions");
1083   rebuild_region_sets(false /* free_list_only */);
1084   abort_refinement();
1085   resize_if_necessary_after_full_collection();
1086 
1087   // Rebuild the strong code root lists for each region
1088   rebuild_strong_code_roots();
1089 
1090   // Start a new incremental collection set for the next pause
1091   start_new_collection_set();
1092 
1093   _allocator->init_mutator_alloc_region();
1094 
1095   // Post collection state updates.
1096   MetaspaceGC::compute_new_size();
1097 }
1098 
1099 void G1CollectedHeap::abort_refinement() {
1100   if (_hot_card_cache->use_cache()) {
1101     _hot_card_cache->reset_hot_cache();
1102   }
1103 
1104   // Discard all remembered set updates.
1105   JavaThread::dirty_card_queue_set().abandon_logs();
1106   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1107 }
1108 
1109 void G1CollectedHeap::verify_after_full_collection() {
1110   check_gc_time_stamps();
1111   _hrm.verify_optional();
1112   _verifier->verify_region_sets_optional();
1113   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1114   // Clear the previous marking bitmap, if needed for bitmap verification.
1115   // Note we cannot do this when we clear the next marking bitmap in
1116   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1117   // objects marked during a full GC against the previous bitmap.
1118   // But we need to clear it before calling check_bitmaps below since
1119   // the full GC has compacted objects and updated TAMS but not updated
1120   // the prev bitmap.
1121   if (G1VerifyBitmaps) {
1122     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1123     _cm->clear_prev_bitmap(workers());
1124   }
1125   _verifier->check_bitmaps("Full GC End");
1126 
1127   // At this point there should be no regions in the
1128   // entire heap tagged as young.
1129   assert(check_young_list_empty(), "young list should be empty at this point");
1130 
1131   // Note: since we've just done a full GC, concurrent
1132   // marking is no longer active. Therefore we need not
1133   // re-enable reference discovery for the CM ref processor.
1134   // That will be done at the start of the next marking cycle.
1135   // We also know that the STW processor should no longer
1136   // discover any new references.
1137   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1138   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1139   ref_processor_stw()->verify_no_references_recorded();
1140   ref_processor_cm()->verify_no_references_recorded();
1141 }
1142 
1143 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1144   // Post collection logging.
1145   // We should do this after we potentially resize the heap so
1146   // that all the COMMIT / UNCOMMIT events are generated before
1147   // the compaction events.
1148   print_hrm_post_compaction();
1149   heap_transition->print();
1150   print_heap_after_gc();
1151   print_heap_regions();
1152 #ifdef TRACESPINNING
1153   ParallelTaskTerminator::print_termination_counts();
1154 #endif
1155 }
1156 
1157 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1158                                          bool clear_all_soft_refs) {
1159   assert_at_safepoint_on_vm_thread();
1160 
1161   if (GCLocker::check_active_before_gc()) {
1162     // Full GC was not completed.
1163     return false;
1164   }
1165 
1166   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1167       soft_ref_policy()->should_clear_all_soft_refs();
1168 
1169   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1170   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1171 
1172   collector.prepare_collection();
1173   collector.collect();
1174   collector.complete_collection();
1175 
1176   // Full collection was successfully completed.
1177   return true;
1178 }
1179 
1180 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1181   // Currently, there is no facility in the do_full_collection(bool) API to notify
1182   // the caller that the collection did not succeed (e.g., because it was locked
1183   // out by the GC locker). So, right now, we'll ignore the return value.
1184   bool dummy = do_full_collection(true,                /* explicit_gc */
1185                                   clear_all_soft_refs);
1186 }
1187 
1188 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1189   // Capacity, free and used after the GC counted as full regions to
1190   // include the waste in the following calculations.
1191   const size_t capacity_after_gc = capacity();
1192   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1193 
1194   // This is enforced in arguments.cpp.
1195   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1196          "otherwise the code below doesn't make sense");
1197 
1198   // We don't have floating point command-line arguments
1199   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1200   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1201   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1202   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1203 
1204   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1205   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1206 
1207   // We have to be careful here as these two calculations can overflow
1208   // 32-bit size_t's.
1209   double used_after_gc_d = (double) used_after_gc;
1210   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1211   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1212 
1213   // Let's make sure that they are both under the max heap size, which
1214   // by default will make them fit into a size_t.
1215   double desired_capacity_upper_bound = (double) max_heap_size;
1216   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1217                                     desired_capacity_upper_bound);
1218   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1219                                     desired_capacity_upper_bound);
1220 
1221   // We can now safely turn them into size_t's.
1222   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1223   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1224 
1225   // This assert only makes sense here, before we adjust them
1226   // with respect to the min and max heap size.
1227   assert(minimum_desired_capacity <= maximum_desired_capacity,
1228          "minimum_desired_capacity = " SIZE_FORMAT ", "
1229          "maximum_desired_capacity = " SIZE_FORMAT,
1230          minimum_desired_capacity, maximum_desired_capacity);
1231 
1232   // Should not be greater than the heap max size. No need to adjust
1233   // it with respect to the heap min size as it's a lower bound (i.e.,
1234   // we'll try to make the capacity larger than it, not smaller).
1235   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1236   // Should not be less than the heap min size. No need to adjust it
1237   // with respect to the heap max size as it's an upper bound (i.e.,
1238   // we'll try to make the capacity smaller than it, not greater).
1239   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1240 
1241   if (capacity_after_gc < minimum_desired_capacity) {
1242     // Don't expand unless it's significant
1243     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1244 
1245     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1246                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1247                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1248                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1249 
1250     expand(expand_bytes, _workers);
1251 
1252     // No expansion, now see if we want to shrink
1253   } else if (capacity_after_gc > maximum_desired_capacity) {
1254     // Capacity too large, compute shrinking size
1255     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1256 
1257     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1258                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1259                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1260                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1261 
1262     shrink(shrink_bytes);
1263   }
1264 }
1265 
1266 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1267                                                             bool do_gc,
1268                                                             bool clear_all_soft_refs,
1269                                                             bool expect_null_mutator_alloc_region,
1270                                                             bool* gc_succeeded) {
1271   *gc_succeeded = true;
1272   // Let's attempt the allocation first.
1273   HeapWord* result =
1274     attempt_allocation_at_safepoint(word_size,
1275                                     expect_null_mutator_alloc_region);
1276   if (result != NULL) {
1277     return result;
1278   }
1279 
1280   // In a G1 heap, we're supposed to keep allocation from failing by
1281   // incremental pauses.  Therefore, at least for now, we'll favor
1282   // expansion over collection.  (This might change in the future if we can
1283   // do something smarter than full collection to satisfy a failed alloc.)
1284   result = expand_and_allocate(word_size);
1285   if (result != NULL) {
1286     return result;
1287   }
1288 
1289   if (do_gc) {
1290     // Expansion didn't work, we'll try to do a Full GC.
1291     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1292                                        clear_all_soft_refs);
1293   }
1294 
1295   return NULL;
1296 }
1297 
1298 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1299                                                      bool* succeeded) {
1300   assert_at_safepoint_on_vm_thread();
1301 
1302   // Attempts to allocate followed by Full GC.
1303   HeapWord* result =
1304     satisfy_failed_allocation_helper(word_size,
1305                                      true,  /* do_gc */
1306                                      false, /* clear_all_soft_refs */
1307                                      false, /* expect_null_mutator_alloc_region */
1308                                      succeeded);
1309 
1310   if (result != NULL || !*succeeded) {
1311     return result;
1312   }
1313 
1314   // Attempts to allocate followed by Full GC that will collect all soft references.
1315   result = satisfy_failed_allocation_helper(word_size,
1316                                             true, /* do_gc */
1317                                             true, /* clear_all_soft_refs */
1318                                             true, /* expect_null_mutator_alloc_region */
1319                                             succeeded);
1320 
1321   if (result != NULL || !*succeeded) {
1322     return result;
1323   }
1324 
1325   // Attempts to allocate, no GC
1326   result = satisfy_failed_allocation_helper(word_size,
1327                                             false, /* do_gc */
1328                                             false, /* clear_all_soft_refs */
1329                                             true,  /* expect_null_mutator_alloc_region */
1330                                             succeeded);
1331 
1332   if (result != NULL) {
1333     return result;
1334   }
1335 
1336   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1337          "Flag should have been handled and cleared prior to this point");
1338 
1339   // What else?  We might try synchronous finalization later.  If the total
1340   // space available is large enough for the allocation, then a more
1341   // complete compaction phase than we've tried so far might be
1342   // appropriate.
1343   return NULL;
1344 }
1345 
1346 // Attempting to expand the heap sufficiently
1347 // to support an allocation of the given "word_size".  If
1348 // successful, perform the allocation and return the address of the
1349 // allocated block, or else "NULL".
1350 
1351 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1352   assert_at_safepoint_on_vm_thread();
1353 
1354   _verifier->verify_region_sets_optional();
1355 
1356   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1357   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1358                             word_size * HeapWordSize);
1359 
1360 
1361   if (expand(expand_bytes, _workers)) {
1362     _hrm.verify_optional();
1363     _verifier->verify_region_sets_optional();
1364     return attempt_allocation_at_safepoint(word_size,
1365                                            false /* expect_null_mutator_alloc_region */);
1366   }
1367   return NULL;
1368 }
1369 
1370 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1371   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1372   aligned_expand_bytes = align_up(aligned_expand_bytes,
1373                                        HeapRegion::GrainBytes);
1374 
1375   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1376                             expand_bytes, aligned_expand_bytes);
1377 
1378   if (is_maximal_no_gc()) {
1379     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1380     return false;
1381   }
1382 
1383   double expand_heap_start_time_sec = os::elapsedTime();
1384   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1385   assert(regions_to_expand > 0, "Must expand by at least one region");
1386 
1387   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1388   if (expand_time_ms != NULL) {
1389     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1390   }
1391 
1392   if (expanded_by > 0) {
1393     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1394     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1395     g1_policy()->record_new_heap_size(num_regions());
1396   } else {
1397     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1398 
1399     // The expansion of the virtual storage space was unsuccessful.
1400     // Let's see if it was because we ran out of swap.
1401     if (G1ExitOnExpansionFailure &&
1402         _hrm.available() >= regions_to_expand) {
1403       // We had head room...
1404       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1405     }
1406   }
1407   return regions_to_expand > 0;
1408 }
1409 
1410 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1411   size_t aligned_shrink_bytes =
1412     ReservedSpace::page_align_size_down(shrink_bytes);
1413   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1414                                          HeapRegion::GrainBytes);
1415   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1416 
1417   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1418   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1419 
1420 
1421   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1422                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1423   if (num_regions_removed > 0) {
1424     g1_policy()->record_new_heap_size(num_regions());
1425   } else {
1426     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1427   }
1428 }
1429 
1430 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1431   _verifier->verify_region_sets_optional();
1432 
1433   // We should only reach here at the end of a Full GC which means we
1434   // should not not be holding to any GC alloc regions. The method
1435   // below will make sure of that and do any remaining clean up.
1436   _allocator->abandon_gc_alloc_regions();
1437 
1438   // Instead of tearing down / rebuilding the free lists here, we
1439   // could instead use the remove_all_pending() method on free_list to
1440   // remove only the ones that we need to remove.
1441   tear_down_region_sets(true /* free_list_only */);
1442   shrink_helper(shrink_bytes);
1443   rebuild_region_sets(true /* free_list_only */);
1444 
1445   _hrm.verify_optional();
1446   _verifier->verify_region_sets_optional();
1447 }
1448 
1449 // Public methods.
1450 
1451 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1452   CollectedHeap(),
1453   _young_gen_sampling_thread(NULL),
1454   _collector_policy(collector_policy),
1455   _soft_ref_policy(),
1456   _card_table(NULL),
1457   _memory_manager("G1 Young Generation", "end of minor GC"),
1458   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1459   _eden_pool(NULL),
1460   _survivor_pool(NULL),
1461   _old_pool(NULL),
1462   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1463   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1464   _g1_policy(new G1Policy(_gc_timer_stw)),
1465   _collection_set(this, _g1_policy),
1466   _dirty_card_queue_set(false),
1467   _is_alive_closure_cm(this),
1468   _is_alive_closure_stw(this),
1469   _ref_processor_cm(NULL),
1470   _ref_processor_stw(NULL),
1471   _bot(NULL),
1472   _hot_card_cache(NULL),
1473   _g1_rem_set(NULL),
1474   _cr(NULL),
1475   _g1mm(NULL),
1476   _preserved_marks_set(true /* in_c_heap */),
1477   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1478   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1479   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1480   _humongous_reclaim_candidates(),
1481   _has_humongous_reclaim_candidates(false),
1482   _archive_allocator(NULL),
1483   _free_regions_coming(false),
1484   _gc_time_stamp(0),
1485   _summary_bytes_used(0),
1486   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1487   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1488   _expand_heap_after_alloc_failure(true),
1489   _old_marking_cycles_started(0),
1490   _old_marking_cycles_completed(0),
1491   _in_cset_fast_test() {
1492 
1493   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1494                           /* are_GC_task_threads */true,
1495                           /* are_ConcurrentGC_threads */false);
1496   _workers->initialize_workers();
1497   _verifier = new G1HeapVerifier(this);
1498 
1499   _allocator = new G1DefaultAllocator(this);
1500 
1501   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1502 
1503   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1504 
1505   // Override the default _filler_array_max_size so that no humongous filler
1506   // objects are created.
1507   _filler_array_max_size = _humongous_object_threshold_in_words;
1508 
1509   uint n_queues = ParallelGCThreads;
1510   _task_queues = new RefToScanQueueSet(n_queues);
1511 
1512   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1513 
1514   for (uint i = 0; i < n_queues; i++) {
1515     RefToScanQueue* q = new RefToScanQueue();
1516     q->initialize();
1517     _task_queues->register_queue(i, q);
1518     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1519   }
1520 
1521   // Initialize the G1EvacuationFailureALot counters and flags.
1522   NOT_PRODUCT(reset_evacuation_should_fail();)
1523 
1524   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1525 }
1526 
1527 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1528                                                                  size_t size,
1529                                                                  size_t translation_factor) {
1530   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1531   // Allocate a new reserved space, preferring to use large pages.
1532   ReservedSpace rs(size, preferred_page_size);
1533   G1RegionToSpaceMapper* result  =
1534     G1RegionToSpaceMapper::create_mapper(rs,
1535                                          size,
1536                                          rs.alignment(),
1537                                          HeapRegion::GrainBytes,
1538                                          translation_factor,
1539                                          mtGC);
1540 
1541   os::trace_page_sizes_for_requested_size(description,
1542                                           size,
1543                                           preferred_page_size,
1544                                           rs.alignment(),
1545                                           rs.base(),
1546                                           rs.size());
1547 
1548   return result;
1549 }
1550 
1551 jint G1CollectedHeap::initialize_concurrent_refinement() {
1552   jint ecode = JNI_OK;
1553   _cr = G1ConcurrentRefine::create(&ecode);
1554   return ecode;
1555 }
1556 
1557 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1558   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1559   if (_young_gen_sampling_thread->osthread() == NULL) {
1560     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1561     return JNI_ENOMEM;
1562   }
1563   return JNI_OK;
1564 }
1565 
1566 jint G1CollectedHeap::initialize() {
1567   os::enable_vtime();
1568 
1569   // Necessary to satisfy locking discipline assertions.
1570 
1571   MutexLocker x(Heap_lock);
1572 
1573   // While there are no constraints in the GC code that HeapWordSize
1574   // be any particular value, there are multiple other areas in the
1575   // system which believe this to be true (e.g. oop->object_size in some
1576   // cases incorrectly returns the size in wordSize units rather than
1577   // HeapWordSize).
1578   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1579 
1580   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1581   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1582   size_t heap_alignment = collector_policy()->heap_alignment();
1583 
1584   // Ensure that the sizes are properly aligned.
1585   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1586   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1587   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1588 
1589   // Reserve the maximum.
1590 
1591   // When compressed oops are enabled, the preferred heap base
1592   // is calculated by subtracting the requested size from the
1593   // 32Gb boundary and using the result as the base address for
1594   // heap reservation. If the requested size is not aligned to
1595   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1596   // into the ReservedHeapSpace constructor) then the actual
1597   // base of the reserved heap may end up differing from the
1598   // address that was requested (i.e. the preferred heap base).
1599   // If this happens then we could end up using a non-optimal
1600   // compressed oops mode.
1601 
1602   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1603                                                  heap_alignment);
1604 
1605   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1606 
1607   // Create the barrier set for the entire reserved region.
1608   G1CardTable* ct = new G1CardTable(reserved_region());
1609   ct->initialize();
1610   G1BarrierSet* bs = new G1BarrierSet(ct);
1611   bs->initialize();
1612   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1613   set_barrier_set(bs);
1614   _card_table = ct;
1615 
1616   // Create the hot card cache.
1617   _hot_card_cache = new G1HotCardCache(this);
1618 
1619   // Carve out the G1 part of the heap.
1620   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1621   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1622   G1RegionToSpaceMapper* heap_storage =
1623     G1RegionToSpaceMapper::create_mapper(g1_rs,
1624                                          g1_rs.size(),
1625                                          page_size,
1626                                          HeapRegion::GrainBytes,
1627                                          1,
1628                                          mtJavaHeap);
1629   os::trace_page_sizes("Heap",
1630                        collector_policy()->min_heap_byte_size(),
1631                        max_byte_size,
1632                        page_size,
1633                        heap_rs.base(),
1634                        heap_rs.size());
1635   heap_storage->set_mapping_changed_listener(&_listener);
1636 
1637   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1638   G1RegionToSpaceMapper* bot_storage =
1639     create_aux_memory_mapper("Block Offset Table",
1640                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1641                              G1BlockOffsetTable::heap_map_factor());
1642 
1643   G1RegionToSpaceMapper* cardtable_storage =
1644     create_aux_memory_mapper("Card Table",
1645                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1646                              G1CardTable::heap_map_factor());
1647 
1648   G1RegionToSpaceMapper* card_counts_storage =
1649     create_aux_memory_mapper("Card Counts Table",
1650                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1651                              G1CardCounts::heap_map_factor());
1652 
1653   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1654   G1RegionToSpaceMapper* prev_bitmap_storage =
1655     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1656   G1RegionToSpaceMapper* next_bitmap_storage =
1657     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1658 
1659   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1660   _card_table->initialize(cardtable_storage);
1661   // Do later initialization work for concurrent refinement.
1662   _hot_card_cache->initialize(card_counts_storage);
1663 
1664   // 6843694 - ensure that the maximum region index can fit
1665   // in the remembered set structures.
1666   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1667   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1668 
1669   // Also create a G1 rem set.
1670   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1671   _g1_rem_set->initialize(max_capacity(), max_regions());
1672 
1673   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1674   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1675   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1676             "too many cards per region");
1677 
1678   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1679 
1680   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1681 
1682   {
1683     HeapWord* start = _hrm.reserved().start();
1684     HeapWord* end = _hrm.reserved().end();
1685     size_t granularity = HeapRegion::GrainBytes;
1686 
1687     _in_cset_fast_test.initialize(start, end, granularity);
1688     _humongous_reclaim_candidates.initialize(start, end, granularity);
1689   }
1690 
1691   // Create the G1ConcurrentMark data structure and thread.
1692   // (Must do this late, so that "max_regions" is defined.)
1693   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1694   if (_cm == NULL || !_cm->completed_initialization()) {
1695     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1696     return JNI_ENOMEM;
1697   }
1698   _cmThread = _cm->cm_thread();
1699 
1700   // Now expand into the initial heap size.
1701   if (!expand(init_byte_size, _workers)) {
1702     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1703     return JNI_ENOMEM;
1704   }
1705 
1706   // Perform any initialization actions delegated to the policy.
1707   g1_policy()->init(this, &_collection_set);
1708 
1709   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1710                                                SATB_Q_FL_lock,
1711                                                G1SATBProcessCompletedThreshold,
1712                                                Shared_SATB_Q_lock);
1713 
1714   jint ecode = initialize_concurrent_refinement();
1715   if (ecode != JNI_OK) {
1716     return ecode;
1717   }
1718 
1719   ecode = initialize_young_gen_sampling_thread();
1720   if (ecode != JNI_OK) {
1721     return ecode;
1722   }
1723 
1724   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1725                                                 DirtyCardQ_FL_lock,
1726                                                 (int)concurrent_refine()->yellow_zone(),
1727                                                 (int)concurrent_refine()->red_zone(),
1728                                                 Shared_DirtyCardQ_lock,
1729                                                 NULL,  // fl_owner
1730                                                 true); // init_free_ids
1731 
1732   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1733                                     DirtyCardQ_FL_lock,
1734                                     -1, // never trigger processing
1735                                     -1, // no limit on length
1736                                     Shared_DirtyCardQ_lock,
1737                                     &JavaThread::dirty_card_queue_set());
1738 
1739   // Here we allocate the dummy HeapRegion that is required by the
1740   // G1AllocRegion class.
1741   HeapRegion* dummy_region = _hrm.get_dummy_region();
1742 
1743   // We'll re-use the same region whether the alloc region will
1744   // require BOT updates or not and, if it doesn't, then a non-young
1745   // region will complain that it cannot support allocations without
1746   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1747   dummy_region->set_eden();
1748   // Make sure it's full.
1749   dummy_region->set_top(dummy_region->end());
1750   G1AllocRegion::setup(this, dummy_region);
1751 
1752   _allocator->init_mutator_alloc_region();
1753 
1754   // Do create of the monitoring and management support so that
1755   // values in the heap have been properly initialized.
1756   _g1mm = new G1MonitoringSupport(this);
1757 
1758   G1StringDedup::initialize();
1759 
1760   _preserved_marks_set.init(ParallelGCThreads);
1761 
1762   _collection_set.initialize(max_regions());
1763 
1764   return JNI_OK;
1765 }
1766 
1767 void G1CollectedHeap::initialize_serviceability() {
1768   _eden_pool = new G1EdenPool(this);
1769   _survivor_pool = new G1SurvivorPool(this);
1770   _old_pool = new G1OldGenPool(this);
1771 
1772   _full_gc_memory_manager.add_pool(_eden_pool);
1773   _full_gc_memory_manager.add_pool(_survivor_pool);
1774   _full_gc_memory_manager.add_pool(_old_pool);
1775 
1776   _memory_manager.add_pool(_eden_pool);
1777   _memory_manager.add_pool(_survivor_pool);
1778 
1779 }
1780 
1781 void G1CollectedHeap::stop() {
1782   // Stop all concurrent threads. We do this to make sure these threads
1783   // do not continue to execute and access resources (e.g. logging)
1784   // that are destroyed during shutdown.
1785   _cr->stop();
1786   _young_gen_sampling_thread->stop();
1787   _cmThread->stop();
1788   if (G1StringDedup::is_enabled()) {
1789     G1StringDedup::stop();
1790   }
1791 }
1792 
1793 void G1CollectedHeap::safepoint_synchronize_begin() {
1794   SuspendibleThreadSet::synchronize();
1795 }
1796 
1797 void G1CollectedHeap::safepoint_synchronize_end() {
1798   SuspendibleThreadSet::desynchronize();
1799 }
1800 
1801 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1802   return HeapRegion::max_region_size();
1803 }
1804 
1805 void G1CollectedHeap::post_initialize() {
1806   CollectedHeap::post_initialize();
1807   ref_processing_init();
1808 }
1809 
1810 void G1CollectedHeap::ref_processing_init() {
1811   // Reference processing in G1 currently works as follows:
1812   //
1813   // * There are two reference processor instances. One is
1814   //   used to record and process discovered references
1815   //   during concurrent marking; the other is used to
1816   //   record and process references during STW pauses
1817   //   (both full and incremental).
1818   // * Both ref processors need to 'span' the entire heap as
1819   //   the regions in the collection set may be dotted around.
1820   //
1821   // * For the concurrent marking ref processor:
1822   //   * Reference discovery is enabled at initial marking.
1823   //   * Reference discovery is disabled and the discovered
1824   //     references processed etc during remarking.
1825   //   * Reference discovery is MT (see below).
1826   //   * Reference discovery requires a barrier (see below).
1827   //   * Reference processing may or may not be MT
1828   //     (depending on the value of ParallelRefProcEnabled
1829   //     and ParallelGCThreads).
1830   //   * A full GC disables reference discovery by the CM
1831   //     ref processor and abandons any entries on it's
1832   //     discovered lists.
1833   //
1834   // * For the STW processor:
1835   //   * Non MT discovery is enabled at the start of a full GC.
1836   //   * Processing and enqueueing during a full GC is non-MT.
1837   //   * During a full GC, references are processed after marking.
1838   //
1839   //   * Discovery (may or may not be MT) is enabled at the start
1840   //     of an incremental evacuation pause.
1841   //   * References are processed near the end of a STW evacuation pause.
1842   //   * For both types of GC:
1843   //     * Discovery is atomic - i.e. not concurrent.
1844   //     * Reference discovery will not need a barrier.
1845 
1846   MemRegion mr = reserved_region();
1847 
1848   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1849 
1850   // Concurrent Mark ref processor
1851   _ref_processor_cm =
1852     new ReferenceProcessor(mr,    // span
1853                            mt_processing,
1854                                 // mt processing
1855                            ParallelGCThreads,
1856                                 // degree of mt processing
1857                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1858                                 // mt discovery
1859                            MAX2(ParallelGCThreads, ConcGCThreads),
1860                                 // degree of mt discovery
1861                            false,
1862                                 // Reference discovery is not atomic
1863                            &_is_alive_closure_cm);
1864                                 // is alive closure
1865                                 // (for efficiency/performance)
1866 
1867   // STW ref processor
1868   _ref_processor_stw =
1869     new ReferenceProcessor(mr,    // span
1870                            mt_processing,
1871                                 // mt processing
1872                            ParallelGCThreads,
1873                                 // degree of mt processing
1874                            (ParallelGCThreads > 1),
1875                                 // mt discovery
1876                            ParallelGCThreads,
1877                                 // degree of mt discovery
1878                            true,
1879                                 // Reference discovery is atomic
1880                            &_is_alive_closure_stw);
1881                                 // is alive closure
1882                                 // (for efficiency/performance)
1883 }
1884 
1885 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1886   return _collector_policy;
1887 }
1888 
1889 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1890   return &_soft_ref_policy;
1891 }
1892 
1893 size_t G1CollectedHeap::capacity() const {
1894   return _hrm.length() * HeapRegion::GrainBytes;
1895 }
1896 
1897 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1898   return _hrm.total_free_bytes();
1899 }
1900 
1901 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1902   hr->reset_gc_time_stamp();
1903 }
1904 
1905 #ifndef PRODUCT
1906 
1907 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1908 private:
1909   unsigned _gc_time_stamp;
1910   bool _failures;
1911 
1912 public:
1913   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1914     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1915 
1916   virtual bool do_heap_region(HeapRegion* hr) {
1917     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1918     if (_gc_time_stamp != region_gc_time_stamp) {
1919       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1920                             region_gc_time_stamp, _gc_time_stamp);
1921       _failures = true;
1922     }
1923     return false;
1924   }
1925 
1926   bool failures() { return _failures; }
1927 };
1928 
1929 void G1CollectedHeap::check_gc_time_stamps() {
1930   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1931   heap_region_iterate(&cl);
1932   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1933 }
1934 #endif // PRODUCT
1935 
1936 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1937   _hot_card_cache->drain(cl, worker_i);
1938 }
1939 
1940 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1941   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1942   size_t n_completed_buffers = 0;
1943   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1944     n_completed_buffers++;
1945   }
1946   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1947   dcqs.clear_n_completed_buffers();
1948   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1949 }
1950 
1951 // Computes the sum of the storage used by the various regions.
1952 size_t G1CollectedHeap::used() const {
1953   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1954   if (_archive_allocator != NULL) {
1955     result += _archive_allocator->used();
1956   }
1957   return result;
1958 }
1959 
1960 size_t G1CollectedHeap::used_unlocked() const {
1961   return _summary_bytes_used;
1962 }
1963 
1964 class SumUsedClosure: public HeapRegionClosure {
1965   size_t _used;
1966 public:
1967   SumUsedClosure() : _used(0) {}
1968   bool do_heap_region(HeapRegion* r) {
1969     _used += r->used();
1970     return false;
1971   }
1972   size_t result() { return _used; }
1973 };
1974 
1975 size_t G1CollectedHeap::recalculate_used() const {
1976   double recalculate_used_start = os::elapsedTime();
1977 
1978   SumUsedClosure blk;
1979   heap_region_iterate(&blk);
1980 
1981   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1982   return blk.result();
1983 }
1984 
1985 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1986   switch (cause) {
1987     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1988     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1989     case GCCause::_wb_conc_mark:                        return true;
1990     default :                                           return false;
1991   }
1992 }
1993 
1994 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1995   switch (cause) {
1996     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1997     case GCCause::_g1_humongous_allocation: return true;
1998     default:                                return is_user_requested_concurrent_full_gc(cause);
1999   }
2000 }
2001 
2002 #ifndef PRODUCT
2003 void G1CollectedHeap::allocate_dummy_regions() {
2004   // Let's fill up most of the region
2005   size_t word_size = HeapRegion::GrainWords - 1024;
2006   // And as a result the region we'll allocate will be humongous.
2007   guarantee(is_humongous(word_size), "sanity");
2008 
2009   // _filler_array_max_size is set to humongous object threshold
2010   // but temporarily change it to use CollectedHeap::fill_with_object().
2011   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2012 
2013   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2014     // Let's use the existing mechanism for the allocation
2015     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2016     if (dummy_obj != NULL) {
2017       MemRegion mr(dummy_obj, word_size);
2018       CollectedHeap::fill_with_object(mr);
2019     } else {
2020       // If we can't allocate once, we probably cannot allocate
2021       // again. Let's get out of the loop.
2022       break;
2023     }
2024   }
2025 }
2026 #endif // !PRODUCT
2027 
2028 void G1CollectedHeap::increment_old_marking_cycles_started() {
2029   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2030          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2031          "Wrong marking cycle count (started: %d, completed: %d)",
2032          _old_marking_cycles_started, _old_marking_cycles_completed);
2033 
2034   _old_marking_cycles_started++;
2035 }
2036 
2037 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2038   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2039 
2040   // We assume that if concurrent == true, then the caller is a
2041   // concurrent thread that was joined the Suspendible Thread
2042   // Set. If there's ever a cheap way to check this, we should add an
2043   // assert here.
2044 
2045   // Given that this method is called at the end of a Full GC or of a
2046   // concurrent cycle, and those can be nested (i.e., a Full GC can
2047   // interrupt a concurrent cycle), the number of full collections
2048   // completed should be either one (in the case where there was no
2049   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2050   // behind the number of full collections started.
2051 
2052   // This is the case for the inner caller, i.e. a Full GC.
2053   assert(concurrent ||
2054          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2055          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2056          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2057          "is inconsistent with _old_marking_cycles_completed = %u",
2058          _old_marking_cycles_started, _old_marking_cycles_completed);
2059 
2060   // This is the case for the outer caller, i.e. the concurrent cycle.
2061   assert(!concurrent ||
2062          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2063          "for outer caller (concurrent cycle): "
2064          "_old_marking_cycles_started = %u "
2065          "is inconsistent with _old_marking_cycles_completed = %u",
2066          _old_marking_cycles_started, _old_marking_cycles_completed);
2067 
2068   _old_marking_cycles_completed += 1;
2069 
2070   // We need to clear the "in_progress" flag in the CM thread before
2071   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2072   // is set) so that if a waiter requests another System.gc() it doesn't
2073   // incorrectly see that a marking cycle is still in progress.
2074   if (concurrent) {
2075     _cmThread->set_idle();
2076   }
2077 
2078   // This notify_all() will ensure that a thread that called
2079   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2080   // and it's waiting for a full GC to finish will be woken up. It is
2081   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2082   FullGCCount_lock->notify_all();
2083 }
2084 
2085 void G1CollectedHeap::collect(GCCause::Cause cause) {
2086   assert_heap_not_locked();
2087 
2088   uint gc_count_before;
2089   uint old_marking_count_before;
2090   uint full_gc_count_before;
2091   bool retry_gc;
2092 
2093   do {
2094     retry_gc = false;
2095 
2096     {
2097       MutexLocker ml(Heap_lock);
2098 
2099       // Read the GC count while holding the Heap_lock
2100       gc_count_before = total_collections();
2101       full_gc_count_before = total_full_collections();
2102       old_marking_count_before = _old_marking_cycles_started;
2103     }
2104 
2105     if (should_do_concurrent_full_gc(cause)) {
2106       // Schedule an initial-mark evacuation pause that will start a
2107       // concurrent cycle. We're setting word_size to 0 which means that
2108       // we are not requesting a post-GC allocation.
2109       VM_G1CollectForAllocation op(0,     /* word_size */
2110                                    gc_count_before,
2111                                    cause,
2112                                    true,  /* should_initiate_conc_mark */
2113                                    g1_policy()->max_pause_time_ms());
2114       VMThread::execute(&op);
2115       if (!op.pause_succeeded()) {
2116         if (old_marking_count_before == _old_marking_cycles_started) {
2117           retry_gc = op.should_retry_gc();
2118         } else {
2119           // A Full GC happened while we were trying to schedule the
2120           // initial-mark GC. No point in starting a new cycle given
2121           // that the whole heap was collected anyway.
2122         }
2123 
2124         if (retry_gc) {
2125           if (GCLocker::is_active_and_needs_gc()) {
2126             GCLocker::stall_until_clear();
2127           }
2128         }
2129       }
2130     } else {
2131       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2132           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2133 
2134         // Schedule a standard evacuation pause. We're setting word_size
2135         // to 0 which means that we are not requesting a post-GC allocation.
2136         VM_G1CollectForAllocation op(0,     /* word_size */
2137                                      gc_count_before,
2138                                      cause,
2139                                      false, /* should_initiate_conc_mark */
2140                                      g1_policy()->max_pause_time_ms());
2141         VMThread::execute(&op);
2142       } else {
2143         // Schedule a Full GC.
2144         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2145         VMThread::execute(&op);
2146       }
2147     }
2148   } while (retry_gc);
2149 }
2150 
2151 bool G1CollectedHeap::is_in(const void* p) const {
2152   if (_hrm.reserved().contains(p)) {
2153     // Given that we know that p is in the reserved space,
2154     // heap_region_containing() should successfully
2155     // return the containing region.
2156     HeapRegion* hr = heap_region_containing(p);
2157     return hr->is_in(p);
2158   } else {
2159     return false;
2160   }
2161 }
2162 
2163 #ifdef ASSERT
2164 bool G1CollectedHeap::is_in_exact(const void* p) const {
2165   bool contains = reserved_region().contains(p);
2166   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2167   if (contains && available) {
2168     return true;
2169   } else {
2170     return false;
2171   }
2172 }
2173 #endif
2174 
2175 // Iteration functions.
2176 
2177 // Iterates an ObjectClosure over all objects within a HeapRegion.
2178 
2179 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2180   ObjectClosure* _cl;
2181 public:
2182   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2183   bool do_heap_region(HeapRegion* r) {
2184     if (!r->is_continues_humongous()) {
2185       r->object_iterate(_cl);
2186     }
2187     return false;
2188   }
2189 };
2190 
2191 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2192   IterateObjectClosureRegionClosure blk(cl);
2193   heap_region_iterate(&blk);
2194 }
2195 
2196 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2197   _hrm.iterate(cl);
2198 }
2199 
2200 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2201                                                                  HeapRegionClaimer *hrclaimer,
2202                                                                  uint worker_id) const {
2203   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2204 }
2205 
2206 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2207                                                          HeapRegionClaimer *hrclaimer) const {
2208   _hrm.par_iterate(cl, hrclaimer, 0);
2209 }
2210 
2211 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2212   _collection_set.iterate(cl);
2213 }
2214 
2215 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2216   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2217 }
2218 
2219 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2220   HeapRegion* hr = heap_region_containing(addr);
2221   return hr->block_start(addr);
2222 }
2223 
2224 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2225   HeapRegion* hr = heap_region_containing(addr);
2226   return hr->block_size(addr);
2227 }
2228 
2229 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2230   HeapRegion* hr = heap_region_containing(addr);
2231   return hr->block_is_obj(addr);
2232 }
2233 
2234 bool G1CollectedHeap::supports_tlab_allocation() const {
2235   return true;
2236 }
2237 
2238 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2239   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2240 }
2241 
2242 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2243   return _eden.length() * HeapRegion::GrainBytes;
2244 }
2245 
2246 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2247 // must be equal to the humongous object limit.
2248 size_t G1CollectedHeap::max_tlab_size() const {
2249   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2250 }
2251 
2252 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2253   return _allocator->unsafe_max_tlab_alloc();
2254 }
2255 
2256 size_t G1CollectedHeap::max_capacity() const {
2257   return _hrm.reserved().byte_size();
2258 }
2259 
2260 jlong G1CollectedHeap::millis_since_last_gc() {
2261   // See the notes in GenCollectedHeap::millis_since_last_gc()
2262   // for more information about the implementation.
2263   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2264     _g1_policy->collection_pause_end_millis();
2265   if (ret_val < 0) {
2266     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2267       ". returning zero instead.", ret_val);
2268     return 0;
2269   }
2270   return ret_val;
2271 }
2272 
2273 void G1CollectedHeap::prepare_for_verify() {
2274   _verifier->prepare_for_verify();
2275 }
2276 
2277 void G1CollectedHeap::verify(VerifyOption vo) {
2278   _verifier->verify(vo);
2279 }
2280 
2281 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2282   return true;
2283 }
2284 
2285 const char* const* G1CollectedHeap::concurrent_phases() const {
2286   return _cmThread->concurrent_phases();
2287 }
2288 
2289 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2290   return _cmThread->request_concurrent_phase(phase);
2291 }
2292 
2293 class PrintRegionClosure: public HeapRegionClosure {
2294   outputStream* _st;
2295 public:
2296   PrintRegionClosure(outputStream* st) : _st(st) {}
2297   bool do_heap_region(HeapRegion* r) {
2298     r->print_on(_st);
2299     return false;
2300   }
2301 };
2302 
2303 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2304                                        const HeapRegion* hr,
2305                                        const VerifyOption vo) const {
2306   switch (vo) {
2307   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2308   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2309   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2310   default:                            ShouldNotReachHere();
2311   }
2312   return false; // keep some compilers happy
2313 }
2314 
2315 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2316                                        const VerifyOption vo) const {
2317   switch (vo) {
2318   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2319   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2320   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2321   default:                            ShouldNotReachHere();
2322   }
2323   return false; // keep some compilers happy
2324 }
2325 
2326 void G1CollectedHeap::print_heap_regions() const {
2327   LogTarget(Trace, gc, heap, region) lt;
2328   if (lt.is_enabled()) {
2329     LogStream ls(lt);
2330     print_regions_on(&ls);
2331   }
2332 }
2333 
2334 void G1CollectedHeap::print_on(outputStream* st) const {
2335   st->print(" %-20s", "garbage-first heap");
2336   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2337             capacity()/K, used_unlocked()/K);
2338   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2339             p2i(_hrm.reserved().start()),
2340             p2i(_hrm.reserved().end()));
2341   st->cr();
2342   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2343   uint young_regions = young_regions_count();
2344   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2345             (size_t) young_regions * HeapRegion::GrainBytes / K);
2346   uint survivor_regions = survivor_regions_count();
2347   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2348             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2349   st->cr();
2350   MetaspaceUtils::print_on(st);
2351 }
2352 
2353 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2354   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2355                "HS=humongous(starts), HC=humongous(continues), "
2356                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2357                "TAMS=top-at-mark-start (previous, next)");
2358   PrintRegionClosure blk(st);
2359   heap_region_iterate(&blk);
2360 }
2361 
2362 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2363   print_on(st);
2364 
2365   // Print the per-region information.
2366   print_regions_on(st);
2367 }
2368 
2369 void G1CollectedHeap::print_on_error(outputStream* st) const {
2370   this->CollectedHeap::print_on_error(st);
2371 
2372   if (_cm != NULL) {
2373     st->cr();
2374     _cm->print_on_error(st);
2375   }
2376 }
2377 
2378 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2379   workers()->print_worker_threads_on(st);
2380   _cmThread->print_on(st);
2381   st->cr();
2382   _cm->print_worker_threads_on(st);
2383   _cr->print_threads_on(st);
2384   _young_gen_sampling_thread->print_on(st);
2385   if (G1StringDedup::is_enabled()) {
2386     G1StringDedup::print_worker_threads_on(st);
2387   }
2388 }
2389 
2390 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2391   workers()->threads_do(tc);
2392   tc->do_thread(_cmThread);
2393   _cm->threads_do(tc);
2394   _cr->threads_do(tc);
2395   tc->do_thread(_young_gen_sampling_thread);
2396   if (G1StringDedup::is_enabled()) {
2397     G1StringDedup::threads_do(tc);
2398   }
2399 }
2400 
2401 void G1CollectedHeap::print_tracing_info() const {
2402   g1_rem_set()->print_summary_info();
2403   concurrent_mark()->print_summary_info();
2404 }
2405 
2406 #ifndef PRODUCT
2407 // Helpful for debugging RSet issues.
2408 
2409 class PrintRSetsClosure : public HeapRegionClosure {
2410 private:
2411   const char* _msg;
2412   size_t _occupied_sum;
2413 
2414 public:
2415   bool do_heap_region(HeapRegion* r) {
2416     HeapRegionRemSet* hrrs = r->rem_set();
2417     size_t occupied = hrrs->occupied();
2418     _occupied_sum += occupied;
2419 
2420     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2421     if (occupied == 0) {
2422       tty->print_cr("  RSet is empty");
2423     } else {
2424       hrrs->print();
2425     }
2426     tty->print_cr("----------");
2427     return false;
2428   }
2429 
2430   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2431     tty->cr();
2432     tty->print_cr("========================================");
2433     tty->print_cr("%s", msg);
2434     tty->cr();
2435   }
2436 
2437   ~PrintRSetsClosure() {
2438     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2439     tty->print_cr("========================================");
2440     tty->cr();
2441   }
2442 };
2443 
2444 void G1CollectedHeap::print_cset_rsets() {
2445   PrintRSetsClosure cl("Printing CSet RSets");
2446   collection_set_iterate(&cl);
2447 }
2448 
2449 void G1CollectedHeap::print_all_rsets() {
2450   PrintRSetsClosure cl("Printing All RSets");;
2451   heap_region_iterate(&cl);
2452 }
2453 #endif // PRODUCT
2454 
2455 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2456 
2457   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2458   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2459   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2460 
2461   size_t eden_capacity_bytes =
2462     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2463 
2464   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2465   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2466                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2467 }
2468 
2469 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2470   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2471                        stats->unused(), stats->used(), stats->region_end_waste(),
2472                        stats->regions_filled(), stats->direct_allocated(),
2473                        stats->failure_used(), stats->failure_waste());
2474 }
2475 
2476 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2477   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2478   gc_tracer->report_gc_heap_summary(when, heap_summary);
2479 
2480   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2481   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2482 }
2483 
2484 G1CollectedHeap* G1CollectedHeap::heap() {
2485   CollectedHeap* heap = Universe::heap();
2486   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2487   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2488   return (G1CollectedHeap*)heap;
2489 }
2490 
2491 void G1CollectedHeap::gc_prologue(bool full) {
2492   // always_do_update_barrier = false;
2493   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2494 
2495   // This summary needs to be printed before incrementing total collections.
2496   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2497 
2498   // Update common counters.
2499   increment_total_collections(full /* full gc */);
2500   if (full) {
2501     increment_old_marking_cycles_started();
2502     reset_gc_time_stamp();
2503   } else {
2504     increment_gc_time_stamp();
2505   }
2506 
2507   // Fill TLAB's and such
2508   double start = os::elapsedTime();
2509   accumulate_statistics_all_tlabs();
2510   ensure_parsability(true);
2511   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2512 }
2513 
2514 void G1CollectedHeap::gc_epilogue(bool full) {
2515   // Update common counters.
2516   if (full) {
2517     // Update the number of full collections that have been completed.
2518     increment_old_marking_cycles_completed(false /* concurrent */);
2519   }
2520 
2521   // We are at the end of the GC. Total collections has already been increased.
2522   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2523 
2524   // FIXME: what is this about?
2525   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2526   // is set.
2527 #if COMPILER2_OR_JVMCI
2528   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2529 #endif
2530   // always_do_update_barrier = true;
2531 
2532   double start = os::elapsedTime();
2533   resize_all_tlabs();
2534   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2535 
2536   MemoryService::track_memory_usage();
2537   // We have just completed a GC. Update the soft reference
2538   // policy with the new heap occupancy
2539   Universe::update_heap_info_at_gc();
2540 }
2541 
2542 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2543                                                uint gc_count_before,
2544                                                bool* succeeded,
2545                                                GCCause::Cause gc_cause) {
2546   assert_heap_not_locked_and_not_at_safepoint();
2547   VM_G1CollectForAllocation op(word_size,
2548                                gc_count_before,
2549                                gc_cause,
2550                                false, /* should_initiate_conc_mark */
2551                                g1_policy()->max_pause_time_ms());
2552   VMThread::execute(&op);
2553 
2554   HeapWord* result = op.result();
2555   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2556   assert(result == NULL || ret_succeeded,
2557          "the result should be NULL if the VM did not succeed");
2558   *succeeded = ret_succeeded;
2559 
2560   assert_heap_not_locked();
2561   return result;
2562 }
2563 
2564 void
2565 G1CollectedHeap::doConcurrentMark() {
2566   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2567   if (!_cmThread->in_progress()) {
2568     _cmThread->set_started();
2569     CGC_lock->notify();
2570   }
2571 }
2572 
2573 size_t G1CollectedHeap::pending_card_num() {
2574   size_t extra_cards = 0;
2575   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2576     DirtyCardQueue& dcq = curr->dirty_card_queue();
2577     extra_cards += dcq.size();
2578   }
2579   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2580   size_t buffer_size = dcqs.buffer_size();
2581   size_t buffer_num = dcqs.completed_buffers_num();
2582 
2583   return buffer_size * buffer_num + extra_cards;
2584 }
2585 
2586 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2587  private:
2588   size_t _total_humongous;
2589   size_t _candidate_humongous;
2590 
2591   DirtyCardQueue _dcq;
2592 
2593   // We don't nominate objects with many remembered set entries, on
2594   // the assumption that such objects are likely still live.
2595   bool is_remset_small(HeapRegion* region) const {
2596     HeapRegionRemSet* const rset = region->rem_set();
2597     return G1EagerReclaimHumongousObjectsWithStaleRefs
2598       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2599       : rset->is_empty();
2600   }
2601 
2602   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2603     assert(region->is_starts_humongous(), "Must start a humongous object");
2604 
2605     oop obj = oop(region->bottom());
2606 
2607     // Dead objects cannot be eager reclaim candidates. Due to class
2608     // unloading it is unsafe to query their classes so we return early.
2609     if (heap->is_obj_dead(obj, region)) {
2610       return false;
2611     }
2612 
2613     // Candidate selection must satisfy the following constraints
2614     // while concurrent marking is in progress:
2615     //
2616     // * In order to maintain SATB invariants, an object must not be
2617     // reclaimed if it was allocated before the start of marking and
2618     // has not had its references scanned.  Such an object must have
2619     // its references (including type metadata) scanned to ensure no
2620     // live objects are missed by the marking process.  Objects
2621     // allocated after the start of concurrent marking don't need to
2622     // be scanned.
2623     //
2624     // * An object must not be reclaimed if it is on the concurrent
2625     // mark stack.  Objects allocated after the start of concurrent
2626     // marking are never pushed on the mark stack.
2627     //
2628     // Nominating only objects allocated after the start of concurrent
2629     // marking is sufficient to meet both constraints.  This may miss
2630     // some objects that satisfy the constraints, but the marking data
2631     // structures don't support efficiently performing the needed
2632     // additional tests or scrubbing of the mark stack.
2633     //
2634     // However, we presently only nominate is_typeArray() objects.
2635     // A humongous object containing references induces remembered
2636     // set entries on other regions.  In order to reclaim such an
2637     // object, those remembered sets would need to be cleaned up.
2638     //
2639     // We also treat is_typeArray() objects specially, allowing them
2640     // to be reclaimed even if allocated before the start of
2641     // concurrent mark.  For this we rely on mark stack insertion to
2642     // exclude is_typeArray() objects, preventing reclaiming an object
2643     // that is in the mark stack.  We also rely on the metadata for
2644     // such objects to be built-in and so ensured to be kept live.
2645     // Frequent allocation and drop of large binary blobs is an
2646     // important use case for eager reclaim, and this special handling
2647     // may reduce needed headroom.
2648 
2649     return obj->is_typeArray() && is_remset_small(region);
2650   }
2651 
2652  public:
2653   RegisterHumongousWithInCSetFastTestClosure()
2654   : _total_humongous(0),
2655     _candidate_humongous(0),
2656     _dcq(&JavaThread::dirty_card_queue_set()) {
2657   }
2658 
2659   virtual bool do_heap_region(HeapRegion* r) {
2660     if (!r->is_starts_humongous()) {
2661       return false;
2662     }
2663     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2664 
2665     bool is_candidate = humongous_region_is_candidate(g1h, r);
2666     uint rindex = r->hrm_index();
2667     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2668     if (is_candidate) {
2669       _candidate_humongous++;
2670       g1h->register_humongous_region_with_cset(rindex);
2671       // Is_candidate already filters out humongous object with large remembered sets.
2672       // If we have a humongous object with a few remembered sets, we simply flush these
2673       // remembered set entries into the DCQS. That will result in automatic
2674       // re-evaluation of their remembered set entries during the following evacuation
2675       // phase.
2676       if (!r->rem_set()->is_empty()) {
2677         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2678                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2679         G1CardTable* ct = g1h->card_table();
2680         HeapRegionRemSetIterator hrrs(r->rem_set());
2681         size_t card_index;
2682         while (hrrs.has_next(card_index)) {
2683           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2684           // The remembered set might contain references to already freed
2685           // regions. Filter out such entries to avoid failing card table
2686           // verification.
2687           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2688             if (*card_ptr != G1CardTable::dirty_card_val()) {
2689               *card_ptr = G1CardTable::dirty_card_val();
2690               _dcq.enqueue(card_ptr);
2691             }
2692           }
2693         }
2694         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2695                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2696                hrrs.n_yielded(), r->rem_set()->occupied());
2697         r->rem_set()->clear_locked();
2698       }
2699       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2700     }
2701     _total_humongous++;
2702 
2703     return false;
2704   }
2705 
2706   size_t total_humongous() const { return _total_humongous; }
2707   size_t candidate_humongous() const { return _candidate_humongous; }
2708 
2709   void flush_rem_set_entries() { _dcq.flush(); }
2710 };
2711 
2712 void G1CollectedHeap::register_humongous_regions_with_cset() {
2713   if (!G1EagerReclaimHumongousObjects) {
2714     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2715     return;
2716   }
2717   double time = os::elapsed_counter();
2718 
2719   // Collect reclaim candidate information and register candidates with cset.
2720   RegisterHumongousWithInCSetFastTestClosure cl;
2721   heap_region_iterate(&cl);
2722 
2723   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2724   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2725                                                                   cl.total_humongous(),
2726                                                                   cl.candidate_humongous());
2727   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2728 
2729   // Finally flush all remembered set entries to re-check into the global DCQS.
2730   cl.flush_rem_set_entries();
2731 }
2732 
2733 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2734   public:
2735     bool do_heap_region(HeapRegion* hr) {
2736       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2737         hr->verify_rem_set();
2738       }
2739       return false;
2740     }
2741 };
2742 
2743 uint G1CollectedHeap::num_task_queues() const {
2744   return _task_queues->size();
2745 }
2746 
2747 #if TASKQUEUE_STATS
2748 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2749   st->print_raw_cr("GC Task Stats");
2750   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2751   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2752 }
2753 
2754 void G1CollectedHeap::print_taskqueue_stats() const {
2755   if (!log_is_enabled(Trace, gc, task, stats)) {
2756     return;
2757   }
2758   Log(gc, task, stats) log;
2759   ResourceMark rm;
2760   LogStream ls(log.trace());
2761   outputStream* st = &ls;
2762 
2763   print_taskqueue_stats_hdr(st);
2764 
2765   TaskQueueStats totals;
2766   const uint n = num_task_queues();
2767   for (uint i = 0; i < n; ++i) {
2768     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2769     totals += task_queue(i)->stats;
2770   }
2771   st->print_raw("tot "); totals.print(st); st->cr();
2772 
2773   DEBUG_ONLY(totals.verify());
2774 }
2775 
2776 void G1CollectedHeap::reset_taskqueue_stats() {
2777   const uint n = num_task_queues();
2778   for (uint i = 0; i < n; ++i) {
2779     task_queue(i)->stats.reset();
2780   }
2781 }
2782 #endif // TASKQUEUE_STATS
2783 
2784 void G1CollectedHeap::wait_for_root_region_scanning() {
2785   double scan_wait_start = os::elapsedTime();
2786   // We have to wait until the CM threads finish scanning the
2787   // root regions as it's the only way to ensure that all the
2788   // objects on them have been correctly scanned before we start
2789   // moving them during the GC.
2790   bool waited = _cm->root_regions()->wait_until_scan_finished();
2791   double wait_time_ms = 0.0;
2792   if (waited) {
2793     double scan_wait_end = os::elapsedTime();
2794     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2795   }
2796   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2797 }
2798 
2799 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2800 private:
2801   G1HRPrinter* _hr_printer;
2802 public:
2803   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2804 
2805   virtual bool do_heap_region(HeapRegion* r) {
2806     _hr_printer->cset(r);
2807     return false;
2808   }
2809 };
2810 
2811 void G1CollectedHeap::start_new_collection_set() {
2812   collection_set()->start_incremental_building();
2813 
2814   clear_cset_fast_test();
2815 
2816   guarantee(_eden.length() == 0, "eden should have been cleared");
2817   g1_policy()->transfer_survivors_to_cset(survivor());
2818 }
2819 
2820 bool
2821 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2822   assert_at_safepoint_on_vm_thread();
2823   guarantee(!is_gc_active(), "collection is not reentrant");
2824 
2825   if (GCLocker::check_active_before_gc()) {
2826     return false;
2827   }
2828 
2829   _gc_timer_stw->register_gc_start();
2830 
2831   GCIdMark gc_id_mark;
2832   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2833 
2834   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2835   ResourceMark rm;
2836 
2837   g1_policy()->note_gc_start();
2838 
2839   wait_for_root_region_scanning();
2840 
2841   print_heap_before_gc();
2842   print_heap_regions();
2843   trace_heap_before_gc(_gc_tracer_stw);
2844 
2845   _verifier->verify_region_sets_optional();
2846   _verifier->verify_dirty_young_regions();
2847 
2848   // We should not be doing initial mark unless the conc mark thread is running
2849   if (!_cmThread->should_terminate()) {
2850     // This call will decide whether this pause is an initial-mark
2851     // pause. If it is, during_initial_mark_pause() will return true
2852     // for the duration of this pause.
2853     g1_policy()->decide_on_conc_mark_initiation();
2854   }
2855 
2856   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2857   assert(!collector_state()->during_initial_mark_pause() ||
2858           collector_state()->gcs_are_young(), "sanity");
2859 
2860   // We also do not allow mixed GCs during marking.
2861   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2862 
2863   // Record whether this pause is an initial mark. When the current
2864   // thread has completed its logging output and it's safe to signal
2865   // the CM thread, the flag's value in the policy has been reset.
2866   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2867 
2868   // Inner scope for scope based logging, timers, and stats collection
2869   {
2870     EvacuationInfo evacuation_info;
2871 
2872     if (collector_state()->during_initial_mark_pause()) {
2873       // We are about to start a marking cycle, so we increment the
2874       // full collection counter.
2875       increment_old_marking_cycles_started();
2876       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2877     }
2878 
2879     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2880 
2881     GCTraceCPUTime tcpu;
2882 
2883     G1HeapVerifier::G1VerifyType verify_type;
2884     FormatBuffer<> gc_string("Pause ");
2885     if (collector_state()->during_initial_mark_pause()) {
2886       gc_string.append("Initial Mark");
2887       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2888     } else if (collector_state()->gcs_are_young()) {
2889       gc_string.append("Young");
2890       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2891     } else {
2892       gc_string.append("Mixed");
2893       verify_type = G1HeapVerifier::G1VerifyMixed;
2894     }
2895     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2896 
2897     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2898                                                                   workers()->active_workers(),
2899                                                                   Threads::number_of_non_daemon_threads());
2900     workers()->update_active_workers(active_workers);
2901     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2902 
2903     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2904     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2905 
2906     // If the secondary_free_list is not empty, append it to the
2907     // free_list. No need to wait for the cleanup operation to finish;
2908     // the region allocation code will check the secondary_free_list
2909     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2910     // set, skip this step so that the region allocation code has to
2911     // get entries from the secondary_free_list.
2912     if (!G1StressConcRegionFreeing) {
2913       append_secondary_free_list_if_not_empty_with_lock();
2914     }
2915 
2916     G1HeapTransition heap_transition(this);
2917     size_t heap_used_bytes_before_gc = used();
2918 
2919     // Don't dynamically change the number of GC threads this early.  A value of
2920     // 0 is used to indicate serial work.  When parallel work is done,
2921     // it will be set.
2922 
2923     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2924       IsGCActiveMark x;
2925 
2926       gc_prologue(false);
2927 
2928       if (VerifyRememberedSets) {
2929         log_info(gc, verify)("[Verifying RemSets before GC]");
2930         VerifyRegionRemSetClosure v_cl;
2931         heap_region_iterate(&v_cl);
2932       }
2933 
2934       _verifier->verify_before_gc(verify_type);
2935 
2936       _verifier->check_bitmaps("GC Start");
2937 
2938 #if COMPILER2_OR_JVMCI
2939       DerivedPointerTable::clear();
2940 #endif
2941 
2942       // Please see comment in g1CollectedHeap.hpp and
2943       // G1CollectedHeap::ref_processing_init() to see how
2944       // reference processing currently works in G1.
2945 
2946       // Enable discovery in the STW reference processor
2947       if (g1_policy()->should_process_references()) {
2948         ref_processor_stw()->enable_discovery();
2949       } else {
2950         ref_processor_stw()->disable_discovery();
2951       }
2952 
2953       {
2954         // We want to temporarily turn off discovery by the
2955         // CM ref processor, if necessary, and turn it back on
2956         // on again later if we do. Using a scoped
2957         // NoRefDiscovery object will do this.
2958         NoRefDiscovery no_cm_discovery(ref_processor_cm());
2959 
2960         // Forget the current alloc region (we might even choose it to be part
2961         // of the collection set!).
2962         _allocator->release_mutator_alloc_region();
2963 
2964         // This timing is only used by the ergonomics to handle our pause target.
2965         // It is unclear why this should not include the full pause. We will
2966         // investigate this in CR 7178365.
2967         //
2968         // Preserving the old comment here if that helps the investigation:
2969         //
2970         // The elapsed time induced by the start time below deliberately elides
2971         // the possible verification above.
2972         double sample_start_time_sec = os::elapsedTime();
2973 
2974         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2975 
2976         if (collector_state()->during_initial_mark_pause()) {
2977           concurrent_mark()->checkpoint_roots_initial_pre();
2978         }
2979 
2980         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2981 
2982         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2983 
2984         // Make sure the remembered sets are up to date. This needs to be
2985         // done before register_humongous_regions_with_cset(), because the
2986         // remembered sets are used there to choose eager reclaim candidates.
2987         // If the remembered sets are not up to date we might miss some
2988         // entries that need to be handled.
2989         g1_rem_set()->cleanupHRRS();
2990 
2991         register_humongous_regions_with_cset();
2992 
2993         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2994 
2995         // We call this after finalize_cset() to
2996         // ensure that the CSet has been finalized.
2997         _cm->verify_no_cset_oops();
2998 
2999         if (_hr_printer.is_active()) {
3000           G1PrintCollectionSetClosure cl(&_hr_printer);
3001           _collection_set.iterate(&cl);
3002         }
3003 
3004         // Initialize the GC alloc regions.
3005         _allocator->init_gc_alloc_regions(evacuation_info);
3006 
3007         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3008         pre_evacuate_collection_set();
3009 
3010         // Actually do the work...
3011         evacuate_collection_set(&per_thread_states);
3012 
3013         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3014 
3015         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3016         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3017 
3018         eagerly_reclaim_humongous_regions();
3019 
3020         record_obj_copy_mem_stats();
3021         _survivor_evac_stats.adjust_desired_plab_sz();
3022         _old_evac_stats.adjust_desired_plab_sz();
3023 
3024         double start = os::elapsedTime();
3025         start_new_collection_set();
3026         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3027 
3028         if (evacuation_failed()) {
3029           set_used(recalculate_used());
3030           if (_archive_allocator != NULL) {
3031             _archive_allocator->clear_used();
3032           }
3033           for (uint i = 0; i < ParallelGCThreads; i++) {
3034             if (_evacuation_failed_info_array[i].has_failed()) {
3035               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3036             }
3037           }
3038         } else {
3039           // The "used" of the the collection set have already been subtracted
3040           // when they were freed.  Add in the bytes evacuated.
3041           increase_used(g1_policy()->bytes_copied_during_gc());
3042         }
3043 
3044         if (collector_state()->during_initial_mark_pause()) {
3045           // We have to do this before we notify the CM threads that
3046           // they can start working to make sure that all the
3047           // appropriate initialization is done on the CM object.
3048           concurrent_mark()->checkpoint_roots_initial_post();
3049           collector_state()->set_mark_in_progress(true);
3050           // Note that we don't actually trigger the CM thread at
3051           // this point. We do that later when we're sure that
3052           // the current thread has completed its logging output.
3053         }
3054 
3055         allocate_dummy_regions();
3056 
3057         _allocator->init_mutator_alloc_region();
3058 
3059         {
3060           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3061           if (expand_bytes > 0) {
3062             size_t bytes_before = capacity();
3063             // No need for an ergo logging here,
3064             // expansion_amount() does this when it returns a value > 0.
3065             double expand_ms;
3066             if (!expand(expand_bytes, _workers, &expand_ms)) {
3067               // We failed to expand the heap. Cannot do anything about it.
3068             }
3069             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3070           }
3071         }
3072 
3073         // We redo the verification but now wrt to the new CSet which
3074         // has just got initialized after the previous CSet was freed.
3075         _cm->verify_no_cset_oops();
3076 
3077         // This timing is only used by the ergonomics to handle our pause target.
3078         // It is unclear why this should not include the full pause. We will
3079         // investigate this in CR 7178365.
3080         double sample_end_time_sec = os::elapsedTime();
3081         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3082         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3083         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3084 
3085         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3086         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3087 
3088         if (VerifyRememberedSets) {
3089           log_info(gc, verify)("[Verifying RemSets after GC]");
3090           VerifyRegionRemSetClosure v_cl;
3091           heap_region_iterate(&v_cl);
3092         }
3093 
3094         _verifier->verify_after_gc(verify_type);
3095         _verifier->check_bitmaps("GC End");
3096 
3097         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3098         ref_processor_stw()->verify_no_references_recorded();
3099 
3100         // CM reference discovery will be re-enabled if necessary.
3101       }
3102 
3103 #ifdef TRACESPINNING
3104       ParallelTaskTerminator::print_termination_counts();
3105 #endif
3106 
3107       gc_epilogue(false);
3108     }
3109 
3110     // Print the remainder of the GC log output.
3111     if (evacuation_failed()) {
3112       log_info(gc)("To-space exhausted");
3113     }
3114 
3115     g1_policy()->print_phases();
3116     heap_transition.print();
3117 
3118     // It is not yet to safe to tell the concurrent mark to
3119     // start as we have some optional output below. We don't want the
3120     // output from the concurrent mark thread interfering with this
3121     // logging output either.
3122 
3123     _hrm.verify_optional();
3124     _verifier->verify_region_sets_optional();
3125 
3126     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3127     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3128 
3129     print_heap_after_gc();
3130     print_heap_regions();
3131     trace_heap_after_gc(_gc_tracer_stw);
3132 
3133     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3134     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3135     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3136     // before any GC notifications are raised.
3137     g1mm()->update_sizes();
3138 
3139     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3140     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3141     _gc_timer_stw->register_gc_end();
3142     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3143   }
3144   // It should now be safe to tell the concurrent mark thread to start
3145   // without its logging output interfering with the logging output
3146   // that came from the pause.
3147 
3148   if (should_start_conc_mark) {
3149     // CAUTION: after the doConcurrentMark() call below,
3150     // the concurrent marking thread(s) could be running
3151     // concurrently with us. Make sure that anything after
3152     // this point does not assume that we are the only GC thread
3153     // running. Note: of course, the actual marking work will
3154     // not start until the safepoint itself is released in
3155     // SuspendibleThreadSet::desynchronize().
3156     doConcurrentMark();
3157   }
3158 
3159   return true;
3160 }
3161 
3162 void G1CollectedHeap::remove_self_forwarding_pointers() {
3163   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3164   workers()->run_task(&rsfp_task);
3165 }
3166 
3167 void G1CollectedHeap::restore_after_evac_failure() {
3168   double remove_self_forwards_start = os::elapsedTime();
3169 
3170   remove_self_forwarding_pointers();
3171   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3172   _preserved_marks_set.restore(&task_executor);
3173 
3174   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3175 }
3176 
3177 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3178   if (!_evacuation_failed) {
3179     _evacuation_failed = true;
3180   }
3181 
3182   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3183   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3184 }
3185 
3186 bool G1ParEvacuateFollowersClosure::offer_termination() {
3187   G1ParScanThreadState* const pss = par_scan_state();
3188   start_term_time();
3189   const bool res = terminator()->offer_termination();
3190   end_term_time();
3191   return res;
3192 }
3193 
3194 void G1ParEvacuateFollowersClosure::do_void() {
3195   G1ParScanThreadState* const pss = par_scan_state();
3196   pss->trim_queue();
3197   do {
3198     pss->steal_and_trim_queue(queues());
3199   } while (!offer_termination());
3200 }
3201 
3202 class G1ParTask : public AbstractGangTask {
3203 protected:
3204   G1CollectedHeap*         _g1h;
3205   G1ParScanThreadStateSet* _pss;
3206   RefToScanQueueSet*       _queues;
3207   G1RootProcessor*         _root_processor;
3208   ParallelTaskTerminator   _terminator;
3209   uint                     _n_workers;
3210 
3211 public:
3212   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3213     : AbstractGangTask("G1 collection"),
3214       _g1h(g1h),
3215       _pss(per_thread_states),
3216       _queues(task_queues),
3217       _root_processor(root_processor),
3218       _terminator(n_workers, _queues),
3219       _n_workers(n_workers)
3220   {}
3221 
3222   void work(uint worker_id) {
3223     if (worker_id >= _n_workers) return;  // no work needed this round
3224 
3225     double start_sec = os::elapsedTime();
3226     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3227 
3228     {
3229       ResourceMark rm;
3230       HandleMark   hm;
3231 
3232       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3233 
3234       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3235       pss->set_ref_processor(rp);
3236 
3237       double start_strong_roots_sec = os::elapsedTime();
3238 
3239       _root_processor->evacuate_roots(pss->closures(), worker_id);
3240 
3241       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3242       // treating the nmethods visited to act as roots for concurrent marking.
3243       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3244       // objects copied by the current evacuation.
3245       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3246                                                       pss->closures()->weak_codeblobs(),
3247                                                       worker_id);
3248 
3249       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3250 
3251       double term_sec = 0.0;
3252       size_t evac_term_attempts = 0;
3253       {
3254         double start = os::elapsedTime();
3255         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3256         evac.do_void();
3257 
3258         evac_term_attempts = evac.term_attempts();
3259         term_sec = evac.term_time();
3260         double elapsed_sec = os::elapsedTime() - start;
3261         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3262         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3263         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3264       }
3265 
3266       assert(pss->queue_is_empty(), "should be empty");
3267 
3268       if (log_is_enabled(Debug, gc, task, stats)) {
3269         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3270         size_t lab_waste;
3271         size_t lab_undo_waste;
3272         pss->waste(lab_waste, lab_undo_waste);
3273         _g1h->print_termination_stats(worker_id,
3274                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3275                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3276                                       term_sec * 1000.0,                          /* evac term time */
3277                                       evac_term_attempts,                         /* evac term attempts */
3278                                       lab_waste,                                  /* alloc buffer waste */
3279                                       lab_undo_waste                              /* undo waste */
3280                                       );
3281       }
3282 
3283       // Close the inner scope so that the ResourceMark and HandleMark
3284       // destructors are executed here and are included as part of the
3285       // "GC Worker Time".
3286     }
3287     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3288   }
3289 };
3290 
3291 void G1CollectedHeap::print_termination_stats_hdr() {
3292   log_debug(gc, task, stats)("GC Termination Stats");
3293   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3294   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3295   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3296 }
3297 
3298 void G1CollectedHeap::print_termination_stats(uint worker_id,
3299                                               double elapsed_ms,
3300                                               double strong_roots_ms,
3301                                               double term_ms,
3302                                               size_t term_attempts,
3303                                               size_t alloc_buffer_waste,
3304                                               size_t undo_waste) const {
3305   log_debug(gc, task, stats)
3306               ("%3d %9.2f %9.2f %6.2f "
3307                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3308                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3309                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3310                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3311                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3312                alloc_buffer_waste * HeapWordSize / K,
3313                undo_waste * HeapWordSize / K);
3314 }
3315 
3316 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3317 private:
3318   BoolObjectClosure* _is_alive;
3319   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3320 
3321   int _initial_string_table_size;
3322   int _initial_symbol_table_size;
3323 
3324   bool  _process_strings;
3325   int _strings_processed;
3326   int _strings_removed;
3327 
3328   bool  _process_symbols;
3329   int _symbols_processed;
3330   int _symbols_removed;
3331 
3332   bool _process_string_dedup;
3333 
3334 public:
3335   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3336     AbstractGangTask("String/Symbol Unlinking"),
3337     _is_alive(is_alive),
3338     _dedup_closure(is_alive, NULL, false),
3339     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3340     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3341     _process_string_dedup(process_string_dedup) {
3342 
3343     _initial_string_table_size = StringTable::the_table()->table_size();
3344     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3345     if (process_strings) {
3346       StringTable::clear_parallel_claimed_index();
3347     }
3348     if (process_symbols) {
3349       SymbolTable::clear_parallel_claimed_index();
3350     }
3351   }
3352 
3353   ~G1StringAndSymbolCleaningTask() {
3354     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3355               "claim value %d after unlink less than initial string table size %d",
3356               StringTable::parallel_claimed_index(), _initial_string_table_size);
3357     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3358               "claim value %d after unlink less than initial symbol table size %d",
3359               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3360 
3361     log_info(gc, stringtable)(
3362         "Cleaned string and symbol table, "
3363         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3364         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3365         strings_processed(), strings_removed(),
3366         symbols_processed(), symbols_removed());
3367   }
3368 
3369   void work(uint worker_id) {
3370     int strings_processed = 0;
3371     int strings_removed = 0;
3372     int symbols_processed = 0;
3373     int symbols_removed = 0;
3374     if (_process_strings) {
3375       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3376       Atomic::add(strings_processed, &_strings_processed);
3377       Atomic::add(strings_removed, &_strings_removed);
3378     }
3379     if (_process_symbols) {
3380       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3381       Atomic::add(symbols_processed, &_symbols_processed);
3382       Atomic::add(symbols_removed, &_symbols_removed);
3383     }
3384     if (_process_string_dedup) {
3385       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3386     }
3387   }
3388 
3389   size_t strings_processed() const { return (size_t)_strings_processed; }
3390   size_t strings_removed()   const { return (size_t)_strings_removed; }
3391 
3392   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3393   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3394 };
3395 
3396 class G1CodeCacheUnloadingTask {
3397 private:
3398   static Monitor* _lock;
3399 
3400   BoolObjectClosure* const _is_alive;
3401   const bool               _unloading_occurred;
3402   const uint               _num_workers;
3403 
3404   // Variables used to claim nmethods.
3405   CompiledMethod* _first_nmethod;
3406   CompiledMethod* volatile _claimed_nmethod;
3407 
3408   // The list of nmethods that need to be processed by the second pass.
3409   CompiledMethod* volatile _postponed_list;
3410   volatile uint            _num_entered_barrier;
3411 
3412  public:
3413   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3414       _is_alive(is_alive),
3415       _unloading_occurred(unloading_occurred),
3416       _num_workers(num_workers),
3417       _first_nmethod(NULL),
3418       _claimed_nmethod(NULL),
3419       _postponed_list(NULL),
3420       _num_entered_barrier(0)
3421   {
3422     CompiledMethod::increase_unloading_clock();
3423     // Get first alive nmethod
3424     CompiledMethodIterator iter = CompiledMethodIterator();
3425     if(iter.next_alive()) {
3426       _first_nmethod = iter.method();
3427     }
3428     _claimed_nmethod = _first_nmethod;
3429   }
3430 
3431   ~G1CodeCacheUnloadingTask() {
3432     CodeCache::verify_clean_inline_caches();
3433 
3434     CodeCache::set_needs_cache_clean(false);
3435     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3436 
3437     CodeCache::verify_icholder_relocations();
3438   }
3439 
3440  private:
3441   void add_to_postponed_list(CompiledMethod* nm) {
3442       CompiledMethod* old;
3443       do {
3444         old = _postponed_list;
3445         nm->set_unloading_next(old);
3446       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3447   }
3448 
3449   void clean_nmethod(CompiledMethod* nm) {
3450     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3451 
3452     if (postponed) {
3453       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3454       add_to_postponed_list(nm);
3455     }
3456 
3457     // Mark that this thread has been cleaned/unloaded.
3458     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3459     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3460   }
3461 
3462   void clean_nmethod_postponed(CompiledMethod* nm) {
3463     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3464   }
3465 
3466   static const int MaxClaimNmethods = 16;
3467 
3468   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3469     CompiledMethod* first;
3470     CompiledMethodIterator last;
3471 
3472     do {
3473       *num_claimed_nmethods = 0;
3474 
3475       first = _claimed_nmethod;
3476       last = CompiledMethodIterator(first);
3477 
3478       if (first != NULL) {
3479 
3480         for (int i = 0; i < MaxClaimNmethods; i++) {
3481           if (!last.next_alive()) {
3482             break;
3483           }
3484           claimed_nmethods[i] = last.method();
3485           (*num_claimed_nmethods)++;
3486         }
3487       }
3488 
3489     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3490   }
3491 
3492   CompiledMethod* claim_postponed_nmethod() {
3493     CompiledMethod* claim;
3494     CompiledMethod* next;
3495 
3496     do {
3497       claim = _postponed_list;
3498       if (claim == NULL) {
3499         return NULL;
3500       }
3501 
3502       next = claim->unloading_next();
3503 
3504     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3505 
3506     return claim;
3507   }
3508 
3509  public:
3510   // Mark that we're done with the first pass of nmethod cleaning.
3511   void barrier_mark(uint worker_id) {
3512     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3513     _num_entered_barrier++;
3514     if (_num_entered_barrier == _num_workers) {
3515       ml.notify_all();
3516     }
3517   }
3518 
3519   // See if we have to wait for the other workers to
3520   // finish their first-pass nmethod cleaning work.
3521   void barrier_wait(uint worker_id) {
3522     if (_num_entered_barrier < _num_workers) {
3523       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3524       while (_num_entered_barrier < _num_workers) {
3525           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3526       }
3527     }
3528   }
3529 
3530   // Cleaning and unloading of nmethods. Some work has to be postponed
3531   // to the second pass, when we know which nmethods survive.
3532   void work_first_pass(uint worker_id) {
3533     // The first nmethods is claimed by the first worker.
3534     if (worker_id == 0 && _first_nmethod != NULL) {
3535       clean_nmethod(_first_nmethod);
3536       _first_nmethod = NULL;
3537     }
3538 
3539     int num_claimed_nmethods;
3540     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3541 
3542     while (true) {
3543       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3544 
3545       if (num_claimed_nmethods == 0) {
3546         break;
3547       }
3548 
3549       for (int i = 0; i < num_claimed_nmethods; i++) {
3550         clean_nmethod(claimed_nmethods[i]);
3551       }
3552     }
3553   }
3554 
3555   void work_second_pass(uint worker_id) {
3556     CompiledMethod* nm;
3557     // Take care of postponed nmethods.
3558     while ((nm = claim_postponed_nmethod()) != NULL) {
3559       clean_nmethod_postponed(nm);
3560     }
3561   }
3562 };
3563 
3564 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3565 
3566 class G1KlassCleaningTask : public StackObj {
3567   BoolObjectClosure*                      _is_alive;
3568   volatile int                            _clean_klass_tree_claimed;
3569   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3570 
3571  public:
3572   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3573       _is_alive(is_alive),
3574       _clean_klass_tree_claimed(0),
3575       _klass_iterator() {
3576   }
3577 
3578  private:
3579   bool claim_clean_klass_tree_task() {
3580     if (_clean_klass_tree_claimed) {
3581       return false;
3582     }
3583 
3584     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3585   }
3586 
3587   InstanceKlass* claim_next_klass() {
3588     Klass* klass;
3589     do {
3590       klass =_klass_iterator.next_klass();
3591     } while (klass != NULL && !klass->is_instance_klass());
3592 
3593     // this can be null so don't call InstanceKlass::cast
3594     return static_cast<InstanceKlass*>(klass);
3595   }
3596 
3597 public:
3598 
3599   void clean_klass(InstanceKlass* ik) {
3600     ik->clean_weak_instanceklass_links(_is_alive);
3601   }
3602 
3603   void work() {
3604     ResourceMark rm;
3605 
3606     // One worker will clean the subklass/sibling klass tree.
3607     if (claim_clean_klass_tree_task()) {
3608       Klass::clean_subklass_tree(_is_alive);
3609     }
3610 
3611     // All workers will help cleaning the classes,
3612     InstanceKlass* klass;
3613     while ((klass = claim_next_klass()) != NULL) {
3614       clean_klass(klass);
3615     }
3616   }
3617 };
3618 
3619 class G1ResolvedMethodCleaningTask : public StackObj {
3620   BoolObjectClosure* _is_alive;
3621   volatile int       _resolved_method_task_claimed;
3622 public:
3623   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3624       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3625 
3626   bool claim_resolved_method_task() {
3627     if (_resolved_method_task_claimed) {
3628       return false;
3629     }
3630     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3631   }
3632 
3633   // These aren't big, one thread can do it all.
3634   void work() {
3635     if (claim_resolved_method_task()) {
3636       ResolvedMethodTable::unlink(_is_alive);
3637     }
3638   }
3639 };
3640 
3641 
3642 // To minimize the remark pause times, the tasks below are done in parallel.
3643 class G1ParallelCleaningTask : public AbstractGangTask {
3644 private:
3645   G1StringAndSymbolCleaningTask _string_symbol_task;
3646   G1CodeCacheUnloadingTask      _code_cache_task;
3647   G1KlassCleaningTask           _klass_cleaning_task;
3648   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3649 
3650 public:
3651   // The constructor is run in the VMThread.
3652   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3653       AbstractGangTask("Parallel Cleaning"),
3654       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3655       _code_cache_task(num_workers, is_alive, unloading_occurred),
3656       _klass_cleaning_task(is_alive),
3657       _resolved_method_cleaning_task(is_alive) {
3658   }
3659 
3660   // The parallel work done by all worker threads.
3661   void work(uint worker_id) {
3662     // Do first pass of code cache cleaning.
3663     _code_cache_task.work_first_pass(worker_id);
3664 
3665     // Let the threads mark that the first pass is done.
3666     _code_cache_task.barrier_mark(worker_id);
3667 
3668     // Clean the Strings and Symbols.
3669     _string_symbol_task.work(worker_id);
3670 
3671     // Clean unreferenced things in the ResolvedMethodTable
3672     _resolved_method_cleaning_task.work();
3673 
3674     // Wait for all workers to finish the first code cache cleaning pass.
3675     _code_cache_task.barrier_wait(worker_id);
3676 
3677     // Do the second code cache cleaning work, which realize on
3678     // the liveness information gathered during the first pass.
3679     _code_cache_task.work_second_pass(worker_id);
3680 
3681     // Clean all klasses that were not unloaded.
3682     _klass_cleaning_task.work();
3683   }
3684 };
3685 
3686 
3687 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3688                                         bool class_unloading_occurred) {
3689   uint n_workers = workers()->active_workers();
3690 
3691   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3692   workers()->run_task(&g1_unlink_task);
3693 }
3694 
3695 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3696                                        bool process_strings,
3697                                        bool process_symbols,
3698                                        bool process_string_dedup) {
3699   if (!process_strings && !process_symbols && !process_string_dedup) {
3700     // Nothing to clean.
3701     return;
3702   }
3703 
3704   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3705   workers()->run_task(&g1_unlink_task);
3706 
3707 }
3708 
3709 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3710  private:
3711   DirtyCardQueueSet* _queue;
3712   G1CollectedHeap* _g1h;
3713  public:
3714   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3715     _queue(queue), _g1h(g1h) { }
3716 
3717   virtual void work(uint worker_id) {
3718     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3719     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3720 
3721     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3722     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3723 
3724     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3725   }
3726 };
3727 
3728 void G1CollectedHeap::redirty_logged_cards() {
3729   double redirty_logged_cards_start = os::elapsedTime();
3730 
3731   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3732   dirty_card_queue_set().reset_for_par_iteration();
3733   workers()->run_task(&redirty_task);
3734 
3735   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3736   dcq.merge_bufferlists(&dirty_card_queue_set());
3737   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3738 
3739   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3740 }
3741 
3742 // Weak Reference Processing support
3743 
3744 // An always "is_alive" closure that is used to preserve referents.
3745 // If the object is non-null then it's alive.  Used in the preservation
3746 // of referent objects that are pointed to by reference objects
3747 // discovered by the CM ref processor.
3748 class G1AlwaysAliveClosure: public BoolObjectClosure {
3749   G1CollectedHeap* _g1;
3750 public:
3751   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3752   bool do_object_b(oop p) {
3753     if (p != NULL) {
3754       return true;
3755     }
3756     return false;
3757   }
3758 };
3759 
3760 bool G1STWIsAliveClosure::do_object_b(oop p) {
3761   // An object is reachable if it is outside the collection set,
3762   // or is inside and copied.
3763   return !_g1->is_in_cset(p) || p->is_forwarded();
3764 }
3765 
3766 // Non Copying Keep Alive closure
3767 class G1KeepAliveClosure: public OopClosure {
3768   G1CollectedHeap* _g1;
3769 public:
3770   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3771   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3772   void do_oop(oop* p) {
3773     oop obj = *p;
3774     assert(obj != NULL, "the caller should have filtered out NULL values");
3775 
3776     const InCSetState cset_state = _g1->in_cset_state(obj);
3777     if (!cset_state.is_in_cset_or_humongous()) {
3778       return;
3779     }
3780     if (cset_state.is_in_cset()) {
3781       assert( obj->is_forwarded(), "invariant" );
3782       *p = obj->forwardee();
3783     } else {
3784       assert(!obj->is_forwarded(), "invariant" );
3785       assert(cset_state.is_humongous(),
3786              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3787       _g1->set_humongous_is_live(obj);
3788     }
3789   }
3790 };
3791 
3792 // Copying Keep Alive closure - can be called from both
3793 // serial and parallel code as long as different worker
3794 // threads utilize different G1ParScanThreadState instances
3795 // and different queues.
3796 
3797 class G1CopyingKeepAliveClosure: public OopClosure {
3798   G1CollectedHeap*         _g1h;
3799   OopClosure*              _copy_non_heap_obj_cl;
3800   G1ParScanThreadState*    _par_scan_state;
3801 
3802 public:
3803   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3804                             OopClosure* non_heap_obj_cl,
3805                             G1ParScanThreadState* pss):
3806     _g1h(g1h),
3807     _copy_non_heap_obj_cl(non_heap_obj_cl),
3808     _par_scan_state(pss)
3809   {}
3810 
3811   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3812   virtual void do_oop(      oop* p) { do_oop_work(p); }
3813 
3814   template <class T> void do_oop_work(T* p) {
3815     oop obj = RawAccess<>::oop_load(p);
3816 
3817     if (_g1h->is_in_cset_or_humongous(obj)) {
3818       // If the referent object has been forwarded (either copied
3819       // to a new location or to itself in the event of an
3820       // evacuation failure) then we need to update the reference
3821       // field and, if both reference and referent are in the G1
3822       // heap, update the RSet for the referent.
3823       //
3824       // If the referent has not been forwarded then we have to keep
3825       // it alive by policy. Therefore we have copy the referent.
3826       //
3827       // If the reference field is in the G1 heap then we can push
3828       // on the PSS queue. When the queue is drained (after each
3829       // phase of reference processing) the object and it's followers
3830       // will be copied, the reference field set to point to the
3831       // new location, and the RSet updated. Otherwise we need to
3832       // use the the non-heap or metadata closures directly to copy
3833       // the referent object and update the pointer, while avoiding
3834       // updating the RSet.
3835 
3836       if (_g1h->is_in_g1_reserved(p)) {
3837         _par_scan_state->push_on_queue(p);
3838       } else {
3839         assert(!Metaspace::contains((const void*)p),
3840                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3841         _copy_non_heap_obj_cl->do_oop(p);
3842       }
3843     }
3844   }
3845 };
3846 
3847 // Serial drain queue closure. Called as the 'complete_gc'
3848 // closure for each discovered list in some of the
3849 // reference processing phases.
3850 
3851 class G1STWDrainQueueClosure: public VoidClosure {
3852 protected:
3853   G1CollectedHeap* _g1h;
3854   G1ParScanThreadState* _par_scan_state;
3855 
3856   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3857 
3858 public:
3859   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3860     _g1h(g1h),
3861     _par_scan_state(pss)
3862   { }
3863 
3864   void do_void() {
3865     G1ParScanThreadState* const pss = par_scan_state();
3866     pss->trim_queue();
3867   }
3868 };
3869 
3870 // Parallel Reference Processing closures
3871 
3872 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3873 // processing during G1 evacuation pauses.
3874 
3875 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3876 private:
3877   G1CollectedHeap*          _g1h;
3878   G1ParScanThreadStateSet*  _pss;
3879   RefToScanQueueSet*        _queues;
3880   WorkGang*                 _workers;
3881   uint                      _active_workers;
3882 
3883 public:
3884   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3885                            G1ParScanThreadStateSet* per_thread_states,
3886                            WorkGang* workers,
3887                            RefToScanQueueSet *task_queues,
3888                            uint n_workers) :
3889     _g1h(g1h),
3890     _pss(per_thread_states),
3891     _queues(task_queues),
3892     _workers(workers),
3893     _active_workers(n_workers)
3894   {
3895     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3896   }
3897 
3898   // Executes the given task using concurrent marking worker threads.
3899   virtual void execute(ProcessTask& task);
3900   virtual void execute(EnqueueTask& task);
3901 };
3902 
3903 // Gang task for possibly parallel reference processing
3904 
3905 class G1STWRefProcTaskProxy: public AbstractGangTask {
3906   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3907   ProcessTask&     _proc_task;
3908   G1CollectedHeap* _g1h;
3909   G1ParScanThreadStateSet* _pss;
3910   RefToScanQueueSet* _task_queues;
3911   ParallelTaskTerminator* _terminator;
3912 
3913 public:
3914   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3915                         G1CollectedHeap* g1h,
3916                         G1ParScanThreadStateSet* per_thread_states,
3917                         RefToScanQueueSet *task_queues,
3918                         ParallelTaskTerminator* terminator) :
3919     AbstractGangTask("Process reference objects in parallel"),
3920     _proc_task(proc_task),
3921     _g1h(g1h),
3922     _pss(per_thread_states),
3923     _task_queues(task_queues),
3924     _terminator(terminator)
3925   {}
3926 
3927   virtual void work(uint worker_id) {
3928     // The reference processing task executed by a single worker.
3929     ResourceMark rm;
3930     HandleMark   hm;
3931 
3932     G1STWIsAliveClosure is_alive(_g1h);
3933 
3934     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3935     pss->set_ref_processor(NULL);
3936 
3937     // Keep alive closure.
3938     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3939 
3940     // Complete GC closure
3941     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3942 
3943     // Call the reference processing task's work routine.
3944     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3945 
3946     // Note we cannot assert that the refs array is empty here as not all
3947     // of the processing tasks (specifically phase2 - pp2_work) execute
3948     // the complete_gc closure (which ordinarily would drain the queue) so
3949     // the queue may not be empty.
3950   }
3951 };
3952 
3953 // Driver routine for parallel reference processing.
3954 // Creates an instance of the ref processing gang
3955 // task and has the worker threads execute it.
3956 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3957   assert(_workers != NULL, "Need parallel worker threads.");
3958 
3959   ParallelTaskTerminator terminator(_active_workers, _queues);
3960   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3961 
3962   _workers->run_task(&proc_task_proxy);
3963 }
3964 
3965 // Gang task for parallel reference enqueueing.
3966 
3967 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
3968   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
3969   EnqueueTask& _enq_task;
3970 
3971 public:
3972   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
3973     AbstractGangTask("Enqueue reference objects in parallel"),
3974     _enq_task(enq_task)
3975   { }
3976 
3977   virtual void work(uint worker_id) {
3978     _enq_task.work(worker_id);
3979   }
3980 };
3981 
3982 // Driver routine for parallel reference enqueueing.
3983 // Creates an instance of the ref enqueueing gang
3984 // task and has the worker threads execute it.
3985 
3986 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
3987   assert(_workers != NULL, "Need parallel worker threads.");
3988 
3989   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
3990 
3991   _workers->run_task(&enq_task_proxy);
3992 }
3993 
3994 // End of weak reference support closures
3995 
3996 // Abstract task used to preserve (i.e. copy) any referent objects
3997 // that are in the collection set and are pointed to by reference
3998 // objects discovered by the CM ref processor.
3999 
4000 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4001 protected:
4002   G1CollectedHeap*         _g1h;
4003   G1ParScanThreadStateSet* _pss;
4004   RefToScanQueueSet*       _queues;
4005   ParallelTaskTerminator   _terminator;
4006   uint                     _n_workers;
4007 
4008 public:
4009   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4010     AbstractGangTask("ParPreserveCMReferents"),
4011     _g1h(g1h),
4012     _pss(per_thread_states),
4013     _queues(task_queues),
4014     _terminator(workers, _queues),
4015     _n_workers(workers)
4016   {
4017     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4018   }
4019 
4020   void work(uint worker_id) {
4021     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4022 
4023     ResourceMark rm;
4024     HandleMark   hm;
4025 
4026     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4027     pss->set_ref_processor(NULL);
4028     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4029 
4030     // Is alive closure
4031     G1AlwaysAliveClosure always_alive(_g1h);
4032 
4033     // Copying keep alive closure. Applied to referent objects that need
4034     // to be copied.
4035     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4036 
4037     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4038 
4039     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4040     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4041 
4042     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4043     // So this must be true - but assert just in case someone decides to
4044     // change the worker ids.
4045     assert(worker_id < limit, "sanity");
4046     assert(!rp->discovery_is_atomic(), "check this code");
4047 
4048     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4049     for (uint idx = worker_id; idx < limit; idx += stride) {
4050       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4051 
4052       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4053       while (iter.has_next()) {
4054         // Since discovery is not atomic for the CM ref processor, we
4055         // can see some null referent objects.
4056         iter.load_ptrs(DEBUG_ONLY(true));
4057         oop ref = iter.obj();
4058 
4059         // This will filter nulls.
4060         if (iter.is_referent_alive()) {
4061           iter.make_referent_alive();
4062         }
4063         iter.move_to_next();
4064       }
4065     }
4066 
4067     // Drain the queue - which may cause stealing
4068     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4069     drain_queue.do_void();
4070     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4071     assert(pss->queue_is_empty(), "should be");
4072   }
4073 };
4074 
4075 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4076   // Any reference objects, in the collection set, that were 'discovered'
4077   // by the CM ref processor should have already been copied (either by
4078   // applying the external root copy closure to the discovered lists, or
4079   // by following an RSet entry).
4080   //
4081   // But some of the referents, that are in the collection set, that these
4082   // reference objects point to may not have been copied: the STW ref
4083   // processor would have seen that the reference object had already
4084   // been 'discovered' and would have skipped discovering the reference,
4085   // but would not have treated the reference object as a regular oop.
4086   // As a result the copy closure would not have been applied to the
4087   // referent object.
4088   //
4089   // We need to explicitly copy these referent objects - the references
4090   // will be processed at the end of remarking.
4091   //
4092   // We also need to do this copying before we process the reference
4093   // objects discovered by the STW ref processor in case one of these
4094   // referents points to another object which is also referenced by an
4095   // object discovered by the STW ref processor.
4096   double preserve_cm_referents_time = 0.0;
4097 
4098   // To avoid spawning task when there is no work to do, check that
4099   // a concurrent cycle is active and that some references have been
4100   // discovered.
4101   if (concurrent_mark()->cm_thread()->during_cycle() &&
4102       ref_processor_cm()->has_discovered_references()) {
4103     double preserve_cm_referents_start = os::elapsedTime();
4104     uint no_of_gc_workers = workers()->active_workers();
4105     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4106                                                    per_thread_states,
4107                                                    no_of_gc_workers,
4108                                                    _task_queues);
4109     workers()->run_task(&keep_cm_referents);
4110     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4111   }
4112 
4113   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4114 }
4115 
4116 // Weak Reference processing during an evacuation pause (part 1).
4117 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4118   double ref_proc_start = os::elapsedTime();
4119 
4120   ReferenceProcessor* rp = _ref_processor_stw;
4121   assert(rp->discovery_enabled(), "should have been enabled");
4122 
4123   // Closure to test whether a referent is alive.
4124   G1STWIsAliveClosure is_alive(this);
4125 
4126   // Even when parallel reference processing is enabled, the processing
4127   // of JNI refs is serial and performed serially by the current thread
4128   // rather than by a worker. The following PSS will be used for processing
4129   // JNI refs.
4130 
4131   // Use only a single queue for this PSS.
4132   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4133   pss->set_ref_processor(NULL);
4134   assert(pss->queue_is_empty(), "pre-condition");
4135 
4136   // Keep alive closure.
4137   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4138 
4139   // Serial Complete GC closure
4140   G1STWDrainQueueClosure drain_queue(this, pss);
4141 
4142   // Setup the soft refs policy...
4143   rp->setup_policy(false);
4144 
4145   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4146 
4147   ReferenceProcessorStats stats;
4148   if (!rp->processing_is_mt()) {
4149     // Serial reference processing...
4150     stats = rp->process_discovered_references(&is_alive,
4151                                               &keep_alive,
4152                                               &drain_queue,
4153                                               NULL,
4154                                               pt);
4155   } else {
4156     uint no_of_gc_workers = workers()->active_workers();
4157 
4158     // Parallel reference processing
4159     assert(no_of_gc_workers <= rp->max_num_q(),
4160            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4161            no_of_gc_workers,  rp->max_num_q());
4162 
4163     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4164     stats = rp->process_discovered_references(&is_alive,
4165                                               &keep_alive,
4166                                               &drain_queue,
4167                                               &par_task_executor,
4168                                               pt);
4169   }
4170 
4171   _gc_tracer_stw->report_gc_reference_stats(stats);
4172 
4173   // We have completed copying any necessary live referent objects.
4174   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4175 
4176   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4177   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4178 }
4179 
4180 // Weak Reference processing during an evacuation pause (part 2).
4181 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4182   double ref_enq_start = os::elapsedTime();
4183 
4184   ReferenceProcessor* rp = _ref_processor_stw;
4185   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4186 
4187   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4188 
4189   // Now enqueue any remaining on the discovered lists on to
4190   // the pending list.
4191   if (!rp->processing_is_mt()) {
4192     // Serial reference processing...
4193     rp->enqueue_discovered_references(NULL, pt);
4194   } else {
4195     // Parallel reference enqueueing
4196 
4197     uint n_workers = workers()->active_workers();
4198 
4199     assert(n_workers <= rp->max_num_q(),
4200            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4201            n_workers,  rp->max_num_q());
4202 
4203     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4204     rp->enqueue_discovered_references(&par_task_executor, pt);
4205   }
4206 
4207   rp->verify_no_references_recorded();
4208   assert(!rp->discovery_enabled(), "should have been disabled");
4209 
4210   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4211   // ensure that it is marked in the bitmap for concurrent marking to discover.
4212   if (collector_state()->during_initial_mark_pause()) {
4213     oop pll_head = Universe::reference_pending_list();
4214     if (pll_head != NULL) {
4215       _cm->mark_in_next_bitmap(pll_head);
4216     }
4217   }
4218 
4219   // FIXME
4220   // CM's reference processing also cleans up the string and symbol tables.
4221   // Should we do that here also? We could, but it is a serial operation
4222   // and could significantly increase the pause time.
4223 
4224   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4225   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4226 }
4227 
4228 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4229   double merge_pss_time_start = os::elapsedTime();
4230   per_thread_states->flush();
4231   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4232 }
4233 
4234 void G1CollectedHeap::pre_evacuate_collection_set() {
4235   _expand_heap_after_alloc_failure = true;
4236   _evacuation_failed = false;
4237 
4238   // Disable the hot card cache.
4239   _hot_card_cache->reset_hot_cache_claimed_index();
4240   _hot_card_cache->set_use_cache(false);
4241 
4242   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4243   _preserved_marks_set.assert_empty();
4244 
4245   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4246 
4247   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4248   if (collector_state()->during_initial_mark_pause()) {
4249     double start_clear_claimed_marks = os::elapsedTime();
4250 
4251     ClassLoaderDataGraph::clear_claimed_marks();
4252 
4253     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4254     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4255   }
4256 }
4257 
4258 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
4259   // Should G1EvacuationFailureALot be in effect for this GC?
4260   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4261 
4262   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4263 
4264   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4265 
4266   double start_par_time_sec = os::elapsedTime();
4267   double end_par_time_sec;
4268 
4269   {
4270     const uint n_workers = workers()->active_workers();
4271     G1RootProcessor root_processor(this, n_workers);
4272     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4273 
4274     print_termination_stats_hdr();
4275 
4276     workers()->run_task(&g1_par_task);
4277     end_par_time_sec = os::elapsedTime();
4278 
4279     // Closing the inner scope will execute the destructor
4280     // for the G1RootProcessor object. We record the current
4281     // elapsed time before closing the scope so that time
4282     // taken for the destructor is NOT included in the
4283     // reported parallel time.
4284   }
4285 
4286   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4287   phase_times->record_par_time(par_time_ms);
4288 
4289   double code_root_fixup_time_ms =
4290         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4291   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4292 }
4293 
4294 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4295   // Process any discovered reference objects - we have
4296   // to do this _before_ we retire the GC alloc regions
4297   // as we may have to copy some 'reachable' referent
4298   // objects (and their reachable sub-graphs) that were
4299   // not copied during the pause.
4300   if (g1_policy()->should_process_references()) {
4301     preserve_cm_referents(per_thread_states);
4302     process_discovered_references(per_thread_states);
4303   } else {
4304     ref_processor_stw()->verify_no_references_recorded();
4305   }
4306 
4307   G1STWIsAliveClosure is_alive(this);
4308   G1KeepAliveClosure keep_alive(this);
4309 
4310   {
4311     double start = os::elapsedTime();
4312 
4313     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4314 
4315     double time_ms = (os::elapsedTime() - start) * 1000.0;
4316     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4317   }
4318 
4319   if (G1StringDedup::is_enabled()) {
4320     double fixup_start = os::elapsedTime();
4321 
4322     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4323 
4324     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4325     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4326   }
4327 
4328   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4329 
4330   if (evacuation_failed()) {
4331     restore_after_evac_failure();
4332 
4333     // Reset the G1EvacuationFailureALot counters and flags
4334     // Note: the values are reset only when an actual
4335     // evacuation failure occurs.
4336     NOT_PRODUCT(reset_evacuation_should_fail();)
4337   }
4338 
4339   _preserved_marks_set.assert_empty();
4340 
4341   // Enqueue any remaining references remaining on the STW
4342   // reference processor's discovered lists. We need to do
4343   // this after the card table is cleaned (and verified) as
4344   // the act of enqueueing entries on to the pending list
4345   // will log these updates (and dirty their associated
4346   // cards). We need these updates logged to update any
4347   // RSets.
4348   if (g1_policy()->should_process_references()) {
4349     enqueue_discovered_references(per_thread_states);
4350   } else {
4351     g1_policy()->phase_times()->record_ref_enq_time(0);
4352   }
4353 
4354   _allocator->release_gc_alloc_regions(evacuation_info);
4355 
4356   merge_per_thread_state_info(per_thread_states);
4357 
4358   // Reset and re-enable the hot card cache.
4359   // Note the counts for the cards in the regions in the
4360   // collection set are reset when the collection set is freed.
4361   _hot_card_cache->reset_hot_cache();
4362   _hot_card_cache->set_use_cache(true);
4363 
4364   purge_code_root_memory();
4365 
4366   redirty_logged_cards();
4367 #if COMPILER2_OR_JVMCI
4368   double start = os::elapsedTime();
4369   DerivedPointerTable::update_pointers();
4370   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4371 #endif
4372   g1_policy()->print_age_table();
4373 }
4374 
4375 void G1CollectedHeap::record_obj_copy_mem_stats() {
4376   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4377 
4378   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4379                                                create_g1_evac_summary(&_old_evac_stats));
4380 }
4381 
4382 void G1CollectedHeap::free_region(HeapRegion* hr,
4383                                   FreeRegionList* free_list,
4384                                   bool skip_remset,
4385                                   bool skip_hot_card_cache,
4386                                   bool locked) {
4387   assert(!hr->is_free(), "the region should not be free");
4388   assert(!hr->is_empty(), "the region should not be empty");
4389   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4390   assert(free_list != NULL, "pre-condition");
4391 
4392   if (G1VerifyBitmaps) {
4393     MemRegion mr(hr->bottom(), hr->end());
4394     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4395   }
4396 
4397   // Clear the card counts for this region.
4398   // Note: we only need to do this if the region is not young
4399   // (since we don't refine cards in young regions).
4400   if (!skip_hot_card_cache && !hr->is_young()) {
4401     _hot_card_cache->reset_card_counts(hr);
4402   }
4403   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4404   free_list->add_ordered(hr);
4405 }
4406 
4407 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4408                                             FreeRegionList* free_list,
4409                                             bool skip_remset) {
4410   assert(hr->is_humongous(), "this is only for humongous regions");
4411   assert(free_list != NULL, "pre-condition");
4412   hr->clear_humongous();
4413   free_region(hr, free_list, skip_remset);
4414 }
4415 
4416 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4417                                            const uint humongous_regions_removed) {
4418   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4419     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4420     _old_set.bulk_remove(old_regions_removed);
4421     _humongous_set.bulk_remove(humongous_regions_removed);
4422   }
4423 
4424 }
4425 
4426 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4427   assert(list != NULL, "list can't be null");
4428   if (!list->is_empty()) {
4429     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4430     _hrm.insert_list_into_free_list(list);
4431   }
4432 }
4433 
4434 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4435   decrease_used(bytes);
4436 }
4437 
4438 class G1ParScrubRemSetTask: public AbstractGangTask {
4439 protected:
4440   G1RemSet* _g1rs;
4441   HeapRegionClaimer _hrclaimer;
4442 
4443 public:
4444   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4445     AbstractGangTask("G1 ScrubRS"),
4446     _g1rs(g1_rs),
4447     _hrclaimer(num_workers) {
4448   }
4449 
4450   void work(uint worker_id) {
4451     _g1rs->scrub(worker_id, &_hrclaimer);
4452   }
4453 };
4454 
4455 void G1CollectedHeap::scrub_rem_set() {
4456   uint num_workers = workers()->active_workers();
4457   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4458   workers()->run_task(&g1_par_scrub_rs_task);
4459 }
4460 
4461 class G1FreeCollectionSetTask : public AbstractGangTask {
4462 private:
4463 
4464   // Closure applied to all regions in the collection set to do work that needs to
4465   // be done serially in a single thread.
4466   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4467   private:
4468     EvacuationInfo* _evacuation_info;
4469     const size_t* _surviving_young_words;
4470 
4471     // Bytes used in successfully evacuated regions before the evacuation.
4472     size_t _before_used_bytes;
4473     // Bytes used in unsucessfully evacuated regions before the evacuation
4474     size_t _after_used_bytes;
4475 
4476     size_t _bytes_allocated_in_old_since_last_gc;
4477 
4478     size_t _failure_used_words;
4479     size_t _failure_waste_words;
4480 
4481     FreeRegionList _local_free_list;
4482   public:
4483     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4484       HeapRegionClosure(),
4485       _evacuation_info(evacuation_info),
4486       _surviving_young_words(surviving_young_words),
4487       _before_used_bytes(0),
4488       _after_used_bytes(0),
4489       _bytes_allocated_in_old_since_last_gc(0),
4490       _failure_used_words(0),
4491       _failure_waste_words(0),
4492       _local_free_list("Local Region List for CSet Freeing") {
4493     }
4494 
4495     virtual bool do_heap_region(HeapRegion* r) {
4496       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4497 
4498       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4499       g1h->clear_in_cset(r);
4500 
4501       if (r->is_young()) {
4502         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4503                "Young index %d is wrong for region %u of type %s with %u young regions",
4504                r->young_index_in_cset(),
4505                r->hrm_index(),
4506                r->get_type_str(),
4507                g1h->collection_set()->young_region_length());
4508         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4509         r->record_surv_words_in_group(words_survived);
4510       }
4511 
4512       if (!r->evacuation_failed()) {
4513         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4514         _before_used_bytes += r->used();
4515         g1h->free_region(r,
4516                          &_local_free_list,
4517                          true, /* skip_remset */
4518                          true, /* skip_hot_card_cache */
4519                          true  /* locked */);
4520       } else {
4521         r->uninstall_surv_rate_group();
4522         r->set_young_index_in_cset(-1);
4523         r->set_evacuation_failed(false);
4524         // When moving a young gen region to old gen, we "allocate" that whole region
4525         // there. This is in addition to any already evacuated objects. Notify the
4526         // policy about that.
4527         // Old gen regions do not cause an additional allocation: both the objects
4528         // still in the region and the ones already moved are accounted for elsewhere.
4529         if (r->is_young()) {
4530           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4531         }
4532         // The region is now considered to be old.
4533         r->set_old();
4534         // Do some allocation statistics accounting. Regions that failed evacuation
4535         // are always made old, so there is no need to update anything in the young
4536         // gen statistics, but we need to update old gen statistics.
4537         size_t used_words = r->marked_bytes() / HeapWordSize;
4538 
4539         _failure_used_words += used_words;
4540         _failure_waste_words += HeapRegion::GrainWords - used_words;
4541 
4542         g1h->old_set_add(r);
4543         _after_used_bytes += r->used();
4544       }
4545       return false;
4546     }
4547 
4548     void complete_work() {
4549       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4550 
4551       _evacuation_info->set_regions_freed(_local_free_list.length());
4552       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4553 
4554       g1h->prepend_to_freelist(&_local_free_list);
4555       g1h->decrement_summary_bytes(_before_used_bytes);
4556 
4557       G1Policy* policy = g1h->g1_policy();
4558       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4559 
4560       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4561     }
4562   };
4563 
4564   G1CollectionSet* _collection_set;
4565   G1SerialFreeCollectionSetClosure _cl;
4566   const size_t* _surviving_young_words;
4567 
4568   size_t _rs_lengths;
4569 
4570   volatile jint _serial_work_claim;
4571 
4572   struct WorkItem {
4573     uint region_idx;
4574     bool is_young;
4575     bool evacuation_failed;
4576 
4577     WorkItem(HeapRegion* r) {
4578       region_idx = r->hrm_index();
4579       is_young = r->is_young();
4580       evacuation_failed = r->evacuation_failed();
4581     }
4582   };
4583 
4584   volatile size_t _parallel_work_claim;
4585   size_t _num_work_items;
4586   WorkItem* _work_items;
4587 
4588   void do_serial_work() {
4589     // Need to grab the lock to be allowed to modify the old region list.
4590     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4591     _collection_set->iterate(&_cl);
4592   }
4593 
4594   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4595     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4596 
4597     HeapRegion* r = g1h->region_at(region_idx);
4598     assert(!g1h->is_on_master_free_list(r), "sanity");
4599 
4600     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4601 
4602     if (!is_young) {
4603       g1h->_hot_card_cache->reset_card_counts(r);
4604     }
4605 
4606     if (!evacuation_failed) {
4607       r->rem_set()->clear_locked();
4608     }
4609   }
4610 
4611   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4612   private:
4613     size_t _cur_idx;
4614     WorkItem* _work_items;
4615   public:
4616     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4617 
4618     virtual bool do_heap_region(HeapRegion* r) {
4619       _work_items[_cur_idx++] = WorkItem(r);
4620       return false;
4621     }
4622   };
4623 
4624   void prepare_work() {
4625     G1PrepareFreeCollectionSetClosure cl(_work_items);
4626     _collection_set->iterate(&cl);
4627   }
4628 
4629   void complete_work() {
4630     _cl.complete_work();
4631 
4632     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4633     policy->record_max_rs_lengths(_rs_lengths);
4634     policy->cset_regions_freed();
4635   }
4636 public:
4637   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4638     AbstractGangTask("G1 Free Collection Set"),
4639     _cl(evacuation_info, surviving_young_words),
4640     _collection_set(collection_set),
4641     _surviving_young_words(surviving_young_words),
4642     _serial_work_claim(0),
4643     _rs_lengths(0),
4644     _parallel_work_claim(0),
4645     _num_work_items(collection_set->region_length()),
4646     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4647     prepare_work();
4648   }
4649 
4650   ~G1FreeCollectionSetTask() {
4651     complete_work();
4652     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4653   }
4654 
4655   // Chunk size for work distribution. The chosen value has been determined experimentally
4656   // to be a good tradeoff between overhead and achievable parallelism.
4657   static uint chunk_size() { return 32; }
4658 
4659   virtual void work(uint worker_id) {
4660     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4661 
4662     // Claim serial work.
4663     if (_serial_work_claim == 0) {
4664       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4665       if (value == 0) {
4666         double serial_time = os::elapsedTime();
4667         do_serial_work();
4668         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4669       }
4670     }
4671 
4672     // Start parallel work.
4673     double young_time = 0.0;
4674     bool has_young_time = false;
4675     double non_young_time = 0.0;
4676     bool has_non_young_time = false;
4677 
4678     while (true) {
4679       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4680       size_t cur = end - chunk_size();
4681 
4682       if (cur >= _num_work_items) {
4683         break;
4684       }
4685 
4686       double start_time = os::elapsedTime();
4687 
4688       end = MIN2(end, _num_work_items);
4689 
4690       for (; cur < end; cur++) {
4691         bool is_young = _work_items[cur].is_young;
4692 
4693         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4694 
4695         double end_time = os::elapsedTime();
4696         double time_taken = end_time - start_time;
4697         if (is_young) {
4698           young_time += time_taken;
4699           has_young_time = true;
4700         } else {
4701           non_young_time += time_taken;
4702           has_non_young_time = true;
4703         }
4704         start_time = end_time;
4705       }
4706     }
4707 
4708     if (has_young_time) {
4709       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4710     }
4711     if (has_non_young_time) {
4712       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4713     }
4714   }
4715 };
4716 
4717 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4718   _eden.clear();
4719 
4720   double free_cset_start_time = os::elapsedTime();
4721 
4722   {
4723     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4724     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4725 
4726     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4727 
4728     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4729                         cl.name(),
4730                         num_workers,
4731                         _collection_set.region_length());
4732     workers()->run_task(&cl, num_workers);
4733   }
4734   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4735 
4736   collection_set->clear();
4737 }
4738 
4739 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4740  private:
4741   FreeRegionList* _free_region_list;
4742   HeapRegionSet* _proxy_set;
4743   uint _humongous_objects_reclaimed;
4744   uint _humongous_regions_reclaimed;
4745   size_t _freed_bytes;
4746  public:
4747 
4748   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4749     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4750   }
4751 
4752   virtual bool do_heap_region(HeapRegion* r) {
4753     if (!r->is_starts_humongous()) {
4754       return false;
4755     }
4756 
4757     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4758 
4759     oop obj = (oop)r->bottom();
4760     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4761 
4762     // The following checks whether the humongous object is live are sufficient.
4763     // The main additional check (in addition to having a reference from the roots
4764     // or the young gen) is whether the humongous object has a remembered set entry.
4765     //
4766     // A humongous object cannot be live if there is no remembered set for it
4767     // because:
4768     // - there can be no references from within humongous starts regions referencing
4769     // the object because we never allocate other objects into them.
4770     // (I.e. there are no intra-region references that may be missed by the
4771     // remembered set)
4772     // - as soon there is a remembered set entry to the humongous starts region
4773     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4774     // until the end of a concurrent mark.
4775     //
4776     // It is not required to check whether the object has been found dead by marking
4777     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4778     // all objects allocated during that time are considered live.
4779     // SATB marking is even more conservative than the remembered set.
4780     // So if at this point in the collection there is no remembered set entry,
4781     // nobody has a reference to it.
4782     // At the start of collection we flush all refinement logs, and remembered sets
4783     // are completely up-to-date wrt to references to the humongous object.
4784     //
4785     // Other implementation considerations:
4786     // - never consider object arrays at this time because they would pose
4787     // considerable effort for cleaning up the the remembered sets. This is
4788     // required because stale remembered sets might reference locations that
4789     // are currently allocated into.
4790     uint region_idx = r->hrm_index();
4791     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4792         !r->rem_set()->is_empty()) {
4793       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4794                                region_idx,
4795                                (size_t)obj->size() * HeapWordSize,
4796                                p2i(r->bottom()),
4797                                r->rem_set()->occupied(),
4798                                r->rem_set()->strong_code_roots_list_length(),
4799                                next_bitmap->is_marked(r->bottom()),
4800                                g1h->is_humongous_reclaim_candidate(region_idx),
4801                                obj->is_typeArray()
4802                               );
4803       return false;
4804     }
4805 
4806     guarantee(obj->is_typeArray(),
4807               "Only eagerly reclaiming type arrays is supported, but the object "
4808               PTR_FORMAT " is not.", p2i(r->bottom()));
4809 
4810     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4811                              region_idx,
4812                              (size_t)obj->size() * HeapWordSize,
4813                              p2i(r->bottom()),
4814                              r->rem_set()->occupied(),
4815                              r->rem_set()->strong_code_roots_list_length(),
4816                              next_bitmap->is_marked(r->bottom()),
4817                              g1h->is_humongous_reclaim_candidate(region_idx),
4818                              obj->is_typeArray()
4819                             );
4820 
4821     // Need to clear mark bit of the humongous object if already set.
4822     if (next_bitmap->is_marked(r->bottom())) {
4823       next_bitmap->clear(r->bottom());
4824     }
4825     _humongous_objects_reclaimed++;
4826     do {
4827       HeapRegion* next = g1h->next_region_in_humongous(r);
4828       _freed_bytes += r->used();
4829       r->set_containing_set(NULL);
4830       _humongous_regions_reclaimed++;
4831       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4832       r = next;
4833     } while (r != NULL);
4834 
4835     return false;
4836   }
4837 
4838   uint humongous_objects_reclaimed() {
4839     return _humongous_objects_reclaimed;
4840   }
4841 
4842   uint humongous_regions_reclaimed() {
4843     return _humongous_regions_reclaimed;
4844   }
4845 
4846   size_t bytes_freed() const {
4847     return _freed_bytes;
4848   }
4849 };
4850 
4851 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4852   assert_at_safepoint_on_vm_thread();
4853 
4854   if (!G1EagerReclaimHumongousObjects ||
4855       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4856     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4857     return;
4858   }
4859 
4860   double start_time = os::elapsedTime();
4861 
4862   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4863 
4864   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4865   heap_region_iterate(&cl);
4866 
4867   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4868 
4869   G1HRPrinter* hrp = hr_printer();
4870   if (hrp->is_active()) {
4871     FreeRegionListIterator iter(&local_cleanup_list);
4872     while (iter.more_available()) {
4873       HeapRegion* hr = iter.get_next();
4874       hrp->cleanup(hr);
4875     }
4876   }
4877 
4878   prepend_to_freelist(&local_cleanup_list);
4879   decrement_summary_bytes(cl.bytes_freed());
4880 
4881   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4882                                                                     cl.humongous_objects_reclaimed());
4883 }
4884 
4885 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4886 public:
4887   virtual bool do_heap_region(HeapRegion* r) {
4888     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4889     G1CollectedHeap::heap()->clear_in_cset(r);
4890     r->set_young_index_in_cset(-1);
4891     return false;
4892   }
4893 };
4894 
4895 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4896   G1AbandonCollectionSetClosure cl;
4897   collection_set->iterate(&cl);
4898 
4899   collection_set->clear();
4900   collection_set->stop_incremental_building();
4901 }
4902 
4903 void G1CollectedHeap::set_free_regions_coming() {
4904   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4905 
4906   assert(!free_regions_coming(), "pre-condition");
4907   _free_regions_coming = true;
4908 }
4909 
4910 void G1CollectedHeap::reset_free_regions_coming() {
4911   assert(free_regions_coming(), "pre-condition");
4912 
4913   {
4914     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4915     _free_regions_coming = false;
4916     SecondaryFreeList_lock->notify_all();
4917   }
4918 
4919   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4920 }
4921 
4922 void G1CollectedHeap::wait_while_free_regions_coming() {
4923   // Most of the time we won't have to wait, so let's do a quick test
4924   // first before we take the lock.
4925   if (!free_regions_coming()) {
4926     return;
4927   }
4928 
4929   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4930 
4931   {
4932     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4933     while (free_regions_coming()) {
4934       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
4935     }
4936   }
4937 
4938   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
4939 }
4940 
4941 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4942   return _allocator->is_retained_old_region(hr);
4943 }
4944 
4945 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4946   _eden.add(hr);
4947   _g1_policy->set_region_eden(hr);
4948 }
4949 
4950 #ifdef ASSERT
4951 
4952 class NoYoungRegionsClosure: public HeapRegionClosure {
4953 private:
4954   bool _success;
4955 public:
4956   NoYoungRegionsClosure() : _success(true) { }
4957   bool do_heap_region(HeapRegion* r) {
4958     if (r->is_young()) {
4959       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4960                             p2i(r->bottom()), p2i(r->end()));
4961       _success = false;
4962     }
4963     return false;
4964   }
4965   bool success() { return _success; }
4966 };
4967 
4968 bool G1CollectedHeap::check_young_list_empty() {
4969   bool ret = (young_regions_count() == 0);
4970 
4971   NoYoungRegionsClosure closure;
4972   heap_region_iterate(&closure);
4973   ret = ret && closure.success();
4974 
4975   return ret;
4976 }
4977 
4978 #endif // ASSERT
4979 
4980 class TearDownRegionSetsClosure : public HeapRegionClosure {
4981 private:
4982   HeapRegionSet *_old_set;
4983 
4984 public:
4985   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4986 
4987   bool do_heap_region(HeapRegion* r) {
4988     if (r->is_old()) {
4989       _old_set->remove(r);
4990     } else if(r->is_young()) {
4991       r->uninstall_surv_rate_group();
4992     } else {
4993       // We ignore free regions, we'll empty the free list afterwards.
4994       // We ignore humongous regions, we're not tearing down the
4995       // humongous regions set.
4996       assert(r->is_free() || r->is_humongous(),
4997              "it cannot be another type");
4998     }
4999     return false;
5000   }
5001 
5002   ~TearDownRegionSetsClosure() {
5003     assert(_old_set->is_empty(), "post-condition");
5004   }
5005 };
5006 
5007 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5008   assert_at_safepoint_on_vm_thread();
5009 
5010   if (!free_list_only) {
5011     TearDownRegionSetsClosure cl(&_old_set);
5012     heap_region_iterate(&cl);
5013 
5014     // Note that emptying the _young_list is postponed and instead done as
5015     // the first step when rebuilding the regions sets again. The reason for
5016     // this is that during a full GC string deduplication needs to know if
5017     // a collected region was young or old when the full GC was initiated.
5018   }
5019   _hrm.remove_all_free_regions();
5020 }
5021 
5022 void G1CollectedHeap::increase_used(size_t bytes) {
5023   _summary_bytes_used += bytes;
5024 }
5025 
5026 void G1CollectedHeap::decrease_used(size_t bytes) {
5027   assert(_summary_bytes_used >= bytes,
5028          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5029          _summary_bytes_used, bytes);
5030   _summary_bytes_used -= bytes;
5031 }
5032 
5033 void G1CollectedHeap::set_used(size_t bytes) {
5034   _summary_bytes_used = bytes;
5035 }
5036 
5037 class RebuildRegionSetsClosure : public HeapRegionClosure {
5038 private:
5039   bool            _free_list_only;
5040   HeapRegionSet*   _old_set;
5041   HeapRegionManager*   _hrm;
5042   size_t          _total_used;
5043 
5044 public:
5045   RebuildRegionSetsClosure(bool free_list_only,
5046                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5047     _free_list_only(free_list_only),
5048     _old_set(old_set), _hrm(hrm), _total_used(0) {
5049     assert(_hrm->num_free_regions() == 0, "pre-condition");
5050     if (!free_list_only) {
5051       assert(_old_set->is_empty(), "pre-condition");
5052     }
5053   }
5054 
5055   bool do_heap_region(HeapRegion* r) {
5056     if (r->is_empty()) {
5057       // Add free regions to the free list
5058       r->set_free();
5059       _hrm->insert_into_free_list(r);
5060     } else if (!_free_list_only) {
5061 
5062       if (r->is_humongous()) {
5063         // We ignore humongous regions. We left the humongous set unchanged.
5064       } else {
5065         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5066         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5067         r->move_to_old();
5068         _old_set->add(r);
5069       }
5070       _total_used += r->used();
5071     }
5072 
5073     return false;
5074   }
5075 
5076   size_t total_used() {
5077     return _total_used;
5078   }
5079 };
5080 
5081 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5082   assert_at_safepoint_on_vm_thread();
5083 
5084   if (!free_list_only) {
5085     _eden.clear();
5086     _survivor.clear();
5087   }
5088 
5089   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5090   heap_region_iterate(&cl);
5091 
5092   if (!free_list_only) {
5093     set_used(cl.total_used());
5094     if (_archive_allocator != NULL) {
5095       _archive_allocator->clear_used();
5096     }
5097   }
5098   assert(used_unlocked() == recalculate_used(),
5099          "inconsistent used_unlocked(), "
5100          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5101          used_unlocked(), recalculate_used());
5102 }
5103 
5104 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5105   HeapRegion* hr = heap_region_containing(p);
5106   return hr->is_in(p);
5107 }
5108 
5109 // Methods for the mutator alloc region
5110 
5111 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5112                                                       bool force) {
5113   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5114   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5115   if (force || should_allocate) {
5116     HeapRegion* new_alloc_region = new_region(word_size,
5117                                               false /* is_old */,
5118                                               false /* do_expand */);
5119     if (new_alloc_region != NULL) {
5120       set_region_short_lived_locked(new_alloc_region);
5121       _hr_printer.alloc(new_alloc_region, !should_allocate);
5122       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5123       return new_alloc_region;
5124     }
5125   }
5126   return NULL;
5127 }
5128 
5129 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5130                                                   size_t allocated_bytes) {
5131   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5132   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5133 
5134   collection_set()->add_eden_region(alloc_region);
5135   increase_used(allocated_bytes);
5136   _hr_printer.retire(alloc_region);
5137   // We update the eden sizes here, when the region is retired,
5138   // instead of when it's allocated, since this is the point that its
5139   // used space has been recored in _summary_bytes_used.
5140   g1mm()->update_eden_size();
5141 }
5142 
5143 // Methods for the GC alloc regions
5144 
5145 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5146   if (dest.is_old()) {
5147     return true;
5148   } else {
5149     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5150   }
5151 }
5152 
5153 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5154   assert(FreeList_lock->owned_by_self(), "pre-condition");
5155 
5156   if (!has_more_regions(dest)) {
5157     return NULL;
5158   }
5159 
5160   const bool is_survivor = dest.is_young();
5161 
5162   HeapRegion* new_alloc_region = new_region(word_size,
5163                                             !is_survivor,
5164                                             true /* do_expand */);
5165   if (new_alloc_region != NULL) {
5166     // We really only need to do this for old regions given that we
5167     // should never scan survivors. But it doesn't hurt to do it
5168     // for survivors too.
5169     new_alloc_region->record_timestamp();
5170     if (is_survivor) {
5171       new_alloc_region->set_survivor();
5172       _survivor.add(new_alloc_region);
5173       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5174     } else {
5175       new_alloc_region->set_old();
5176       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5177     }
5178     _hr_printer.alloc(new_alloc_region);
5179     bool during_im = collector_state()->during_initial_mark_pause();
5180     new_alloc_region->note_start_of_copying(during_im);
5181     return new_alloc_region;
5182   }
5183   return NULL;
5184 }
5185 
5186 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5187                                              size_t allocated_bytes,
5188                                              InCSetState dest) {
5189   bool during_im = collector_state()->during_initial_mark_pause();
5190   alloc_region->note_end_of_copying(during_im);
5191   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5192   if (dest.is_old()) {
5193     _old_set.add(alloc_region);
5194   }
5195   _hr_printer.retire(alloc_region);
5196 }
5197 
5198 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5199   bool expanded = false;
5200   uint index = _hrm.find_highest_free(&expanded);
5201 
5202   if (index != G1_NO_HRM_INDEX) {
5203     if (expanded) {
5204       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5205                                 HeapRegion::GrainWords * HeapWordSize);
5206     }
5207     _hrm.allocate_free_regions_starting_at(index, 1);
5208     return region_at(index);
5209   }
5210   return NULL;
5211 }
5212 
5213 // Optimized nmethod scanning
5214 
5215 class RegisterNMethodOopClosure: public OopClosure {
5216   G1CollectedHeap* _g1h;
5217   nmethod* _nm;
5218 
5219   template <class T> void do_oop_work(T* p) {
5220     T heap_oop = RawAccess<>::oop_load(p);
5221     if (!CompressedOops::is_null(heap_oop)) {
5222       oop obj = CompressedOops::decode_not_null(heap_oop);
5223       HeapRegion* hr = _g1h->heap_region_containing(obj);
5224       assert(!hr->is_continues_humongous(),
5225              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5226              " starting at " HR_FORMAT,
5227              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5228 
5229       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5230       hr->add_strong_code_root_locked(_nm);
5231     }
5232   }
5233 
5234 public:
5235   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5236     _g1h(g1h), _nm(nm) {}
5237 
5238   void do_oop(oop* p)       { do_oop_work(p); }
5239   void do_oop(narrowOop* p) { do_oop_work(p); }
5240 };
5241 
5242 class UnregisterNMethodOopClosure: public OopClosure {
5243   G1CollectedHeap* _g1h;
5244   nmethod* _nm;
5245 
5246   template <class T> void do_oop_work(T* p) {
5247     T heap_oop = RawAccess<>::oop_load(p);
5248     if (!CompressedOops::is_null(heap_oop)) {
5249       oop obj = CompressedOops::decode_not_null(heap_oop);
5250       HeapRegion* hr = _g1h->heap_region_containing(obj);
5251       assert(!hr->is_continues_humongous(),
5252              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5253              " starting at " HR_FORMAT,
5254              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5255 
5256       hr->remove_strong_code_root(_nm);
5257     }
5258   }
5259 
5260 public:
5261   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5262     _g1h(g1h), _nm(nm) {}
5263 
5264   void do_oop(oop* p)       { do_oop_work(p); }
5265   void do_oop(narrowOop* p) { do_oop_work(p); }
5266 };
5267 
5268 // Returns true if the reference points to an object that
5269 // can move in an incremental collection.
5270 bool G1CollectedHeap::is_scavengable(oop obj) {
5271   HeapRegion* hr = heap_region_containing(obj);
5272   return !hr->is_pinned();
5273 }
5274 
5275 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5276   guarantee(nm != NULL, "sanity");
5277   RegisterNMethodOopClosure reg_cl(this, nm);
5278   nm->oops_do(&reg_cl);
5279 }
5280 
5281 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5282   guarantee(nm != NULL, "sanity");
5283   UnregisterNMethodOopClosure reg_cl(this, nm);
5284   nm->oops_do(&reg_cl, true);
5285 }
5286 
5287 void G1CollectedHeap::purge_code_root_memory() {
5288   double purge_start = os::elapsedTime();
5289   G1CodeRootSet::purge();
5290   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5291   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5292 }
5293 
5294 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5295   G1CollectedHeap* _g1h;
5296 
5297 public:
5298   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5299     _g1h(g1h) {}
5300 
5301   void do_code_blob(CodeBlob* cb) {
5302     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5303     if (nm == NULL) {
5304       return;
5305     }
5306 
5307     if (ScavengeRootsInCode) {
5308       _g1h->register_nmethod(nm);
5309     }
5310   }
5311 };
5312 
5313 void G1CollectedHeap::rebuild_strong_code_roots() {
5314   RebuildStrongCodeRootClosure blob_cl(this);
5315   CodeCache::blobs_do(&blob_cl);
5316 }
5317 
5318 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5319   GrowableArray<GCMemoryManager*> memory_managers(2);
5320   memory_managers.append(&_memory_manager);
5321   memory_managers.append(&_full_gc_memory_manager);
5322   return memory_managers;
5323 }
5324 
5325 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5326   GrowableArray<MemoryPool*> memory_pools(3);
5327   memory_pools.append(_eden_pool);
5328   memory_pools.append(_survivor_pool);
5329   memory_pools.append(_old_pool);
5330   return memory_pools;
5331 }