1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1CardLiveData.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/shared/adaptiveSizePolicy.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/suspendibleThreadSet.hpp"
  50 #include "gc/shared/taskqueue.inline.hpp"
  51 #include "gc/shared/vmGCOperations.hpp"
  52 #include "gc/shared/weakProcessor.hpp"
  53 #include "logging/log.hpp"
  54 #include "memory/allocation.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/handles.inline.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/prefetch.inline.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "utilities/align.hpp"
  63 #include "utilities/growableArray.hpp"
  64 
  65 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  66   assert(addr < _cm->finger(), "invariant");
  67   assert(addr >= _task->finger(), "invariant");
  68 
  69   // We move that task's local finger along.
  70   _task->move_finger_to(addr);
  71 
  72   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  73   // we only partially drain the local queue and global stack
  74   _task->drain_local_queue(true);
  75   _task->drain_global_stack(true);
  76 
  77   // if the has_aborted flag has been raised, we need to bail out of
  78   // the iteration
  79   return !_task->has_aborted();
  80 }
  81 
  82 G1CMMarkStack::G1CMMarkStack() :
  83   _max_chunk_capacity(0),
  84   _base(NULL),
  85   _chunk_capacity(0) {
  86   set_empty();
  87 }
  88 
  89 bool G1CMMarkStack::resize(size_t new_capacity) {
  90   assert(is_empty(), "Only resize when stack is empty.");
  91   assert(new_capacity <= _max_chunk_capacity,
  92          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  93 
  94   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  95 
  96   if (new_base == NULL) {
  97     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
  98     return false;
  99   }
 100   // Release old mapping.
 101   if (_base != NULL) {
 102     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 103   }
 104 
 105   _base = new_base;
 106   _chunk_capacity = new_capacity;
 107   set_empty();
 108 
 109   return true;
 110 }
 111 
 112 size_t G1CMMarkStack::capacity_alignment() {
 113   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 114 }
 115 
 116 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 117   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 118 
 119   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 120 
 121   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 122   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 123 
 124   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 125             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 126             _max_chunk_capacity,
 127             initial_chunk_capacity);
 128 
 129   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 130                 initial_chunk_capacity, _max_chunk_capacity);
 131 
 132   return resize(initial_chunk_capacity);
 133 }
 134 
 135 void G1CMMarkStack::expand() {
 136   if (_chunk_capacity == _max_chunk_capacity) {
 137     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 138     return;
 139   }
 140   size_t old_capacity = _chunk_capacity;
 141   // Double capacity if possible
 142   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 143 
 144   if (resize(new_capacity)) {
 145     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 146                   old_capacity, new_capacity);
 147   } else {
 148     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 149                     old_capacity, new_capacity);
 150   }
 151 }
 152 
 153 G1CMMarkStack::~G1CMMarkStack() {
 154   if (_base != NULL) {
 155     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 156   }
 157 }
 158 
 159 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 160   elem->next = *list;
 161   *list = elem;
 162 }
 163 
 164 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 165   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 166   add_chunk_to_list(&_chunk_list, elem);
 167   _chunks_in_chunk_list++;
 168 }
 169 
 170 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 171   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 172   add_chunk_to_list(&_free_list, elem);
 173 }
 174 
 175 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 176   TaskQueueEntryChunk* result = *list;
 177   if (result != NULL) {
 178     *list = (*list)->next;
 179   }
 180   return result;
 181 }
 182 
 183 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 184   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 185   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 186   if (result != NULL) {
 187     _chunks_in_chunk_list--;
 188   }
 189   return result;
 190 }
 191 
 192 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 193   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 194   return remove_chunk_from_list(&_free_list);
 195 }
 196 
 197 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 198   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 199   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 200   // wraparound of _hwm.
 201   if (_hwm >= _chunk_capacity) {
 202     return NULL;
 203   }
 204 
 205   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 206   if (cur_idx >= _chunk_capacity) {
 207     return NULL;
 208   }
 209 
 210   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 211   result->next = NULL;
 212   return result;
 213 }
 214 
 215 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 216   // Get a new chunk.
 217   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 218 
 219   if (new_chunk == NULL) {
 220     // Did not get a chunk from the free list. Allocate from backing memory.
 221     new_chunk = allocate_new_chunk();
 222 
 223     if (new_chunk == NULL) {
 224       return false;
 225     }
 226   }
 227 
 228   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 229 
 230   add_chunk_to_chunk_list(new_chunk);
 231 
 232   return true;
 233 }
 234 
 235 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 236   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 237 
 238   if (cur == NULL) {
 239     return false;
 240   }
 241 
 242   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 243 
 244   add_chunk_to_free_list(cur);
 245   return true;
 246 }
 247 
 248 void G1CMMarkStack::set_empty() {
 249   _chunks_in_chunk_list = 0;
 250   _hwm = 0;
 251   _chunk_list = NULL;
 252   _free_list = NULL;
 253 }
 254 
 255 G1CMRootRegions::G1CMRootRegions() :
 256   _cm(NULL), _scan_in_progress(false),
 257   _should_abort(false), _claimed_survivor_index(0) { }
 258 
 259 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 260   _survivors = survivors;
 261   _cm = cm;
 262 }
 263 
 264 void G1CMRootRegions::prepare_for_scan() {
 265   assert(!scan_in_progress(), "pre-condition");
 266 
 267   // Currently, only survivors can be root regions.
 268   _claimed_survivor_index = 0;
 269   _scan_in_progress = _survivors->regions()->is_nonempty();
 270   _should_abort = false;
 271 }
 272 
 273 HeapRegion* G1CMRootRegions::claim_next() {
 274   if (_should_abort) {
 275     // If someone has set the should_abort flag, we return NULL to
 276     // force the caller to bail out of their loop.
 277     return NULL;
 278   }
 279 
 280   // Currently, only survivors can be root regions.
 281   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 282 
 283   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 284   if (claimed_index < survivor_regions->length()) {
 285     return survivor_regions->at(claimed_index);
 286   }
 287   return NULL;
 288 }
 289 
 290 uint G1CMRootRegions::num_root_regions() const {
 291   return (uint)_survivors->regions()->length();
 292 }
 293 
 294 void G1CMRootRegions::notify_scan_done() {
 295   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 296   _scan_in_progress = false;
 297   RootRegionScan_lock->notify_all();
 298 }
 299 
 300 void G1CMRootRegions::cancel_scan() {
 301   notify_scan_done();
 302 }
 303 
 304 void G1CMRootRegions::scan_finished() {
 305   assert(scan_in_progress(), "pre-condition");
 306 
 307   // Currently, only survivors can be root regions.
 308   if (!_should_abort) {
 309     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 310     assert((uint)_claimed_survivor_index >= _survivors->length(),
 311            "we should have claimed all survivors, claimed index = %u, length = %u",
 312            (uint)_claimed_survivor_index, _survivors->length());
 313   }
 314 
 315   notify_scan_done();
 316 }
 317 
 318 bool G1CMRootRegions::wait_until_scan_finished() {
 319   if (!scan_in_progress()) return false;
 320 
 321   {
 322     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 323     while (scan_in_progress()) {
 324       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 325     }
 326   }
 327   return true;
 328 }
 329 
 330 // Returns the maximum number of workers to be used in a concurrent
 331 // phase based on the number of GC workers being used in a STW
 332 // phase.
 333 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 334   return MAX2((num_gc_workers + 2) / 4, 1U);
 335 }
 336 
 337 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 338                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 339                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 340   // _cm_thread set inside the constructor
 341   _g1h(g1h),
 342   _completed_initialization(false),
 343 
 344   _cleanup_list("Concurrent Mark Cleanup List"),
 345   _mark_bitmap_1(),
 346   _mark_bitmap_2(),
 347   _prev_mark_bitmap(&_mark_bitmap_1),
 348   _next_mark_bitmap(&_mark_bitmap_2),
 349 
 350   _heap_start(_g1h->reserved_region().start()),
 351   _heap_end(_g1h->reserved_region().end()),
 352 
 353   _root_regions(),
 354 
 355   _global_mark_stack(),
 356 
 357   // _finger set in set_non_marking_state
 358 
 359   _max_num_tasks(ParallelGCThreads),
 360   // _num_active_tasks set in set_non_marking_state()
 361   // _tasks set inside the constructor
 362 
 363   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 364   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 365 
 366   _first_overflow_barrier_sync(),
 367   _second_overflow_barrier_sync(),
 368 
 369   _has_overflown(false),
 370   _concurrent(false),
 371   _has_aborted(false),
 372   _restart_for_overflow(false),
 373   _concurrent_marking_in_progress(false),
 374   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 375   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 376 
 377   // _verbose_level set below
 378 
 379   _init_times(),
 380   _remark_times(),
 381   _remark_mark_times(),
 382   _remark_weak_ref_times(),
 383   _cleanup_times(),
 384   _total_counting_time(0.0),
 385   _total_rs_scrub_time(0.0),
 386 
 387   _accum_task_vtime(NULL),
 388 
 389   _concurrent_workers(NULL),
 390   _num_concurrent_workers(0),
 391   _max_concurrent_workers(0)
 392 {
 393   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 394   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 395 
 396   // Create & start ConcurrentMark thread.
 397   _cm_thread = new ConcurrentMarkThread(this);
 398   if (_cm_thread->osthread() == NULL) {
 399     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 400   }
 401 
 402   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 403 
 404   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 405   satb_qs.set_buffer_size(G1SATBBufferSize);
 406 
 407   _root_regions.init(_g1h->survivor(), this);
 408 
 409   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 410     // Calculate the number of concurrent worker threads by scaling
 411     // the number of parallel GC threads.
 412     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 413     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 414   }
 415 
 416   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 417   if (ConcGCThreads > ParallelGCThreads) {
 418     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 419                     ConcGCThreads, ParallelGCThreads);
 420     return;
 421   }
 422 
 423   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 424   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 425 
 426   _num_concurrent_workers = ConcGCThreads;
 427   _max_concurrent_workers = _num_concurrent_workers;
 428 
 429   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 430   _concurrent_workers->initialize_workers();
 431 
 432   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 433     size_t mark_stack_size =
 434       MIN2(MarkStackSizeMax,
 435           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 436     // Verify that the calculated value for MarkStackSize is in range.
 437     // It would be nice to use the private utility routine from Arguments.
 438     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 439       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 440                       "must be between 1 and " SIZE_FORMAT,
 441                       mark_stack_size, MarkStackSizeMax);
 442       return;
 443     }
 444     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 445   } else {
 446     // Verify MarkStackSize is in range.
 447     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 448       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 449         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 450           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 451                           "must be between 1 and " SIZE_FORMAT,
 452                           MarkStackSize, MarkStackSizeMax);
 453           return;
 454         }
 455       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 456         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 457           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 458                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 459                           MarkStackSize, MarkStackSizeMax);
 460           return;
 461         }
 462       }
 463     }
 464   }
 465 
 466   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 467     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 468   }
 469 
 470   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 471   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 472 
 473   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 474   _num_active_tasks = _max_num_tasks;
 475 
 476   for (uint i = 0; i < _max_num_tasks; ++i) {
 477     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 478     task_queue->initialize();
 479     _task_queues->register_queue(i, task_queue);
 480 
 481     _tasks[i] = new G1CMTask(i, this, task_queue);
 482 
 483     _accum_task_vtime[i] = 0.0;
 484   }
 485 
 486   set_non_marking_state();
 487   _completed_initialization = true;
 488 }
 489 
 490 void G1ConcurrentMark::reset() {
 491   // Starting values for these two. This should be called in a STW
 492   // phase.
 493   MemRegion reserved = _g1h->g1_reserved();
 494   _heap_start = reserved.start();
 495   _heap_end   = reserved.end();
 496 
 497   // Separated the asserts so that we know which one fires.
 498   assert(_heap_start != NULL, "heap bounds should look ok");
 499   assert(_heap_end != NULL, "heap bounds should look ok");
 500   assert(_heap_start < _heap_end, "heap bounds should look ok");
 501 
 502   // Reset all the marking data structures and any necessary flags
 503   reset_marking_state();
 504 
 505   // We reset all of them, since different phases will use
 506   // different number of active threads. So, it's easiest to have all
 507   // of them ready.
 508   for (uint i = 0; i < _max_num_tasks; ++i) {
 509     _tasks[i]->reset(_next_mark_bitmap);
 510   }
 511 
 512   // we need this to make sure that the flag is on during the evac
 513   // pause with initial mark piggy-backed
 514   set_concurrent_marking_in_progress();
 515 }
 516 
 517 
 518 void G1ConcurrentMark::reset_marking_state() {
 519   _global_mark_stack.set_empty();
 520 
 521   // Expand the marking stack, if we have to and if we can.
 522   if (has_overflown()) {
 523     _global_mark_stack.expand();
 524   }
 525 
 526   clear_has_overflown();
 527   _finger = _heap_start;
 528 
 529   for (uint i = 0; i < _max_num_tasks; ++i) {
 530     G1CMTaskQueue* queue = _task_queues->queue(i);
 531     queue->set_empty();
 532   }
 533 }
 534 
 535 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 536   assert(active_tasks <= _max_num_tasks, "we should not have more");
 537 
 538   _num_active_tasks = active_tasks;
 539   // Need to update the three data structures below according to the
 540   // number of active threads for this phase.
 541   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 542   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 543   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 544 }
 545 
 546 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 547   set_concurrency(active_tasks);
 548 
 549   _concurrent = concurrent;
 550   // We propagate this to all tasks, not just the active ones.
 551   for (uint i = 0; i < _max_num_tasks; ++i) {
 552     _tasks[i]->set_concurrent(concurrent);
 553   }
 554 
 555   if (concurrent) {
 556     set_concurrent_marking_in_progress();
 557   } else {
 558     // We currently assume that the concurrent flag has been set to
 559     // false before we start remark. At this point we should also be
 560     // in a STW phase.
 561     assert(!concurrent_marking_in_progress(), "invariant");
 562     assert(out_of_regions(),
 563            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 564            p2i(_finger), p2i(_heap_end));
 565   }
 566 }
 567 
 568 void G1ConcurrentMark::set_non_marking_state() {
 569   // We set the global marking state to some default values when we're
 570   // not doing marking.
 571   reset_marking_state();
 572   _num_active_tasks = 0;
 573   clear_concurrent_marking_in_progress();
 574 }
 575 
 576 G1ConcurrentMark::~G1ConcurrentMark() {
 577   // The G1ConcurrentMark instance is never freed.
 578   ShouldNotReachHere();
 579 }
 580 
 581 class G1ClearBitMapTask : public AbstractGangTask {
 582 public:
 583   static size_t chunk_size() { return M; }
 584 
 585 private:
 586   // Heap region closure used for clearing the given mark bitmap.
 587   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 588   private:
 589     G1CMBitMap* _bitmap;
 590     G1ConcurrentMark* _cm;
 591   public:
 592     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 593     }
 594 
 595     virtual bool do_heap_region(HeapRegion* r) {
 596       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 597 
 598       HeapWord* cur = r->bottom();
 599       HeapWord* const end = r->end();
 600 
 601       while (cur < end) {
 602         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 603         _bitmap->clear_range(mr);
 604 
 605         cur += chunk_size_in_words;
 606 
 607         // Abort iteration if after yielding the marking has been aborted.
 608         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 609           return true;
 610         }
 611         // Repeat the asserts from before the start of the closure. We will do them
 612         // as asserts here to minimize their overhead on the product. However, we
 613         // will have them as guarantees at the beginning / end of the bitmap
 614         // clearing to get some checking in the product.
 615         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 616         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 617       }
 618       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 619 
 620       return false;
 621     }
 622   };
 623 
 624   G1ClearBitmapHRClosure _cl;
 625   HeapRegionClaimer _hr_claimer;
 626   bool _suspendible; // If the task is suspendible, workers must join the STS.
 627 
 628 public:
 629   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 630     AbstractGangTask("G1 Clear Bitmap"),
 631     _cl(bitmap, suspendible ? cm : NULL),
 632     _hr_claimer(n_workers),
 633     _suspendible(suspendible)
 634   { }
 635 
 636   void work(uint worker_id) {
 637     SuspendibleThreadSetJoiner sts_join(_suspendible);
 638     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 639   }
 640 
 641   bool is_complete() {
 642     return _cl.is_complete();
 643   }
 644 };
 645 
 646 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 647   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 648 
 649   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 650   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 651 
 652   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 653 
 654   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 655 
 656   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 657   workers->run_task(&cl, num_workers);
 658   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 659 }
 660 
 661 void G1ConcurrentMark::cleanup_for_next_mark() {
 662   // Make sure that the concurrent mark thread looks to still be in
 663   // the current cycle.
 664   guarantee(cm_thread()->during_cycle(), "invariant");
 665 
 666   // We are finishing up the current cycle by clearing the next
 667   // marking bitmap and getting it ready for the next cycle. During
 668   // this time no other cycle can start. So, let's make sure that this
 669   // is the case.
 670   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 671 
 672   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 673 
 674   // Clear the live count data. If the marking has been aborted, the abort()
 675   // call already did that.
 676   if (!has_aborted()) {
 677     clear_live_data(_concurrent_workers);
 678     DEBUG_ONLY(verify_live_data_clear());
 679   }
 680 
 681   // Repeat the asserts from above.
 682   guarantee(cm_thread()->during_cycle(), "invariant");
 683   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 684 }
 685 
 686 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 687   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 688   clear_bitmap(_prev_mark_bitmap, workers, false);
 689 }
 690 
 691 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 692   G1CMBitMap* _bitmap;
 693   bool _error;
 694  public:
 695   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 696   }
 697 
 698   virtual bool do_heap_region(HeapRegion* r) {
 699     // This closure can be called concurrently to the mutator, so we must make sure
 700     // that the result of the getNextMarkedWordAddress() call is compared to the
 701     // value passed to it as limit to detect any found bits.
 702     // end never changes in G1.
 703     HeapWord* end = r->end();
 704     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 705   }
 706 };
 707 
 708 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 709   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 710   _g1h->heap_region_iterate(&cl);
 711   return cl.is_complete();
 712 }
 713 
 714 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 715 public:
 716   bool do_heap_region(HeapRegion* r) {
 717     r->note_start_of_marking();
 718     return false;
 719   }
 720 };
 721 
 722 void G1ConcurrentMark::checkpoint_roots_initial_pre() {
 723   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 724 
 725   _has_aborted = false;
 726 
 727   // Initialize marking structures. This has to be done in a STW phase.
 728   reset();
 729 
 730   // For each region note start of marking.
 731   NoteStartOfMarkHRClosure startcl;
 732   g1h->heap_region_iterate(&startcl);
 733 }
 734 
 735 
 736 void G1ConcurrentMark::checkpoint_roots_initial_post() {
 737   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 738 
 739   // Start Concurrent Marking weak-reference discovery.
 740   ReferenceProcessor* rp = g1h->ref_processor_cm();
 741   // enable ("weak") refs discovery
 742   rp->enable_discovery();
 743   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 744 
 745   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 746   // This is the start of  the marking cycle, we're expected all
 747   // threads to have SATB queues with active set to false.
 748   satb_mq_set.set_active_all_threads(true, /* new active value */
 749                                      false /* expected_active */);
 750 
 751   _root_regions.prepare_for_scan();
 752 
 753   // update_g1_committed() will be called at the end of an evac pause
 754   // when marking is on. So, it's also called at the end of the
 755   // initial-mark pause to update the heap end, if the heap expands
 756   // during it. No need to call it here.
 757 }
 758 
 759 /*
 760  * Notice that in the next two methods, we actually leave the STS
 761  * during the barrier sync and join it immediately afterwards. If we
 762  * do not do this, the following deadlock can occur: one thread could
 763  * be in the barrier sync code, waiting for the other thread to also
 764  * sync up, whereas another one could be trying to yield, while also
 765  * waiting for the other threads to sync up too.
 766  *
 767  * Note, however, that this code is also used during remark and in
 768  * this case we should not attempt to leave / enter the STS, otherwise
 769  * we'll either hit an assert (debug / fastdebug) or deadlock
 770  * (product). So we should only leave / enter the STS if we are
 771  * operating concurrently.
 772  *
 773  * Because the thread that does the sync barrier has left the STS, it
 774  * is possible to be suspended for a Full GC or an evacuation pause
 775  * could occur. This is actually safe, since the entering the sync
 776  * barrier is one of the last things do_marking_step() does, and it
 777  * doesn't manipulate any data structures afterwards.
 778  */
 779 
 780 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 781   bool barrier_aborted;
 782   {
 783     SuspendibleThreadSetLeaver sts_leave(concurrent());
 784     barrier_aborted = !_first_overflow_barrier_sync.enter();
 785   }
 786 
 787   // at this point everyone should have synced up and not be doing any
 788   // more work
 789 
 790   if (barrier_aborted) {
 791     // If the barrier aborted we ignore the overflow condition and
 792     // just abort the whole marking phase as quickly as possible.
 793     return;
 794   }
 795 
 796   // If we're executing the concurrent phase of marking, reset the marking
 797   // state; otherwise the marking state is reset after reference processing,
 798   // during the remark pause.
 799   // If we reset here as a result of an overflow during the remark we will
 800   // see assertion failures from any subsequent set_concurrency_and_phase()
 801   // calls.
 802   if (concurrent()) {
 803     // let the task associated with with worker 0 do this
 804     if (worker_id == 0) {
 805       // task 0 is responsible for clearing the global data structures
 806       // We should be here because of an overflow. During STW we should
 807       // not clear the overflow flag since we rely on it being true when
 808       // we exit this method to abort the pause and restart concurrent
 809       // marking.
 810       reset_marking_state();
 811 
 812       log_info(gc, marking)("Concurrent Mark reset for overflow");
 813     }
 814   }
 815 
 816   // after this, each task should reset its own data structures then
 817   // then go into the second barrier
 818 }
 819 
 820 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 821   SuspendibleThreadSetLeaver sts_leave(concurrent());
 822   _second_overflow_barrier_sync.enter();
 823 
 824   // at this point everything should be re-initialized and ready to go
 825 }
 826 
 827 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 828 private:
 829   G1ConcurrentMark*     _cm;
 830   ConcurrentMarkThread* _cmt;
 831 
 832 public:
 833   void work(uint worker_id) {
 834     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 835     ResourceMark rm;
 836 
 837     double start_vtime = os::elapsedVTime();
 838 
 839     {
 840       SuspendibleThreadSetJoiner sts_join;
 841 
 842       assert(worker_id < _cm->active_tasks(), "invariant");
 843 
 844       G1CMTask* task = _cm->task(worker_id);
 845       task->record_start_time();
 846       if (!_cm->has_aborted()) {
 847         do {
 848           task->do_marking_step(G1ConcMarkStepDurationMillis,
 849                                 true  /* do_termination */,
 850                                 false /* is_serial*/);
 851 
 852           _cm->do_yield_check();
 853         } while (!_cm->has_aborted() && task->has_aborted());
 854       }
 855       task->record_end_time();
 856       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 857     }
 858 
 859     double end_vtime = os::elapsedVTime();
 860     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 861   }
 862 
 863   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 864                             ConcurrentMarkThread* cmt) :
 865       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 866 
 867   ~G1CMConcurrentMarkingTask() { }
 868 };
 869 
 870 uint G1ConcurrentMark::calc_active_marking_workers() {
 871   uint result = 0;
 872   if (!UseDynamicNumberOfGCThreads ||
 873       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 874        !ForceDynamicNumberOfGCThreads)) {
 875     result = _max_concurrent_workers;
 876   } else {
 877     result =
 878       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 879                                                       1, /* Minimum workers */
 880                                                       _num_concurrent_workers,
 881                                                       Threads::number_of_non_daemon_threads());
 882     // Don't scale the result down by scale_concurrent_workers() because
 883     // that scaling has already gone into "_max_concurrent_workers".
 884   }
 885   assert(result > 0 && result <= _max_concurrent_workers,
 886          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 887          _max_concurrent_workers, result);
 888   return result;
 889 }
 890 
 891 void G1ConcurrentMark::scan_root_region(HeapRegion* hr) {
 892   // Currently, only survivors can be root regions.
 893   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 894   G1RootRegionScanClosure cl(_g1h, this);
 895 
 896   const uintx interval = PrefetchScanIntervalInBytes;
 897   HeapWord* curr = hr->bottom();
 898   const HeapWord* end = hr->top();
 899   while (curr < end) {
 900     Prefetch::read(curr, interval);
 901     oop obj = oop(curr);
 902     int size = obj->oop_iterate_size(&cl);
 903     assert(size == obj->size(), "sanity");
 904     curr += size;
 905   }
 906 }
 907 
 908 class G1CMRootRegionScanTask : public AbstractGangTask {
 909 private:
 910   G1ConcurrentMark* _cm;
 911 
 912 public:
 913   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 914     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 915 
 916   void work(uint worker_id) {
 917     assert(Thread::current()->is_ConcurrentGC_thread(),
 918            "this should only be done by a conc GC thread");
 919 
 920     G1CMRootRegions* root_regions = _cm->root_regions();
 921     HeapRegion* hr = root_regions->claim_next();
 922     while (hr != NULL) {
 923       _cm->scan_root_region(hr);
 924       hr = root_regions->claim_next();
 925     }
 926   }
 927 };
 928 
 929 void G1ConcurrentMark::scan_root_regions() {
 930   // scan_in_progress() will have been set to true only if there was
 931   // at least one root region to scan. So, if it's false, we
 932   // should not attempt to do any further work.
 933   if (root_regions()->scan_in_progress()) {
 934     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 935 
 936     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 937                                    // We distribute work on a per-region basis, so starting
 938                                    // more threads than that is useless.
 939                                    root_regions()->num_root_regions());
 940     assert(_num_concurrent_workers <= _max_concurrent_workers,
 941            "Maximum number of marking threads exceeded");
 942 
 943     G1CMRootRegionScanTask task(this);
 944     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 945                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 946     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 947 
 948     // It's possible that has_aborted() is true here without actually
 949     // aborting the survivor scan earlier. This is OK as it's
 950     // mainly used for sanity checking.
 951     root_regions()->scan_finished();
 952   }
 953 }
 954 
 955 void G1ConcurrentMark::concurrent_cycle_start() {
 956   _gc_timer_cm->register_gc_start();
 957 
 958   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 959 
 960   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 961 }
 962 
 963 void G1ConcurrentMark::concurrent_cycle_end() {
 964   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 965 
 966   if (has_aborted()) {
 967     _gc_tracer_cm->report_concurrent_mode_failure();
 968   }
 969 
 970   _gc_timer_cm->register_gc_end();
 971 
 972   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 973 }
 974 
 975 void G1ConcurrentMark::mark_from_roots() {
 976   // we might be tempted to assert that:
 977   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
 978   //        "inconsistent argument?");
 979   // However that wouldn't be right, because it's possible that
 980   // a safepoint is indeed in progress as a younger generation
 981   // stop-the-world GC happens even as we mark in this generation.
 982 
 983   _restart_for_overflow = false;
 984 
 985   _num_concurrent_workers = calc_active_marking_workers();
 986 
 987   uint active_workers = MAX2(1U, _num_concurrent_workers);
 988 
 989   // Setting active workers is not guaranteed since fewer
 990   // worker threads may currently exist and more may not be
 991   // available.
 992   active_workers = _concurrent_workers->update_active_workers(active_workers);
 993   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 994 
 995   // Parallel task terminator is set in "set_concurrency_and_phase()"
 996   set_concurrency_and_phase(active_workers, true /* concurrent */);
 997 
 998   G1CMConcurrentMarkingTask marking_task(this, cm_thread());
 999   _concurrent_workers->run_task(&marking_task);
1000   print_stats();
1001 }
1002 
1003 void G1ConcurrentMark::checkpoint_roots_final(bool clear_all_soft_refs) {
1004   // world is stopped at this checkpoint
1005   assert(SafepointSynchronize::is_at_safepoint(),
1006          "world should be stopped");
1007 
1008   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1009 
1010   // If a full collection has happened, we shouldn't do this.
1011   if (has_aborted()) {
1012     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1013     return;
1014   }
1015 
1016   if (VerifyDuringGC) {
1017     g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "During GC (before)");
1018   }
1019   g1h->verifier()->check_bitmaps("Remark Start");
1020 
1021   G1Policy* g1p = g1h->g1_policy();
1022   g1p->record_concurrent_mark_remark_start();
1023 
1024   double start = os::elapsedTime();
1025 
1026   checkpoint_roots_final_work();
1027 
1028   double mark_work_end = os::elapsedTime();
1029 
1030   weak_refs_work(clear_all_soft_refs);
1031 
1032   if (has_overflown()) {
1033     // We overflowed.  Restart concurrent marking.
1034     _restart_for_overflow = true;
1035 
1036     // Verify the heap w.r.t. the previous marking bitmap.
1037     if (VerifyDuringGC) {
1038       g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1039     }
1040 
1041     // Clear the marking state because we will be restarting
1042     // marking due to overflowing the global mark stack.
1043     reset_marking_state();
1044   } else {
1045     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1046     // We're done with marking.
1047     // This is the end of  the marking cycle, we're expected all
1048     // threads to have SATB queues with active set to true.
1049     satb_mq_set.set_active_all_threads(false, /* new active value */
1050                                        true /* expected_active */);
1051 
1052     if (VerifyDuringGC) {
1053       g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UseNextMarking, "During GC (after)");
1054     }
1055     g1h->verifier()->check_bitmaps("Remark End");
1056     assert(!restart_for_overflow(), "sanity");
1057     // Completely reset the marking state since marking completed
1058     set_non_marking_state();
1059   }
1060 
1061   // Statistics
1062   double now = os::elapsedTime();
1063   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1064   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1065   _remark_times.add((now - start) * 1000.0);
1066 
1067   g1p->record_concurrent_mark_remark_end();
1068 
1069   G1CMIsAliveClosure is_alive(g1h);
1070   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1071 }
1072 
1073 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1074   G1CollectedHeap* _g1;
1075   size_t _freed_bytes;
1076   FreeRegionList* _local_cleanup_list;
1077   uint _old_regions_removed;
1078   uint _humongous_regions_removed;
1079   HRRSCleanupTask* _hrrs_cleanup_task;
1080 
1081 public:
1082   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1083                              FreeRegionList* local_cleanup_list,
1084                              HRRSCleanupTask* hrrs_cleanup_task) :
1085     _g1(g1),
1086     _freed_bytes(0),
1087     _local_cleanup_list(local_cleanup_list),
1088     _old_regions_removed(0),
1089     _humongous_regions_removed(0),
1090     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1091 
1092   size_t freed_bytes() { return _freed_bytes; }
1093   const uint old_regions_removed() { return _old_regions_removed; }
1094   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1095 
1096   bool do_heap_region(HeapRegion *hr) {
1097     _g1->reset_gc_time_stamps(hr);
1098     hr->note_end_of_marking();
1099 
1100     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1101       _freed_bytes += hr->used();
1102       hr->set_containing_set(NULL);
1103       if (hr->is_humongous()) {
1104         _humongous_regions_removed++;
1105         _g1->free_humongous_region(hr, _local_cleanup_list, true /* skip_remset */);
1106       } else {
1107         _old_regions_removed++;
1108         _g1->free_region(hr, _local_cleanup_list, true /* skip_remset */);
1109       }
1110     } else {
1111       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1112     }
1113 
1114     return false;
1115   }
1116 };
1117 
1118 class G1ParNoteEndTask: public AbstractGangTask {
1119   friend class G1NoteEndOfConcMarkClosure;
1120 
1121 protected:
1122   G1CollectedHeap* _g1h;
1123   FreeRegionList* _cleanup_list;
1124   HeapRegionClaimer _hrclaimer;
1125 
1126 public:
1127   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1128       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1129   }
1130 
1131   void work(uint worker_id) {
1132     FreeRegionList local_cleanup_list("Local Cleanup List");
1133     HRRSCleanupTask hrrs_cleanup_task;
1134     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1135                                            &hrrs_cleanup_task);
1136     _g1h->heap_region_par_iterate_from_worker_offset(&g1_note_end, &_hrclaimer, worker_id);
1137     assert(g1_note_end.is_complete(), "Shouldn't have yielded!");
1138 
1139     // Now update the lists
1140     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1141     {
1142       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1143       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1144 
1145       // If we iterate over the global cleanup list at the end of
1146       // cleanup to do this printing we will not guarantee to only
1147       // generate output for the newly-reclaimed regions (the list
1148       // might not be empty at the beginning of cleanup; we might
1149       // still be working on its previous contents). So we do the
1150       // printing here, before we append the new regions to the global
1151       // cleanup list.
1152 
1153       G1HRPrinter* hr_printer = _g1h->hr_printer();
1154       if (hr_printer->is_active()) {
1155         FreeRegionListIterator iter(&local_cleanup_list);
1156         while (iter.more_available()) {
1157           HeapRegion* hr = iter.get_next();
1158           hr_printer->cleanup(hr);
1159         }
1160       }
1161 
1162       _cleanup_list->add_ordered(&local_cleanup_list);
1163       assert(local_cleanup_list.is_empty(), "post-condition");
1164 
1165       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1166     }
1167   }
1168 };
1169 
1170 void G1ConcurrentMark::cleanup() {
1171   // world is stopped at this checkpoint
1172   assert(SafepointSynchronize::is_at_safepoint(),
1173          "world should be stopped");
1174   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1175 
1176   // If a full collection has happened, we shouldn't do this.
1177   if (has_aborted()) {
1178     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1179     return;
1180   }
1181 
1182   g1h->verifier()->verify_region_sets_optional();
1183 
1184   if (VerifyDuringGC) {
1185     g1h->verifier()->verify(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "During GC (before)");
1186   }
1187   g1h->verifier()->check_bitmaps("Cleanup Start");
1188 
1189   G1Policy* g1p = g1h->g1_policy();
1190   g1p->record_concurrent_mark_cleanup_start();
1191 
1192   double start = os::elapsedTime();
1193 
1194   HeapRegionRemSet::reset_for_cleanup_tasks();
1195 
1196   {
1197     GCTraceTime(Debug, gc)("Finalize Live Data");
1198     finalize_live_data();
1199   }
1200 
1201   if (VerifyDuringGC) {
1202     GCTraceTime(Debug, gc)("Verify Live Data");
1203     verify_live_data();
1204   }
1205 
1206   g1h->collector_state()->set_mark_in_progress(false);
1207 
1208   double count_end = os::elapsedTime();
1209   double this_final_counting_time = (count_end - start);
1210   _total_counting_time += this_final_counting_time;
1211 
1212   if (log_is_enabled(Trace, gc, liveness)) {
1213     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1214     _g1h->heap_region_iterate(&cl);
1215   }
1216 
1217   // Install newly created mark bitMap as "prev".
1218   swap_mark_bitmaps();
1219 
1220   g1h->reset_gc_time_stamp();
1221 
1222   uint n_workers = _g1h->workers()->active_workers();
1223 
1224   // Note end of marking in all heap regions.
1225   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1226   g1h->workers()->run_task(&g1_par_note_end_task);
1227   g1h->check_gc_time_stamps();
1228 
1229   if (!cleanup_list_is_empty()) {
1230     // The cleanup list is not empty, so we'll have to process it
1231     // concurrently. Notify anyone else that might be wanting free
1232     // regions that there will be more free regions coming soon.
1233     g1h->set_free_regions_coming();
1234   }
1235 
1236   // call below, since it affects the metric by which we sort the heap
1237   // regions.
1238   if (G1ScrubRemSets) {
1239     double rs_scrub_start = os::elapsedTime();
1240     g1h->scrub_rem_set();
1241     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1242   }
1243 
1244   // this will also free any regions totally full of garbage objects,
1245   // and sort the regions.
1246   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1247 
1248   // Statistics.
1249   double end = os::elapsedTime();
1250   _cleanup_times.add((end - start) * 1000.0);
1251 
1252   // Clean up will have freed any regions completely full of garbage.
1253   // Update the soft reference policy with the new heap occupancy.
1254   Universe::update_heap_info_at_gc();
1255 
1256   if (VerifyDuringGC) {
1257     g1h->verifier()->verify(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "During GC (after)");
1258   }
1259 
1260   g1h->verifier()->check_bitmaps("Cleanup End");
1261 
1262   g1h->verifier()->verify_region_sets_optional();
1263 
1264   // We need to make this be a "collection" so any collection pause that
1265   // races with it goes around and waits for completeCleanup to finish.
1266   g1h->increment_total_collections();
1267 
1268   // Clean out dead classes and update Metaspace sizes.
1269   if (ClassUnloadingWithConcurrentMark) {
1270     ClassLoaderDataGraph::purge();
1271   }
1272   MetaspaceGC::compute_new_size();
1273 
1274   // We reclaimed old regions so we should calculate the sizes to make
1275   // sure we update the old gen/space data.
1276   g1h->g1mm()->update_sizes();
1277 }
1278 
1279 void G1ConcurrentMark::complete_cleanup() {
1280   if (has_aborted()) return;
1281 
1282   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1283 
1284   _cleanup_list.verify_optional();
1285   FreeRegionList tmp_free_list("Tmp Free List");
1286 
1287   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1288                                   "cleanup list has %u entries",
1289                                   _cleanup_list.length());
1290 
1291   // No one else should be accessing the _cleanup_list at this point,
1292   // so it is not necessary to take any locks
1293   while (!_cleanup_list.is_empty()) {
1294     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1295     assert(hr != NULL, "Got NULL from a non-empty list");
1296     hr->par_clear();
1297     tmp_free_list.add_ordered(hr);
1298 
1299     // Instead of adding one region at a time to the secondary_free_list,
1300     // we accumulate them in the local list and move them a few at a
1301     // time. This also cuts down on the number of notify_all() calls
1302     // we do during this process. We'll also append the local list when
1303     // _cleanup_list is empty (which means we just removed the last
1304     // region from the _cleanup_list).
1305     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1306         _cleanup_list.is_empty()) {
1307       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1308                                       "appending %u entries to the secondary_free_list, "
1309                                       "cleanup list still has %u entries",
1310                                       tmp_free_list.length(),
1311                                       _cleanup_list.length());
1312 
1313       {
1314         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1315         g1h->secondary_free_list_add(&tmp_free_list);
1316         SecondaryFreeList_lock->notify_all();
1317       }
1318 #ifndef PRODUCT
1319       if (G1StressConcRegionFreeing) {
1320         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1321           os::sleep(Thread::current(), (jlong) 1, false);
1322         }
1323       }
1324 #endif
1325     }
1326   }
1327   assert(tmp_free_list.is_empty(), "post-condition");
1328 }
1329 
1330 // Supporting Object and Oop closures for reference discovery
1331 // and processing in during marking
1332 
1333 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1334   HeapWord* addr = (HeapWord*)obj;
1335   return addr != NULL &&
1336          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1337 }
1338 
1339 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1340 // Uses the G1CMTask associated with a worker thread (for serial reference
1341 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1342 // trace referent objects.
1343 //
1344 // Using the G1CMTask and embedded local queues avoids having the worker
1345 // threads operating on the global mark stack. This reduces the risk
1346 // of overflowing the stack - which we would rather avoid at this late
1347 // state. Also using the tasks' local queues removes the potential
1348 // of the workers interfering with each other that could occur if
1349 // operating on the global stack.
1350 
1351 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1352   G1ConcurrentMark* _cm;
1353   G1CMTask*         _task;
1354   int               _ref_counter_limit;
1355   int               _ref_counter;
1356   bool              _is_serial;
1357  public:
1358   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1359     _cm(cm), _task(task), _is_serial(is_serial),
1360     _ref_counter_limit(G1RefProcDrainInterval) {
1361     assert(_ref_counter_limit > 0, "sanity");
1362     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1363     _ref_counter = _ref_counter_limit;
1364   }
1365 
1366   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1367   virtual void do_oop(      oop* p) { do_oop_work(p); }
1368 
1369   template <class T> void do_oop_work(T* p) {
1370     if (!_cm->has_overflown()) {
1371       oop obj = oopDesc::load_decode_heap_oop(p);
1372       _task->deal_with_reference(obj);
1373       _ref_counter--;
1374 
1375       if (_ref_counter == 0) {
1376         // We have dealt with _ref_counter_limit references, pushing them
1377         // and objects reachable from them on to the local stack (and
1378         // possibly the global stack). Call G1CMTask::do_marking_step() to
1379         // process these entries.
1380         //
1381         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1382         // there's nothing more to do (i.e. we're done with the entries that
1383         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1384         // above) or we overflow.
1385         //
1386         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1387         // flag while there may still be some work to do. (See the comment at
1388         // the beginning of G1CMTask::do_marking_step() for those conditions -
1389         // one of which is reaching the specified time target.) It is only
1390         // when G1CMTask::do_marking_step() returns without setting the
1391         // has_aborted() flag that the marking step has completed.
1392         do {
1393           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1394           _task->do_marking_step(mark_step_duration_ms,
1395                                  false      /* do_termination */,
1396                                  _is_serial);
1397         } while (_task->has_aborted() && !_cm->has_overflown());
1398         _ref_counter = _ref_counter_limit;
1399       }
1400     }
1401   }
1402 };
1403 
1404 // 'Drain' oop closure used by both serial and parallel reference processing.
1405 // Uses the G1CMTask associated with a given worker thread (for serial
1406 // reference processing the G1CMtask for worker 0 is used). Calls the
1407 // do_marking_step routine, with an unbelievably large timeout value,
1408 // to drain the marking data structures of the remaining entries
1409 // added by the 'keep alive' oop closure above.
1410 
1411 class G1CMDrainMarkingStackClosure: public VoidClosure {
1412   G1ConcurrentMark* _cm;
1413   G1CMTask*         _task;
1414   bool              _is_serial;
1415  public:
1416   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1417     _cm(cm), _task(task), _is_serial(is_serial) {
1418     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1419   }
1420 
1421   void do_void() {
1422     do {
1423       // We call G1CMTask::do_marking_step() to completely drain the local
1424       // and global marking stacks of entries pushed by the 'keep alive'
1425       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1426       //
1427       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1428       // if there's nothing more to do (i.e. we've completely drained the
1429       // entries that were pushed as a a result of applying the 'keep alive'
1430       // closure to the entries on the discovered ref lists) or we overflow
1431       // the global marking stack.
1432       //
1433       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1434       // flag while there may still be some work to do. (See the comment at
1435       // the beginning of G1CMTask::do_marking_step() for those conditions -
1436       // one of which is reaching the specified time target.) It is only
1437       // when G1CMTask::do_marking_step() returns without setting the
1438       // has_aborted() flag that the marking step has completed.
1439 
1440       _task->do_marking_step(1000000000.0 /* something very large */,
1441                              true         /* do_termination */,
1442                              _is_serial);
1443     } while (_task->has_aborted() && !_cm->has_overflown());
1444   }
1445 };
1446 
1447 // Implementation of AbstractRefProcTaskExecutor for parallel
1448 // reference processing at the end of G1 concurrent marking
1449 
1450 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1451 private:
1452   G1CollectedHeap*  _g1h;
1453   G1ConcurrentMark* _cm;
1454   WorkGang*         _workers;
1455   uint              _active_workers;
1456 
1457 public:
1458   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1459                           G1ConcurrentMark* cm,
1460                           WorkGang* workers,
1461                           uint n_workers) :
1462     _g1h(g1h), _cm(cm),
1463     _workers(workers), _active_workers(n_workers) { }
1464 
1465   // Executes the given task using concurrent marking worker threads.
1466   virtual void execute(ProcessTask& task);
1467   virtual void execute(EnqueueTask& task);
1468 };
1469 
1470 class G1CMRefProcTaskProxy: public AbstractGangTask {
1471   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1472   ProcessTask&      _proc_task;
1473   G1CollectedHeap*  _g1h;
1474   G1ConcurrentMark* _cm;
1475 
1476 public:
1477   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1478                        G1CollectedHeap* g1h,
1479                        G1ConcurrentMark* cm) :
1480     AbstractGangTask("Process reference objects in parallel"),
1481     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1482     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1483     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1484   }
1485 
1486   virtual void work(uint worker_id) {
1487     ResourceMark rm;
1488     HandleMark hm;
1489     G1CMTask* task = _cm->task(worker_id);
1490     G1CMIsAliveClosure g1_is_alive(_g1h);
1491     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1492     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1493 
1494     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1495   }
1496 };
1497 
1498 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1499   assert(_workers != NULL, "Need parallel worker threads.");
1500   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1501 
1502   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1503 
1504   // We need to reset the concurrency level before each
1505   // proxy task execution, so that the termination protocol
1506   // and overflow handling in G1CMTask::do_marking_step() knows
1507   // how many workers to wait for.
1508   _cm->set_concurrency(_active_workers);
1509   _workers->run_task(&proc_task_proxy);
1510 }
1511 
1512 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1513   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1514   EnqueueTask& _enq_task;
1515 
1516 public:
1517   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1518     AbstractGangTask("Enqueue reference objects in parallel"),
1519     _enq_task(enq_task) { }
1520 
1521   virtual void work(uint worker_id) {
1522     _enq_task.work(worker_id);
1523   }
1524 };
1525 
1526 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1527   assert(_workers != NULL, "Need parallel worker threads.");
1528   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1529 
1530   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1531 
1532   // Not strictly necessary but...
1533   //
1534   // We need to reset the concurrency level before each
1535   // proxy task execution, so that the termination protocol
1536   // and overflow handling in G1CMTask::do_marking_step() knows
1537   // how many workers to wait for.
1538   _cm->set_concurrency(_active_workers);
1539   _workers->run_task(&enq_task_proxy);
1540 }
1541 
1542 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1543   if (has_overflown()) {
1544     // Skip processing the discovered references if we have
1545     // overflown the global marking stack. Reference objects
1546     // only get discovered once so it is OK to not
1547     // de-populate the discovered reference lists. We could have,
1548     // but the only benefit would be that, when marking restarts,
1549     // less reference objects are discovered.
1550     return;
1551   }
1552 
1553   ResourceMark rm;
1554   HandleMark   hm;
1555 
1556   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1557 
1558   // Is alive closure.
1559   G1CMIsAliveClosure g1_is_alive(g1h);
1560 
1561   // Inner scope to exclude the cleaning of the string and symbol
1562   // tables from the displayed time.
1563   {
1564     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1565 
1566     ReferenceProcessor* rp = g1h->ref_processor_cm();
1567 
1568     // See the comment in G1CollectedHeap::ref_processing_init()
1569     // about how reference processing currently works in G1.
1570 
1571     // Set the soft reference policy
1572     rp->setup_policy(clear_all_soft_refs);
1573     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1574 
1575     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1576     // in serial reference processing. Note these closures are also
1577     // used for serially processing (by the the current thread) the
1578     // JNI references during parallel reference processing.
1579     //
1580     // These closures do not need to synchronize with the worker
1581     // threads involved in parallel reference processing as these
1582     // instances are executed serially by the current thread (e.g.
1583     // reference processing is not multi-threaded and is thus
1584     // performed by the current thread instead of a gang worker).
1585     //
1586     // The gang tasks involved in parallel reference processing create
1587     // their own instances of these closures, which do their own
1588     // synchronization among themselves.
1589     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1590     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1591 
1592     // We need at least one active thread. If reference processing
1593     // is not multi-threaded we use the current (VMThread) thread,
1594     // otherwise we use the work gang from the G1CollectedHeap and
1595     // we utilize all the worker threads we can.
1596     bool processing_is_mt = rp->processing_is_mt();
1597     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1598     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1599 
1600     // Parallel processing task executor.
1601     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1602                                               g1h->workers(), active_workers);
1603     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1604 
1605     // Set the concurrency level. The phase was already set prior to
1606     // executing the remark task.
1607     set_concurrency(active_workers);
1608 
1609     // Set the degree of MT processing here.  If the discovery was done MT,
1610     // the number of threads involved during discovery could differ from
1611     // the number of active workers.  This is OK as long as the discovered
1612     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1613     rp->set_active_mt_degree(active_workers);
1614 
1615     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1616 
1617     // Process the weak references.
1618     const ReferenceProcessorStats& stats =
1619         rp->process_discovered_references(&g1_is_alive,
1620                                           &g1_keep_alive,
1621                                           &g1_drain_mark_stack,
1622                                           executor,
1623                                           &pt);
1624     _gc_tracer_cm->report_gc_reference_stats(stats);
1625     pt.print_all_references();
1626 
1627     // The do_oop work routines of the keep_alive and drain_marking_stack
1628     // oop closures will set the has_overflown flag if we overflow the
1629     // global marking stack.
1630 
1631     assert(has_overflown() || _global_mark_stack.is_empty(),
1632             "Mark stack should be empty (unless it has overflown)");
1633 
1634     assert(rp->num_q() == active_workers, "why not");
1635 
1636     rp->enqueue_discovered_references(executor, &pt);
1637 
1638     rp->verify_no_references_recorded();
1639 
1640     pt.print_enqueue_phase();
1641 
1642     assert(!rp->discovery_enabled(), "Post condition");
1643   }
1644 
1645   assert(has_overflown() || _global_mark_stack.is_empty(),
1646           "Mark stack should be empty (unless it has overflown)");
1647 
1648   {
1649     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1650     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1651   }
1652 
1653   if (has_overflown()) {
1654     // We can not trust g1_is_alive if the marking stack overflowed
1655     return;
1656   }
1657 
1658   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1659 
1660   // Unload Klasses, String, Symbols, Code Cache, etc.
1661   if (ClassUnloadingWithConcurrentMark) {
1662     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1663     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1664     g1h->complete_cleaning(&g1_is_alive, purged_classes);
1665   } else {
1666     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1667     // No need to clean string table and symbol table as they are treated as strong roots when
1668     // class unloading is disabled.
1669     g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1670 
1671   }
1672 }
1673 
1674 void G1ConcurrentMark::swap_mark_bitmaps() {
1675   G1CMBitMap* temp = _prev_mark_bitmap;
1676   _prev_mark_bitmap = _next_mark_bitmap;
1677   _next_mark_bitmap = temp;
1678 }
1679 
1680 // Closure for marking entries in SATB buffers.
1681 class G1CMSATBBufferClosure : public SATBBufferClosure {
1682 private:
1683   G1CMTask* _task;
1684   G1CollectedHeap* _g1h;
1685 
1686   // This is very similar to G1CMTask::deal_with_reference, but with
1687   // more relaxed requirements for the argument, so this must be more
1688   // circumspect about treating the argument as an object.
1689   void do_entry(void* entry) const {
1690     _task->increment_refs_reached();
1691     oop const obj = static_cast<oop>(entry);
1692     _task->make_reference_grey(obj);
1693   }
1694 
1695 public:
1696   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1697     : _task(task), _g1h(g1h) { }
1698 
1699   virtual void do_buffer(void** buffer, size_t size) {
1700     for (size_t i = 0; i < size; ++i) {
1701       do_entry(buffer[i]);
1702     }
1703   }
1704 };
1705 
1706 class G1RemarkThreadsClosure : public ThreadClosure {
1707   G1CMSATBBufferClosure _cm_satb_cl;
1708   G1CMOopClosure _cm_cl;
1709   MarkingCodeBlobClosure _code_cl;
1710   int _thread_parity;
1711 
1712  public:
1713   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1714     _cm_satb_cl(task, g1h),
1715     _cm_cl(g1h, g1h->concurrent_mark(), task),
1716     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1717     _thread_parity(Threads::thread_claim_parity()) {}
1718 
1719   void do_thread(Thread* thread) {
1720     if (thread->is_Java_thread()) {
1721       if (thread->claim_oops_do(true, _thread_parity)) {
1722         JavaThread* jt = (JavaThread*)thread;
1723 
1724         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1725         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1726         // * Alive if on the stack of an executing method
1727         // * Weakly reachable otherwise
1728         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1729         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1730         jt->nmethods_do(&_code_cl);
1731 
1732         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1733       }
1734     } else if (thread->is_VM_thread()) {
1735       if (thread->claim_oops_do(true, _thread_parity)) {
1736         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1737       }
1738     }
1739   }
1740 };
1741 
1742 class G1CMRemarkTask: public AbstractGangTask {
1743 private:
1744   G1ConcurrentMark* _cm;
1745 public:
1746   void work(uint worker_id) {
1747     G1CMTask* task = _cm->task(worker_id);
1748     task->record_start_time();
1749     {
1750       ResourceMark rm;
1751       HandleMark hm;
1752 
1753       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1754       Threads::threads_do(&threads_f);
1755     }
1756 
1757     do {
1758       task->do_marking_step(1000000000.0 /* something very large */,
1759                             true         /* do_termination       */,
1760                             false        /* is_serial            */);
1761     } while (task->has_aborted() && !_cm->has_overflown());
1762     // If we overflow, then we do not want to restart. We instead
1763     // want to abort remark and do concurrent marking again.
1764     task->record_end_time();
1765   }
1766 
1767   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1768     AbstractGangTask("Par Remark"), _cm(cm) {
1769     _cm->terminator()->reset_for_reuse(active_workers);
1770   }
1771 };
1772 
1773 void G1ConcurrentMark::checkpoint_roots_final_work() {
1774   ResourceMark rm;
1775   HandleMark   hm;
1776   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1777 
1778   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1779 
1780   g1h->ensure_parsability(false);
1781 
1782   // this is remark, so we'll use up all active threads
1783   uint active_workers = g1h->workers()->active_workers();
1784   set_concurrency_and_phase(active_workers, false /* concurrent */);
1785   // Leave _parallel_marking_threads at it's
1786   // value originally calculated in the G1ConcurrentMark
1787   // constructor and pass values of the active workers
1788   // through the gang in the task.
1789 
1790   {
1791     StrongRootsScope srs(active_workers);
1792 
1793     G1CMRemarkTask remarkTask(this, active_workers);
1794     // We will start all available threads, even if we decide that the
1795     // active_workers will be fewer. The extra ones will just bail out
1796     // immediately.
1797     g1h->workers()->run_task(&remarkTask);
1798   }
1799 
1800   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1801   guarantee(has_overflown() ||
1802             satb_mq_set.completed_buffers_num() == 0,
1803             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1804             BOOL_TO_STR(has_overflown()),
1805             satb_mq_set.completed_buffers_num());
1806 
1807   print_stats();
1808 }
1809 
1810 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1811   _prev_mark_bitmap->clear_range(mr);
1812 }
1813 
1814 HeapRegion*
1815 G1ConcurrentMark::claim_region(uint worker_id) {
1816   // "checkpoint" the finger
1817   HeapWord* finger = _finger;
1818 
1819   // _heap_end will not change underneath our feet; it only changes at
1820   // yield points.
1821   while (finger < _heap_end) {
1822     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1823 
1824     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1825     // Make sure that the reads below do not float before loading curr_region.
1826     OrderAccess::loadload();
1827     // Above heap_region_containing may return NULL as we always scan claim
1828     // until the end of the heap. In this case, just jump to the next region.
1829     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1830 
1831     // Is the gap between reading the finger and doing the CAS too long?
1832     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1833     if (res == finger && curr_region != NULL) {
1834       // we succeeded
1835       HeapWord*   bottom        = curr_region->bottom();
1836       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1837 
1838       // notice that _finger == end cannot be guaranteed here since,
1839       // someone else might have moved the finger even further
1840       assert(_finger >= end, "the finger should have moved forward");
1841 
1842       if (limit > bottom) {
1843         return curr_region;
1844       } else {
1845         assert(limit == bottom,
1846                "the region limit should be at bottom");
1847         // we return NULL and the caller should try calling
1848         // claim_region() again.
1849         return NULL;
1850       }
1851     } else {
1852       assert(_finger > finger, "the finger should have moved forward");
1853       // read it again
1854       finger = _finger;
1855     }
1856   }
1857 
1858   return NULL;
1859 }
1860 
1861 #ifndef PRODUCT
1862 class VerifyNoCSetOops {
1863 private:
1864   G1CollectedHeap* _g1h;
1865   const char* _phase;
1866   int _info;
1867 
1868 public:
1869   VerifyNoCSetOops(const char* phase, int info = -1) :
1870     _g1h(G1CollectedHeap::heap()),
1871     _phase(phase),
1872     _info(info)
1873   { }
1874 
1875   void operator()(G1TaskQueueEntry task_entry) const {
1876     if (task_entry.is_array_slice()) {
1877       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1878       return;
1879     }
1880     guarantee(oopDesc::is_oop(task_entry.obj()),
1881               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1882               p2i(task_entry.obj()), _phase, _info);
1883     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1884               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1885               p2i(task_entry.obj()), _phase, _info);
1886   }
1887 };
1888 
1889 void G1ConcurrentMark::verify_no_cset_oops() {
1890   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1891   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
1892     return;
1893   }
1894 
1895   // Verify entries on the global mark stack
1896   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1897 
1898   // Verify entries on the task queues
1899   for (uint i = 0; i < _max_num_tasks; ++i) {
1900     G1CMTaskQueue* queue = _task_queues->queue(i);
1901     queue->iterate(VerifyNoCSetOops("Queue", i));
1902   }
1903 
1904   // Verify the global finger
1905   HeapWord* global_finger = finger();
1906   if (global_finger != NULL && global_finger < _heap_end) {
1907     // Since we always iterate over all regions, we might get a NULL HeapRegion
1908     // here.
1909     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1910     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1911               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1912               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1913   }
1914 
1915   // Verify the task fingers
1916   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1917   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1918     G1CMTask* task = _tasks[i];
1919     HeapWord* task_finger = task->finger();
1920     if (task_finger != NULL && task_finger < _heap_end) {
1921       // See above note on the global finger verification.
1922       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1923       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1924                 !task_hr->in_collection_set(),
1925                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1926                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1927     }
1928   }
1929 }
1930 #endif // PRODUCT
1931 void G1ConcurrentMark::create_live_data() {
1932   _g1h->g1_rem_set()->create_card_live_data(_concurrent_workers, _next_mark_bitmap);
1933 }
1934 
1935 void G1ConcurrentMark::finalize_live_data() {
1936   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _next_mark_bitmap);
1937 }
1938 
1939 void G1ConcurrentMark::verify_live_data() {
1940   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _next_mark_bitmap);
1941 }
1942 
1943 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
1944   _g1h->g1_rem_set()->clear_card_live_data(workers);
1945 }
1946 
1947 #ifdef ASSERT
1948 void G1ConcurrentMark::verify_live_data_clear() {
1949   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
1950 }
1951 #endif
1952 
1953 void G1ConcurrentMark::print_stats() {
1954   if (!log_is_enabled(Debug, gc, stats)) {
1955     return;
1956   }
1957   log_debug(gc, stats)("---------------------------------------------------------------------");
1958   for (size_t i = 0; i < _num_active_tasks; ++i) {
1959     _tasks[i]->print_stats();
1960     log_debug(gc, stats)("---------------------------------------------------------------------");
1961   }
1962 }
1963 
1964 void G1ConcurrentMark::abort() {
1965   if (!cm_thread()->during_cycle() || _has_aborted) {
1966     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1967     return;
1968   }
1969 
1970   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1971   // concurrent bitmap clearing.
1972   {
1973     GCTraceTime(Debug, gc)("Clear Next Bitmap");
1974     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1975   }
1976   // Note we cannot clear the previous marking bitmap here
1977   // since VerifyDuringGC verifies the objects marked during
1978   // a full GC against the previous bitmap.
1979 
1980   {
1981     GCTraceTime(Debug, gc)("Clear Live Data");
1982     clear_live_data(_g1h->workers());
1983   }
1984   DEBUG_ONLY({
1985     GCTraceTime(Debug, gc)("Verify Live Data Clear");
1986     verify_live_data_clear();
1987   })
1988   // Empty mark stack
1989   reset_marking_state();
1990   for (uint i = 0; i < _max_num_tasks; ++i) {
1991     _tasks[i]->clear_region_fields();
1992   }
1993   _first_overflow_barrier_sync.abort();
1994   _second_overflow_barrier_sync.abort();
1995   _has_aborted = true;
1996 
1997   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1998   satb_mq_set.abandon_partial_marking();
1999   // This can be called either during or outside marking, we'll read
2000   // the expected_active value from the SATB queue set.
2001   satb_mq_set.set_active_all_threads(
2002                                  false, /* new active value */
2003                                  satb_mq_set.is_active() /* expected_active */);
2004 }
2005 
2006 static void print_ms_time_info(const char* prefix, const char* name,
2007                                NumberSeq& ns) {
2008   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2009                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2010   if (ns.num() > 0) {
2011     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2012                            prefix, ns.sd(), ns.maximum());
2013   }
2014 }
2015 
2016 void G1ConcurrentMark::print_summary_info() {
2017   Log(gc, marking) log;
2018   if (!log.is_trace()) {
2019     return;
2020   }
2021 
2022   log.trace(" Concurrent marking:");
2023   print_ms_time_info("  ", "init marks", _init_times);
2024   print_ms_time_info("  ", "remarks", _remark_times);
2025   {
2026     print_ms_time_info("     ", "final marks", _remark_mark_times);
2027     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2028 
2029   }
2030   print_ms_time_info("  ", "cleanups", _cleanup_times);
2031   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2032             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2033   if (G1ScrubRemSets) {
2034     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2035               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2036   }
2037   log.trace("  Total stop_world time = %8.2f s.",
2038             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2039   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2040             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2041 }
2042 
2043 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2044   _concurrent_workers->print_worker_threads_on(st);
2045 }
2046 
2047 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2048   _concurrent_workers->threads_do(tc);
2049 }
2050 
2051 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2052   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2053                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2054   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2055   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2056 }
2057 
2058 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2059   ReferenceProcessor* result = g1h->ref_processor_cm();
2060   assert(result != NULL, "CM reference processor should not be NULL");
2061   return result;
2062 }
2063 
2064 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2065                                G1ConcurrentMark* cm,
2066                                G1CMTask* task)
2067   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2068     _g1h(g1h), _cm(cm), _task(task)
2069 { }
2070 
2071 void G1CMTask::setup_for_region(HeapRegion* hr) {
2072   assert(hr != NULL,
2073         "claim_region() should have filtered out NULL regions");
2074   _curr_region  = hr;
2075   _finger       = hr->bottom();
2076   update_region_limit();
2077 }
2078 
2079 void G1CMTask::update_region_limit() {
2080   HeapRegion* hr            = _curr_region;
2081   HeapWord* bottom          = hr->bottom();
2082   HeapWord* limit           = hr->next_top_at_mark_start();
2083 
2084   if (limit == bottom) {
2085     // The region was collected underneath our feet.
2086     // We set the finger to bottom to ensure that the bitmap
2087     // iteration that will follow this will not do anything.
2088     // (this is not a condition that holds when we set the region up,
2089     // as the region is not supposed to be empty in the first place)
2090     _finger = bottom;
2091   } else if (limit >= _region_limit) {
2092     assert(limit >= _finger, "peace of mind");
2093   } else {
2094     assert(limit < _region_limit, "only way to get here");
2095     // This can happen under some pretty unusual circumstances.  An
2096     // evacuation pause empties the region underneath our feet (NTAMS
2097     // at bottom). We then do some allocation in the region (NTAMS
2098     // stays at bottom), followed by the region being used as a GC
2099     // alloc region (NTAMS will move to top() and the objects
2100     // originally below it will be grayed). All objects now marked in
2101     // the region are explicitly grayed, if below the global finger,
2102     // and we do not need in fact to scan anything else. So, we simply
2103     // set _finger to be limit to ensure that the bitmap iteration
2104     // doesn't do anything.
2105     _finger = limit;
2106   }
2107 
2108   _region_limit = limit;
2109 }
2110 
2111 void G1CMTask::giveup_current_region() {
2112   assert(_curr_region != NULL, "invariant");
2113   clear_region_fields();
2114 }
2115 
2116 void G1CMTask::clear_region_fields() {
2117   // Values for these three fields that indicate that we're not
2118   // holding on to a region.
2119   _curr_region   = NULL;
2120   _finger        = NULL;
2121   _region_limit  = NULL;
2122 }
2123 
2124 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2125   if (cm_oop_closure == NULL) {
2126     assert(_cm_oop_closure != NULL, "invariant");
2127   } else {
2128     assert(_cm_oop_closure == NULL, "invariant");
2129   }
2130   _cm_oop_closure = cm_oop_closure;
2131 }
2132 
2133 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2134   guarantee(next_mark_bitmap != NULL, "invariant");
2135   _next_mark_bitmap              = next_mark_bitmap;
2136   clear_region_fields();
2137 
2138   _calls                         = 0;
2139   _elapsed_time_ms               = 0.0;
2140   _termination_time_ms           = 0.0;
2141   _termination_start_time_ms     = 0.0;
2142 }
2143 
2144 bool G1CMTask::should_exit_termination() {
2145   regular_clock_call();
2146   // This is called when we are in the termination protocol. We should
2147   // quit if, for some reason, this task wants to abort or the global
2148   // stack is not empty (this means that we can get work from it).
2149   return !_cm->mark_stack_empty() || has_aborted();
2150 }
2151 
2152 void G1CMTask::reached_limit() {
2153   assert(_words_scanned >= _words_scanned_limit ||
2154          _refs_reached >= _refs_reached_limit ,
2155          "shouldn't have been called otherwise");
2156   regular_clock_call();
2157 }
2158 
2159 void G1CMTask::regular_clock_call() {
2160   if (has_aborted()) return;
2161 
2162   // First, we need to recalculate the words scanned and refs reached
2163   // limits for the next clock call.
2164   recalculate_limits();
2165 
2166   // During the regular clock call we do the following
2167 
2168   // (1) If an overflow has been flagged, then we abort.
2169   if (_cm->has_overflown()) {
2170     set_has_aborted();
2171     return;
2172   }
2173 
2174   // If we are not concurrent (i.e. we're doing remark) we don't need
2175   // to check anything else. The other steps are only needed during
2176   // the concurrent marking phase.
2177   if (!_concurrent) {
2178     return;
2179   }
2180 
2181   // (2) If marking has been aborted for Full GC, then we also abort.
2182   if (_cm->has_aborted()) {
2183     set_has_aborted();
2184     return;
2185   }
2186 
2187   double curr_time_ms = os::elapsedVTime() * 1000.0;
2188 
2189   // (4) We check whether we should yield. If we have to, then we abort.
2190   if (SuspendibleThreadSet::should_yield()) {
2191     // We should yield. To do this we abort the task. The caller is
2192     // responsible for yielding.
2193     set_has_aborted();
2194     return;
2195   }
2196 
2197   // (5) We check whether we've reached our time quota. If we have,
2198   // then we abort.
2199   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2200   if (elapsed_time_ms > _time_target_ms) {
2201     set_has_aborted();
2202     _has_timed_out = true;
2203     return;
2204   }
2205 
2206   // (6) Finally, we check whether there are enough completed STAB
2207   // buffers available for processing. If there are, we abort.
2208   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2209   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2210     // we do need to process SATB buffers, we'll abort and restart
2211     // the marking task to do so
2212     set_has_aborted();
2213     return;
2214   }
2215 }
2216 
2217 void G1CMTask::recalculate_limits() {
2218   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2219   _words_scanned_limit      = _real_words_scanned_limit;
2220 
2221   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2222   _refs_reached_limit       = _real_refs_reached_limit;
2223 }
2224 
2225 void G1CMTask::decrease_limits() {
2226   // This is called when we believe that we're going to do an infrequent
2227   // operation which will increase the per byte scanned cost (i.e. move
2228   // entries to/from the global stack). It basically tries to decrease the
2229   // scanning limit so that the clock is called earlier.
2230 
2231   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2232   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2233 }
2234 
2235 void G1CMTask::move_entries_to_global_stack() {
2236   // Local array where we'll store the entries that will be popped
2237   // from the local queue.
2238   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2239 
2240   size_t n = 0;
2241   G1TaskQueueEntry task_entry;
2242   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2243     buffer[n] = task_entry;
2244     ++n;
2245   }
2246   if (n < G1CMMarkStack::EntriesPerChunk) {
2247     buffer[n] = G1TaskQueueEntry();
2248   }
2249 
2250   if (n > 0) {
2251     if (!_cm->mark_stack_push(buffer)) {
2252       set_has_aborted();
2253     }
2254   }
2255 
2256   // This operation was quite expensive, so decrease the limits.
2257   decrease_limits();
2258 }
2259 
2260 bool G1CMTask::get_entries_from_global_stack() {
2261   // Local array where we'll store the entries that will be popped
2262   // from the global stack.
2263   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2264 
2265   if (!_cm->mark_stack_pop(buffer)) {
2266     return false;
2267   }
2268 
2269   // We did actually pop at least one entry.
2270   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2271     G1TaskQueueEntry task_entry = buffer[i];
2272     if (task_entry.is_null()) {
2273       break;
2274     }
2275     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2276     bool success = _task_queue->push(task_entry);
2277     // We only call this when the local queue is empty or under a
2278     // given target limit. So, we do not expect this push to fail.
2279     assert(success, "invariant");
2280   }
2281 
2282   // This operation was quite expensive, so decrease the limits
2283   decrease_limits();
2284   return true;
2285 }
2286 
2287 void G1CMTask::drain_local_queue(bool partially) {
2288   if (has_aborted()) {
2289     return;
2290   }
2291 
2292   // Decide what the target size is, depending whether we're going to
2293   // drain it partially (so that other tasks can steal if they run out
2294   // of things to do) or totally (at the very end).
2295   size_t target_size;
2296   if (partially) {
2297     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2298   } else {
2299     target_size = 0;
2300   }
2301 
2302   if (_task_queue->size() > target_size) {
2303     G1TaskQueueEntry entry;
2304     bool ret = _task_queue->pop_local(entry);
2305     while (ret) {
2306       scan_task_entry(entry);
2307       if (_task_queue->size() <= target_size || has_aborted()) {
2308         ret = false;
2309       } else {
2310         ret = _task_queue->pop_local(entry);
2311       }
2312     }
2313   }
2314 }
2315 
2316 void G1CMTask::drain_global_stack(bool partially) {
2317   if (has_aborted()) return;
2318 
2319   // We have a policy to drain the local queue before we attempt to
2320   // drain the global stack.
2321   assert(partially || _task_queue->size() == 0, "invariant");
2322 
2323   // Decide what the target size is, depending whether we're going to
2324   // drain it partially (so that other tasks can steal if they run out
2325   // of things to do) or totally (at the very end).
2326   // Notice that when draining the global mark stack partially, due to the racyness
2327   // of the mark stack size update we might in fact drop below the target. But,
2328   // this is not a problem.
2329   // In case of total draining, we simply process until the global mark stack is
2330   // totally empty, disregarding the size counter.
2331   if (partially) {
2332     size_t const target_size = _cm->partial_mark_stack_size_target();
2333     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2334       if (get_entries_from_global_stack()) {
2335         drain_local_queue(partially);
2336       }
2337     }
2338   } else {
2339     while (!has_aborted() && get_entries_from_global_stack()) {
2340       drain_local_queue(partially);
2341     }
2342   }
2343 }
2344 
2345 // SATB Queue has several assumptions on whether to call the par or
2346 // non-par versions of the methods. this is why some of the code is
2347 // replicated. We should really get rid of the single-threaded version
2348 // of the code to simplify things.
2349 void G1CMTask::drain_satb_buffers() {
2350   if (has_aborted()) return;
2351 
2352   // We set this so that the regular clock knows that we're in the
2353   // middle of draining buffers and doesn't set the abort flag when it
2354   // notices that SATB buffers are available for draining. It'd be
2355   // very counter productive if it did that. :-)
2356   _draining_satb_buffers = true;
2357 
2358   G1CMSATBBufferClosure satb_cl(this, _g1h);
2359   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2360 
2361   // This keeps claiming and applying the closure to completed buffers
2362   // until we run out of buffers or we need to abort.
2363   while (!has_aborted() &&
2364          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2365     regular_clock_call();
2366   }
2367 
2368   _draining_satb_buffers = false;
2369 
2370   assert(has_aborted() ||
2371          _concurrent ||
2372          satb_mq_set.completed_buffers_num() == 0, "invariant");
2373 
2374   // again, this was a potentially expensive operation, decrease the
2375   // limits to get the regular clock call early
2376   decrease_limits();
2377 }
2378 
2379 void G1CMTask::print_stats() {
2380   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u",
2381                        _worker_id, _calls);
2382   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2383                        _elapsed_time_ms, _termination_time_ms);
2384   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2385                        _step_times_ms.num(), _step_times_ms.avg(),
2386                        _step_times_ms.sd());
2387   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2388                        _step_times_ms.maximum(), _step_times_ms.sum());
2389 }
2390 
2391 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2392   return _task_queues->steal(worker_id, hash_seed, task_entry);
2393 }
2394 
2395 /*****************************************************************************
2396 
2397     The do_marking_step(time_target_ms, ...) method is the building
2398     block of the parallel marking framework. It can be called in parallel
2399     with other invocations of do_marking_step() on different tasks
2400     (but only one per task, obviously) and concurrently with the
2401     mutator threads, or during remark, hence it eliminates the need
2402     for two versions of the code. When called during remark, it will
2403     pick up from where the task left off during the concurrent marking
2404     phase. Interestingly, tasks are also claimable during evacuation
2405     pauses too, since do_marking_step() ensures that it aborts before
2406     it needs to yield.
2407 
2408     The data structures that it uses to do marking work are the
2409     following:
2410 
2411       (1) Marking Bitmap. If there are gray objects that appear only
2412       on the bitmap (this happens either when dealing with an overflow
2413       or when the initial marking phase has simply marked the roots
2414       and didn't push them on the stack), then tasks claim heap
2415       regions whose bitmap they then scan to find gray objects. A
2416       global finger indicates where the end of the last claimed region
2417       is. A local finger indicates how far into the region a task has
2418       scanned. The two fingers are used to determine how to gray an
2419       object (i.e. whether simply marking it is OK, as it will be
2420       visited by a task in the future, or whether it needs to be also
2421       pushed on a stack).
2422 
2423       (2) Local Queue. The local queue of the task which is accessed
2424       reasonably efficiently by the task. Other tasks can steal from
2425       it when they run out of work. Throughout the marking phase, a
2426       task attempts to keep its local queue short but not totally
2427       empty, so that entries are available for stealing by other
2428       tasks. Only when there is no more work, a task will totally
2429       drain its local queue.
2430 
2431       (3) Global Mark Stack. This handles local queue overflow. During
2432       marking only sets of entries are moved between it and the local
2433       queues, as access to it requires a mutex and more fine-grain
2434       interaction with it which might cause contention. If it
2435       overflows, then the marking phase should restart and iterate
2436       over the bitmap to identify gray objects. Throughout the marking
2437       phase, tasks attempt to keep the global mark stack at a small
2438       length but not totally empty, so that entries are available for
2439       popping by other tasks. Only when there is no more work, tasks
2440       will totally drain the global mark stack.
2441 
2442       (4) SATB Buffer Queue. This is where completed SATB buffers are
2443       made available. Buffers are regularly removed from this queue
2444       and scanned for roots, so that the queue doesn't get too
2445       long. During remark, all completed buffers are processed, as
2446       well as the filled in parts of any uncompleted buffers.
2447 
2448     The do_marking_step() method tries to abort when the time target
2449     has been reached. There are a few other cases when the
2450     do_marking_step() method also aborts:
2451 
2452       (1) When the marking phase has been aborted (after a Full GC).
2453 
2454       (2) When a global overflow (on the global stack) has been
2455       triggered. Before the task aborts, it will actually sync up with
2456       the other tasks to ensure that all the marking data structures
2457       (local queues, stacks, fingers etc.)  are re-initialized so that
2458       when do_marking_step() completes, the marking phase can
2459       immediately restart.
2460 
2461       (3) When enough completed SATB buffers are available. The
2462       do_marking_step() method only tries to drain SATB buffers right
2463       at the beginning. So, if enough buffers are available, the
2464       marking step aborts and the SATB buffers are processed at
2465       the beginning of the next invocation.
2466 
2467       (4) To yield. when we have to yield then we abort and yield
2468       right at the end of do_marking_step(). This saves us from a lot
2469       of hassle as, by yielding we might allow a Full GC. If this
2470       happens then objects will be compacted underneath our feet, the
2471       heap might shrink, etc. We save checking for this by just
2472       aborting and doing the yield right at the end.
2473 
2474     From the above it follows that the do_marking_step() method should
2475     be called in a loop (or, otherwise, regularly) until it completes.
2476 
2477     If a marking step completes without its has_aborted() flag being
2478     true, it means it has completed the current marking phase (and
2479     also all other marking tasks have done so and have all synced up).
2480 
2481     A method called regular_clock_call() is invoked "regularly" (in
2482     sub ms intervals) throughout marking. It is this clock method that
2483     checks all the abort conditions which were mentioned above and
2484     decides when the task should abort. A work-based scheme is used to
2485     trigger this clock method: when the number of object words the
2486     marking phase has scanned or the number of references the marking
2487     phase has visited reach a given limit. Additional invocations to
2488     the method clock have been planted in a few other strategic places
2489     too. The initial reason for the clock method was to avoid calling
2490     vtime too regularly, as it is quite expensive. So, once it was in
2491     place, it was natural to piggy-back all the other conditions on it
2492     too and not constantly check them throughout the code.
2493 
2494     If do_termination is true then do_marking_step will enter its
2495     termination protocol.
2496 
2497     The value of is_serial must be true when do_marking_step is being
2498     called serially (i.e. by the VMThread) and do_marking_step should
2499     skip any synchronization in the termination and overflow code.
2500     Examples include the serial remark code and the serial reference
2501     processing closures.
2502 
2503     The value of is_serial must be false when do_marking_step is
2504     being called by any of the worker threads in a work gang.
2505     Examples include the concurrent marking code (CMMarkingTask),
2506     the MT remark code, and the MT reference processing closures.
2507 
2508  *****************************************************************************/
2509 
2510 void G1CMTask::do_marking_step(double time_target_ms,
2511                                bool do_termination,
2512                                bool is_serial) {
2513   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2514   assert(_concurrent == _cm->concurrent(), "they should be the same");
2515 
2516   _start_time_ms = os::elapsedVTime() * 1000.0;
2517 
2518   // If do_stealing is true then do_marking_step will attempt to
2519   // steal work from the other G1CMTasks. It only makes sense to
2520   // enable stealing when the termination protocol is enabled
2521   // and do_marking_step() is not being called serially.
2522   bool do_stealing = do_termination && !is_serial;
2523 
2524   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2525   _time_target_ms = time_target_ms - diff_prediction_ms;
2526 
2527   // set up the variables that are used in the work-based scheme to
2528   // call the regular clock method
2529   _words_scanned = 0;
2530   _refs_reached  = 0;
2531   recalculate_limits();
2532 
2533   // clear all flags
2534   clear_has_aborted();
2535   _has_timed_out = false;
2536   _draining_satb_buffers = false;
2537 
2538   ++_calls;
2539 
2540   // Set up the bitmap and oop closures. Anything that uses them is
2541   // eventually called from this method, so it is OK to allocate these
2542   // statically.
2543   G1CMBitMapClosure bitmap_closure(this, _cm);
2544   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2545   set_cm_oop_closure(&cm_oop_closure);
2546 
2547   if (_cm->has_overflown()) {
2548     // This can happen if the mark stack overflows during a GC pause
2549     // and this task, after a yield point, restarts. We have to abort
2550     // as we need to get into the overflow protocol which happens
2551     // right at the end of this task.
2552     set_has_aborted();
2553   }
2554 
2555   // First drain any available SATB buffers. After this, we will not
2556   // look at SATB buffers before the next invocation of this method.
2557   // If enough completed SATB buffers are queued up, the regular clock
2558   // will abort this task so that it restarts.
2559   drain_satb_buffers();
2560   // ...then partially drain the local queue and the global stack
2561   drain_local_queue(true);
2562   drain_global_stack(true);
2563 
2564   do {
2565     if (!has_aborted() && _curr_region != NULL) {
2566       // This means that we're already holding on to a region.
2567       assert(_finger != NULL, "if region is not NULL, then the finger "
2568              "should not be NULL either");
2569 
2570       // We might have restarted this task after an evacuation pause
2571       // which might have evacuated the region we're holding on to
2572       // underneath our feet. Let's read its limit again to make sure
2573       // that we do not iterate over a region of the heap that
2574       // contains garbage (update_region_limit() will also move
2575       // _finger to the start of the region if it is found empty).
2576       update_region_limit();
2577       // We will start from _finger not from the start of the region,
2578       // as we might be restarting this task after aborting half-way
2579       // through scanning this region. In this case, _finger points to
2580       // the address where we last found a marked object. If this is a
2581       // fresh region, _finger points to start().
2582       MemRegion mr = MemRegion(_finger, _region_limit);
2583 
2584       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2585              "humongous regions should go around loop once only");
2586 
2587       // Some special cases:
2588       // If the memory region is empty, we can just give up the region.
2589       // If the current region is humongous then we only need to check
2590       // the bitmap for the bit associated with the start of the object,
2591       // scan the object if it's live, and give up the region.
2592       // Otherwise, let's iterate over the bitmap of the part of the region
2593       // that is left.
2594       // If the iteration is successful, give up the region.
2595       if (mr.is_empty()) {
2596         giveup_current_region();
2597         regular_clock_call();
2598       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2599         if (_next_mark_bitmap->is_marked(mr.start())) {
2600           // The object is marked - apply the closure
2601           bitmap_closure.do_addr(mr.start());
2602         }
2603         // Even if this task aborted while scanning the humongous object
2604         // we can (and should) give up the current region.
2605         giveup_current_region();
2606         regular_clock_call();
2607       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2608         giveup_current_region();
2609         regular_clock_call();
2610       } else {
2611         assert(has_aborted(), "currently the only way to do so");
2612         // The only way to abort the bitmap iteration is to return
2613         // false from the do_bit() method. However, inside the
2614         // do_bit() method we move the _finger to point to the
2615         // object currently being looked at. So, if we bail out, we
2616         // have definitely set _finger to something non-null.
2617         assert(_finger != NULL, "invariant");
2618 
2619         // Region iteration was actually aborted. So now _finger
2620         // points to the address of the object we last scanned. If we
2621         // leave it there, when we restart this task, we will rescan
2622         // the object. It is easy to avoid this. We move the finger by
2623         // enough to point to the next possible object header.
2624         assert(_finger < _region_limit, "invariant");
2625         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2626         // Check if bitmap iteration was aborted while scanning the last object
2627         if (new_finger >= _region_limit) {
2628           giveup_current_region();
2629         } else {
2630           move_finger_to(new_finger);
2631         }
2632       }
2633     }
2634     // At this point we have either completed iterating over the
2635     // region we were holding on to, or we have aborted.
2636 
2637     // We then partially drain the local queue and the global stack.
2638     // (Do we really need this?)
2639     drain_local_queue(true);
2640     drain_global_stack(true);
2641 
2642     // Read the note on the claim_region() method on why it might
2643     // return NULL with potentially more regions available for
2644     // claiming and why we have to check out_of_regions() to determine
2645     // whether we're done or not.
2646     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2647       // We are going to try to claim a new region. We should have
2648       // given up on the previous one.
2649       // Separated the asserts so that we know which one fires.
2650       assert(_curr_region  == NULL, "invariant");
2651       assert(_finger       == NULL, "invariant");
2652       assert(_region_limit == NULL, "invariant");
2653       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2654       if (claimed_region != NULL) {
2655         // Yes, we managed to claim one
2656         setup_for_region(claimed_region);
2657         assert(_curr_region == claimed_region, "invariant");
2658       }
2659       // It is important to call the regular clock here. It might take
2660       // a while to claim a region if, for example, we hit a large
2661       // block of empty regions. So we need to call the regular clock
2662       // method once round the loop to make sure it's called
2663       // frequently enough.
2664       regular_clock_call();
2665     }
2666 
2667     if (!has_aborted() && _curr_region == NULL) {
2668       assert(_cm->out_of_regions(),
2669              "at this point we should be out of regions");
2670     }
2671   } while ( _curr_region != NULL && !has_aborted());
2672 
2673   if (!has_aborted()) {
2674     // We cannot check whether the global stack is empty, since other
2675     // tasks might be pushing objects to it concurrently.
2676     assert(_cm->out_of_regions(),
2677            "at this point we should be out of regions");
2678     // Try to reduce the number of available SATB buffers so that
2679     // remark has less work to do.
2680     drain_satb_buffers();
2681   }
2682 
2683   // Since we've done everything else, we can now totally drain the
2684   // local queue and global stack.
2685   drain_local_queue(false);
2686   drain_global_stack(false);
2687 
2688   // Attempt at work stealing from other task's queues.
2689   if (do_stealing && !has_aborted()) {
2690     // We have not aborted. This means that we have finished all that
2691     // we could. Let's try to do some stealing...
2692 
2693     // We cannot check whether the global stack is empty, since other
2694     // tasks might be pushing objects to it concurrently.
2695     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2696            "only way to reach here");
2697     while (!has_aborted()) {
2698       G1TaskQueueEntry entry;
2699       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2700         scan_task_entry(entry);
2701 
2702         // And since we're towards the end, let's totally drain the
2703         // local queue and global stack.
2704         drain_local_queue(false);
2705         drain_global_stack(false);
2706       } else {
2707         break;
2708       }
2709     }
2710   }
2711 
2712   // We still haven't aborted. Now, let's try to get into the
2713   // termination protocol.
2714   if (do_termination && !has_aborted()) {
2715     // We cannot check whether the global stack is empty, since other
2716     // tasks might be concurrently pushing objects on it.
2717     // Separated the asserts so that we know which one fires.
2718     assert(_cm->out_of_regions(), "only way to reach here");
2719     assert(_task_queue->size() == 0, "only way to reach here");
2720     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2721 
2722     // The G1CMTask class also extends the TerminatorTerminator class,
2723     // hence its should_exit_termination() method will also decide
2724     // whether to exit the termination protocol or not.
2725     bool finished = (is_serial ||
2726                      _cm->terminator()->offer_termination(this));
2727     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2728     _termination_time_ms +=
2729       termination_end_time_ms - _termination_start_time_ms;
2730 
2731     if (finished) {
2732       // We're all done.
2733 
2734       if (_worker_id == 0) {
2735         // Let's allow task 0 to do this
2736         if (_concurrent) {
2737           assert(_cm->concurrent_marking_in_progress(), "invariant");
2738           // We need to set this to false before the next
2739           // safepoint. This way we ensure that the marking phase
2740           // doesn't observe any more heap expansions.
2741           _cm->clear_concurrent_marking_in_progress();
2742         }
2743       }
2744 
2745       // We can now guarantee that the global stack is empty, since
2746       // all other tasks have finished. We separated the guarantees so
2747       // that, if a condition is false, we can immediately find out
2748       // which one.
2749       guarantee(_cm->out_of_regions(), "only way to reach here");
2750       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2751       guarantee(_task_queue->size() == 0, "only way to reach here");
2752       guarantee(!_cm->has_overflown(), "only way to reach here");
2753     } else {
2754       // Apparently there's more work to do. Let's abort this task. It
2755       // will restart it and we can hopefully find more things to do.
2756       set_has_aborted();
2757     }
2758   }
2759 
2760   // Mainly for debugging purposes to make sure that a pointer to the
2761   // closure which was statically allocated in this frame doesn't
2762   // escape it by accident.
2763   set_cm_oop_closure(NULL);
2764   double end_time_ms = os::elapsedVTime() * 1000.0;
2765   double elapsed_time_ms = end_time_ms - _start_time_ms;
2766   // Update the step history.
2767   _step_times_ms.add(elapsed_time_ms);
2768 
2769   if (has_aborted()) {
2770     // The task was aborted for some reason.
2771     if (_has_timed_out) {
2772       double diff_ms = elapsed_time_ms - _time_target_ms;
2773       // Keep statistics of how well we did with respect to hitting
2774       // our target only if we actually timed out (if we aborted for
2775       // other reasons, then the results might get skewed).
2776       _marking_step_diffs_ms.add(diff_ms);
2777     }
2778 
2779     if (_cm->has_overflown()) {
2780       // This is the interesting one. We aborted because a global
2781       // overflow was raised. This means we have to restart the
2782       // marking phase and start iterating over regions. However, in
2783       // order to do this we have to make sure that all tasks stop
2784       // what they are doing and re-initialize in a safe manner. We
2785       // will achieve this with the use of two barrier sync points.
2786 
2787       if (!is_serial) {
2788         // We only need to enter the sync barrier if being called
2789         // from a parallel context
2790         _cm->enter_first_sync_barrier(_worker_id);
2791 
2792         // When we exit this sync barrier we know that all tasks have
2793         // stopped doing marking work. So, it's now safe to
2794         // re-initialize our data structures. At the end of this method,
2795         // task 0 will clear the global data structures.
2796       }
2797 
2798       // We clear the local state of this task...
2799       clear_region_fields();
2800 
2801       if (!is_serial) {
2802         // ...and enter the second barrier.
2803         _cm->enter_second_sync_barrier(_worker_id);
2804       }
2805       // At this point, if we're during the concurrent phase of
2806       // marking, everything has been re-initialized and we're
2807       // ready to restart.
2808     }
2809   }
2810 }
2811 
2812 G1CMTask::G1CMTask(uint worker_id, G1ConcurrentMark* cm, G1CMTaskQueue* task_queue) :
2813   _objArray_processor(this),
2814   _worker_id(worker_id),
2815   _g1h(G1CollectedHeap::heap()),
2816   _cm(cm),
2817   _next_mark_bitmap(NULL),
2818   _task_queue(task_queue),
2819   _calls(0),
2820   _time_target_ms(0.0),
2821   _start_time_ms(0.0),
2822   _cm_oop_closure(NULL),
2823   _curr_region(NULL),
2824   _finger(NULL),
2825   _region_limit(NULL),
2826   _words_scanned(0),
2827   _words_scanned_limit(0),
2828   _real_words_scanned_limit(0),
2829   _refs_reached(0),
2830   _refs_reached_limit(0),
2831   _real_refs_reached_limit(0),
2832   _hash_seed(17),
2833   _has_aborted(false),
2834   _has_timed_out(false),
2835   _draining_satb_buffers(false),
2836   _step_times_ms(),
2837   _elapsed_time_ms(0.0),
2838   _termination_time_ms(0.0),
2839   _termination_start_time_ms(0.0),
2840   _concurrent(false),
2841   _marking_step_diffs_ms()
2842 {
2843   guarantee(task_queue != NULL, "invariant");
2844 
2845   _marking_step_diffs_ms.add(0.5);
2846 }
2847 
2848 // These are formatting macros that are used below to ensure
2849 // consistent formatting. The *_H_* versions are used to format the
2850 // header for a particular value and they should be kept consistent
2851 // with the corresponding macro. Also note that most of the macros add
2852 // the necessary white space (as a prefix) which makes them a bit
2853 // easier to compose.
2854 
2855 // All the output lines are prefixed with this string to be able to
2856 // identify them easily in a large log file.
2857 #define G1PPRL_LINE_PREFIX            "###"
2858 
2859 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2860 #ifdef _LP64
2861 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2862 #else // _LP64
2863 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2864 #endif // _LP64
2865 
2866 // For per-region info
2867 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2868 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2869 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2870 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2871 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2872 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2873 
2874 // For summary info
2875 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2876 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2877 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2878 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2879 
2880 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2881   _total_used_bytes(0), _total_capacity_bytes(0),
2882   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2883   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2884 {
2885   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2886   MemRegion g1_reserved = g1h->g1_reserved();
2887   double now = os::elapsedTime();
2888 
2889   // Print the header of the output.
2890   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2891   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2892                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2893                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2894                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2895                           HeapRegion::GrainBytes);
2896   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2897   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2898                           G1PPRL_TYPE_H_FORMAT
2899                           G1PPRL_ADDR_BASE_H_FORMAT
2900                           G1PPRL_BYTE_H_FORMAT
2901                           G1PPRL_BYTE_H_FORMAT
2902                           G1PPRL_BYTE_H_FORMAT
2903                           G1PPRL_DOUBLE_H_FORMAT
2904                           G1PPRL_BYTE_H_FORMAT
2905                           G1PPRL_BYTE_H_FORMAT,
2906                           "type", "address-range",
2907                           "used", "prev-live", "next-live", "gc-eff",
2908                           "remset", "code-roots");
2909   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2910                           G1PPRL_TYPE_H_FORMAT
2911                           G1PPRL_ADDR_BASE_H_FORMAT
2912                           G1PPRL_BYTE_H_FORMAT
2913                           G1PPRL_BYTE_H_FORMAT
2914                           G1PPRL_BYTE_H_FORMAT
2915                           G1PPRL_DOUBLE_H_FORMAT
2916                           G1PPRL_BYTE_H_FORMAT
2917                           G1PPRL_BYTE_H_FORMAT,
2918                           "", "",
2919                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2920                           "(bytes)", "(bytes)");
2921 }
2922 
2923 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2924   const char* type       = r->get_type_str();
2925   HeapWord* bottom       = r->bottom();
2926   HeapWord* end          = r->end();
2927   size_t capacity_bytes  = r->capacity();
2928   size_t used_bytes      = r->used();
2929   size_t prev_live_bytes = r->live_bytes();
2930   size_t next_live_bytes = r->next_live_bytes();
2931   double gc_eff          = r->gc_efficiency();
2932   size_t remset_bytes    = r->rem_set()->mem_size();
2933   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2934 
2935   _total_used_bytes      += used_bytes;
2936   _total_capacity_bytes  += capacity_bytes;
2937   _total_prev_live_bytes += prev_live_bytes;
2938   _total_next_live_bytes += next_live_bytes;
2939   _total_remset_bytes    += remset_bytes;
2940   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2941 
2942   // Print a line for this particular region.
2943   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2944                           G1PPRL_TYPE_FORMAT
2945                           G1PPRL_ADDR_BASE_FORMAT
2946                           G1PPRL_BYTE_FORMAT
2947                           G1PPRL_BYTE_FORMAT
2948                           G1PPRL_BYTE_FORMAT
2949                           G1PPRL_DOUBLE_FORMAT
2950                           G1PPRL_BYTE_FORMAT
2951                           G1PPRL_BYTE_FORMAT,
2952                           type, p2i(bottom), p2i(end),
2953                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2954                           remset_bytes, strong_code_roots_bytes);
2955 
2956   return false;
2957 }
2958 
2959 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2960   // add static memory usages to remembered set sizes
2961   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
2962   // Print the footer of the output.
2963   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2964   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2965                          " SUMMARY"
2966                          G1PPRL_SUM_MB_FORMAT("capacity")
2967                          G1PPRL_SUM_MB_PERC_FORMAT("used")
2968                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
2969                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
2970                          G1PPRL_SUM_MB_FORMAT("remset")
2971                          G1PPRL_SUM_MB_FORMAT("code-roots"),
2972                          bytes_to_mb(_total_capacity_bytes),
2973                          bytes_to_mb(_total_used_bytes),
2974                          percent_of(_total_used_bytes, _total_capacity_bytes),
2975                          bytes_to_mb(_total_prev_live_bytes),
2976                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
2977                          bytes_to_mb(_total_next_live_bytes),
2978                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
2979                          bytes_to_mb(_total_remset_bytes),
2980                          bytes_to_mb(_total_strong_code_roots_bytes));
2981 }