1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/cardTableRS.hpp"
  27 #include "gc/shared/genCollectedHeap.hpp"
  28 #include "gc/shared/generation.hpp"
  29 #include "gc/shared/space.inline.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "runtime/atomic.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/os.hpp"
  35 #include "utilities/macros.hpp"
  36 
  37 class HasAccumulatedModifiedOopsClosure : public CLDClosure {
  38   bool _found;
  39  public:
  40   HasAccumulatedModifiedOopsClosure() : _found(false) {}
  41   void do_cld(ClassLoaderData* cld) {
  42     if (_found) {
  43       return;
  44     }
  45 
  46     if (cld->has_accumulated_modified_oops()) {
  47       _found = true;
  48     }
  49   }
  50   bool found() {
  51     return _found;
  52   }
  53 };
  54 
  55 bool CLDRemSet::mod_union_is_clear() {
  56   HasAccumulatedModifiedOopsClosure closure;
  57   ClassLoaderDataGraph::cld_do(&closure);
  58 
  59   return !closure.found();
  60 }
  61 
  62 
  63 class ClearCLDModUnionClosure : public CLDClosure {
  64  public:
  65   void do_cld(ClassLoaderData* cld) {
  66     if (cld->has_accumulated_modified_oops()) {
  67       cld->clear_accumulated_modified_oops();
  68     }
  69   }
  70 };
  71 
  72 void CLDRemSet::clear_mod_union() {
  73   ClearCLDModUnionClosure closure;
  74   ClassLoaderDataGraph::cld_do(&closure);
  75 }
  76 
  77 
  78 jbyte CardTableRS::find_unused_youngergenP_card_value() {
  79   for (jbyte v = youngergenP1_card;
  80        v < cur_youngergen_and_prev_nonclean_card;
  81        v++) {
  82     bool seen = false;
  83     for (int g = 0; g < _regions_to_iterate; g++) {
  84       if (_last_cur_val_in_gen[g] == v) {
  85         seen = true;
  86         break;
  87       }
  88     }
  89     if (!seen) {
  90       return v;
  91     }
  92   }
  93   ShouldNotReachHere();
  94   return 0;
  95 }
  96 
  97 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
  98   // Parallel or sequential, we must always set the prev to equal the
  99   // last one written.
 100   if (parallel) {
 101     // Find a parallel value to be used next.
 102     jbyte next_val = find_unused_youngergenP_card_value();
 103     set_cur_youngergen_card_val(next_val);
 104 
 105   } else {
 106     // In an sequential traversal we will always write youngergen, so that
 107     // the inline barrier is  correct.
 108     set_cur_youngergen_card_val(youngergen_card);
 109   }
 110 }
 111 
 112 void CardTableRS::younger_refs_iterate(Generation* g,
 113                                        OopsInGenClosure* blk,
 114                                        uint n_threads) {
 115   // The indexing in this array is slightly odd. We want to access
 116   // the old generation record here, which is at index 2.
 117   _last_cur_val_in_gen[2] = cur_youngergen_card_val();
 118   g->younger_refs_iterate(blk, n_threads);
 119 }
 120 
 121 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
 122   if (_is_par) {
 123     return clear_card_parallel(entry);
 124   } else {
 125     return clear_card_serial(entry);
 126   }
 127 }
 128 
 129 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
 130   while (true) {
 131     // In the parallel case, we may have to do this several times.
 132     jbyte entry_val = *entry;
 133     assert(entry_val != CardTableRS::clean_card_val(),
 134            "We shouldn't be looking at clean cards, and this should "
 135            "be the only place they get cleaned.");
 136     if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
 137         || _ct->is_prev_youngergen_card_val(entry_val)) {
 138       jbyte res =
 139         Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
 140       if (res == entry_val) {
 141         break;
 142       } else {
 143         assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
 144                "The CAS above should only fail if another thread did "
 145                "a GC write barrier.");
 146       }
 147     } else if (entry_val ==
 148                CardTableRS::cur_youngergen_and_prev_nonclean_card) {
 149       // Parallelism shouldn't matter in this case.  Only the thread
 150       // assigned to scan the card should change this value.
 151       *entry = _ct->cur_youngergen_card_val();
 152       break;
 153     } else {
 154       assert(entry_val == _ct->cur_youngergen_card_val(),
 155              "Should be the only possibility.");
 156       // In this case, the card was clean before, and become
 157       // cur_youngergen only because of processing of a promoted object.
 158       // We don't have to look at the card.
 159       return false;
 160     }
 161   }
 162   return true;
 163 }
 164 
 165 
 166 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
 167   jbyte entry_val = *entry;
 168   assert(entry_val != CardTableRS::clean_card_val(),
 169          "We shouldn't be looking at clean cards, and this should "
 170          "be the only place they get cleaned.");
 171   assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
 172          "This should be possible in the sequential case.");
 173   *entry = CardTableRS::clean_card_val();
 174   return true;
 175 }
 176 
 177 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
 178   DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct, bool is_par) :
 179     _dirty_card_closure(dirty_card_closure), _ct(ct), _is_par(is_par) {
 180 }
 181 
 182 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
 183   return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
 184 }
 185 
 186 // The regions are visited in *decreasing* address order.
 187 // This order aids with imprecise card marking, where a dirty
 188 // card may cause scanning, and summarization marking, of objects
 189 // that extend onto subsequent cards.
 190 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
 191   assert(mr.word_size() > 0, "Error");
 192   assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
 193   // mr.end() may not necessarily be card aligned.
 194   jbyte* cur_entry = _ct->byte_for(mr.last());
 195   const jbyte* limit = _ct->byte_for(mr.start());
 196   HeapWord* end_of_non_clean = mr.end();
 197   HeapWord* start_of_non_clean = end_of_non_clean;
 198   while (cur_entry >= limit) {
 199     HeapWord* cur_hw = _ct->addr_for(cur_entry);
 200     if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
 201       // Continue the dirty range by opening the
 202       // dirty window one card to the left.
 203       start_of_non_clean = cur_hw;
 204     } else {
 205       // We hit a "clean" card; process any non-empty
 206       // "dirty" range accumulated so far.
 207       if (start_of_non_clean < end_of_non_clean) {
 208         const MemRegion mrd(start_of_non_clean, end_of_non_clean);
 209         _dirty_card_closure->do_MemRegion(mrd);
 210       }
 211 
 212       // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
 213       if (is_word_aligned(cur_entry)) {
 214         jbyte* cur_row = cur_entry - BytesPerWord;
 215         while (cur_row >= limit && *((intptr_t*)cur_row) ==  CardTableRS::clean_card_row_val()) {
 216           cur_row -= BytesPerWord;
 217         }
 218         cur_entry = cur_row + BytesPerWord;
 219         cur_hw = _ct->addr_for(cur_entry);
 220       }
 221 
 222       // Reset the dirty window, while continuing to look
 223       // for the next dirty card that will start a
 224       // new dirty window.
 225       end_of_non_clean = cur_hw;
 226       start_of_non_clean = cur_hw;
 227     }
 228     // Note that "cur_entry" leads "start_of_non_clean" in
 229     // its leftward excursion after this point
 230     // in the loop and, when we hit the left end of "mr",
 231     // will point off of the left end of the card-table
 232     // for "mr".
 233     cur_entry--;
 234   }
 235   // If the first card of "mr" was dirty, we will have
 236   // been left with a dirty window, co-initial with "mr",
 237   // which we now process.
 238   if (start_of_non_clean < end_of_non_clean) {
 239     const MemRegion mrd(start_of_non_clean, end_of_non_clean);
 240     _dirty_card_closure->do_MemRegion(mrd);
 241   }
 242 }
 243 
 244 // clean (by dirty->clean before) ==> cur_younger_gen
 245 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
 246 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
 247 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
 248 // cur-younger-gen                ==> cur_younger_gen
 249 // cur_youngergen_and_prev_nonclean_card ==> no change.
 250 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
 251   volatile jbyte* entry = byte_for(field);
 252   do {
 253     jbyte entry_val = *entry;
 254     // We put this first because it's probably the most common case.
 255     if (entry_val == clean_card_val()) {
 256       // No threat of contention with cleaning threads.
 257       *entry = cur_youngergen_card_val();
 258       return;
 259     } else if (card_is_dirty_wrt_gen_iter(entry_val)
 260                || is_prev_youngergen_card_val(entry_val)) {
 261       // Mark it as both cur and prev youngergen; card cleaning thread will
 262       // eventually remove the previous stuff.
 263       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
 264       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
 265       // Did the CAS succeed?
 266       if (res == entry_val) return;
 267       // Otherwise, retry, to see the new value.
 268       continue;
 269     } else {
 270       assert(entry_val == cur_youngergen_and_prev_nonclean_card
 271              || entry_val == cur_youngergen_card_val(),
 272              "should be only possibilities.");
 273       return;
 274     }
 275   } while (true);
 276 }
 277 
 278 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
 279                                                 OopsInGenClosure* cl,
 280                                                 uint n_threads) {
 281   const MemRegion urasm = sp->used_region_at_save_marks();
 282 #ifdef ASSERT
 283   // Convert the assertion check to a warning if we are running
 284   // CMS+ParNew until related bug is fixed.
 285   MemRegion ur    = sp->used_region();
 286   assert(ur.contains(urasm) || (UseConcMarkSweepGC),
 287          "Did you forget to call save_marks()? "
 288          "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
 289          "[" PTR_FORMAT ", " PTR_FORMAT ")",
 290          p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end()));
 291   // In the case of CMS+ParNew, issue a warning
 292   if (!ur.contains(urasm)) {
 293     assert(UseConcMarkSweepGC, "Tautology: see assert above");
 294     log_warning(gc)("CMS+ParNew: Did you forget to call save_marks()? "
 295                     "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
 296                     "[" PTR_FORMAT ", " PTR_FORMAT ")",
 297                     p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end()));
 298     MemRegion ur2 = sp->used_region();
 299     MemRegion urasm2 = sp->used_region_at_save_marks();
 300     if (!ur.equals(ur2)) {
 301       log_warning(gc)("CMS+ParNew: Flickering used_region()!!");
 302     }
 303     if (!urasm.equals(urasm2)) {
 304       log_warning(gc)("CMS+ParNew: Flickering used_region_at_save_marks()!!");
 305     }
 306     ShouldNotReachHere();
 307   }
 308 #endif
 309   non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this, n_threads);
 310 }
 311 
 312 void CardTableRS::clear_into_younger(Generation* old_gen) {
 313   assert(GenCollectedHeap::heap()->is_old_gen(old_gen),
 314          "Should only be called for the old generation");
 315   // The card tables for the youngest gen need never be cleared.
 316   // There's a bit of subtlety in the clear() and invalidate()
 317   // methods that we exploit here and in invalidate_or_clear()
 318   // below to avoid missing cards at the fringes. If clear() or
 319   // invalidate() are changed in the future, this code should
 320   // be revisited. 20040107.ysr
 321   clear(old_gen->prev_used_region());
 322 }
 323 
 324 void CardTableRS::invalidate_or_clear(Generation* old_gen) {
 325   assert(GenCollectedHeap::heap()->is_old_gen(old_gen),
 326          "Should only be called for the old generation");
 327   // Invalidate the cards for the currently occupied part of
 328   // the old generation and clear the cards for the
 329   // unoccupied part of the generation (if any, making use
 330   // of that generation's prev_used_region to determine that
 331   // region). No need to do anything for the youngest
 332   // generation. Also see note#20040107.ysr above.
 333   MemRegion used_mr = old_gen->used_region();
 334   MemRegion to_be_cleared_mr = old_gen->prev_used_region().minus(used_mr);
 335   if (!to_be_cleared_mr.is_empty()) {
 336     clear(to_be_cleared_mr);
 337   }
 338   invalidate(used_mr);
 339 }
 340 
 341 
 342 class VerifyCleanCardClosure: public OopClosure {
 343 private:
 344   HeapWord* _boundary;
 345   HeapWord* _begin;
 346   HeapWord* _end;
 347 protected:
 348   template <class T> void do_oop_work(T* p) {
 349     HeapWord* jp = (HeapWord*)p;
 350     assert(jp >= _begin && jp < _end,
 351            "Error: jp " PTR_FORMAT " should be within "
 352            "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
 353            p2i(jp), p2i(_begin), p2i(_end));
 354     oop obj = oopDesc::load_decode_heap_oop(p);
 355     guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
 356               "pointer " PTR_FORMAT " at " PTR_FORMAT " on "
 357               "clean card crosses boundary" PTR_FORMAT,
 358               p2i(obj), p2i(jp), p2i(_boundary));
 359   }
 360 
 361 public:
 362   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
 363     _boundary(b), _begin(begin), _end(end) {
 364     assert(b <= begin,
 365            "Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
 366            p2i(b), p2i(begin));
 367     assert(begin <= end,
 368            "Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
 369            p2i(begin), p2i(end));
 370   }
 371 
 372   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
 373   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
 374 };
 375 
 376 class VerifyCTSpaceClosure: public SpaceClosure {
 377 private:
 378   CardTableRS* _ct;
 379   HeapWord* _boundary;
 380 public:
 381   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
 382     _ct(ct), _boundary(boundary) {}
 383   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
 384 };
 385 
 386 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
 387   CardTableRS* _ct;
 388 public:
 389   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
 390   void do_generation(Generation* gen) {
 391     // Skip the youngest generation.
 392     if (GenCollectedHeap::heap()->is_young_gen(gen)) {
 393       return;
 394     }
 395     // Normally, we're interested in pointers to younger generations.
 396     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
 397     gen->space_iterate(&blk, true);
 398   }
 399 };
 400 
 401 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
 402   // We don't need to do young-gen spaces.
 403   if (s->end() <= gen_boundary) return;
 404   MemRegion used = s->used_region();
 405 
 406   jbyte* cur_entry = byte_for(used.start());
 407   jbyte* limit = byte_after(used.last());
 408   while (cur_entry < limit) {
 409     if (*cur_entry == clean_card_val()) {
 410       jbyte* first_dirty = cur_entry+1;
 411       while (first_dirty < limit &&
 412              *first_dirty == clean_card_val()) {
 413         first_dirty++;
 414       }
 415       // If the first object is a regular object, and it has a
 416       // young-to-old field, that would mark the previous card.
 417       HeapWord* boundary = addr_for(cur_entry);
 418       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
 419       HeapWord* boundary_block = s->block_start(boundary);
 420       HeapWord* begin = boundary;             // Until proven otherwise.
 421       HeapWord* start_block = boundary_block; // Until proven otherwise.
 422       if (boundary_block < boundary) {
 423         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
 424           oop boundary_obj = oop(boundary_block);
 425           if (!boundary_obj->is_objArray() &&
 426               !boundary_obj->is_typeArray()) {
 427             guarantee(cur_entry > byte_for(used.start()),
 428                       "else boundary would be boundary_block");
 429             if (*byte_for(boundary_block) != clean_card_val()) {
 430               begin = boundary_block + s->block_size(boundary_block);
 431               start_block = begin;
 432             }
 433           }
 434         }
 435       }
 436       // Now traverse objects until end.
 437       if (begin < end) {
 438         MemRegion mr(begin, end);
 439         VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
 440         for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
 441           if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
 442             oop(cur)->oop_iterate_no_header(&verify_blk, mr);
 443           }
 444         }
 445       }
 446       cur_entry = first_dirty;
 447     } else {
 448       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
 449       // is a transient value, that cannot be in the card table
 450       // except during GC, and thus assert that:
 451       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
 452       //        "Illegal CT value");
 453       // That however, need not hold, as will become clear in the
 454       // following...
 455 
 456       // We'd normally expect that if we are in the parallel case,
 457       // we can't have left a prev value (which would be different
 458       // from the current value) in the card table, and so we'd like to
 459       // assert that:
 460       // guarantee(cur_youngergen_card_val() == youngergen_card
 461       //           || !is_prev_youngergen_card_val(*cur_entry),
 462       //           "Illegal CT value");
 463       // That, however, may not hold occasionally, because of
 464       // CMS or MSC in the old gen. To wit, consider the
 465       // following two simple illustrative scenarios:
 466       // (a) CMS: Consider the case where a large object L
 467       //     spanning several cards is allocated in the old
 468       //     gen, and has a young gen reference stored in it, dirtying
 469       //     some interior cards. A young collection scans the card,
 470       //     finds a young ref and installs a youngergenP_n value.
 471       //     L then goes dead. Now a CMS collection starts,
 472       //     finds L dead and sweeps it up. Assume that L is
 473       //     abutting _unallocated_blk, so _unallocated_blk is
 474       //     adjusted down to (below) L. Assume further that
 475       //     no young collection intervenes during this CMS cycle.
 476       //     The next young gen cycle will not get to look at this
 477       //     youngergenP_n card since it lies in the unoccupied
 478       //     part of the space.
 479       //     Some young collections later the blocks on this
 480       //     card can be re-allocated either due to direct allocation
 481       //     or due to absorbing promotions. At this time, the
 482       //     before-gc verification will fail the above assert.
 483       // (b) MSC: In this case, an object L with a young reference
 484       //     is on a card that (therefore) holds a youngergen_n value.
 485       //     Suppose also that L lies towards the end of the used
 486       //     the used space before GC. An MSC collection
 487       //     occurs that compacts to such an extent that this
 488       //     card is no longer in the occupied part of the space.
 489       //     Since current code in MSC does not always clear cards
 490       //     in the unused part of old gen, this stale youngergen_n
 491       //     value is left behind and can later be covered by
 492       //     an object when promotion or direct allocation
 493       //     re-allocates that part of the heap.
 494       //
 495       // Fortunately, the presence of such stale card values is
 496       // "only" a minor annoyance in that subsequent young collections
 497       // might needlessly scan such cards, but would still never corrupt
 498       // the heap as a result. However, it's likely not to be a significant
 499       // performance inhibitor in practice. For instance,
 500       // some recent measurements with unoccupied cards eagerly cleared
 501       // out to maintain this invariant, showed next to no
 502       // change in young collection times; of course one can construct
 503       // degenerate examples where the cost can be significant.)
 504       // Note, in particular, that if the "stale" card is modified
 505       // after re-allocation, it would be dirty, not "stale". Thus,
 506       // we can never have a younger ref in such a card and it is
 507       // safe not to scan that card in any collection. [As we see
 508       // below, we do some unnecessary scanning
 509       // in some cases in the current parallel scanning algorithm.]
 510       //
 511       // The main point below is that the parallel card scanning code
 512       // deals correctly with these stale card values. There are two main
 513       // cases to consider where we have a stale "young gen" value and a
 514       // "derivative" case to consider, where we have a stale
 515       // "cur_younger_gen_and_prev_non_clean" value, as will become
 516       // apparent in the case analysis below.
 517       // o Case 1. If the stale value corresponds to a younger_gen_n
 518       //   value other than the cur_younger_gen value then the code
 519       //   treats this as being tantamount to a prev_younger_gen
 520       //   card. This means that the card may be unnecessarily scanned.
 521       //   There are two sub-cases to consider:
 522       //   o Case 1a. Let us say that the card is in the occupied part
 523       //     of the generation at the time the collection begins. In
 524       //     that case the card will be either cleared when it is scanned
 525       //     for young pointers, or will be set to cur_younger_gen as a
 526       //     result of promotion. (We have elided the normal case where
 527       //     the scanning thread and the promoting thread interleave
 528       //     possibly resulting in a transient
 529       //     cur_younger_gen_and_prev_non_clean value before settling
 530       //     to cur_younger_gen. [End Case 1a.]
 531       //   o Case 1b. Consider now the case when the card is in the unoccupied
 532       //     part of the space which becomes occupied because of promotions
 533       //     into it during the current young GC. In this case the card
 534       //     will never be scanned for young references. The current
 535       //     code will set the card value to either
 536       //     cur_younger_gen_and_prev_non_clean or leave
 537       //     it with its stale value -- because the promotions didn't
 538       //     result in any younger refs on that card. Of these two
 539       //     cases, the latter will be covered in Case 1a during
 540       //     a subsequent scan. To deal with the former case, we need
 541       //     to further consider how we deal with a stale value of
 542       //     cur_younger_gen_and_prev_non_clean in our case analysis
 543       //     below. This we do in Case 3 below. [End Case 1b]
 544       //   [End Case 1]
 545       // o Case 2. If the stale value corresponds to cur_younger_gen being
 546       //   a value not necessarily written by a current promotion, the
 547       //   card will not be scanned by the younger refs scanning code.
 548       //   (This is OK since as we argued above such cards cannot contain
 549       //   any younger refs.) The result is that this value will be
 550       //   treated as a prev_younger_gen value in a subsequent collection,
 551       //   which is addressed in Case 1 above. [End Case 2]
 552       // o Case 3. We here consider the "derivative" case from Case 1b. above
 553       //   because of which we may find a stale
 554       //   cur_younger_gen_and_prev_non_clean card value in the table.
 555       //   Once again, as in Case 1, we consider two subcases, depending
 556       //   on whether the card lies in the occupied or unoccupied part
 557       //   of the space at the start of the young collection.
 558       //   o Case 3a. Let us say the card is in the occupied part of
 559       //     the old gen at the start of the young collection. In that
 560       //     case, the card will be scanned by the younger refs scanning
 561       //     code which will set it to cur_younger_gen. In a subsequent
 562       //     scan, the card will be considered again and get its final
 563       //     correct value. [End Case 3a]
 564       //   o Case 3b. Now consider the case where the card is in the
 565       //     unoccupied part of the old gen, and is occupied as a result
 566       //     of promotions during thus young gc. In that case,
 567       //     the card will not be scanned for younger refs. The presence
 568       //     of newly promoted objects on the card will then result in
 569       //     its keeping the value cur_younger_gen_and_prev_non_clean
 570       //     value, which we have dealt with in Case 3 here. [End Case 3b]
 571       //   [End Case 3]
 572       //
 573       // (Please refer to the code in the helper class
 574       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
 575       //
 576       // The informal arguments above can be tightened into a formal
 577       // correctness proof and it behooves us to write up such a proof,
 578       // or to use model checking to prove that there are no lingering
 579       // concerns.
 580       //
 581       // Clearly because of Case 3b one cannot bound the time for
 582       // which a card will retain what we have called a "stale" value.
 583       // However, one can obtain a Loose upper bound on the redundant
 584       // work as a result of such stale values. Note first that any
 585       // time a stale card lies in the occupied part of the space at
 586       // the start of the collection, it is scanned by younger refs
 587       // code and we can define a rank function on card values that
 588       // declines when this is so. Note also that when a card does not
 589       // lie in the occupied part of the space at the beginning of a
 590       // young collection, its rank can either decline or stay unchanged.
 591       // In this case, no extra work is done in terms of redundant
 592       // younger refs scanning of that card.
 593       // Then, the case analysis above reveals that, in the worst case,
 594       // any such stale card will be scanned unnecessarily at most twice.
 595       //
 596       // It is nonetheless advisable to try and get rid of some of this
 597       // redundant work in a subsequent (low priority) re-design of
 598       // the card-scanning code, if only to simplify the underlying
 599       // state machine analysis/proof. ysr 1/28/2002. XXX
 600       cur_entry++;
 601     }
 602   }
 603 }
 604 
 605 void CardTableRS::verify() {
 606   // At present, we only know how to verify the card table RS for
 607   // generational heaps.
 608   VerifyCTGenClosure blk(this);
 609   GenCollectedHeap::heap()->generation_iterate(&blk, false);
 610   CardTable::verify();
 611 }
 612 
 613 CardTableRS::CardTableRS(MemRegion whole_heap) :
 614   CardTable(whole_heap, /* scanned concurrently */ UseConcMarkSweepGC && CMSPrecleaningEnabled),
 615   _cur_youngergen_card_val(youngergenP1_card),
 616   // LNC functionality
 617   _lowest_non_clean(NULL),
 618   _lowest_non_clean_chunk_size(NULL),
 619   _lowest_non_clean_base_chunk_index(NULL),
 620   _last_LNC_resizing_collection(NULL)
 621 {
 622   // max_gens is really GenCollectedHeap::heap()->gen_policy()->number_of_generations()
 623   // (which is always 2, young & old), but GenCollectedHeap has not been initialized yet.
 624   uint max_gens = 2;
 625   _last_cur_val_in_gen = NEW_C_HEAP_ARRAY3(jbyte, max_gens + 1,
 626                          mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 627   if (_last_cur_val_in_gen == NULL) {
 628     vm_exit_during_initialization("Could not create last_cur_val_in_gen array.");
 629   }
 630   for (uint i = 0; i < max_gens + 1; i++) {
 631     _last_cur_val_in_gen[i] = clean_card_val();
 632   }
 633 }
 634 
 635 CardTableRS::~CardTableRS() {
 636   if (_last_cur_val_in_gen) {
 637     FREE_C_HEAP_ARRAY(jbyte, _last_cur_val_in_gen);
 638     _last_cur_val_in_gen = NULL;
 639   }
 640   if (_lowest_non_clean) {
 641     FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean);
 642     _lowest_non_clean = NULL;
 643   }
 644   if (_lowest_non_clean_chunk_size) {
 645     FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size);
 646     _lowest_non_clean_chunk_size = NULL;
 647   }
 648   if (_lowest_non_clean_base_chunk_index) {
 649     FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index);
 650     _lowest_non_clean_base_chunk_index = NULL;
 651   }
 652   if (_last_LNC_resizing_collection) {
 653     FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection);
 654     _last_LNC_resizing_collection = NULL;
 655   }
 656 }
 657 
 658 void CardTableRS::initialize() {
 659   CardTable::initialize();
 660   _lowest_non_clean =
 661     NEW_C_HEAP_ARRAY(CardArr, _max_covered_regions, mtGC);
 662   _lowest_non_clean_chunk_size =
 663     NEW_C_HEAP_ARRAY(size_t, _max_covered_regions, mtGC);
 664   _lowest_non_clean_base_chunk_index =
 665     NEW_C_HEAP_ARRAY(uintptr_t, _max_covered_regions, mtGC);
 666   _last_LNC_resizing_collection =
 667     NEW_C_HEAP_ARRAY(int, _max_covered_regions, mtGC);
 668   if (_lowest_non_clean == NULL
 669       || _lowest_non_clean_chunk_size == NULL
 670       || _lowest_non_clean_base_chunk_index == NULL
 671       || _last_LNC_resizing_collection == NULL)
 672     vm_exit_during_initialization("couldn't allocate an LNC array.");
 673   for (int i = 0; i < _max_covered_regions; i++) {
 674     _lowest_non_clean[i] = NULL;
 675     _lowest_non_clean_chunk_size[i] = 0;
 676     _last_LNC_resizing_collection[i] = -1;
 677   }
 678 }
 679 
 680 bool CardTableRS::card_will_be_scanned(jbyte cv) {
 681   return card_is_dirty_wrt_gen_iter(cv) || is_prev_nonclean_card_val(cv);
 682 }
 683 
 684 bool CardTableRS::card_may_have_been_dirty(jbyte cv) {
 685   return
 686     cv != clean_card &&
 687     (card_is_dirty_wrt_gen_iter(cv) ||
 688      CardTableRS::youngergen_may_have_been_dirty(cv));
 689 }
 690 
 691 void CardTableRS::non_clean_card_iterate_possibly_parallel(
 692   Space* sp,
 693   MemRegion mr,
 694   OopsInGenClosure* cl,
 695   CardTableRS* ct,
 696   uint n_threads)
 697 {
 698   if (!mr.is_empty()) {
 699     if (n_threads > 0) {
 700 #if INCLUDE_ALL_GCS
 701       non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
 702 #else  // INCLUDE_ALL_GCS
 703       fatal("Parallel gc not supported here.");
 704 #endif // INCLUDE_ALL_GCS
 705     } else {
 706       // clear_cl finds contiguous dirty ranges of cards to process and clear.
 707 
 708       // This is the single-threaded version used by DefNew.
 709       const bool parallel = false;
 710 
 711       DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(), cl->gen_boundary(), parallel);
 712       ClearNoncleanCardWrapper clear_cl(dcto_cl, ct, parallel);
 713 
 714       clear_cl.do_MemRegion(mr);
 715     }
 716   }
 717 }
 718 
 719 bool CardTableRS::is_in_young(oop obj) const {
 720   return GenCollectedHeap::heap()->is_in_young(obj);
 721 }