/* * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_OOPS_COMPRESSEDOOPS_INLINE_HPP #define SHARE_OOPS_COMPRESSEDOOPS_INLINE_HPP #include "gc/shared/collectedHeap.hpp" #include "memory/universe.hpp" #include "oops/oop.hpp" // Functions for encoding and decoding compressed oops. // If the oops are compressed, the type passed to these overloaded functions // is narrowOop. All functions are overloaded so they can be called by // template functions without conditionals (the compiler instantiates via // the right type and inlines the appropriate code). // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit // offset from the heap base. Saving the check for null can save instructions // in inner GC loops so these are separated. namespace CompressedOops { inline bool is_null(oop obj) { return obj == NULL; } inline bool is_null(narrowOop obj) { return obj == 0; } inline oop decode_not_null(narrowOop v) { assert(!is_null(v), "narrow oop value can never be zero"); address base = Universe::narrow_oop_base(); int shift = Universe::narrow_oop_shift(); oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift)); assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result)); return result; } inline oop decode(narrowOop v) { return is_null(v) ? (oop)NULL : decode_not_null(v); } inline narrowOop encode_not_null(oop v) { assert(!is_null(v), "oop value can never be zero"); assert(check_obj_alignment(v), "Address not aligned"); assert(Universe::heap()->is_in_reserved(v), "Address not in heap"); address base = Universe::narrow_oop_base(); int shift = Universe::narrow_oop_shift(); uint64_t pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1)); assert(OopEncodingHeapMax > pd, "change encoding max if new encoding"); uint64_t result = pd >> shift; assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow"); assert(decode(result) == v, "reversibility"); return (narrowOop)result; } inline narrowOop encode(oop v) { return is_null(v) ? (narrowOop)0 : encode_not_null(v); } // No conversions needed for these overloads inline oop decode_not_null(oop v) { return v; } inline oop decode(oop v) { return v; } inline narrowOop encode_not_null(narrowOop v) { return v; } inline narrowOop encode(narrowOop v) { return v; } } #endif // SHARE_OOPS_COMPRESSEDOOPS_INLINE_HPP