1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/metaspaceShared.hpp"
  30 #include "memory/padded.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "runtime/atomic.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/interfaceSupport.inline.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "runtime/objectMonitor.hpp"
  40 #include "runtime/objectMonitor.inline.hpp"
  41 #include "runtime/osThread.hpp"
  42 #include "runtime/safepointVerifiers.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/synchronizer.hpp"
  46 #include "runtime/thread.inline.hpp"
  47 #include "runtime/vframe.hpp"
  48 #include "runtime/vmThread.hpp"
  49 #include "trace/traceMacros.hpp"
  50 #include "trace/tracing.hpp"
  51 #include "utilities/align.hpp"
  52 #include "utilities/dtrace.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/preserveException.hpp"
  55 
  56 // The "core" versions of monitor enter and exit reside in this file.
  57 // The interpreter and compilers contain specialized transliterated
  58 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  59 // for instance.  If you make changes here, make sure to modify the
  60 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  61 //
  62 // -----------------------------------------------------------------------------
  63 
  64 #ifdef DTRACE_ENABLED
  65 
  66 // Only bother with this argument setup if dtrace is available
  67 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  68 
  69 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  70   char* bytes = NULL;                                                      \
  71   int len = 0;                                                             \
  72   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  73   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  74   if (klassname != NULL) {                                                 \
  75     bytes = (char*)klassname->bytes();                                     \
  76     len = klassname->utf8_length();                                        \
  77   }
  78 
  79 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  80   {                                                                        \
  81     if (DTraceMonitorProbes) {                                             \
  82       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  83       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  84                            (uintptr_t)(monitor), bytes, len, (millis));    \
  85     }                                                                      \
  86   }
  87 
  88 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  89 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  90 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  91 
  92 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  93   {                                                                        \
  94     if (DTraceMonitorProbes) {                                             \
  95       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  96       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  97                                     (uintptr_t)(monitor), bytes, len);     \
  98     }                                                                      \
  99   }
 100 
 101 #else //  ndef DTRACE_ENABLED
 102 
 103 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 104 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 105 
 106 #endif // ndef DTRACE_ENABLED
 107 
 108 // This exists only as a workaround of dtrace bug 6254741
 109 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 110   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 111   return 0;
 112 }
 113 
 114 #define NINFLATIONLOCKS 256
 115 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 116 
 117 // global list of blocks of monitors
 118 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 119 // global monitor free list
 120 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 121 // global monitor in-use list, for moribund threads,
 122 // monitors they inflated need to be scanned for deflation
 123 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 124 // count of entries in gOmInUseList
 125 int ObjectSynchronizer::gOmInUseCount = 0;
 126 
 127 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 128 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 129 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 130 
 131 static void post_monitor_inflate_event(EventJavaMonitorInflate&,
 132                                        const oop,
 133                                        const ObjectSynchronizer::InflateCause);
 134 
 135 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 136 
 137 
 138 // =====================> Quick functions
 139 
 140 // The quick_* forms are special fast-path variants used to improve
 141 // performance.  In the simplest case, a "quick_*" implementation could
 142 // simply return false, in which case the caller will perform the necessary
 143 // state transitions and call the slow-path form.
 144 // The fast-path is designed to handle frequently arising cases in an efficient
 145 // manner and is just a degenerate "optimistic" variant of the slow-path.
 146 // returns true  -- to indicate the call was satisfied.
 147 // returns false -- to indicate the call needs the services of the slow-path.
 148 // A no-loitering ordinance is in effect for code in the quick_* family
 149 // operators: safepoints or indefinite blocking (blocking that might span a
 150 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 151 // entry.
 152 //
 153 // Consider: An interesting optimization is to have the JIT recognize the
 154 // following common idiom:
 155 //   synchronized (someobj) { .... ; notify(); }
 156 // That is, we find a notify() or notifyAll() call that immediately precedes
 157 // the monitorexit operation.  In that case the JIT could fuse the operations
 158 // into a single notifyAndExit() runtime primitive.
 159 
 160 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 161   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 162   assert(self->is_Java_thread(), "invariant");
 163   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 164   NoSafepointVerifier nsv;
 165   if (obj == NULL) return false;  // slow-path for invalid obj
 166   const markOop mark = obj->mark();
 167 
 168   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 169     // Degenerate notify
 170     // stack-locked by caller so by definition the implied waitset is empty.
 171     return true;
 172   }
 173 
 174   if (mark->has_monitor()) {
 175     ObjectMonitor * const mon = mark->monitor();
 176     assert(mon->object() == obj, "invariant");
 177     if (mon->owner() != self) return false;  // slow-path for IMS exception
 178 
 179     if (mon->first_waiter() != NULL) {
 180       // We have one or more waiters. Since this is an inflated monitor
 181       // that we own, we can transfer one or more threads from the waitset
 182       // to the entrylist here and now, avoiding the slow-path.
 183       if (all) {
 184         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 185       } else {
 186         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 187       }
 188       int tally = 0;
 189       do {
 190         mon->INotify(self);
 191         ++tally;
 192       } while (mon->first_waiter() != NULL && all);
 193       OM_PERFDATA_OP(Notifications, inc(tally));
 194     }
 195     return true;
 196   }
 197 
 198   // biased locking and any other IMS exception states take the slow-path
 199   return false;
 200 }
 201 
 202 
 203 // The LockNode emitted directly at the synchronization site would have
 204 // been too big if it were to have included support for the cases of inflated
 205 // recursive enter and exit, so they go here instead.
 206 // Note that we can't safely call AsyncPrintJavaStack() from within
 207 // quick_enter() as our thread state remains _in_Java.
 208 
 209 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 210                                      BasicLock * lock) {
 211   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 212   assert(Self->is_Java_thread(), "invariant");
 213   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 214   NoSafepointVerifier nsv;
 215   if (obj == NULL) return false;       // Need to throw NPE
 216   const markOop mark = obj->mark();
 217 
 218   if (mark->has_monitor()) {
 219     ObjectMonitor * const m = mark->monitor();
 220     assert(m->object() == obj, "invariant");
 221     Thread * const owner = (Thread *) m->_owner;
 222 
 223     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 224     // and observability
 225     // Case: light contention possibly amenable to TLE
 226     // Case: TLE inimical operations such as nested/recursive synchronization
 227 
 228     if (owner == Self) {
 229       m->_recursions++;
 230       return true;
 231     }
 232 
 233     // This Java Monitor is inflated so obj's header will never be
 234     // displaced to this thread's BasicLock. Make the displaced header
 235     // non-NULL so this BasicLock is not seen as recursive nor as
 236     // being locked. We do this unconditionally so that this thread's
 237     // BasicLock cannot be mis-interpreted by any stack walkers. For
 238     // performance reasons, stack walkers generally first check for
 239     // Biased Locking in the object's header, the second check is for
 240     // stack-locking in the object's header, the third check is for
 241     // recursive stack-locking in the displaced header in the BasicLock,
 242     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 243     lock->set_displaced_header(markOopDesc::unused_mark());
 244 
 245     if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 246       assert(m->_recursions == 0, "invariant");
 247       assert(m->_owner == Self, "invariant");
 248       return true;
 249     }
 250   }
 251 
 252   // Note that we could inflate in quick_enter.
 253   // This is likely a useful optimization
 254   // Critically, in quick_enter() we must not:
 255   // -- perform bias revocation, or
 256   // -- block indefinitely, or
 257   // -- reach a safepoint
 258 
 259   return false;        // revert to slow-path
 260 }
 261 
 262 // -----------------------------------------------------------------------------
 263 //  Fast Monitor Enter/Exit
 264 // This the fast monitor enter. The interpreter and compiler use
 265 // some assembly copies of this code. Make sure update those code
 266 // if the following function is changed. The implementation is
 267 // extremely sensitive to race condition. Be careful.
 268 
 269 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 270                                     bool attempt_rebias, TRAPS) {
 271   if (UseBiasedLocking) {
 272     if (!SafepointSynchronize::is_at_safepoint()) {
 273       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 274       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 275         return;
 276       }
 277     } else {
 278       assert(!attempt_rebias, "can not rebias toward VM thread");
 279       BiasedLocking::revoke_at_safepoint(obj);
 280     }
 281     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 282   }
 283 
 284   slow_enter(obj, lock, THREAD);
 285 }
 286 
 287 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 288   markOop mark = object->mark();
 289   // We cannot check for Biased Locking if we are racing an inflation.
 290   assert(mark == markOopDesc::INFLATING() ||
 291          !mark->has_bias_pattern(), "should not see bias pattern here");
 292 
 293   markOop dhw = lock->displaced_header();
 294   if (dhw == NULL) {
 295     // If the displaced header is NULL, then this exit matches up with
 296     // a recursive enter. No real work to do here except for diagnostics.
 297 #ifndef PRODUCT
 298     if (mark != markOopDesc::INFLATING()) {
 299       // Only do diagnostics if we are not racing an inflation. Simply
 300       // exiting a recursive enter of a Java Monitor that is being
 301       // inflated is safe; see the has_monitor() comment below.
 302       assert(!mark->is_neutral(), "invariant");
 303       assert(!mark->has_locker() ||
 304              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 305       if (mark->has_monitor()) {
 306         // The BasicLock's displaced_header is marked as a recursive
 307         // enter and we have an inflated Java Monitor (ObjectMonitor).
 308         // This is a special case where the Java Monitor was inflated
 309         // after this thread entered the stack-lock recursively. When a
 310         // Java Monitor is inflated, we cannot safely walk the Java
 311         // Monitor owner's stack and update the BasicLocks because a
 312         // Java Monitor can be asynchronously inflated by a thread that
 313         // does not own the Java Monitor.
 314         ObjectMonitor * m = mark->monitor();
 315         assert(((oop)(m->object()))->mark() == mark, "invariant");
 316         assert(m->is_entered(THREAD), "invariant");
 317       }
 318     }
 319 #endif
 320     return;
 321   }
 322 
 323   if (mark == (markOop) lock) {
 324     // If the object is stack-locked by the current thread, try to
 325     // swing the displaced header from the BasicLock back to the mark.
 326     assert(dhw->is_neutral(), "invariant");
 327     if (object->cas_set_mark(dhw, mark) == mark) {
 328       TEVENT(fast_exit: release stack-lock);
 329       return;
 330     }
 331   }
 332 
 333   // We have to take the slow-path of possible inflation and then exit.
 334   ObjectSynchronizer::inflate(THREAD,
 335                               object,
 336                               inflate_cause_vm_internal)->exit(true, THREAD);
 337 }
 338 
 339 // -----------------------------------------------------------------------------
 340 // Interpreter/Compiler Slow Case
 341 // This routine is used to handle interpreter/compiler slow case
 342 // We don't need to use fast path here, because it must have been
 343 // failed in the interpreter/compiler code.
 344 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 345   markOop mark = obj->mark();
 346   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 347 
 348   if (mark->is_neutral()) {
 349     // Anticipate successful CAS -- the ST of the displaced mark must
 350     // be visible <= the ST performed by the CAS.
 351     lock->set_displaced_header(mark);
 352     if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 353       TEVENT(slow_enter: release stacklock);
 354       return;
 355     }
 356     // Fall through to inflate() ...
 357   } else if (mark->has_locker() &&
 358              THREAD->is_lock_owned((address)mark->locker())) {
 359     assert(lock != mark->locker(), "must not re-lock the same lock");
 360     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 361     lock->set_displaced_header(NULL);
 362     return;
 363   }
 364 
 365   // The object header will never be displaced to this lock,
 366   // so it does not matter what the value is, except that it
 367   // must be non-zero to avoid looking like a re-entrant lock,
 368   // and must not look locked either.
 369   lock->set_displaced_header(markOopDesc::unused_mark());
 370   ObjectSynchronizer::inflate(THREAD,
 371                               obj(),
 372                               inflate_cause_monitor_enter)->enter(THREAD);
 373 }
 374 
 375 // This routine is used to handle interpreter/compiler slow case
 376 // We don't need to use fast path here, because it must have
 377 // failed in the interpreter/compiler code. Simply use the heavy
 378 // weight monitor should be ok, unless someone find otherwise.
 379 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 380   fast_exit(object, lock, THREAD);
 381 }
 382 
 383 // -----------------------------------------------------------------------------
 384 // Class Loader  support to workaround deadlocks on the class loader lock objects
 385 // Also used by GC
 386 // complete_exit()/reenter() are used to wait on a nested lock
 387 // i.e. to give up an outer lock completely and then re-enter
 388 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 389 //  1) complete_exit lock1 - saving recursion count
 390 //  2) wait on lock2
 391 //  3) when notified on lock2, unlock lock2
 392 //  4) reenter lock1 with original recursion count
 393 //  5) lock lock2
 394 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 395 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 396   TEVENT(complete_exit);
 397   if (UseBiasedLocking) {
 398     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 399     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 400   }
 401 
 402   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 403                                                        obj(),
 404                                                        inflate_cause_vm_internal);
 405 
 406   return monitor->complete_exit(THREAD);
 407 }
 408 
 409 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 410 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 411   TEVENT(reenter);
 412   if (UseBiasedLocking) {
 413     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 414     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 415   }
 416 
 417   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 418                                                        obj(),
 419                                                        inflate_cause_vm_internal);
 420 
 421   monitor->reenter(recursion, THREAD);
 422 }
 423 // -----------------------------------------------------------------------------
 424 // JNI locks on java objects
 425 // NOTE: must use heavy weight monitor to handle jni monitor enter
 426 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 427   // the current locking is from JNI instead of Java code
 428   TEVENT(jni_enter);
 429   if (UseBiasedLocking) {
 430     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 431     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 432   }
 433   THREAD->set_current_pending_monitor_is_from_java(false);
 434   ObjectSynchronizer::inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
 435   THREAD->set_current_pending_monitor_is_from_java(true);
 436 }
 437 
 438 // NOTE: must use heavy weight monitor to handle jni monitor exit
 439 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 440   TEVENT(jni_exit);
 441   if (UseBiasedLocking) {
 442     Handle h_obj(THREAD, obj);
 443     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 444     obj = h_obj();
 445   }
 446   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 447 
 448   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 449                                                        obj,
 450                                                        inflate_cause_jni_exit);
 451   // If this thread has locked the object, exit the monitor.  Note:  can't use
 452   // monitor->check(CHECK); must exit even if an exception is pending.
 453   if (monitor->check(THREAD)) {
 454     monitor->exit(true, THREAD);
 455   }
 456 }
 457 
 458 // -----------------------------------------------------------------------------
 459 // Internal VM locks on java objects
 460 // standard constructor, allows locking failures
 461 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 462   _dolock = doLock;
 463   _thread = thread;
 464   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 465   _obj = obj;
 466 
 467   if (_dolock) {
 468     TEVENT(ObjectLocker);
 469 
 470     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 471   }
 472 }
 473 
 474 ObjectLocker::~ObjectLocker() {
 475   if (_dolock) {
 476     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 477   }
 478 }
 479 
 480 
 481 // -----------------------------------------------------------------------------
 482 //  Wait/Notify/NotifyAll
 483 // NOTE: must use heavy weight monitor to handle wait()
 484 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 485   if (UseBiasedLocking) {
 486     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 487     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 488   }
 489   if (millis < 0) {
 490     TEVENT(wait - throw IAX);
 491     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 492   }
 493   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 494                                                        obj(),
 495                                                        inflate_cause_wait);
 496 
 497   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 498   monitor->wait(millis, true, THREAD);
 499 
 500   // This dummy call is in place to get around dtrace bug 6254741.  Once
 501   // that's fixed we can uncomment the following line, remove the call
 502   // and change this function back into a "void" func.
 503   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 504   return dtrace_waited_probe(monitor, obj, THREAD);
 505 }
 506 
 507 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 508   if (UseBiasedLocking) {
 509     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 510     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 511   }
 512   if (millis < 0) {
 513     TEVENT(wait - throw IAX);
 514     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 515   }
 516   ObjectSynchronizer::inflate(THREAD,
 517                               obj(),
 518                               inflate_cause_wait)->wait(millis, false, THREAD);
 519 }
 520 
 521 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 522   if (UseBiasedLocking) {
 523     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 524     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 525   }
 526 
 527   markOop mark = obj->mark();
 528   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 529     return;
 530   }
 531   ObjectSynchronizer::inflate(THREAD,
 532                               obj(),
 533                               inflate_cause_notify)->notify(THREAD);
 534 }
 535 
 536 // NOTE: see comment of notify()
 537 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 538   if (UseBiasedLocking) {
 539     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 540     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 541   }
 542 
 543   markOop mark = obj->mark();
 544   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 545     return;
 546   }
 547   ObjectSynchronizer::inflate(THREAD,
 548                               obj(),
 549                               inflate_cause_notify)->notifyAll(THREAD);
 550 }
 551 
 552 // -----------------------------------------------------------------------------
 553 // Hash Code handling
 554 //
 555 // Performance concern:
 556 // OrderAccess::storestore() calls release() which at one time stored 0
 557 // into the global volatile OrderAccess::dummy variable. This store was
 558 // unnecessary for correctness. Many threads storing into a common location
 559 // causes considerable cache migration or "sloshing" on large SMP systems.
 560 // As such, I avoided using OrderAccess::storestore(). In some cases
 561 // OrderAccess::fence() -- which incurs local latency on the executing
 562 // processor -- is a better choice as it scales on SMP systems.
 563 //
 564 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 565 // a discussion of coherency costs. Note that all our current reference
 566 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 567 // x64, and SPARC.
 568 //
 569 // As a general policy we use "volatile" to control compiler-based reordering
 570 // and explicit fences (barriers) to control for architectural reordering
 571 // performed by the CPU(s) or platform.
 572 
 573 struct SharedGlobals {
 574   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 575   // These are highly shared mostly-read variables.
 576   // To avoid false-sharing they need to be the sole occupants of a cache line.
 577   volatile int stwRandom;
 578   volatile int stwCycle;
 579   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 580   // Hot RW variable -- Sequester to avoid false-sharing
 581   volatile int hcSequence;
 582   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 583 };
 584 
 585 static SharedGlobals GVars;
 586 static int MonitorScavengeThreshold = 1000000;
 587 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 588 
 589 static markOop ReadStableMark(oop obj) {
 590   markOop mark = obj->mark();
 591   if (!mark->is_being_inflated()) {
 592     return mark;       // normal fast-path return
 593   }
 594 
 595   int its = 0;
 596   for (;;) {
 597     markOop mark = obj->mark();
 598     if (!mark->is_being_inflated()) {
 599       return mark;    // normal fast-path return
 600     }
 601 
 602     // The object is being inflated by some other thread.
 603     // The caller of ReadStableMark() must wait for inflation to complete.
 604     // Avoid live-lock
 605     // TODO: consider calling SafepointSynchronize::do_call_back() while
 606     // spinning to see if there's a safepoint pending.  If so, immediately
 607     // yielding or blocking would be appropriate.  Avoid spinning while
 608     // there is a safepoint pending.
 609     // TODO: add inflation contention performance counters.
 610     // TODO: restrict the aggregate number of spinners.
 611 
 612     ++its;
 613     if (its > 10000 || !os::is_MP()) {
 614       if (its & 1) {
 615         os::naked_yield();
 616         TEVENT(Inflate: INFLATING - yield);
 617       } else {
 618         // Note that the following code attenuates the livelock problem but is not
 619         // a complete remedy.  A more complete solution would require that the inflating
 620         // thread hold the associated inflation lock.  The following code simply restricts
 621         // the number of spinners to at most one.  We'll have N-2 threads blocked
 622         // on the inflationlock, 1 thread holding the inflation lock and using
 623         // a yield/park strategy, and 1 thread in the midst of inflation.
 624         // A more refined approach would be to change the encoding of INFLATING
 625         // to allow encapsulation of a native thread pointer.  Threads waiting for
 626         // inflation to complete would use CAS to push themselves onto a singly linked
 627         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 628         // and calling park().  When inflation was complete the thread that accomplished inflation
 629         // would detach the list and set the markword to inflated with a single CAS and
 630         // then for each thread on the list, set the flag and unpark() the thread.
 631         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 632         // wakes at most one thread whereas we need to wake the entire list.
 633         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 634         int YieldThenBlock = 0;
 635         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 636         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 637         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 638         while (obj->mark() == markOopDesc::INFLATING()) {
 639           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 640           // so we periodically call Self->_ParkEvent->park(1).
 641           // We use a mixed spin/yield/block mechanism.
 642           if ((YieldThenBlock++) >= 16) {
 643             Thread::current()->_ParkEvent->park(1);
 644           } else {
 645             os::naked_yield();
 646           }
 647         }
 648         Thread::muxRelease(gInflationLocks + ix);
 649         TEVENT(Inflate: INFLATING - yield/park);
 650       }
 651     } else {
 652       SpinPause();       // SMP-polite spinning
 653     }
 654   }
 655 }
 656 
 657 // hashCode() generation :
 658 //
 659 // Possibilities:
 660 // * MD5Digest of {obj,stwRandom}
 661 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 662 // * A DES- or AES-style SBox[] mechanism
 663 // * One of the Phi-based schemes, such as:
 664 //   2654435761 = 2^32 * Phi (golden ratio)
 665 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 666 // * A variation of Marsaglia's shift-xor RNG scheme.
 667 // * (obj ^ stwRandom) is appealing, but can result
 668 //   in undesirable regularity in the hashCode values of adjacent objects
 669 //   (objects allocated back-to-back, in particular).  This could potentially
 670 //   result in hashtable collisions and reduced hashtable efficiency.
 671 //   There are simple ways to "diffuse" the middle address bits over the
 672 //   generated hashCode values:
 673 
 674 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 675   intptr_t value = 0;
 676   if (hashCode == 0) {
 677     // This form uses global Park-Miller RNG.
 678     // On MP system we'll have lots of RW access to a global, so the
 679     // mechanism induces lots of coherency traffic.
 680     value = os::random();
 681   } else if (hashCode == 1) {
 682     // This variation has the property of being stable (idempotent)
 683     // between STW operations.  This can be useful in some of the 1-0
 684     // synchronization schemes.
 685     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 686     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 687   } else if (hashCode == 2) {
 688     value = 1;            // for sensitivity testing
 689   } else if (hashCode == 3) {
 690     value = ++GVars.hcSequence;
 691   } else if (hashCode == 4) {
 692     value = cast_from_oop<intptr_t>(obj);
 693   } else {
 694     // Marsaglia's xor-shift scheme with thread-specific state
 695     // This is probably the best overall implementation -- we'll
 696     // likely make this the default in future releases.
 697     unsigned t = Self->_hashStateX;
 698     t ^= (t << 11);
 699     Self->_hashStateX = Self->_hashStateY;
 700     Self->_hashStateY = Self->_hashStateZ;
 701     Self->_hashStateZ = Self->_hashStateW;
 702     unsigned v = Self->_hashStateW;
 703     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 704     Self->_hashStateW = v;
 705     value = v;
 706   }
 707 
 708   value &= markOopDesc::hash_mask;
 709   if (value == 0) value = 0xBAD;
 710   assert(value != markOopDesc::no_hash, "invariant");
 711   TEVENT(hashCode: GENERATE);
 712   return value;
 713 }
 714 
 715 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 716   if (UseBiasedLocking) {
 717     // NOTE: many places throughout the JVM do not expect a safepoint
 718     // to be taken here, in particular most operations on perm gen
 719     // objects. However, we only ever bias Java instances and all of
 720     // the call sites of identity_hash that might revoke biases have
 721     // been checked to make sure they can handle a safepoint. The
 722     // added check of the bias pattern is to avoid useless calls to
 723     // thread-local storage.
 724     if (obj->mark()->has_bias_pattern()) {
 725       // Handle for oop obj in case of STW safepoint
 726       Handle hobj(Self, obj);
 727       // Relaxing assertion for bug 6320749.
 728       assert(Universe::verify_in_progress() ||
 729              !SafepointSynchronize::is_at_safepoint(),
 730              "biases should not be seen by VM thread here");
 731       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 732       obj = hobj();
 733       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 734     }
 735   }
 736 
 737   // hashCode() is a heap mutator ...
 738   // Relaxing assertion for bug 6320749.
 739   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 740          !SafepointSynchronize::is_at_safepoint(), "invariant");
 741   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 742          Self->is_Java_thread() , "invariant");
 743   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 744          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 745 
 746   ObjectMonitor* monitor = NULL;
 747   markOop temp, test;
 748   intptr_t hash;
 749   markOop mark = ReadStableMark(obj);
 750 
 751   // object should remain ineligible for biased locking
 752   assert(!mark->has_bias_pattern(), "invariant");
 753 
 754   if (mark->is_neutral()) {
 755     hash = mark->hash();              // this is a normal header
 756     if (hash) {                       // if it has hash, just return it
 757       return hash;
 758     }
 759     hash = get_next_hash(Self, obj);  // allocate a new hash code
 760     temp = mark->copy_set_hash(hash); // merge the hash code into header
 761     // use (machine word version) atomic operation to install the hash
 762     test = obj->cas_set_mark(temp, mark);
 763     if (test == mark) {
 764       return hash;
 765     }
 766     // If atomic operation failed, we must inflate the header
 767     // into heavy weight monitor. We could add more code here
 768     // for fast path, but it does not worth the complexity.
 769   } else if (mark->has_monitor()) {
 770     monitor = mark->monitor();
 771     temp = monitor->header();
 772     assert(temp->is_neutral(), "invariant");
 773     hash = temp->hash();
 774     if (hash) {
 775       return hash;
 776     }
 777     // Skip to the following code to reduce code size
 778   } else if (Self->is_lock_owned((address)mark->locker())) {
 779     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 780     assert(temp->is_neutral(), "invariant");
 781     hash = temp->hash();              // by current thread, check if the displaced
 782     if (hash) {                       // header contains hash code
 783       return hash;
 784     }
 785     // WARNING:
 786     //   The displaced header is strictly immutable.
 787     // It can NOT be changed in ANY cases. So we have
 788     // to inflate the header into heavyweight monitor
 789     // even the current thread owns the lock. The reason
 790     // is the BasicLock (stack slot) will be asynchronously
 791     // read by other threads during the inflate() function.
 792     // Any change to stack may not propagate to other threads
 793     // correctly.
 794   }
 795 
 796   // Inflate the monitor to set hash code
 797   monitor = ObjectSynchronizer::inflate(Self, obj, inflate_cause_hash_code);
 798   // Load displaced header and check it has hash code
 799   mark = monitor->header();
 800   assert(mark->is_neutral(), "invariant");
 801   hash = mark->hash();
 802   if (hash == 0) {
 803     hash = get_next_hash(Self, obj);
 804     temp = mark->copy_set_hash(hash); // merge hash code into header
 805     assert(temp->is_neutral(), "invariant");
 806     test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 807     if (test != mark) {
 808       // The only update to the header in the monitor (outside GC)
 809       // is install the hash code. If someone add new usage of
 810       // displaced header, please update this code
 811       hash = test->hash();
 812       assert(test->is_neutral(), "invariant");
 813       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 814     }
 815   }
 816   // We finally get the hash
 817   return hash;
 818 }
 819 
 820 // Deprecated -- use FastHashCode() instead.
 821 
 822 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 823   return FastHashCode(Thread::current(), obj());
 824 }
 825 
 826 
 827 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 828                                                    Handle h_obj) {
 829   if (UseBiasedLocking) {
 830     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 831     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 832   }
 833 
 834   assert(thread == JavaThread::current(), "Can only be called on current thread");
 835   oop obj = h_obj();
 836 
 837   markOop mark = ReadStableMark(obj);
 838 
 839   // Uncontended case, header points to stack
 840   if (mark->has_locker()) {
 841     return thread->is_lock_owned((address)mark->locker());
 842   }
 843   // Contended case, header points to ObjectMonitor (tagged pointer)
 844   if (mark->has_monitor()) {
 845     ObjectMonitor* monitor = mark->monitor();
 846     return monitor->is_entered(thread) != 0;
 847   }
 848   // Unlocked case, header in place
 849   assert(mark->is_neutral(), "sanity check");
 850   return false;
 851 }
 852 
 853 // Be aware of this method could revoke bias of the lock object.
 854 // This method queries the ownership of the lock handle specified by 'h_obj'.
 855 // If the current thread owns the lock, it returns owner_self. If no
 856 // thread owns the lock, it returns owner_none. Otherwise, it will return
 857 // owner_other.
 858 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 859 (JavaThread *self, Handle h_obj) {
 860   // The caller must beware this method can revoke bias, and
 861   // revocation can result in a safepoint.
 862   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 863   assert(self->thread_state() != _thread_blocked, "invariant");
 864 
 865   // Possible mark states: neutral, biased, stack-locked, inflated
 866 
 867   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 868     // CASE: biased
 869     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 870     assert(!h_obj->mark()->has_bias_pattern(),
 871            "biases should be revoked by now");
 872   }
 873 
 874   assert(self == JavaThread::current(), "Can only be called on current thread");
 875   oop obj = h_obj();
 876   markOop mark = ReadStableMark(obj);
 877 
 878   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 879   if (mark->has_locker()) {
 880     return self->is_lock_owned((address)mark->locker()) ?
 881       owner_self : owner_other;
 882   }
 883 
 884   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 885   // The Object:ObjectMonitor relationship is stable as long as we're
 886   // not at a safepoint.
 887   if (mark->has_monitor()) {
 888     void * owner = mark->monitor()->_owner;
 889     if (owner == NULL) return owner_none;
 890     return (owner == self ||
 891             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 892   }
 893 
 894   // CASE: neutral
 895   assert(mark->is_neutral(), "sanity check");
 896   return owner_none;           // it's unlocked
 897 }
 898 
 899 // FIXME: jvmti should call this
 900 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 901   if (UseBiasedLocking) {
 902     if (SafepointSynchronize::is_at_safepoint()) {
 903       BiasedLocking::revoke_at_safepoint(h_obj);
 904     } else {
 905       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 906     }
 907     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 908   }
 909 
 910   oop obj = h_obj();
 911   address owner = NULL;
 912 
 913   markOop mark = ReadStableMark(obj);
 914 
 915   // Uncontended case, header points to stack
 916   if (mark->has_locker()) {
 917     owner = (address) mark->locker();
 918   }
 919 
 920   // Contended case, header points to ObjectMonitor (tagged pointer)
 921   if (mark->has_monitor()) {
 922     ObjectMonitor* monitor = mark->monitor();
 923     assert(monitor != NULL, "monitor should be non-null");
 924     owner = (address) monitor->owner();
 925   }
 926 
 927   if (owner != NULL) {
 928     // owning_thread_from_monitor_owner() may also return NULL here
 929     return Threads::owning_thread_from_monitor_owner(t_list, owner);
 930   }
 931 
 932   // Unlocked case, header in place
 933   // Cannot have assertion since this object may have been
 934   // locked by another thread when reaching here.
 935   // assert(mark->is_neutral(), "sanity check");
 936 
 937   return NULL;
 938 }
 939 
 940 // Visitors ...
 941 
 942 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 943   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 944   while (block != NULL) {
 945     assert(block->object() == CHAINMARKER, "must be a block header");
 946     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 947       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 948       oop object = (oop)mid->object();
 949       if (object != NULL) {
 950         closure->do_monitor(mid);
 951       }
 952     }
 953     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
 954   }
 955 }
 956 
 957 // Get the next block in the block list.
 958 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
 959   assert(block->object() == CHAINMARKER, "must be a block header");
 960   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
 961   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 962   return block;
 963 }
 964 
 965 static bool monitors_used_above_threshold() {
 966   if (gMonitorPopulation == 0) {
 967     return false;
 968   }
 969   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
 970   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
 971   return monitor_usage > MonitorUsedDeflationThreshold;
 972 }
 973 
 974 bool ObjectSynchronizer::is_cleanup_needed() {
 975   if (MonitorUsedDeflationThreshold > 0) {
 976     return monitors_used_above_threshold();
 977   }
 978   return false;
 979 }
 980 
 981 void ObjectSynchronizer::oops_do(OopClosure* f) {
 982   if (MonitorInUseLists) {
 983     // When using thread local monitor lists, we only scan the
 984     // global used list here (for moribund threads), and
 985     // the thread-local monitors in Thread::oops_do().
 986     global_used_oops_do(f);
 987   } else {
 988     global_oops_do(f);
 989   }
 990 }
 991 
 992 void ObjectSynchronizer::global_oops_do(OopClosure* f) {
 993   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 994   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 995   for (; block != NULL; block = next(block)) {
 996     assert(block->object() == CHAINMARKER, "must be a block header");
 997     for (int i = 1; i < _BLOCKSIZE; i++) {
 998       ObjectMonitor* mid = (ObjectMonitor *)&block[i];
 999       if (mid->object() != NULL) {
1000         f->do_oop((oop*)mid->object_addr());
1001       }
1002     }
1003   }
1004 }
1005 
1006 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1007   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1008   list_oops_do(gOmInUseList, f);
1009 }
1010 
1011 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1012   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1013   list_oops_do(thread->omInUseList, f);
1014 }
1015 
1016 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1017   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1018   ObjectMonitor* mid;
1019   for (mid = list; mid != NULL; mid = mid->FreeNext) {
1020     if (mid->object() != NULL) {
1021       f->do_oop((oop*)mid->object_addr());
1022     }
1023   }
1024 }
1025 
1026 
1027 // -----------------------------------------------------------------------------
1028 // ObjectMonitor Lifecycle
1029 // -----------------------
1030 // Inflation unlinks monitors from the global gFreeList and
1031 // associates them with objects.  Deflation -- which occurs at
1032 // STW-time -- disassociates idle monitors from objects.  Such
1033 // scavenged monitors are returned to the gFreeList.
1034 //
1035 // The global list is protected by gListLock.  All the critical sections
1036 // are short and operate in constant-time.
1037 //
1038 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1039 //
1040 // Lifecycle:
1041 // --   unassigned and on the global free list
1042 // --   unassigned and on a thread's private omFreeList
1043 // --   assigned to an object.  The object is inflated and the mark refers
1044 //      to the objectmonitor.
1045 
1046 
1047 // Constraining monitor pool growth via MonitorBound ...
1048 //
1049 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1050 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1051 // an inordinate number of monitors in circulation.
1052 // To avoid that scenario we can artificially induce a STW safepoint
1053 // if the pool appears to be growing past some reasonable bound.
1054 // Generally we favor time in space-time tradeoffs, but as there's no
1055 // natural back-pressure on the # of extant monitors we need to impose some
1056 // type of limit.  Beware that if MonitorBound is set to too low a value
1057 // we could just loop. In addition, if MonitorBound is set to a low value
1058 // we'll incur more safepoints, which are harmful to performance.
1059 // See also: GuaranteedSafepointInterval
1060 //
1061 // The current implementation uses asynchronous VM operations.
1062 
1063 static void InduceScavenge(Thread * Self, const char * Whence) {
1064   // Induce STW safepoint to trim monitors
1065   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1066   // More precisely, trigger an asynchronous STW safepoint as the number
1067   // of active monitors passes the specified threshold.
1068   // TODO: assert thread state is reasonable
1069 
1070   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1071     if (ObjectMonitor::Knob_Verbose) {
1072       tty->print_cr("INFO: Monitor scavenge - Induced STW @%s (%d)",
1073                     Whence, ForceMonitorScavenge) ;
1074       tty->flush();
1075     }
1076     // Induce a 'null' safepoint to scavenge monitors
1077     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1078     // to the VMthread and have a lifespan longer than that of this activation record.
1079     // The VMThread will delete the op when completed.
1080     VMThread::execute(new VM_ScavengeMonitors());
1081 
1082     if (ObjectMonitor::Knob_Verbose) {
1083       tty->print_cr("INFO: Monitor scavenge - STW posted @%s (%d)",
1084                     Whence, ForceMonitorScavenge) ;
1085       tty->flush();
1086     }
1087   }
1088 }
1089 
1090 void ObjectSynchronizer::verifyInUse(Thread *Self) {
1091   ObjectMonitor* mid;
1092   int in_use_tally = 0;
1093   for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
1094     in_use_tally++;
1095   }
1096   assert(in_use_tally == Self->omInUseCount, "in-use count off");
1097 
1098   int free_tally = 0;
1099   for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
1100     free_tally++;
1101   }
1102   assert(free_tally == Self->omFreeCount, "free count off");
1103 }
1104 
1105 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) {
1106   // A large MAXPRIVATE value reduces both list lock contention
1107   // and list coherency traffic, but also tends to increase the
1108   // number of objectMonitors in circulation as well as the STW
1109   // scavenge costs.  As usual, we lean toward time in space-time
1110   // tradeoffs.
1111   const int MAXPRIVATE = 1024;
1112   for (;;) {
1113     ObjectMonitor * m;
1114 
1115     // 1: try to allocate from the thread's local omFreeList.
1116     // Threads will attempt to allocate first from their local list, then
1117     // from the global list, and only after those attempts fail will the thread
1118     // attempt to instantiate new monitors.   Thread-local free lists take
1119     // heat off the gListLock and improve allocation latency, as well as reducing
1120     // coherency traffic on the shared global list.
1121     m = Self->omFreeList;
1122     if (m != NULL) {
1123       Self->omFreeList = m->FreeNext;
1124       Self->omFreeCount--;
1125       // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
1126       guarantee(m->object() == NULL, "invariant");
1127       if (MonitorInUseLists) {
1128         m->FreeNext = Self->omInUseList;
1129         Self->omInUseList = m;
1130         Self->omInUseCount++;
1131         if (ObjectMonitor::Knob_VerifyInUse) {
1132           verifyInUse(Self);
1133         }
1134       } else {
1135         m->FreeNext = NULL;
1136       }
1137       return m;
1138     }
1139 
1140     // 2: try to allocate from the global gFreeList
1141     // CONSIDER: use muxTry() instead of muxAcquire().
1142     // If the muxTry() fails then drop immediately into case 3.
1143     // If we're using thread-local free lists then try
1144     // to reprovision the caller's free list.
1145     if (gFreeList != NULL) {
1146       // Reprovision the thread's omFreeList.
1147       // Use bulk transfers to reduce the allocation rate and heat
1148       // on various locks.
1149       Thread::muxAcquire(&gListLock, "omAlloc");
1150       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1151         gMonitorFreeCount--;
1152         ObjectMonitor * take = gFreeList;
1153         gFreeList = take->FreeNext;
1154         guarantee(take->object() == NULL, "invariant");
1155         guarantee(!take->is_busy(), "invariant");
1156         take->Recycle();
1157         omRelease(Self, take, false);
1158       }
1159       Thread::muxRelease(&gListLock);
1160       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1161       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1162       TEVENT(omFirst - reprovision);
1163 
1164       const int mx = MonitorBound;
1165       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1166         // We can't safely induce a STW safepoint from omAlloc() as our thread
1167         // state may not be appropriate for such activities and callers may hold
1168         // naked oops, so instead we defer the action.
1169         InduceScavenge(Self, "omAlloc");
1170       }
1171       continue;
1172     }
1173 
1174     // 3: allocate a block of new ObjectMonitors
1175     // Both the local and global free lists are empty -- resort to malloc().
1176     // In the current implementation objectMonitors are TSM - immortal.
1177     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1178     // each ObjectMonitor to start at the beginning of a cache line,
1179     // so we use align_up().
1180     // A better solution would be to use C++ placement-new.
1181     // BEWARE: As it stands currently, we don't run the ctors!
1182     assert(_BLOCKSIZE > 1, "invariant");
1183     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1184     PaddedEnd<ObjectMonitor> * temp;
1185     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1186     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1187                                                       mtInternal);
1188     temp = (PaddedEnd<ObjectMonitor> *)
1189              align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1190 
1191     // NOTE: (almost) no way to recover if allocation failed.
1192     // We might be able to induce a STW safepoint and scavenge enough
1193     // objectMonitors to permit progress.
1194     if (temp == NULL) {
1195       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1196                             "Allocate ObjectMonitors");
1197     }
1198     (void)memset((void *) temp, 0, neededsize);
1199 
1200     // Format the block.
1201     // initialize the linked list, each monitor points to its next
1202     // forming the single linked free list, the very first monitor
1203     // will points to next block, which forms the block list.
1204     // The trick of using the 1st element in the block as gBlockList
1205     // linkage should be reconsidered.  A better implementation would
1206     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1207 
1208     for (int i = 1; i < _BLOCKSIZE; i++) {
1209       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1210     }
1211 
1212     // terminate the last monitor as the end of list
1213     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1214 
1215     // Element [0] is reserved for global list linkage
1216     temp[0].set_object(CHAINMARKER);
1217 
1218     // Consider carving out this thread's current request from the
1219     // block in hand.  This avoids some lock traffic and redundant
1220     // list activity.
1221 
1222     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1223     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1224     Thread::muxAcquire(&gListLock, "omAlloc [2]");
1225     gMonitorPopulation += _BLOCKSIZE-1;
1226     gMonitorFreeCount += _BLOCKSIZE-1;
1227 
1228     // Add the new block to the list of extant blocks (gBlockList).
1229     // The very first objectMonitor in a block is reserved and dedicated.
1230     // It serves as blocklist "next" linkage.
1231     temp[0].FreeNext = gBlockList;
1232     // There are lock-free uses of gBlockList so make sure that
1233     // the previous stores happen before we update gBlockList.
1234     OrderAccess::release_store(&gBlockList, temp);
1235 
1236     // Add the new string of objectMonitors to the global free list
1237     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1238     gFreeList = temp + 1;
1239     Thread::muxRelease(&gListLock);
1240     TEVENT(Allocate block of monitors);
1241   }
1242 }
1243 
1244 // Place "m" on the caller's private per-thread omFreeList.
1245 // In practice there's no need to clamp or limit the number of
1246 // monitors on a thread's omFreeList as the only time we'll call
1247 // omRelease is to return a monitor to the free list after a CAS
1248 // attempt failed.  This doesn't allow unbounded #s of monitors to
1249 // accumulate on a thread's free list.
1250 //
1251 // Key constraint: all ObjectMonitors on a thread's free list and the global
1252 // free list must have their object field set to null. This prevents the
1253 // scavenger -- deflate_idle_monitors -- from reclaiming them.
1254 
1255 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1256                                    bool fromPerThreadAlloc) {
1257   guarantee(m->object() == NULL, "invariant");
1258   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1259   // Remove from omInUseList
1260   if (MonitorInUseLists && fromPerThreadAlloc) {
1261     ObjectMonitor* cur_mid_in_use = NULL;
1262     bool extracted = false;
1263     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1264       if (m == mid) {
1265         // extract from per-thread in-use list
1266         if (mid == Self->omInUseList) {
1267           Self->omInUseList = mid->FreeNext;
1268         } else if (cur_mid_in_use != NULL) {
1269           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1270         }
1271         extracted = true;
1272         Self->omInUseCount--;
1273         if (ObjectMonitor::Knob_VerifyInUse) {
1274           verifyInUse(Self);
1275         }
1276         break;
1277       }
1278     }
1279     assert(extracted, "Should have extracted from in-use list");
1280   }
1281 
1282   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1283   m->FreeNext = Self->omFreeList;
1284   Self->omFreeList = m;
1285   Self->omFreeCount++;
1286 }
1287 
1288 // Return the monitors of a moribund thread's local free list to
1289 // the global free list.  Typically a thread calls omFlush() when
1290 // it's dying.  We could also consider having the VM thread steal
1291 // monitors from threads that have not run java code over a few
1292 // consecutive STW safepoints.  Relatedly, we might decay
1293 // omFreeProvision at STW safepoints.
1294 //
1295 // Also return the monitors of a moribund thread's omInUseList to
1296 // a global gOmInUseList under the global list lock so these
1297 // will continue to be scanned.
1298 //
1299 // We currently call omFlush() from Threads::remove() _before the thread
1300 // has been excised from the thread list and is no longer a mutator.
1301 // This means that omFlush() can not run concurrently with a safepoint and
1302 // interleave with the scavenge operator. In particular, this ensures that
1303 // the thread's monitors are scanned by a GC safepoint, either via
1304 // Thread::oops_do() (if safepoint happens before omFlush()) or via
1305 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1306 // monitors have been transferred to the global in-use list).
1307 
1308 void ObjectSynchronizer::omFlush(Thread * Self) {
1309   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1310   Self->omFreeList = NULL;
1311   ObjectMonitor * tail = NULL;
1312   int tally = 0;
1313   if (list != NULL) {
1314     ObjectMonitor * s;
1315     // The thread is going away, the per-thread free monitors
1316     // are freed via set_owner(NULL)
1317     // Link them to tail, which will be linked into the global free list
1318     // gFreeList below, under the gListLock
1319     for (s = list; s != NULL; s = s->FreeNext) {
1320       tally++;
1321       tail = s;
1322       guarantee(s->object() == NULL, "invariant");
1323       guarantee(!s->is_busy(), "invariant");
1324       s->set_owner(NULL);   // redundant but good hygiene
1325       TEVENT(omFlush - Move one);
1326     }
1327     guarantee(tail != NULL && list != NULL, "invariant");
1328   }
1329 
1330   ObjectMonitor * inUseList = Self->omInUseList;
1331   ObjectMonitor * inUseTail = NULL;
1332   int inUseTally = 0;
1333   if (inUseList != NULL) {
1334     Self->omInUseList = NULL;
1335     ObjectMonitor *cur_om;
1336     // The thread is going away, however the omInUseList inflated
1337     // monitors may still be in-use by other threads.
1338     // Link them to inUseTail, which will be linked into the global in-use list
1339     // gOmInUseList below, under the gListLock
1340     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1341       inUseTail = cur_om;
1342       inUseTally++;
1343     }
1344     assert(Self->omInUseCount == inUseTally, "in-use count off");
1345     Self->omInUseCount = 0;
1346     guarantee(inUseTail != NULL && inUseList != NULL, "invariant");
1347   }
1348 
1349   Thread::muxAcquire(&gListLock, "omFlush");
1350   if (tail != NULL) {
1351     tail->FreeNext = gFreeList;
1352     gFreeList = list;
1353     gMonitorFreeCount += tally;
1354     assert(Self->omFreeCount == tally, "free-count off");
1355     Self->omFreeCount = 0;
1356   }
1357 
1358   if (inUseTail != NULL) {
1359     inUseTail->FreeNext = gOmInUseList;
1360     gOmInUseList = inUseList;
1361     gOmInUseCount += inUseTally;
1362   }
1363 
1364   Thread::muxRelease(&gListLock);
1365   TEVENT(omFlush);
1366 }
1367 
1368 // Fast path code shared by multiple functions
1369 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1370   markOop mark = obj->mark();
1371   if (mark->has_monitor()) {
1372     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1373     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1374     return mark->monitor();
1375   }
1376   return ObjectSynchronizer::inflate(Thread::current(),
1377                                      obj,
1378                                      inflate_cause_vm_internal);
1379 }
1380 
1381 ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self,
1382                                                      oop object,
1383                                                      const InflateCause cause) {
1384 
1385   // Inflate mutates the heap ...
1386   // Relaxing assertion for bug 6320749.
1387   assert(Universe::verify_in_progress() ||
1388          !SafepointSynchronize::is_at_safepoint(), "invariant");
1389 
1390   EventJavaMonitorInflate event;
1391 
1392   for (;;) {
1393     const markOop mark = object->mark();
1394     assert(!mark->has_bias_pattern(), "invariant");
1395 
1396     // The mark can be in one of the following states:
1397     // *  Inflated     - just return
1398     // *  Stack-locked - coerce it to inflated
1399     // *  INFLATING    - busy wait for conversion to complete
1400     // *  Neutral      - aggressively inflate the object.
1401     // *  BIASED       - Illegal.  We should never see this
1402 
1403     // CASE: inflated
1404     if (mark->has_monitor()) {
1405       ObjectMonitor * inf = mark->monitor();
1406       assert(inf->header()->is_neutral(), "invariant");
1407       assert(inf->object() == object, "invariant");
1408       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1409       return inf;
1410     }
1411 
1412     // CASE: inflation in progress - inflating over a stack-lock.
1413     // Some other thread is converting from stack-locked to inflated.
1414     // Only that thread can complete inflation -- other threads must wait.
1415     // The INFLATING value is transient.
1416     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1417     // We could always eliminate polling by parking the thread on some auxiliary list.
1418     if (mark == markOopDesc::INFLATING()) {
1419       TEVENT(Inflate: spin while INFLATING);
1420       ReadStableMark(object);
1421       continue;
1422     }
1423 
1424     // CASE: stack-locked
1425     // Could be stack-locked either by this thread or by some other thread.
1426     //
1427     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1428     // to install INFLATING into the mark word.  We originally installed INFLATING,
1429     // allocated the objectmonitor, and then finally STed the address of the
1430     // objectmonitor into the mark.  This was correct, but artificially lengthened
1431     // the interval in which INFLATED appeared in the mark, thus increasing
1432     // the odds of inflation contention.
1433     //
1434     // We now use per-thread private objectmonitor free lists.
1435     // These list are reprovisioned from the global free list outside the
1436     // critical INFLATING...ST interval.  A thread can transfer
1437     // multiple objectmonitors en-mass from the global free list to its local free list.
1438     // This reduces coherency traffic and lock contention on the global free list.
1439     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1440     // before or after the CAS(INFLATING) operation.
1441     // See the comments in omAlloc().
1442 
1443     if (mark->has_locker()) {
1444       ObjectMonitor * m = omAlloc(Self);
1445       // Optimistically prepare the objectmonitor - anticipate successful CAS
1446       // We do this before the CAS in order to minimize the length of time
1447       // in which INFLATING appears in the mark.
1448       m->Recycle();
1449       m->_Responsible  = NULL;
1450       m->_recursions   = 0;
1451       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1452 
1453       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1454       if (cmp != mark) {
1455         omRelease(Self, m, true);
1456         continue;       // Interference -- just retry
1457       }
1458 
1459       // We've successfully installed INFLATING (0) into the mark-word.
1460       // This is the only case where 0 will appear in a mark-word.
1461       // Only the singular thread that successfully swings the mark-word
1462       // to 0 can perform (or more precisely, complete) inflation.
1463       //
1464       // Why do we CAS a 0 into the mark-word instead of just CASing the
1465       // mark-word from the stack-locked value directly to the new inflated state?
1466       // Consider what happens when a thread unlocks a stack-locked object.
1467       // It attempts to use CAS to swing the displaced header value from the
1468       // on-stack basiclock back into the object header.  Recall also that the
1469       // header value (hashcode, etc) can reside in (a) the object header, or
1470       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1471       // header in an objectMonitor.  The inflate() routine must copy the header
1472       // value from the basiclock on the owner's stack to the objectMonitor, all
1473       // the while preserving the hashCode stability invariants.  If the owner
1474       // decides to release the lock while the value is 0, the unlock will fail
1475       // and control will eventually pass from slow_exit() to inflate.  The owner
1476       // will then spin, waiting for the 0 value to disappear.   Put another way,
1477       // the 0 causes the owner to stall if the owner happens to try to
1478       // drop the lock (restoring the header from the basiclock to the object)
1479       // while inflation is in-progress.  This protocol avoids races that might
1480       // would otherwise permit hashCode values to change or "flicker" for an object.
1481       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1482       // 0 serves as a "BUSY" inflate-in-progress indicator.
1483 
1484 
1485       // fetch the displaced mark from the owner's stack.
1486       // The owner can't die or unwind past the lock while our INFLATING
1487       // object is in the mark.  Furthermore the owner can't complete
1488       // an unlock on the object, either.
1489       markOop dmw = mark->displaced_mark_helper();
1490       assert(dmw->is_neutral(), "invariant");
1491 
1492       // Setup monitor fields to proper values -- prepare the monitor
1493       m->set_header(dmw);
1494 
1495       // Optimization: if the mark->locker stack address is associated
1496       // with this thread we could simply set m->_owner = Self.
1497       // Note that a thread can inflate an object
1498       // that it has stack-locked -- as might happen in wait() -- directly
1499       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1500       m->set_owner(mark->locker());
1501       m->set_object(object);
1502       // TODO-FIXME: assert BasicLock->dhw != 0.
1503 
1504       // Must preserve store ordering. The monitor state must
1505       // be stable at the time of publishing the monitor address.
1506       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1507       object->release_set_mark(markOopDesc::encode(m));
1508 
1509       // Hopefully the performance counters are allocated on distinct cache lines
1510       // to avoid false sharing on MP systems ...
1511       OM_PERFDATA_OP(Inflations, inc());
1512       TEVENT(Inflate: overwrite stacklock);
1513       if (log_is_enabled(Debug, monitorinflation)) {
1514         if (object->is_instance()) {
1515           ResourceMark rm;
1516           log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1517                                       p2i(object), p2i(object->mark()),
1518                                       object->klass()->external_name());
1519         }
1520       }
1521       if (event.should_commit()) {
1522         post_monitor_inflate_event(event, object, cause);
1523       }
1524       return m;
1525     }
1526 
1527     // CASE: neutral
1528     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1529     // If we know we're inflating for entry it's better to inflate by swinging a
1530     // pre-locked objectMonitor pointer into the object header.   A successful
1531     // CAS inflates the object *and* confers ownership to the inflating thread.
1532     // In the current implementation we use a 2-step mechanism where we CAS()
1533     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1534     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1535     // would be useful.
1536 
1537     assert(mark->is_neutral(), "invariant");
1538     ObjectMonitor * m = omAlloc(Self);
1539     // prepare m for installation - set monitor to initial state
1540     m->Recycle();
1541     m->set_header(mark);
1542     m->set_owner(NULL);
1543     m->set_object(object);
1544     m->_recursions   = 0;
1545     m->_Responsible  = NULL;
1546     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1547 
1548     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1549       m->set_object(NULL);
1550       m->set_owner(NULL);
1551       m->Recycle();
1552       omRelease(Self, m, true);
1553       m = NULL;
1554       continue;
1555       // interference - the markword changed - just retry.
1556       // The state-transitions are one-way, so there's no chance of
1557       // live-lock -- "Inflated" is an absorbing state.
1558     }
1559 
1560     // Hopefully the performance counters are allocated on distinct
1561     // cache lines to avoid false sharing on MP systems ...
1562     OM_PERFDATA_OP(Inflations, inc());
1563     TEVENT(Inflate: overwrite neutral);
1564     if (log_is_enabled(Debug, monitorinflation)) {
1565       if (object->is_instance()) {
1566         ResourceMark rm;
1567         log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1568                                     p2i(object), p2i(object->mark()),
1569                                     object->klass()->external_name());
1570       }
1571     }
1572     if (event.should_commit()) {
1573       post_monitor_inflate_event(event, object, cause);
1574     }
1575     return m;
1576   }
1577 }
1578 
1579 
1580 // Deflate_idle_monitors() is called at all safepoints, immediately
1581 // after all mutators are stopped, but before any objects have moved.
1582 // It traverses the list of known monitors, deflating where possible.
1583 // The scavenged monitor are returned to the monitor free list.
1584 //
1585 // Beware that we scavenge at *every* stop-the-world point.
1586 // Having a large number of monitors in-circulation negatively
1587 // impacts the performance of some applications (e.g., PointBase).
1588 // Broadly, we want to minimize the # of monitors in circulation.
1589 //
1590 // We have added a flag, MonitorInUseLists, which creates a list
1591 // of active monitors for each thread. deflate_idle_monitors()
1592 // only scans the per-thread in-use lists. omAlloc() puts all
1593 // assigned monitors on the per-thread list. deflate_idle_monitors()
1594 // returns the non-busy monitors to the global free list.
1595 // When a thread dies, omFlush() adds the list of active monitors for
1596 // that thread to a global gOmInUseList acquiring the
1597 // global list lock. deflate_idle_monitors() acquires the global
1598 // list lock to scan for non-busy monitors to the global free list.
1599 // An alternative could have used a single global in-use list. The
1600 // downside would have been the additional cost of acquiring the global list lock
1601 // for every omAlloc().
1602 //
1603 // Perversely, the heap size -- and thus the STW safepoint rate --
1604 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1605 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1606 // This is an unfortunate aspect of this design.
1607 
1608 enum ManifestConstants {
1609   ClearResponsibleAtSTW = 0
1610 };
1611 
1612 // Deflate a single monitor if not in-use
1613 // Return true if deflated, false if in-use
1614 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1615                                          ObjectMonitor** freeHeadp,
1616                                          ObjectMonitor** freeTailp) {
1617   bool deflated;
1618   // Normal case ... The monitor is associated with obj.
1619   guarantee(obj->mark() == markOopDesc::encode(mid), "invariant");
1620   guarantee(mid == obj->mark()->monitor(), "invariant");
1621   guarantee(mid->header()->is_neutral(), "invariant");
1622 
1623   if (mid->is_busy()) {
1624     if (ClearResponsibleAtSTW) mid->_Responsible = NULL;
1625     deflated = false;
1626   } else {
1627     // Deflate the monitor if it is no longer being used
1628     // It's idle - scavenge and return to the global free list
1629     // plain old deflation ...
1630     TEVENT(deflate_idle_monitors - scavenge1);
1631     if (log_is_enabled(Debug, monitorinflation)) {
1632       if (obj->is_instance()) {
1633         ResourceMark rm;
1634         log_debug(monitorinflation)("Deflating object " INTPTR_FORMAT " , "
1635                                     "mark " INTPTR_FORMAT " , type %s",
1636                                     p2i(obj), p2i(obj->mark()),
1637                                     obj->klass()->external_name());
1638       }
1639     }
1640 
1641     // Restore the header back to obj
1642     obj->release_set_mark(mid->header());
1643     mid->clear();
1644 
1645     assert(mid->object() == NULL, "invariant");
1646 
1647     // Move the object to the working free list defined by freeHeadp, freeTailp
1648     if (*freeHeadp == NULL) *freeHeadp = mid;
1649     if (*freeTailp != NULL) {
1650       ObjectMonitor * prevtail = *freeTailp;
1651       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1652       prevtail->FreeNext = mid;
1653     }
1654     *freeTailp = mid;
1655     deflated = true;
1656   }
1657   return deflated;
1658 }
1659 
1660 // Walk a given monitor list, and deflate idle monitors
1661 // The given list could be a per-thread list or a global list
1662 // Caller acquires gListLock.
1663 //
1664 // In the case of parallel processing of thread local monitor lists,
1665 // work is done by Threads::parallel_threads_do() which ensures that
1666 // each Java thread is processed by exactly one worker thread, and
1667 // thus avoid conflicts that would arise when worker threads would
1668 // process the same monitor lists concurrently.
1669 //
1670 // See also ParallelSPCleanupTask and
1671 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1672 // Threads::parallel_java_threads_do() in thread.cpp.
1673 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1674                                              ObjectMonitor** freeHeadp,
1675                                              ObjectMonitor** freeTailp) {
1676   ObjectMonitor* mid;
1677   ObjectMonitor* next;
1678   ObjectMonitor* cur_mid_in_use = NULL;
1679   int deflated_count = 0;
1680 
1681   for (mid = *listHeadp; mid != NULL;) {
1682     oop obj = (oop) mid->object();
1683     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1684       // if deflate_monitor succeeded,
1685       // extract from per-thread in-use list
1686       if (mid == *listHeadp) {
1687         *listHeadp = mid->FreeNext;
1688       } else if (cur_mid_in_use != NULL) {
1689         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1690       }
1691       next = mid->FreeNext;
1692       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1693       mid = next;
1694       deflated_count++;
1695     } else {
1696       cur_mid_in_use = mid;
1697       mid = mid->FreeNext;
1698     }
1699   }
1700   return deflated_count;
1701 }
1702 
1703 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1704   counters->nInuse = 0;          // currently associated with objects
1705   counters->nInCirculation = 0;  // extant
1706   counters->nScavenged = 0;      // reclaimed
1707 }
1708 
1709 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
1710   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1711   bool deflated = false;
1712 
1713   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1714   ObjectMonitor * freeTailp = NULL;
1715 
1716   TEVENT(deflate_idle_monitors);
1717   // Prevent omFlush from changing mids in Thread dtor's during deflation
1718   // And in case the vm thread is acquiring a lock during a safepoint
1719   // See e.g. 6320749
1720   Thread::muxAcquire(&gListLock, "scavenge - return");
1721 
1722   if (MonitorInUseLists) {
1723     // Note: the thread-local monitors lists get deflated in
1724     // a separate pass. See deflate_thread_local_monitors().
1725 
1726     // For moribund threads, scan gOmInUseList
1727     if (gOmInUseList) {
1728       counters->nInCirculation += gOmInUseCount;
1729       int deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1730       gOmInUseCount -= deflated_count;
1731       counters->nScavenged += deflated_count;
1732       counters->nInuse += gOmInUseCount;
1733     }
1734 
1735   } else {
1736     PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
1737     for (; block != NULL; block = next(block)) {
1738       // Iterate over all extant monitors - Scavenge all idle monitors.
1739       assert(block->object() == CHAINMARKER, "must be a block header");
1740       counters->nInCirculation += _BLOCKSIZE;
1741       for (int i = 1; i < _BLOCKSIZE; i++) {
1742         ObjectMonitor* mid = (ObjectMonitor*)&block[i];
1743         oop obj = (oop)mid->object();
1744 
1745         if (obj == NULL) {
1746           // The monitor is not associated with an object.
1747           // The monitor should either be a thread-specific private
1748           // free list or the global free list.
1749           // obj == NULL IMPLIES mid->is_busy() == 0
1750           guarantee(!mid->is_busy(), "invariant");
1751           continue;
1752         }
1753         deflated = deflate_monitor(mid, obj, &freeHeadp, &freeTailp);
1754 
1755         if (deflated) {
1756           mid->FreeNext = NULL;
1757           counters->nScavenged++;
1758         } else {
1759           counters->nInuse++;
1760         }
1761       }
1762     }
1763   }
1764 
1765   // Move the scavenged monitors back to the global free list.
1766   if (freeHeadp != NULL) {
1767     guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant");
1768     assert(freeTailp->FreeNext == NULL, "invariant");
1769     // constant-time list splice - prepend scavenged segment to gFreeList
1770     freeTailp->FreeNext = gFreeList;
1771     gFreeList = freeHeadp;
1772   }
1773   Thread::muxRelease(&gListLock);
1774 
1775 }
1776 
1777 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1778   gMonitorFreeCount += counters->nScavenged;
1779 
1780   // Consider: audit gFreeList to ensure that gMonitorFreeCount and list agree.
1781 
1782   if (ObjectMonitor::Knob_Verbose) {
1783     tty->print_cr("INFO: Deflate: InCirc=%d InUse=%d Scavenged=%d "
1784                   "ForceMonitorScavenge=%d : pop=%d free=%d",
1785                   counters->nInCirculation, counters->nInuse, counters->nScavenged, ForceMonitorScavenge,
1786                   gMonitorPopulation, gMonitorFreeCount);
1787     tty->flush();
1788   }
1789 
1790   ForceMonitorScavenge = 0;    // Reset
1791 
1792   OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
1793   OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
1794 
1795   // TODO: Add objectMonitor leak detection.
1796   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1797   GVars.stwRandom = os::random();
1798   GVars.stwCycle++;
1799 }
1800 
1801 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
1802   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1803   if (!MonitorInUseLists) return;
1804 
1805   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1806   ObjectMonitor * freeTailp = NULL;
1807 
1808   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
1809 
1810   Thread::muxAcquire(&gListLock, "scavenge - return");
1811 
1812   // Adjust counters
1813   counters->nInCirculation += thread->omInUseCount;
1814   thread->omInUseCount -= deflated_count;
1815   if (ObjectMonitor::Knob_VerifyInUse) {
1816     verifyInUse(thread);
1817   }
1818   counters->nScavenged += deflated_count;
1819   counters->nInuse += thread->omInUseCount;
1820 
1821   // Move the scavenged monitors back to the global free list.
1822   if (freeHeadp != NULL) {
1823     guarantee(freeTailp != NULL && deflated_count > 0, "invariant");
1824     assert(freeTailp->FreeNext == NULL, "invariant");
1825 
1826     // constant-time list splice - prepend scavenged segment to gFreeList
1827     freeTailp->FreeNext = gFreeList;
1828     gFreeList = freeHeadp;
1829   }
1830   Thread::muxRelease(&gListLock);
1831 }
1832 
1833 // Monitor cleanup on JavaThread::exit
1834 
1835 // Iterate through monitor cache and attempt to release thread's monitors
1836 // Gives up on a particular monitor if an exception occurs, but continues
1837 // the overall iteration, swallowing the exception.
1838 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1839  private:
1840   TRAPS;
1841 
1842  public:
1843   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1844   void do_monitor(ObjectMonitor* mid) {
1845     if (mid->owner() == THREAD) {
1846       if (ObjectMonitor::Knob_VerifyMatch != 0) {
1847         ResourceMark rm;
1848         Handle obj(THREAD, (oop) mid->object());
1849         tty->print("INFO: unexpected locked object:");
1850         javaVFrame::print_locked_object_class_name(tty, obj, "locked");
1851         fatal("exiting JavaThread=" INTPTR_FORMAT
1852               " unexpectedly owns ObjectMonitor=" INTPTR_FORMAT,
1853               p2i(THREAD), p2i(mid));
1854       }
1855       (void)mid->complete_exit(CHECK);
1856     }
1857   }
1858 };
1859 
1860 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1861 // ignored.  This is meant to be called during JNI thread detach which assumes
1862 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1863 // Scanning the extant monitor list can be time consuming.
1864 // A simple optimization is to add a per-thread flag that indicates a thread
1865 // called jni_monitorenter() during its lifetime.
1866 //
1867 // Instead of No_Savepoint_Verifier it might be cheaper to
1868 // use an idiom of the form:
1869 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1870 //   <code that must not run at safepoint>
1871 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1872 // Since the tests are extremely cheap we could leave them enabled
1873 // for normal product builds.
1874 
1875 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1876   assert(THREAD == JavaThread::current(), "must be current Java thread");
1877   NoSafepointVerifier nsv;
1878   ReleaseJavaMonitorsClosure rjmc(THREAD);
1879   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1880   ObjectSynchronizer::monitors_iterate(&rjmc);
1881   Thread::muxRelease(&gListLock);
1882   THREAD->clear_pending_exception();
1883 }
1884 
1885 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1886   switch (cause) {
1887     case inflate_cause_vm_internal:    return "VM Internal";
1888     case inflate_cause_monitor_enter:  return "Monitor Enter";
1889     case inflate_cause_wait:           return "Monitor Wait";
1890     case inflate_cause_notify:         return "Monitor Notify";
1891     case inflate_cause_hash_code:      return "Monitor Hash Code";
1892     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1893     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1894     default:
1895       ShouldNotReachHere();
1896   }
1897   return "Unknown";
1898 }
1899 
1900 static void post_monitor_inflate_event(EventJavaMonitorInflate& event,
1901                                        const oop obj,
1902                                        const ObjectSynchronizer::InflateCause cause) {
1903 #if INCLUDE_TRACE
1904   assert(event.should_commit(), "check outside");
1905   event.set_monitorClass(obj->klass());
1906   event.set_address((TYPE_ADDRESS)(uintptr_t)(void*)obj);
1907   event.set_cause((u1)cause);
1908   event.commit();
1909 #endif
1910 }
1911 
1912 //------------------------------------------------------------------------------
1913 // Debugging code
1914 
1915 void ObjectSynchronizer::sanity_checks(const bool verbose,
1916                                        const uint cache_line_size,
1917                                        int *error_cnt_ptr,
1918                                        int *warning_cnt_ptr) {
1919   u_char *addr_begin      = (u_char*)&GVars;
1920   u_char *addr_stwRandom  = (u_char*)&GVars.stwRandom;
1921   u_char *addr_hcSequence = (u_char*)&GVars.hcSequence;
1922 
1923   if (verbose) {
1924     tty->print_cr("INFO: sizeof(SharedGlobals)=" SIZE_FORMAT,
1925                   sizeof(SharedGlobals));
1926   }
1927 
1928   uint offset_stwRandom = (uint)(addr_stwRandom - addr_begin);
1929   if (verbose) tty->print_cr("INFO: offset(stwRandom)=%u", offset_stwRandom);
1930 
1931   uint offset_hcSequence = (uint)(addr_hcSequence - addr_begin);
1932   if (verbose) {
1933     tty->print_cr("INFO: offset(_hcSequence)=%u", offset_hcSequence);
1934   }
1935 
1936   if (cache_line_size != 0) {
1937     // We were able to determine the L1 data cache line size so
1938     // do some cache line specific sanity checks
1939 
1940     if (offset_stwRandom < cache_line_size) {
1941       tty->print_cr("WARNING: the SharedGlobals.stwRandom field is closer "
1942                     "to the struct beginning than a cache line which permits "
1943                     "false sharing.");
1944       (*warning_cnt_ptr)++;
1945     }
1946 
1947     if ((offset_hcSequence - offset_stwRandom) < cache_line_size) {
1948       tty->print_cr("WARNING: the SharedGlobals.stwRandom and "
1949                     "SharedGlobals.hcSequence fields are closer than a cache "
1950                     "line which permits false sharing.");
1951       (*warning_cnt_ptr)++;
1952     }
1953 
1954     if ((sizeof(SharedGlobals) - offset_hcSequence) < cache_line_size) {
1955       tty->print_cr("WARNING: the SharedGlobals.hcSequence field is closer "
1956                     "to the struct end than a cache line which permits false "
1957                     "sharing.");
1958       (*warning_cnt_ptr)++;
1959     }
1960   }
1961 }
1962 
1963 #ifndef PRODUCT
1964 
1965 // Check if monitor belongs to the monitor cache
1966 // The list is grow-only so it's *relatively* safe to traverse
1967 // the list of extant blocks without taking a lock.
1968 
1969 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1970   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
1971   while (block != NULL) {
1972     assert(block->object() == CHAINMARKER, "must be a block header");
1973     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
1974       address mon = (address)monitor;
1975       address blk = (address)block;
1976       size_t diff = mon - blk;
1977       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
1978       return 1;
1979     }
1980     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1981   }
1982   return 0;
1983 }
1984 
1985 #endif