1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "gc/parallel/adjoiningGenerations.hpp"
  28 #include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp"
  29 #include "gc/parallel/adjoiningVirtualSpaces.hpp"
  30 #include "gc/parallel/gcTaskManager.hpp"
  31 #include "gc/parallel/generationSizer.hpp"
  32 #include "gc/parallel/objectStartArray.inline.hpp"
  33 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  34 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  35 #include "gc/parallel/psMarkSweepProxy.hpp"
  36 #include "gc/parallel/psMemoryPool.hpp"
  37 #include "gc/parallel/psParallelCompact.inline.hpp"
  38 #include "gc/parallel/psPromotionManager.hpp"
  39 #include "gc/parallel/psScavenge.hpp"
  40 #include "gc/parallel/psVMOperations.hpp"
  41 #include "gc/shared/gcHeapSummary.hpp"
  42 #include "gc/shared/gcLocker.hpp"
  43 #include "gc/shared/gcWhen.hpp"
  44 #include "gc/shared/scavengableNMethods.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceCounters.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/vmThread.hpp"
  51 #include "services/memoryManager.hpp"
  52 #include "services/memTracker.hpp"
  53 #include "utilities/macros.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  57 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  58 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  59 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  60 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  61 
  62 jint ParallelScavengeHeap::initialize() {
  63   size_t heap_size = _collector_policy->heap_reserved_size_bytes();
  64 
  65   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
  66 
  67   os::trace_page_sizes("Heap",
  68                        _collector_policy->min_heap_byte_size(),
  69                        heap_size,
  70                        generation_alignment(),
  71                        heap_rs.base(),
  72                        heap_rs.size());
  73 
  74   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  75 
  76   PSCardTable* card_table = new PSCardTable(reserved_region());
  77   card_table->initialize();
  78   CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table);
  79   barrier_set->initialize();
  80   BarrierSet::set_barrier_set(barrier_set);
  81 
  82   // Make up the generations
  83   // Calculate the maximum size that a generation can grow.  This
  84   // includes growth into the other generation.  Note that the
  85   // parameter _max_gen_size is kept as the maximum
  86   // size of the generation as the boundaries currently stand.
  87   // _max_gen_size is still used as that value.
  88   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  89   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  90 
  91   _gens = AdjoiningGenerations::create_adjoining_generations(heap_rs, _collector_policy, generation_alignment());
  92 
  93   _old_gen = _gens->old_gen();
  94   _young_gen = _gens->young_gen();
  95 
  96   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
  97   const size_t old_capacity = _old_gen->capacity_in_bytes();
  98   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
  99   _size_policy =
 100     new PSAdaptiveSizePolicy(eden_capacity,
 101                              initial_promo_size,
 102                              young_gen()->to_space()->capacity_in_bytes(),
 103                              _collector_policy->gen_alignment(),
 104                              max_gc_pause_sec,
 105                              max_gc_minor_pause_sec,
 106                              GCTimeRatio
 107                              );
 108 
 109   assert(_collector_policy->is_hetero_heap() || !UseAdaptiveGCBoundary ||
 110     (old_gen()->virtual_space()->high_boundary() ==
 111      young_gen()->virtual_space()->low_boundary()),
 112     "Boundaries must meet");
 113   // initialize the policy counters - 2 collectors, 2 generations
 114   _gc_policy_counters =
 115     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
 116 
 117   // Set up the GCTaskManager
 118   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 119 
 120   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 121     return JNI_ENOMEM;
 122   }
 123 
 124   return JNI_OK;
 125 }
 126 
 127 void ParallelScavengeHeap::initialize_serviceability() {
 128 
 129   _eden_pool = new EdenMutableSpacePool(_young_gen,
 130                                         _young_gen->eden_space(),
 131                                         "PS Eden Space",
 132                                         false /* support_usage_threshold */);
 133 
 134   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,
 135                                                 "PS Survivor Space",
 136                                                 false /* support_usage_threshold */);
 137 
 138   _old_pool = new PSGenerationPool(_old_gen,
 139                                    "PS Old Gen",
 140                                    true /* support_usage_threshold */);
 141 
 142   _young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
 143   _old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
 144 
 145   _old_manager->add_pool(_eden_pool);
 146   _old_manager->add_pool(_survivor_pool);
 147   _old_manager->add_pool(_old_pool);
 148 
 149   _young_manager->add_pool(_eden_pool);
 150   _young_manager->add_pool(_survivor_pool);
 151 
 152 }
 153 
 154 namespace {
 155   class PSIsScavengable : public BoolObjectClosure {
 156     bool do_object_b(oop obj) {
 157       return ParallelScavengeHeap::heap()->is_in_young(obj);
 158     }
 159   };
 160 
 161   PSIsScavengable _is_scavengable;
 162 }
 163 
 164 
 165 void ParallelScavengeHeap::post_initialize() {
 166   CollectedHeap::post_initialize();
 167   // Need to init the tenuring threshold
 168   PSScavenge::initialize();
 169   if (UseParallelOldGC) {
 170     PSParallelCompact::post_initialize();
 171   } else {
 172     PSMarkSweepProxy::initialize();
 173   }
 174   PSPromotionManager::initialize();
 175 
 176   ScavengableNMethods::initialize(&_is_scavengable);
 177 }
 178 
 179 void ParallelScavengeHeap::update_counters() {
 180   young_gen()->update_counters();
 181   old_gen()->update_counters();
 182   MetaspaceCounters::update_performance_counters();
 183   CompressedClassSpaceCounters::update_performance_counters();
 184 }
 185 
 186 size_t ParallelScavengeHeap::capacity() const {
 187   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 188   return value;
 189 }
 190 
 191 size_t ParallelScavengeHeap::used() const {
 192   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 193   return value;
 194 }
 195 
 196 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 197   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 198 }
 199 
 200 
 201 size_t ParallelScavengeHeap::max_capacity() const {
 202   size_t estimated = reserved_region().byte_size();
 203   if (UseAdaptiveSizePolicy) {
 204     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 205   } else {
 206     estimated -= young_gen()->to_space()->capacity_in_bytes();
 207   }
 208   return MAX2(estimated, capacity());
 209 }
 210 
 211 bool ParallelScavengeHeap::is_in(const void* p) const {
 212   return young_gen()->is_in(p) || old_gen()->is_in(p);
 213 }
 214 
 215 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 216   return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
 217 }
 218 
 219 // There are two levels of allocation policy here.
 220 //
 221 // When an allocation request fails, the requesting thread must invoke a VM
 222 // operation, transfer control to the VM thread, and await the results of a
 223 // garbage collection. That is quite expensive, and we should avoid doing it
 224 // multiple times if possible.
 225 //
 226 // To accomplish this, we have a basic allocation policy, and also a
 227 // failed allocation policy.
 228 //
 229 // The basic allocation policy controls how you allocate memory without
 230 // attempting garbage collection. It is okay to grab locks and
 231 // expand the heap, if that can be done without coming to a safepoint.
 232 // It is likely that the basic allocation policy will not be very
 233 // aggressive.
 234 //
 235 // The failed allocation policy is invoked from the VM thread after
 236 // the basic allocation policy is unable to satisfy a mem_allocate
 237 // request. This policy needs to cover the entire range of collection,
 238 // heap expansion, and out-of-memory conditions. It should make every
 239 // attempt to allocate the requested memory.
 240 
 241 // Basic allocation policy. Should never be called at a safepoint, or
 242 // from the VM thread.
 243 //
 244 // This method must handle cases where many mem_allocate requests fail
 245 // simultaneously. When that happens, only one VM operation will succeed,
 246 // and the rest will not be executed. For that reason, this method loops
 247 // during failed allocation attempts. If the java heap becomes exhausted,
 248 // we rely on the size_policy object to force a bail out.
 249 HeapWord* ParallelScavengeHeap::mem_allocate(
 250                                      size_t size,
 251                                      bool* gc_overhead_limit_was_exceeded) {
 252   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 253   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 254   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 255 
 256   // In general gc_overhead_limit_was_exceeded should be false so
 257   // set it so here and reset it to true only if the gc time
 258   // limit is being exceeded as checked below.
 259   *gc_overhead_limit_was_exceeded = false;
 260 
 261   HeapWord* result = young_gen()->allocate(size);
 262 
 263   uint loop_count = 0;
 264   uint gc_count = 0;
 265   uint gclocker_stalled_count = 0;
 266 
 267   while (result == NULL) {
 268     // We don't want to have multiple collections for a single filled generation.
 269     // To prevent this, each thread tracks the total_collections() value, and if
 270     // the count has changed, does not do a new collection.
 271     //
 272     // The collection count must be read only while holding the heap lock. VM
 273     // operations also hold the heap lock during collections. There is a lock
 274     // contention case where thread A blocks waiting on the Heap_lock, while
 275     // thread B is holding it doing a collection. When thread A gets the lock,
 276     // the collection count has already changed. To prevent duplicate collections,
 277     // The policy MUST attempt allocations during the same period it reads the
 278     // total_collections() value!
 279     {
 280       MutexLocker ml(Heap_lock);
 281       gc_count = total_collections();
 282 
 283       result = young_gen()->allocate(size);
 284       if (result != NULL) {
 285         return result;
 286       }
 287 
 288       // If certain conditions hold, try allocating from the old gen.
 289       result = mem_allocate_old_gen(size);
 290       if (result != NULL) {
 291         return result;
 292       }
 293 
 294       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 295         return NULL;
 296       }
 297 
 298       // Failed to allocate without a gc.
 299       if (GCLocker::is_active_and_needs_gc()) {
 300         // If this thread is not in a jni critical section, we stall
 301         // the requestor until the critical section has cleared and
 302         // GC allowed. When the critical section clears, a GC is
 303         // initiated by the last thread exiting the critical section; so
 304         // we retry the allocation sequence from the beginning of the loop,
 305         // rather than causing more, now probably unnecessary, GC attempts.
 306         JavaThread* jthr = JavaThread::current();
 307         if (!jthr->in_critical()) {
 308           MutexUnlocker mul(Heap_lock);
 309           GCLocker::stall_until_clear();
 310           gclocker_stalled_count += 1;
 311           continue;
 312         } else {
 313           if (CheckJNICalls) {
 314             fatal("Possible deadlock due to allocating while"
 315                   " in jni critical section");
 316           }
 317           return NULL;
 318         }
 319       }
 320     }
 321 
 322     if (result == NULL) {
 323       // Generate a VM operation
 324       VM_ParallelGCFailedAllocation op(size, gc_count);
 325       VMThread::execute(&op);
 326 
 327       // Did the VM operation execute? If so, return the result directly.
 328       // This prevents us from looping until time out on requests that can
 329       // not be satisfied.
 330       if (op.prologue_succeeded()) {
 331         assert(is_in_or_null(op.result()), "result not in heap");
 332 
 333         // If GC was locked out during VM operation then retry allocation
 334         // and/or stall as necessary.
 335         if (op.gc_locked()) {
 336           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 337           continue;  // retry and/or stall as necessary
 338         }
 339 
 340         // Exit the loop if the gc time limit has been exceeded.
 341         // The allocation must have failed above ("result" guarding
 342         // this path is NULL) and the most recent collection has exceeded the
 343         // gc overhead limit (although enough may have been collected to
 344         // satisfy the allocation).  Exit the loop so that an out-of-memory
 345         // will be thrown (return a NULL ignoring the contents of
 346         // op.result()),
 347         // but clear gc_overhead_limit_exceeded so that the next collection
 348         // starts with a clean slate (i.e., forgets about previous overhead
 349         // excesses).  Fill op.result() with a filler object so that the
 350         // heap remains parsable.
 351         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 352         const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 353 
 354         if (limit_exceeded && softrefs_clear) {
 355           *gc_overhead_limit_was_exceeded = true;
 356           size_policy()->set_gc_overhead_limit_exceeded(false);
 357           log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
 358           if (op.result() != NULL) {
 359             CollectedHeap::fill_with_object(op.result(), size);
 360           }
 361           return NULL;
 362         }
 363 
 364         return op.result();
 365       }
 366     }
 367 
 368     // The policy object will prevent us from looping forever. If the
 369     // time spent in gc crosses a threshold, we will bail out.
 370     loop_count++;
 371     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 372         (loop_count % QueuedAllocationWarningCount == 0)) {
 373       log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
 374       log_warning(gc)("\tsize=" SIZE_FORMAT, size);
 375     }
 376   }
 377 
 378   return result;
 379 }
 380 
 381 // A "death march" is a series of ultra-slow allocations in which a full gc is
 382 // done before each allocation, and after the full gc the allocation still
 383 // cannot be satisfied from the young gen.  This routine detects that condition;
 384 // it should be called after a full gc has been done and the allocation
 385 // attempted from the young gen. The parameter 'addr' should be the result of
 386 // that young gen allocation attempt.
 387 void
 388 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 389   if (addr != NULL) {
 390     _death_march_count = 0;  // death march has ended
 391   } else if (_death_march_count == 0) {
 392     if (should_alloc_in_eden(size)) {
 393       _death_march_count = 1;    // death march has started
 394     }
 395   }
 396 }
 397 
 398 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 399   if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
 400     // Size is too big for eden, or gc is locked out.
 401     return old_gen()->allocate(size);
 402   }
 403 
 404   // If a "death march" is in progress, allocate from the old gen a limited
 405   // number of times before doing a GC.
 406   if (_death_march_count > 0) {
 407     if (_death_march_count < 64) {
 408       ++_death_march_count;
 409       return old_gen()->allocate(size);
 410     } else {
 411       _death_march_count = 0;
 412     }
 413   }
 414   return NULL;
 415 }
 416 
 417 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 418   if (UseParallelOldGC) {
 419     // The do_full_collection() parameter clear_all_soft_refs
 420     // is interpreted here as maximum_compaction which will
 421     // cause SoftRefs to be cleared.
 422     bool maximum_compaction = clear_all_soft_refs;
 423     PSParallelCompact::invoke(maximum_compaction);
 424   } else {
 425     PSMarkSweepProxy::invoke(clear_all_soft_refs);
 426   }
 427 }
 428 
 429 // Failed allocation policy. Must be called from the VM thread, and
 430 // only at a safepoint! Note that this method has policy for allocation
 431 // flow, and NOT collection policy. So we do not check for gc collection
 432 // time over limit here, that is the responsibility of the heap specific
 433 // collection methods. This method decides where to attempt allocations,
 434 // and when to attempt collections, but no collection specific policy.
 435 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 436   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 437   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 438   assert(!is_gc_active(), "not reentrant");
 439   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 440 
 441   // We assume that allocation in eden will fail unless we collect.
 442 
 443   // First level allocation failure, scavenge and allocate in young gen.
 444   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 445   const bool invoked_full_gc = PSScavenge::invoke();
 446   HeapWord* result = young_gen()->allocate(size);
 447 
 448   // Second level allocation failure.
 449   //   Mark sweep and allocate in young generation.
 450   if (result == NULL && !invoked_full_gc) {
 451     do_full_collection(false);
 452     result = young_gen()->allocate(size);
 453   }
 454 
 455   death_march_check(result, size);
 456 
 457   // Third level allocation failure.
 458   //   After mark sweep and young generation allocation failure,
 459   //   allocate in old generation.
 460   if (result == NULL) {
 461     result = old_gen()->allocate(size);
 462   }
 463 
 464   // Fourth level allocation failure. We're running out of memory.
 465   //   More complete mark sweep and allocate in young generation.
 466   if (result == NULL) {
 467     do_full_collection(true);
 468     result = young_gen()->allocate(size);
 469   }
 470 
 471   // Fifth level allocation failure.
 472   //   After more complete mark sweep, allocate in old generation.
 473   if (result == NULL) {
 474     result = old_gen()->allocate(size);
 475   }
 476 
 477   return result;
 478 }
 479 
 480 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 481   CollectedHeap::ensure_parsability(retire_tlabs);
 482   young_gen()->eden_space()->ensure_parsability();
 483 }
 484 
 485 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 486   return young_gen()->eden_space()->tlab_capacity(thr);
 487 }
 488 
 489 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
 490   return young_gen()->eden_space()->tlab_used(thr);
 491 }
 492 
 493 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 494   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 495 }
 496 
 497 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) {
 498   HeapWord* result = young_gen()->allocate(requested_size);
 499   if (result != NULL) {
 500     *actual_size = requested_size;
 501   }
 502 
 503   return result;
 504 }
 505 
 506 void ParallelScavengeHeap::resize_all_tlabs() {
 507   CollectedHeap::resize_all_tlabs();
 508 }
 509 
 510 // This method is used by System.gc() and JVMTI.
 511 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 512   assert(!Heap_lock->owned_by_self(),
 513     "this thread should not own the Heap_lock");
 514 
 515   uint gc_count      = 0;
 516   uint full_gc_count = 0;
 517   {
 518     MutexLocker ml(Heap_lock);
 519     // This value is guarded by the Heap_lock
 520     gc_count      = total_collections();
 521     full_gc_count = total_full_collections();
 522   }
 523 
 524   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 525   VMThread::execute(&op);
 526 }
 527 
 528 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 529   young_gen()->object_iterate(cl);
 530   old_gen()->object_iterate(cl);
 531 }
 532 
 533 
 534 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 535   if (young_gen()->is_in_reserved(addr)) {
 536     assert(young_gen()->is_in(addr),
 537            "addr should be in allocated part of young gen");
 538     // called from os::print_location by find or VMError
 539     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 540     Unimplemented();
 541   } else if (old_gen()->is_in_reserved(addr)) {
 542     assert(old_gen()->is_in(addr),
 543            "addr should be in allocated part of old gen");
 544     return old_gen()->start_array()->object_start((HeapWord*)addr);
 545   }
 546   return 0;
 547 }
 548 
 549 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 550   return oop(addr)->size();
 551 }
 552 
 553 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 554   return block_start(addr) == addr;
 555 }
 556 
 557 jlong ParallelScavengeHeap::millis_since_last_gc() {
 558   return UseParallelOldGC ?
 559     PSParallelCompact::millis_since_last_gc() :
 560     PSMarkSweepProxy::millis_since_last_gc();
 561 }
 562 
 563 void ParallelScavengeHeap::prepare_for_verify() {
 564   ensure_parsability(false);  // no need to retire TLABs for verification
 565 }
 566 
 567 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 568   PSOldGen* old = old_gen();
 569   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 570   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 571   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 572 
 573   PSYoungGen* young = young_gen();
 574   VirtualSpaceSummary young_summary(young->reserved().start(),
 575     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 576 
 577   MutableSpace* eden = young_gen()->eden_space();
 578   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 579 
 580   MutableSpace* from = young_gen()->from_space();
 581   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 582 
 583   MutableSpace* to = young_gen()->to_space();
 584   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 585 
 586   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 587   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 588 }
 589 
 590 void ParallelScavengeHeap::print_on(outputStream* st) const {
 591   young_gen()->print_on(st);
 592   old_gen()->print_on(st);
 593   MetaspaceUtils::print_on(st);
 594 }
 595 
 596 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 597   this->CollectedHeap::print_on_error(st);
 598 
 599   if (UseParallelOldGC) {
 600     st->cr();
 601     PSParallelCompact::print_on_error(st);
 602   }
 603 }
 604 
 605 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 606   PSScavenge::gc_task_manager()->threads_do(tc);
 607 }
 608 
 609 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 610   PSScavenge::gc_task_manager()->print_threads_on(st);
 611 }
 612 
 613 void ParallelScavengeHeap::print_tracing_info() const {
 614   AdaptiveSizePolicyOutput::print();
 615   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
 616   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
 617       UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweepProxy::accumulated_time()->seconds());
 618 }
 619 
 620 
 621 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
 622   // Why do we need the total_collections()-filter below?
 623   if (total_collections() > 0) {
 624     log_debug(gc, verify)("Tenured");
 625     old_gen()->verify();
 626 
 627     log_debug(gc, verify)("Eden");
 628     young_gen()->verify();
 629   }
 630 }
 631 
 632 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 633   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 634   gc_tracer->report_gc_heap_summary(when, heap_summary);
 635 
 636   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 637   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 638 }
 639 
 640 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 641   CollectedHeap* heap = Universe::heap();
 642   assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 643   assert(heap->kind() == CollectedHeap::Parallel, "Invalid name");
 644   return (ParallelScavengeHeap*)heap;
 645 }
 646 
 647 CardTableBarrierSet* ParallelScavengeHeap::barrier_set() {
 648   return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
 649 }
 650 
 651 PSCardTable* ParallelScavengeHeap::card_table() {
 652   return static_cast<PSCardTable*>(barrier_set()->card_table());
 653 }
 654 
 655 // Before delegating the resize to the young generation,
 656 // the reserved space for the young and old generations
 657 // may be changed to accommodate the desired resize.
 658 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 659     size_t survivor_size) {
 660   if (UseAdaptiveGCBoundary) {
 661     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 662       size_policy()->reset_bytes_absorbed_from_eden();
 663       return;  // The generation changed size already.
 664     }
 665     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 666   }
 667 
 668   // Delegate the resize to the generation.
 669   _young_gen->resize(eden_size, survivor_size);
 670 }
 671 
 672 // Before delegating the resize to the old generation,
 673 // the reserved space for the young and old generations
 674 // may be changed to accommodate the desired resize.
 675 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 676   if (UseAdaptiveGCBoundary) {
 677     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 678       size_policy()->reset_bytes_absorbed_from_eden();
 679       return;  // The generation changed size already.
 680     }
 681     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 682   }
 683 
 684   // Delegate the resize to the generation.
 685   _old_gen->resize(desired_free_space);
 686 }
 687 
 688 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 689   // nothing particular
 690 }
 691 
 692 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 693   // nothing particular
 694 }
 695 
 696 #ifndef PRODUCT
 697 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 698   if (ZapUnusedHeapArea) {
 699     young_gen()->record_spaces_top();
 700     old_gen()->record_spaces_top();
 701   }
 702 }
 703 
 704 void ParallelScavengeHeap::gen_mangle_unused_area() {
 705   if (ZapUnusedHeapArea) {
 706     young_gen()->eden_space()->mangle_unused_area();
 707     young_gen()->to_space()->mangle_unused_area();
 708     young_gen()->from_space()->mangle_unused_area();
 709     old_gen()->object_space()->mangle_unused_area();
 710   }
 711 }
 712 #endif
 713 
 714 void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
 715   ScavengableNMethods::register_nmethod(nm);
 716 }
 717 
 718 void ParallelScavengeHeap::unregister_nmethod(nmethod* nm) {
 719   ScavengableNMethods::unregister_nmethod(nm);
 720 }
 721 
 722 void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
 723   ScavengableNMethods::verify_nmethod(nm);
 724 }
 725 
 726 void ParallelScavengeHeap::flush_nmethod(nmethod* nm) {
 727   ScavengableNMethods::flush_nmethod(nm);
 728 }
 729 
 730 void ParallelScavengeHeap::prune_nmethods() {
 731   ScavengableNMethods::prune_nmethods();
 732 }
 733 
 734 GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
 735   GrowableArray<GCMemoryManager*> memory_managers(2);
 736   memory_managers.append(_young_manager);
 737   memory_managers.append(_old_manager);
 738   return memory_managers;
 739 }
 740 
 741 GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
 742   GrowableArray<MemoryPool*> memory_pools(3);
 743   memory_pools.append(_eden_pool);
 744   memory_pools.append(_survivor_pool);
 745   memory_pools.append(_old_pool);
 746   return memory_pools;
 747 }