1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "gc/parallel/gcTaskManager.hpp"
  34 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  35 #include "gc/parallel/parMarkBitMap.inline.hpp"
  36 #include "gc/parallel/pcTasks.hpp"
  37 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  38 #include "gc/parallel/psCompactionManager.inline.hpp"
  39 #include "gc/parallel/psOldGen.hpp"
  40 #include "gc/parallel/psParallelCompact.inline.hpp"
  41 #include "gc/parallel/psPromotionManager.inline.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psYoungGen.hpp"
  44 #include "gc/shared/gcCause.hpp"
  45 #include "gc/shared/gcHeapSummary.hpp"
  46 #include "gc/shared/gcId.hpp"
  47 #include "gc/shared/gcLocker.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/isGCActiveMark.hpp"
  52 #include "gc/shared/referencePolicy.hpp"
  53 #include "gc/shared/referenceProcessor.hpp"
  54 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  55 #include "gc/shared/spaceDecorator.hpp"
  56 #include "gc/shared/weakProcessor.hpp"
  57 #include "logging/log.hpp"
  58 #include "memory/iterator.inline.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/access.inline.hpp"
  61 #include "oops/instanceClassLoaderKlass.inline.hpp"
  62 #include "oops/instanceKlass.inline.hpp"
  63 #include "oops/instanceMirrorKlass.inline.hpp"
  64 #include "oops/methodData.hpp"
  65 #include "oops/objArrayKlass.inline.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/safepoint.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "services/management.hpp"
  72 #include "services/memTracker.hpp"
  73 #include "services/memoryService.hpp"
  74 #include "utilities/align.hpp"
  75 #include "utilities/debug.hpp"
  76 #include "utilities/events.hpp"
  77 #include "utilities/formatBuffer.hpp"
  78 #include "utilities/macros.hpp"
  79 #include "utilities/stack.inline.hpp"
  80 
  81 #include <math.h>
  82 
  83 // All sizes are in HeapWords.
  84 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  85 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  86 const size_t ParallelCompactData::RegionSizeBytes =
  87   RegionSize << LogHeapWordSize;
  88 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  89 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  90 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  91 
  92 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  93 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  94 const size_t ParallelCompactData::BlockSizeBytes  =
  95   BlockSize << LogHeapWordSize;
  96 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  97 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  98 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  99 
 100 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
 101 const size_t ParallelCompactData::Log2BlocksPerRegion =
 102   Log2RegionSize - Log2BlockSize;
 103 
 104 const ParallelCompactData::RegionData::region_sz_t
 105 ParallelCompactData::RegionData::dc_shift = 27;
 106 
 107 const ParallelCompactData::RegionData::region_sz_t
 108 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 109 
 110 const ParallelCompactData::RegionData::region_sz_t
 111 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 112 
 113 const ParallelCompactData::RegionData::region_sz_t
 114 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 115 
 116 const ParallelCompactData::RegionData::region_sz_t
 117 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 118 
 119 const ParallelCompactData::RegionData::region_sz_t
 120 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 121 
 122 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 123 
 124 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 125 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 126 
 127 double PSParallelCompact::_dwl_mean;
 128 double PSParallelCompact::_dwl_std_dev;
 129 double PSParallelCompact::_dwl_first_term;
 130 double PSParallelCompact::_dwl_adjustment;
 131 #ifdef  ASSERT
 132 bool   PSParallelCompact::_dwl_initialized = false;
 133 #endif  // #ifdef ASSERT
 134 
 135 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 136                        HeapWord* destination)
 137 {
 138   assert(src_region_idx != 0, "invalid src_region_idx");
 139   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 140   assert(destination != NULL, "invalid destination argument");
 141 
 142   _src_region_idx = src_region_idx;
 143   _partial_obj_size = partial_obj_size;
 144   _destination = destination;
 145 
 146   // These fields may not be updated below, so make sure they're clear.
 147   assert(_dest_region_addr == NULL, "should have been cleared");
 148   assert(_first_src_addr == NULL, "should have been cleared");
 149 
 150   // Determine the number of destination regions for the partial object.
 151   HeapWord* const last_word = destination + partial_obj_size - 1;
 152   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 153   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 154   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 155 
 156   if (beg_region_addr == end_region_addr) {
 157     // One destination region.
 158     _destination_count = 1;
 159     if (end_region_addr == destination) {
 160       // The destination falls on a region boundary, thus the first word of the
 161       // partial object will be the first word copied to the destination region.
 162       _dest_region_addr = end_region_addr;
 163       _first_src_addr = sd.region_to_addr(src_region_idx);
 164     }
 165   } else {
 166     // Two destination regions.  When copied, the partial object will cross a
 167     // destination region boundary, so a word somewhere within the partial
 168     // object will be the first word copied to the second destination region.
 169     _destination_count = 2;
 170     _dest_region_addr = end_region_addr;
 171     const size_t ofs = pointer_delta(end_region_addr, destination);
 172     assert(ofs < _partial_obj_size, "sanity");
 173     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 174   }
 175 }
 176 
 177 void SplitInfo::clear()
 178 {
 179   _src_region_idx = 0;
 180   _partial_obj_size = 0;
 181   _destination = NULL;
 182   _destination_count = 0;
 183   _dest_region_addr = NULL;
 184   _first_src_addr = NULL;
 185   assert(!is_valid(), "sanity");
 186 }
 187 
 188 #ifdef  ASSERT
 189 void SplitInfo::verify_clear()
 190 {
 191   assert(_src_region_idx == 0, "not clear");
 192   assert(_partial_obj_size == 0, "not clear");
 193   assert(_destination == NULL, "not clear");
 194   assert(_destination_count == 0, "not clear");
 195   assert(_dest_region_addr == NULL, "not clear");
 196   assert(_first_src_addr == NULL, "not clear");
 197 }
 198 #endif  // #ifdef ASSERT
 199 
 200 
 201 void PSParallelCompact::print_on_error(outputStream* st) {
 202   _mark_bitmap.print_on_error(st);
 203 }
 204 
 205 #ifndef PRODUCT
 206 const char* PSParallelCompact::space_names[] = {
 207   "old ", "eden", "from", "to  "
 208 };
 209 
 210 void PSParallelCompact::print_region_ranges() {
 211   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 212     return;
 213   }
 214   Log(gc, compaction) log;
 215   ResourceMark rm;
 216   LogStream ls(log.trace());
 217   Universe::print_on(&ls);
 218   log.trace("space  bottom     top        end        new_top");
 219   log.trace("------ ---------- ---------- ---------- ----------");
 220 
 221   for (unsigned int id = 0; id < last_space_id; ++id) {
 222     const MutableSpace* space = _space_info[id].space();
 223     log.trace("%u %s "
 224               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 225               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 226               id, space_names[id],
 227               summary_data().addr_to_region_idx(space->bottom()),
 228               summary_data().addr_to_region_idx(space->top()),
 229               summary_data().addr_to_region_idx(space->end()),
 230               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 231   }
 232 }
 233 
 234 void
 235 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 236 {
 237 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 238 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 239 
 240   ParallelCompactData& sd = PSParallelCompact::summary_data();
 241   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 242   log_develop_trace(gc, compaction)(
 243       REGION_IDX_FORMAT " " PTR_FORMAT " "
 244       REGION_IDX_FORMAT " " PTR_FORMAT " "
 245       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 246       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 247       i, p2i(c->data_location()), dci, p2i(c->destination()),
 248       c->partial_obj_size(), c->live_obj_size(),
 249       c->data_size(), c->source_region(), c->destination_count());
 250 
 251 #undef  REGION_IDX_FORMAT
 252 #undef  REGION_DATA_FORMAT
 253 }
 254 
 255 void
 256 print_generic_summary_data(ParallelCompactData& summary_data,
 257                            HeapWord* const beg_addr,
 258                            HeapWord* const end_addr)
 259 {
 260   size_t total_words = 0;
 261   size_t i = summary_data.addr_to_region_idx(beg_addr);
 262   const size_t last = summary_data.addr_to_region_idx(end_addr);
 263   HeapWord* pdest = 0;
 264 
 265   while (i < last) {
 266     ParallelCompactData::RegionData* c = summary_data.region(i);
 267     if (c->data_size() != 0 || c->destination() != pdest) {
 268       print_generic_summary_region(i, c);
 269       total_words += c->data_size();
 270       pdest = c->destination();
 271     }
 272     ++i;
 273   }
 274 
 275   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 276 }
 277 
 278 void
 279 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 280                                               HeapWord* const beg_addr,
 281                                               HeapWord* const end_addr) {
 282   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 283 }
 284 
 285 void
 286 print_generic_summary_data(ParallelCompactData& summary_data,
 287                            SpaceInfo* space_info)
 288 {
 289   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 290     return;
 291   }
 292 
 293   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 294     const MutableSpace* space = space_info[id].space();
 295     print_generic_summary_data(summary_data, space->bottom(),
 296                                MAX2(space->top(), space_info[id].new_top()));
 297   }
 298 }
 299 
 300 void
 301 print_initial_summary_data(ParallelCompactData& summary_data,
 302                            const MutableSpace* space) {
 303   if (space->top() == space->bottom()) {
 304     return;
 305   }
 306 
 307   const size_t region_size = ParallelCompactData::RegionSize;
 308   typedef ParallelCompactData::RegionData RegionData;
 309   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 310   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 311   const RegionData* c = summary_data.region(end_region - 1);
 312   HeapWord* end_addr = c->destination() + c->data_size();
 313   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 314 
 315   // Print (and count) the full regions at the beginning of the space.
 316   size_t full_region_count = 0;
 317   size_t i = summary_data.addr_to_region_idx(space->bottom());
 318   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 319     ParallelCompactData::RegionData* c = summary_data.region(i);
 320     log_develop_trace(gc, compaction)(
 321         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 322         i, p2i(c->destination()),
 323         c->partial_obj_size(), c->live_obj_size(),
 324         c->data_size(), c->source_region(), c->destination_count());
 325     ++full_region_count;
 326     ++i;
 327   }
 328 
 329   size_t live_to_right = live_in_space - full_region_count * region_size;
 330 
 331   double max_reclaimed_ratio = 0.0;
 332   size_t max_reclaimed_ratio_region = 0;
 333   size_t max_dead_to_right = 0;
 334   size_t max_live_to_right = 0;
 335 
 336   // Print the 'reclaimed ratio' for regions while there is something live in
 337   // the region or to the right of it.  The remaining regions are empty (and
 338   // uninteresting), and computing the ratio will result in division by 0.
 339   while (i < end_region && live_to_right > 0) {
 340     c = summary_data.region(i);
 341     HeapWord* const region_addr = summary_data.region_to_addr(i);
 342     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 343     const size_t dead_to_right = used_to_right - live_to_right;
 344     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 345 
 346     if (reclaimed_ratio > max_reclaimed_ratio) {
 347             max_reclaimed_ratio = reclaimed_ratio;
 348             max_reclaimed_ratio_region = i;
 349             max_dead_to_right = dead_to_right;
 350             max_live_to_right = live_to_right;
 351     }
 352 
 353     ParallelCompactData::RegionData* c = summary_data.region(i);
 354     log_develop_trace(gc, compaction)(
 355         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 356         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 357         i, p2i(c->destination()),
 358         c->partial_obj_size(), c->live_obj_size(),
 359         c->data_size(), c->source_region(), c->destination_count(),
 360         reclaimed_ratio, dead_to_right, live_to_right);
 361 
 362 
 363     live_to_right -= c->data_size();
 364     ++i;
 365   }
 366 
 367   // Any remaining regions are empty.  Print one more if there is one.
 368   if (i < end_region) {
 369     ParallelCompactData::RegionData* c = summary_data.region(i);
 370     log_develop_trace(gc, compaction)(
 371         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 372          i, p2i(c->destination()),
 373          c->partial_obj_size(), c->live_obj_size(),
 374          c->data_size(), c->source_region(), c->destination_count());
 375   }
 376 
 377   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 378                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 379 }
 380 
 381 void
 382 print_initial_summary_data(ParallelCompactData& summary_data,
 383                            SpaceInfo* space_info) {
 384   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 385     return;
 386   }
 387 
 388   unsigned int id = PSParallelCompact::old_space_id;
 389   const MutableSpace* space;
 390   do {
 391     space = space_info[id].space();
 392     print_initial_summary_data(summary_data, space);
 393   } while (++id < PSParallelCompact::eden_space_id);
 394 
 395   do {
 396     space = space_info[id].space();
 397     print_generic_summary_data(summary_data, space->bottom(), space->top());
 398   } while (++id < PSParallelCompact::last_space_id);
 399 }
 400 #endif  // #ifndef PRODUCT
 401 
 402 #ifdef  ASSERT
 403 size_t add_obj_count;
 404 size_t add_obj_size;
 405 size_t mark_bitmap_count;
 406 size_t mark_bitmap_size;
 407 #endif  // #ifdef ASSERT
 408 
 409 ParallelCompactData::ParallelCompactData()
 410 {
 411   _region_start = 0;
 412 
 413   _region_vspace = 0;
 414   _reserved_byte_size = 0;
 415   _region_data = 0;
 416   _region_count = 0;
 417 
 418   _block_vspace = 0;
 419   _block_data = 0;
 420   _block_count = 0;
 421 }
 422 
 423 bool ParallelCompactData::initialize(MemRegion covered_region)
 424 {
 425   _region_start = covered_region.start();
 426   const size_t region_size = covered_region.word_size();
 427   DEBUG_ONLY(_region_end = _region_start + region_size;)
 428 
 429   assert(region_align_down(_region_start) == _region_start,
 430          "region start not aligned");
 431   assert((region_size & RegionSizeOffsetMask) == 0,
 432          "region size not a multiple of RegionSize");
 433 
 434   bool result = initialize_region_data(region_size) && initialize_block_data();
 435   return result;
 436 }
 437 
 438 PSVirtualSpace*
 439 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 440 {
 441   const size_t raw_bytes = count * element_size;
 442   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 443   const size_t granularity = os::vm_allocation_granularity();
 444   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 445 
 446   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 447     MAX2(page_sz, granularity);
 448   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 449   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 450                        rs.size());
 451 
 452   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 453 
 454   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 455   if (vspace != 0) {
 456     if (vspace->expand_by(_reserved_byte_size)) {
 457       return vspace;
 458     }
 459     delete vspace;
 460     // Release memory reserved in the space.
 461     rs.release();
 462   }
 463 
 464   return 0;
 465 }
 466 
 467 bool ParallelCompactData::initialize_region_data(size_t region_size)
 468 {
 469   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 470   _region_vspace = create_vspace(count, sizeof(RegionData));
 471   if (_region_vspace != 0) {
 472     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 473     _region_count = count;
 474     return true;
 475   }
 476   return false;
 477 }
 478 
 479 bool ParallelCompactData::initialize_block_data()
 480 {
 481   assert(_region_count != 0, "region data must be initialized first");
 482   const size_t count = _region_count << Log2BlocksPerRegion;
 483   _block_vspace = create_vspace(count, sizeof(BlockData));
 484   if (_block_vspace != 0) {
 485     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 486     _block_count = count;
 487     return true;
 488   }
 489   return false;
 490 }
 491 
 492 void ParallelCompactData::clear()
 493 {
 494   memset(_region_data, 0, _region_vspace->committed_size());
 495   memset(_block_data, 0, _block_vspace->committed_size());
 496 }
 497 
 498 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 499   assert(beg_region <= _region_count, "beg_region out of range");
 500   assert(end_region <= _region_count, "end_region out of range");
 501   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 502 
 503   const size_t region_cnt = end_region - beg_region;
 504   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 505 
 506   const size_t beg_block = beg_region * BlocksPerRegion;
 507   const size_t block_cnt = region_cnt * BlocksPerRegion;
 508   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 509 }
 510 
 511 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 512 {
 513   const RegionData* cur_cp = region(region_idx);
 514   const RegionData* const end_cp = region(region_count() - 1);
 515 
 516   HeapWord* result = region_to_addr(region_idx);
 517   if (cur_cp < end_cp) {
 518     do {
 519       result += cur_cp->partial_obj_size();
 520     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 521   }
 522   return result;
 523 }
 524 
 525 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 526 {
 527   const size_t obj_ofs = pointer_delta(addr, _region_start);
 528   const size_t beg_region = obj_ofs >> Log2RegionSize;
 529   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 530 
 531   DEBUG_ONLY(Atomic::inc(&add_obj_count);)
 532   DEBUG_ONLY(Atomic::add(len, &add_obj_size);)
 533 
 534   if (beg_region == end_region) {
 535     // All in one region.
 536     _region_data[beg_region].add_live_obj(len);
 537     return;
 538   }
 539 
 540   // First region.
 541   const size_t beg_ofs = region_offset(addr);
 542   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 543 
 544   Klass* klass = ((oop)addr)->klass();
 545   // Middle regions--completely spanned by this object.
 546   for (size_t region = beg_region + 1; region < end_region; ++region) {
 547     _region_data[region].set_partial_obj_size(RegionSize);
 548     _region_data[region].set_partial_obj_addr(addr);
 549   }
 550 
 551   // Last region.
 552   const size_t end_ofs = region_offset(addr + len - 1);
 553   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 554   _region_data[end_region].set_partial_obj_addr(addr);
 555 }
 556 
 557 void
 558 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 559 {
 560   assert(region_offset(beg) == 0, "not RegionSize aligned");
 561   assert(region_offset(end) == 0, "not RegionSize aligned");
 562 
 563   size_t cur_region = addr_to_region_idx(beg);
 564   const size_t end_region = addr_to_region_idx(end);
 565   HeapWord* addr = beg;
 566   while (cur_region < end_region) {
 567     _region_data[cur_region].set_destination(addr);
 568     _region_data[cur_region].set_destination_count(0);
 569     _region_data[cur_region].set_source_region(cur_region);
 570     _region_data[cur_region].set_data_location(addr);
 571 
 572     // Update live_obj_size so the region appears completely full.
 573     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 574     _region_data[cur_region].set_live_obj_size(live_size);
 575 
 576     ++cur_region;
 577     addr += RegionSize;
 578   }
 579 }
 580 
 581 // Find the point at which a space can be split and, if necessary, record the
 582 // split point.
 583 //
 584 // If the current src region (which overflowed the destination space) doesn't
 585 // have a partial object, the split point is at the beginning of the current src
 586 // region (an "easy" split, no extra bookkeeping required).
 587 //
 588 // If the current src region has a partial object, the split point is in the
 589 // region where that partial object starts (call it the split_region).  If
 590 // split_region has a partial object, then the split point is just after that
 591 // partial object (a "hard" split where we have to record the split data and
 592 // zero the partial_obj_size field).  With a "hard" split, we know that the
 593 // partial_obj ends within split_region because the partial object that caused
 594 // the overflow starts in split_region.  If split_region doesn't have a partial
 595 // obj, then the split is at the beginning of split_region (another "easy"
 596 // split).
 597 HeapWord*
 598 ParallelCompactData::summarize_split_space(size_t src_region,
 599                                            SplitInfo& split_info,
 600                                            HeapWord* destination,
 601                                            HeapWord* target_end,
 602                                            HeapWord** target_next)
 603 {
 604   assert(destination <= target_end, "sanity");
 605   assert(destination + _region_data[src_region].data_size() > target_end,
 606     "region should not fit into target space");
 607   assert(is_region_aligned(target_end), "sanity");
 608 
 609   size_t split_region = src_region;
 610   HeapWord* split_destination = destination;
 611   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 612 
 613   if (destination + partial_obj_size > target_end) {
 614     // The split point is just after the partial object (if any) in the
 615     // src_region that contains the start of the object that overflowed the
 616     // destination space.
 617     //
 618     // Find the start of the "overflow" object and set split_region to the
 619     // region containing it.
 620     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 621     split_region = addr_to_region_idx(overflow_obj);
 622 
 623     // Clear the source_region field of all destination regions whose first word
 624     // came from data after the split point (a non-null source_region field
 625     // implies a region must be filled).
 626     //
 627     // An alternative to the simple loop below:  clear during post_compact(),
 628     // which uses memcpy instead of individual stores, and is easy to
 629     // parallelize.  (The downside is that it clears the entire RegionData
 630     // object as opposed to just one field.)
 631     //
 632     // post_compact() would have to clear the summary data up to the highest
 633     // address that was written during the summary phase, which would be
 634     //
 635     //         max(top, max(new_top, clear_top))
 636     //
 637     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 638     // to target_end.
 639     const RegionData* const sr = region(split_region);
 640     const size_t beg_idx =
 641       addr_to_region_idx(region_align_up(sr->destination() +
 642                                          sr->partial_obj_size()));
 643     const size_t end_idx = addr_to_region_idx(target_end);
 644 
 645     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 646     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 647       _region_data[idx].set_source_region(0);
 648     }
 649 
 650     // Set split_destination and partial_obj_size to reflect the split region.
 651     split_destination = sr->destination();
 652     partial_obj_size = sr->partial_obj_size();
 653   }
 654 
 655   // The split is recorded only if a partial object extends onto the region.
 656   if (partial_obj_size != 0) {
 657     _region_data[split_region].set_partial_obj_size(0);
 658     split_info.record(split_region, partial_obj_size, split_destination);
 659   }
 660 
 661   // Setup the continuation addresses.
 662   *target_next = split_destination + partial_obj_size;
 663   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 664 
 665   if (log_develop_is_enabled(Trace, gc, compaction)) {
 666     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 667     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 668                                       split_type, p2i(source_next), split_region, partial_obj_size);
 669     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 670                                       split_type, p2i(split_destination),
 671                                       addr_to_region_idx(split_destination),
 672                                       p2i(*target_next));
 673 
 674     if (partial_obj_size != 0) {
 675       HeapWord* const po_beg = split_info.destination();
 676       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 677       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 678                                         split_type,
 679                                         p2i(po_beg), addr_to_region_idx(po_beg),
 680                                         p2i(po_end), addr_to_region_idx(po_end));
 681     }
 682   }
 683 
 684   return source_next;
 685 }
 686 
 687 bool ParallelCompactData::summarize(SplitInfo& split_info,
 688                                     HeapWord* source_beg, HeapWord* source_end,
 689                                     HeapWord** source_next,
 690                                     HeapWord* target_beg, HeapWord* target_end,
 691                                     HeapWord** target_next)
 692 {
 693   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 694   log_develop_trace(gc, compaction)(
 695       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 696       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 697       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 698       p2i(target_beg), p2i(target_end), p2i(*target_next));
 699 
 700   size_t cur_region = addr_to_region_idx(source_beg);
 701   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 702 
 703   HeapWord *dest_addr = target_beg;
 704   while (cur_region < end_region) {
 705     // The destination must be set even if the region has no data.
 706     _region_data[cur_region].set_destination(dest_addr);
 707 
 708     size_t words = _region_data[cur_region].data_size();
 709     if (words > 0) {
 710       // If cur_region does not fit entirely into the target space, find a point
 711       // at which the source space can be 'split' so that part is copied to the
 712       // target space and the rest is copied elsewhere.
 713       if (dest_addr + words > target_end) {
 714         assert(source_next != NULL, "source_next is NULL when splitting");
 715         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 716                                              target_end, target_next);
 717         return false;
 718       }
 719 
 720       // Compute the destination_count for cur_region, and if necessary, update
 721       // source_region for a destination region.  The source_region field is
 722       // updated if cur_region is the first (left-most) region to be copied to a
 723       // destination region.
 724       //
 725       // The destination_count calculation is a bit subtle.  A region that has
 726       // data that compacts into itself does not count itself as a destination.
 727       // This maintains the invariant that a zero count means the region is
 728       // available and can be claimed and then filled.
 729       uint destination_count = 0;
 730       if (split_info.is_split(cur_region)) {
 731         // The current region has been split:  the partial object will be copied
 732         // to one destination space and the remaining data will be copied to
 733         // another destination space.  Adjust the initial destination_count and,
 734         // if necessary, set the source_region field if the partial object will
 735         // cross a destination region boundary.
 736         destination_count = split_info.destination_count();
 737         if (destination_count == 2) {
 738           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 739           _region_data[dest_idx].set_source_region(cur_region);
 740         }
 741       }
 742 
 743       HeapWord* const last_addr = dest_addr + words - 1;
 744       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 745       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 746 
 747       // Initially assume that the destination regions will be the same and
 748       // adjust the value below if necessary.  Under this assumption, if
 749       // cur_region == dest_region_2, then cur_region will be compacted
 750       // completely into itself.
 751       destination_count += cur_region == dest_region_2 ? 0 : 1;
 752       if (dest_region_1 != dest_region_2) {
 753         // Destination regions differ; adjust destination_count.
 754         destination_count += 1;
 755         // Data from cur_region will be copied to the start of dest_region_2.
 756         _region_data[dest_region_2].set_source_region(cur_region);
 757       } else if (region_offset(dest_addr) == 0) {
 758         // Data from cur_region will be copied to the start of the destination
 759         // region.
 760         _region_data[dest_region_1].set_source_region(cur_region);
 761       }
 762 
 763       _region_data[cur_region].set_destination_count(destination_count);
 764       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 765       dest_addr += words;
 766     }
 767 
 768     ++cur_region;
 769   }
 770 
 771   *target_next = dest_addr;
 772   return true;
 773 }
 774 
 775 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 776   assert(addr != NULL, "Should detect NULL oop earlier");
 777   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 778   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 779 
 780   // Region covering the object.
 781   RegionData* const region_ptr = addr_to_region_ptr(addr);
 782   HeapWord* result = region_ptr->destination();
 783 
 784   // If the entire Region is live, the new location is region->destination + the
 785   // offset of the object within in the Region.
 786 
 787   // Run some performance tests to determine if this special case pays off.  It
 788   // is worth it for pointers into the dense prefix.  If the optimization to
 789   // avoid pointer updates in regions that only point to the dense prefix is
 790   // ever implemented, this should be revisited.
 791   if (region_ptr->data_size() == RegionSize) {
 792     result += region_offset(addr);
 793     return result;
 794   }
 795 
 796   // Otherwise, the new location is region->destination + block offset + the
 797   // number of live words in the Block that are (a) to the left of addr and (b)
 798   // due to objects that start in the Block.
 799 
 800   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 801   // threads may fill the block table for a region (harmless, since it is
 802   // idempotent).
 803   if (!region_ptr->blocks_filled()) {
 804     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 805     region_ptr->set_blocks_filled();
 806   }
 807 
 808   HeapWord* const search_start = block_align_down(addr);
 809   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 810 
 811   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 812   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 813   result += block_offset + live;
 814   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 815   return result;
 816 }
 817 
 818 #ifdef ASSERT
 819 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 820 {
 821   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 822   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 823   for (const size_t* p = beg; p < end; ++p) {
 824     assert(*p == 0, "not zero");
 825   }
 826 }
 827 
 828 void ParallelCompactData::verify_clear()
 829 {
 830   verify_clear(_region_vspace);
 831   verify_clear(_block_vspace);
 832 }
 833 #endif  // #ifdef ASSERT
 834 
 835 STWGCTimer          PSParallelCompact::_gc_timer;
 836 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 837 elapsedTimer        PSParallelCompact::_accumulated_time;
 838 unsigned int        PSParallelCompact::_total_invocations = 0;
 839 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 840 jlong               PSParallelCompact::_time_of_last_gc = 0;
 841 CollectorCounters*  PSParallelCompact::_counters = NULL;
 842 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 843 ParallelCompactData PSParallelCompact::_summary_data;
 844 
 845 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 846 
 847 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 848 
 849 class PCReferenceProcessor: public ReferenceProcessor {
 850 public:
 851   PCReferenceProcessor(
 852     BoolObjectClosure* is_subject_to_discovery,
 853     BoolObjectClosure* is_alive_non_header) :
 854       ReferenceProcessor(is_subject_to_discovery,
 855       ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 856       ParallelGCThreads,   // mt processing degree
 857       true,                // mt discovery
 858       ParallelGCThreads,   // mt discovery degree
 859       true,                // atomic_discovery
 860       is_alive_non_header) {
 861   }
 862 
 863   template<typename T> bool discover(oop obj, ReferenceType type) {
 864     T* referent_addr = (T*) java_lang_ref_Reference::referent_addr_raw(obj);
 865     T heap_oop = RawAccess<>::oop_load(referent_addr);
 866     oop referent = CompressedOops::decode_not_null(heap_oop);
 867     return PSParallelCompact::mark_bitmap()->is_unmarked(referent)
 868         && ReferenceProcessor::discover_reference(obj, type);
 869   }
 870   virtual bool discover_reference(oop obj, ReferenceType type) {
 871     if (UseCompressedOops) {
 872       return discover<narrowOop>(obj, type);
 873     } else {
 874       return discover<oop>(obj, type);
 875     }
 876   }
 877 };
 878 
 879 void PSParallelCompact::post_initialize() {
 880   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 881   _span_based_discoverer.set_span(heap->reserved_region());
 882   _ref_processor =
 883     new PCReferenceProcessor(&_span_based_discoverer,
 884                              &_is_alive_closure); // non-header is alive closure
 885 
 886   _counters = new CollectorCounters("Parallel full collection pauses", 1);
 887 
 888   // Initialize static fields in ParCompactionManager.
 889   ParCompactionManager::initialize(mark_bitmap());
 890 }
 891 
 892 bool PSParallelCompact::initialize() {
 893   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 894   MemRegion mr = heap->reserved_region();
 895 
 896   // Was the old gen get allocated successfully?
 897   if (!heap->old_gen()->is_allocated()) {
 898     return false;
 899   }
 900 
 901   initialize_space_info();
 902   initialize_dead_wood_limiter();
 903 
 904   if (!_mark_bitmap.initialize(mr)) {
 905     vm_shutdown_during_initialization(
 906       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 907       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 908       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 909     return false;
 910   }
 911 
 912   if (!_summary_data.initialize(mr)) {
 913     vm_shutdown_during_initialization(
 914       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 915       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 916       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 917     return false;
 918   }
 919 
 920   return true;
 921 }
 922 
 923 void PSParallelCompact::initialize_space_info()
 924 {
 925   memset(&_space_info, 0, sizeof(_space_info));
 926 
 927   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 928   PSYoungGen* young_gen = heap->young_gen();
 929 
 930   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 931   _space_info[eden_space_id].set_space(young_gen->eden_space());
 932   _space_info[from_space_id].set_space(young_gen->from_space());
 933   _space_info[to_space_id].set_space(young_gen->to_space());
 934 
 935   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 936 }
 937 
 938 void PSParallelCompact::initialize_dead_wood_limiter()
 939 {
 940   const size_t max = 100;
 941   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 942   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 943   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 944   DEBUG_ONLY(_dwl_initialized = true;)
 945   _dwl_adjustment = normal_distribution(1.0);
 946 }
 947 
 948 void
 949 PSParallelCompact::clear_data_covering_space(SpaceId id)
 950 {
 951   // At this point, top is the value before GC, new_top() is the value that will
 952   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 953   // should be marked above top.  The summary data is cleared to the larger of
 954   // top & new_top.
 955   MutableSpace* const space = _space_info[id].space();
 956   HeapWord* const bot = space->bottom();
 957   HeapWord* const top = space->top();
 958   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 959 
 960   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 961   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 962   _mark_bitmap.clear_range(beg_bit, end_bit);
 963 
 964   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 965   const size_t end_region =
 966     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 967   _summary_data.clear_range(beg_region, end_region);
 968 
 969   // Clear the data used to 'split' regions.
 970   SplitInfo& split_info = _space_info[id].split_info();
 971   if (split_info.is_valid()) {
 972     split_info.clear();
 973   }
 974   DEBUG_ONLY(split_info.verify_clear();)
 975 }
 976 
 977 void PSParallelCompact::pre_compact()
 978 {
 979   // Update the from & to space pointers in space_info, since they are swapped
 980   // at each young gen gc.  Do the update unconditionally (even though a
 981   // promotion failure does not swap spaces) because an unknown number of young
 982   // collections will have swapped the spaces an unknown number of times.
 983   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 984   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 985   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 986   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 987 
 988   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 989   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 990 
 991   // Increment the invocation count
 992   heap->increment_total_collections(true);
 993 
 994   // We need to track unique mark sweep invocations as well.
 995   _total_invocations++;
 996 
 997   heap->print_heap_before_gc();
 998   heap->trace_heap_before_gc(&_gc_tracer);
 999 
1000   // Fill in TLABs
1001   heap->ensure_parsability(true);  // retire TLABs
1002 
1003   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
1004     HandleMark hm;  // Discard invalid handles created during verification
1005     Universe::verify("Before GC");
1006   }
1007 
1008   // Verify object start arrays
1009   if (VerifyObjectStartArray &&
1010       VerifyBeforeGC) {
1011     heap->old_gen()->verify_object_start_array();
1012   }
1013 
1014   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1015   DEBUG_ONLY(summary_data().verify_clear();)
1016 
1017   // Have worker threads release resources the next time they run a task.
1018   gc_task_manager()->release_all_resources();
1019 
1020   ParCompactionManager::reset_all_bitmap_query_caches();
1021 }
1022 
1023 void PSParallelCompact::post_compact()
1024 {
1025   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
1026 
1027   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1028     // Clear the marking bitmap, summary data and split info.
1029     clear_data_covering_space(SpaceId(id));
1030     // Update top().  Must be done after clearing the bitmap and summary data.
1031     _space_info[id].publish_new_top();
1032   }
1033 
1034   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1035   MutableSpace* const from_space = _space_info[from_space_id].space();
1036   MutableSpace* const to_space   = _space_info[to_space_id].space();
1037 
1038   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1039   bool eden_empty = eden_space->is_empty();
1040   if (!eden_empty) {
1041     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1042                                             heap->young_gen(), heap->old_gen());
1043   }
1044 
1045   // Update heap occupancy information which is used as input to the soft ref
1046   // clearing policy at the next gc.
1047   Universe::update_heap_info_at_gc();
1048 
1049   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1050     to_space->is_empty();
1051 
1052   PSCardTable* ct = heap->card_table();
1053   MemRegion old_mr = heap->old_gen()->reserved();
1054   if (young_gen_empty) {
1055     ct->clear(MemRegion(old_mr.start(), old_mr.end()));
1056   } else {
1057     ct->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1058   }
1059 
1060   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1061   ClassLoaderDataGraph::purge();
1062   MetaspaceUtils::verify_metrics();
1063 
1064   JvmtiExport::gc_epilogue();
1065 
1066 #if COMPILER2_OR_JVMCI
1067   DerivedPointerTable::update_pointers();
1068 #endif
1069 
1070   if (ZapUnusedHeapArea) {
1071     heap->gen_mangle_unused_area();
1072   }
1073 
1074   // Update time of last GC
1075   reset_millis_since_last_gc();
1076 }
1077 
1078 HeapWord*
1079 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1080                                                     bool maximum_compaction)
1081 {
1082   const size_t region_size = ParallelCompactData::RegionSize;
1083   const ParallelCompactData& sd = summary_data();
1084 
1085   const MutableSpace* const space = _space_info[id].space();
1086   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1087   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1088   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1089 
1090   // Skip full regions at the beginning of the space--they are necessarily part
1091   // of the dense prefix.
1092   size_t full_count = 0;
1093   const RegionData* cp;
1094   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1095     ++full_count;
1096   }
1097 
1098   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1099   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1100   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1101   if (maximum_compaction || cp == end_cp || interval_ended) {
1102     _maximum_compaction_gc_num = total_invocations();
1103     return sd.region_to_addr(cp);
1104   }
1105 
1106   HeapWord* const new_top = _space_info[id].new_top();
1107   const size_t space_live = pointer_delta(new_top, space->bottom());
1108   const size_t space_used = space->used_in_words();
1109   const size_t space_capacity = space->capacity_in_words();
1110 
1111   const double cur_density = double(space_live) / space_capacity;
1112   const double deadwood_density =
1113     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1114   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1115 
1116   if (TraceParallelOldGCDensePrefix) {
1117     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1118                   cur_density, deadwood_density, deadwood_goal);
1119     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1120                   "space_cap=" SIZE_FORMAT,
1121                   space_live, space_used,
1122                   space_capacity);
1123   }
1124 
1125   // XXX - Use binary search?
1126   HeapWord* dense_prefix = sd.region_to_addr(cp);
1127   const RegionData* full_cp = cp;
1128   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1129   while (cp < end_cp) {
1130     HeapWord* region_destination = cp->destination();
1131     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1132     if (TraceParallelOldGCDensePrefix && Verbose) {
1133       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1134                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1135                     sd.region(cp), p2i(region_destination),
1136                     p2i(dense_prefix), cur_deadwood);
1137     }
1138 
1139     if (cur_deadwood >= deadwood_goal) {
1140       // Found the region that has the correct amount of deadwood to the left.
1141       // This typically occurs after crossing a fairly sparse set of regions, so
1142       // iterate backwards over those sparse regions, looking for the region
1143       // that has the lowest density of live objects 'to the right.'
1144       size_t space_to_left = sd.region(cp) * region_size;
1145       size_t live_to_left = space_to_left - cur_deadwood;
1146       size_t space_to_right = space_capacity - space_to_left;
1147       size_t live_to_right = space_live - live_to_left;
1148       double density_to_right = double(live_to_right) / space_to_right;
1149       while (cp > full_cp) {
1150         --cp;
1151         const size_t prev_region_live_to_right = live_to_right -
1152           cp->data_size();
1153         const size_t prev_region_space_to_right = space_to_right + region_size;
1154         double prev_region_density_to_right =
1155           double(prev_region_live_to_right) / prev_region_space_to_right;
1156         if (density_to_right <= prev_region_density_to_right) {
1157           return dense_prefix;
1158         }
1159         if (TraceParallelOldGCDensePrefix && Verbose) {
1160           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1161                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1162                         prev_region_density_to_right);
1163         }
1164         dense_prefix -= region_size;
1165         live_to_right = prev_region_live_to_right;
1166         space_to_right = prev_region_space_to_right;
1167         density_to_right = prev_region_density_to_right;
1168       }
1169       return dense_prefix;
1170     }
1171 
1172     dense_prefix += region_size;
1173     ++cp;
1174   }
1175 
1176   return dense_prefix;
1177 }
1178 
1179 #ifndef PRODUCT
1180 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1181                                                  const SpaceId id,
1182                                                  const bool maximum_compaction,
1183                                                  HeapWord* const addr)
1184 {
1185   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1186   RegionData* const cp = summary_data().region(region_idx);
1187   const MutableSpace* const space = _space_info[id].space();
1188   HeapWord* const new_top = _space_info[id].new_top();
1189 
1190   const size_t space_live = pointer_delta(new_top, space->bottom());
1191   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1192   const size_t space_cap = space->capacity_in_words();
1193   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1194   const size_t live_to_right = new_top - cp->destination();
1195   const size_t dead_to_right = space->top() - addr - live_to_right;
1196 
1197   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1198                 "spl=" SIZE_FORMAT " "
1199                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1200                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1201                 " ratio=%10.8f",
1202                 algorithm, p2i(addr), region_idx,
1203                 space_live,
1204                 dead_to_left, dead_to_left_pct,
1205                 dead_to_right, live_to_right,
1206                 double(dead_to_right) / live_to_right);
1207 }
1208 #endif  // #ifndef PRODUCT
1209 
1210 // Return a fraction indicating how much of the generation can be treated as
1211 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1212 // based on the density of live objects in the generation to determine a limit,
1213 // which is then adjusted so the return value is min_percent when the density is
1214 // 1.
1215 //
1216 // The following table shows some return values for a different values of the
1217 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1218 // min_percent is 1.
1219 //
1220 //                          fraction allowed as dead wood
1221 //         -----------------------------------------------------------------
1222 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1223 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1224 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1225 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1226 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1227 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1228 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1229 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1230 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1231 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1232 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1233 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1234 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1235 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1236 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1237 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1238 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1239 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1240 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1241 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1242 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1243 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1244 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1245 
1246 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1247 {
1248   assert(_dwl_initialized, "uninitialized");
1249 
1250   // The raw limit is the value of the normal distribution at x = density.
1251   const double raw_limit = normal_distribution(density);
1252 
1253   // Adjust the raw limit so it becomes the minimum when the density is 1.
1254   //
1255   // First subtract the adjustment value (which is simply the precomputed value
1256   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1257   // Then add the minimum value, so the minimum is returned when the density is
1258   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1259   const double min = double(min_percent) / 100.0;
1260   const double limit = raw_limit - _dwl_adjustment + min;
1261   return MAX2(limit, 0.0);
1262 }
1263 
1264 ParallelCompactData::RegionData*
1265 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1266                                            const RegionData* end)
1267 {
1268   const size_t region_size = ParallelCompactData::RegionSize;
1269   ParallelCompactData& sd = summary_data();
1270   size_t left = sd.region(beg);
1271   size_t right = end > beg ? sd.region(end) - 1 : left;
1272 
1273   // Binary search.
1274   while (left < right) {
1275     // Equivalent to (left + right) / 2, but does not overflow.
1276     const size_t middle = left + (right - left) / 2;
1277     RegionData* const middle_ptr = sd.region(middle);
1278     HeapWord* const dest = middle_ptr->destination();
1279     HeapWord* const addr = sd.region_to_addr(middle);
1280     assert(dest != NULL, "sanity");
1281     assert(dest <= addr, "must move left");
1282 
1283     if (middle > left && dest < addr) {
1284       right = middle - 1;
1285     } else if (middle < right && middle_ptr->data_size() == region_size) {
1286       left = middle + 1;
1287     } else {
1288       return middle_ptr;
1289     }
1290   }
1291   return sd.region(left);
1292 }
1293 
1294 ParallelCompactData::RegionData*
1295 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1296                                           const RegionData* end,
1297                                           size_t dead_words)
1298 {
1299   ParallelCompactData& sd = summary_data();
1300   size_t left = sd.region(beg);
1301   size_t right = end > beg ? sd.region(end) - 1 : left;
1302 
1303   // Binary search.
1304   while (left < right) {
1305     // Equivalent to (left + right) / 2, but does not overflow.
1306     const size_t middle = left + (right - left) / 2;
1307     RegionData* const middle_ptr = sd.region(middle);
1308     HeapWord* const dest = middle_ptr->destination();
1309     HeapWord* const addr = sd.region_to_addr(middle);
1310     assert(dest != NULL, "sanity");
1311     assert(dest <= addr, "must move left");
1312 
1313     const size_t dead_to_left = pointer_delta(addr, dest);
1314     if (middle > left && dead_to_left > dead_words) {
1315       right = middle - 1;
1316     } else if (middle < right && dead_to_left < dead_words) {
1317       left = middle + 1;
1318     } else {
1319       return middle_ptr;
1320     }
1321   }
1322   return sd.region(left);
1323 }
1324 
1325 // The result is valid during the summary phase, after the initial summarization
1326 // of each space into itself, and before final summarization.
1327 inline double
1328 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1329                                    HeapWord* const bottom,
1330                                    HeapWord* const top,
1331                                    HeapWord* const new_top)
1332 {
1333   ParallelCompactData& sd = summary_data();
1334 
1335   assert(cp != NULL, "sanity");
1336   assert(bottom != NULL, "sanity");
1337   assert(top != NULL, "sanity");
1338   assert(new_top != NULL, "sanity");
1339   assert(top >= new_top, "summary data problem?");
1340   assert(new_top > bottom, "space is empty; should not be here");
1341   assert(new_top >= cp->destination(), "sanity");
1342   assert(top >= sd.region_to_addr(cp), "sanity");
1343 
1344   HeapWord* const destination = cp->destination();
1345   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1346   const size_t compacted_region_live = pointer_delta(new_top, destination);
1347   const size_t compacted_region_used = pointer_delta(top,
1348                                                      sd.region_to_addr(cp));
1349   const size_t reclaimable = compacted_region_used - compacted_region_live;
1350 
1351   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1352   return double(reclaimable) / divisor;
1353 }
1354 
1355 // Return the address of the end of the dense prefix, a.k.a. the start of the
1356 // compacted region.  The address is always on a region boundary.
1357 //
1358 // Completely full regions at the left are skipped, since no compaction can
1359 // occur in those regions.  Then the maximum amount of dead wood to allow is
1360 // computed, based on the density (amount live / capacity) of the generation;
1361 // the region with approximately that amount of dead space to the left is
1362 // identified as the limit region.  Regions between the last completely full
1363 // region and the limit region are scanned and the one that has the best
1364 // (maximum) reclaimed_ratio() is selected.
1365 HeapWord*
1366 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1367                                         bool maximum_compaction)
1368 {
1369   const size_t region_size = ParallelCompactData::RegionSize;
1370   const ParallelCompactData& sd = summary_data();
1371 
1372   const MutableSpace* const space = _space_info[id].space();
1373   HeapWord* const top = space->top();
1374   HeapWord* const top_aligned_up = sd.region_align_up(top);
1375   HeapWord* const new_top = _space_info[id].new_top();
1376   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1377   HeapWord* const bottom = space->bottom();
1378   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1379   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1380   const RegionData* const new_top_cp =
1381     sd.addr_to_region_ptr(new_top_aligned_up);
1382 
1383   // Skip full regions at the beginning of the space--they are necessarily part
1384   // of the dense prefix.
1385   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1386   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1387          space->is_empty(), "no dead space allowed to the left");
1388   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1389          "region must have dead space");
1390 
1391   // The gc number is saved whenever a maximum compaction is done, and used to
1392   // determine when the maximum compaction interval has expired.  This avoids
1393   // successive max compactions for different reasons.
1394   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1395   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1396   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1397     total_invocations() == HeapFirstMaximumCompactionCount;
1398   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1399     _maximum_compaction_gc_num = total_invocations();
1400     return sd.region_to_addr(full_cp);
1401   }
1402 
1403   const size_t space_live = pointer_delta(new_top, bottom);
1404   const size_t space_used = space->used_in_words();
1405   const size_t space_capacity = space->capacity_in_words();
1406 
1407   const double density = double(space_live) / double(space_capacity);
1408   const size_t min_percent_free = MarkSweepDeadRatio;
1409   const double limiter = dead_wood_limiter(density, min_percent_free);
1410   const size_t dead_wood_max = space_used - space_live;
1411   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1412                                       dead_wood_max);
1413 
1414   if (TraceParallelOldGCDensePrefix) {
1415     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1416                   "space_cap=" SIZE_FORMAT,
1417                   space_live, space_used,
1418                   space_capacity);
1419     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1420                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1421                   density, min_percent_free, limiter,
1422                   dead_wood_max, dead_wood_limit);
1423   }
1424 
1425   // Locate the region with the desired amount of dead space to the left.
1426   const RegionData* const limit_cp =
1427     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1428 
1429   // Scan from the first region with dead space to the limit region and find the
1430   // one with the best (largest) reclaimed ratio.
1431   double best_ratio = 0.0;
1432   const RegionData* best_cp = full_cp;
1433   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1434     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1435     if (tmp_ratio > best_ratio) {
1436       best_cp = cp;
1437       best_ratio = tmp_ratio;
1438     }
1439   }
1440 
1441   return sd.region_to_addr(best_cp);
1442 }
1443 
1444 void PSParallelCompact::summarize_spaces_quick()
1445 {
1446   for (unsigned int i = 0; i < last_space_id; ++i) {
1447     const MutableSpace* space = _space_info[i].space();
1448     HeapWord** nta = _space_info[i].new_top_addr();
1449     bool result = _summary_data.summarize(_space_info[i].split_info(),
1450                                           space->bottom(), space->top(), NULL,
1451                                           space->bottom(), space->end(), nta);
1452     assert(result, "space must fit into itself");
1453     _space_info[i].set_dense_prefix(space->bottom());
1454   }
1455 }
1456 
1457 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1458 {
1459   HeapWord* const dense_prefix_end = dense_prefix(id);
1460   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1461   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1462   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1463     // Only enough dead space is filled so that any remaining dead space to the
1464     // left is larger than the minimum filler object.  (The remainder is filled
1465     // during the copy/update phase.)
1466     //
1467     // The size of the dead space to the right of the boundary is not a
1468     // concern, since compaction will be able to use whatever space is
1469     // available.
1470     //
1471     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1472     // surrounds the space to be filled with an object.
1473     //
1474     // In the 32-bit VM, each bit represents two 32-bit words:
1475     //                              +---+
1476     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1477     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1478     //                              +---+
1479     //
1480     // In the 64-bit VM, each bit represents one 64-bit word:
1481     //                              +------------+
1482     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1483     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1484     //                              +------------+
1485     //                          +-------+
1486     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1487     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1488     //                          +-------+
1489     //                      +-----------+
1490     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1491     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1492     //                      +-----------+
1493     //                          +-------+
1494     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1495     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1496     //                          +-------+
1497 
1498     // Initially assume case a, c or e will apply.
1499     size_t obj_len = CollectedHeap::min_fill_size();
1500     HeapWord* obj_beg = dense_prefix_end - obj_len;
1501 
1502 #ifdef  _LP64
1503     if (MinObjAlignment > 1) { // object alignment > heap word size
1504       // Cases a, c or e.
1505     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1506       // Case b above.
1507       obj_beg = dense_prefix_end - 1;
1508     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1509                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1510       // Case d above.
1511       obj_beg = dense_prefix_end - 3;
1512       obj_len = 3;
1513     }
1514 #endif  // #ifdef _LP64
1515 
1516     CollectedHeap::fill_with_object(obj_beg, obj_len);
1517     _mark_bitmap.mark_obj(obj_beg, obj_len);
1518     _summary_data.add_obj(obj_beg, obj_len);
1519     assert(start_array(id) != NULL, "sanity");
1520     start_array(id)->allocate_block(obj_beg);
1521   }
1522 }
1523 
1524 void
1525 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1526 {
1527   assert(id < last_space_id, "id out of range");
1528   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1529          "should have been reset in summarize_spaces_quick()");
1530 
1531   const MutableSpace* space = _space_info[id].space();
1532   if (_space_info[id].new_top() != space->bottom()) {
1533     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1534     _space_info[id].set_dense_prefix(dense_prefix_end);
1535 
1536 #ifndef PRODUCT
1537     if (TraceParallelOldGCDensePrefix) {
1538       print_dense_prefix_stats("ratio", id, maximum_compaction,
1539                                dense_prefix_end);
1540       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1541       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1542     }
1543 #endif  // #ifndef PRODUCT
1544 
1545     // Recompute the summary data, taking into account the dense prefix.  If
1546     // every last byte will be reclaimed, then the existing summary data which
1547     // compacts everything can be left in place.
1548     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1549       // If dead space crosses the dense prefix boundary, it is (at least
1550       // partially) filled with a dummy object, marked live and added to the
1551       // summary data.  This simplifies the copy/update phase and must be done
1552       // before the final locations of objects are determined, to prevent
1553       // leaving a fragment of dead space that is too small to fill.
1554       fill_dense_prefix_end(id);
1555 
1556       // Compute the destination of each Region, and thus each object.
1557       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1558       _summary_data.summarize(_space_info[id].split_info(),
1559                               dense_prefix_end, space->top(), NULL,
1560                               dense_prefix_end, space->end(),
1561                               _space_info[id].new_top_addr());
1562     }
1563   }
1564 
1565   if (log_develop_is_enabled(Trace, gc, compaction)) {
1566     const size_t region_size = ParallelCompactData::RegionSize;
1567     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1568     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1569     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1570     HeapWord* const new_top = _space_info[id].new_top();
1571     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1572     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1573     log_develop_trace(gc, compaction)(
1574         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1575         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1576         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1577         id, space->capacity_in_words(), p2i(dense_prefix_end),
1578         dp_region, dp_words / region_size,
1579         cr_words / region_size, p2i(new_top));
1580   }
1581 }
1582 
1583 #ifndef PRODUCT
1584 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1585                                           HeapWord* dst_beg, HeapWord* dst_end,
1586                                           SpaceId src_space_id,
1587                                           HeapWord* src_beg, HeapWord* src_end)
1588 {
1589   log_develop_trace(gc, compaction)(
1590       "Summarizing %d [%s] into %d [%s]:  "
1591       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1592       SIZE_FORMAT "-" SIZE_FORMAT " "
1593       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1594       SIZE_FORMAT "-" SIZE_FORMAT,
1595       src_space_id, space_names[src_space_id],
1596       dst_space_id, space_names[dst_space_id],
1597       p2i(src_beg), p2i(src_end),
1598       _summary_data.addr_to_region_idx(src_beg),
1599       _summary_data.addr_to_region_idx(src_end),
1600       p2i(dst_beg), p2i(dst_end),
1601       _summary_data.addr_to_region_idx(dst_beg),
1602       _summary_data.addr_to_region_idx(dst_end));
1603 }
1604 #endif  // #ifndef PRODUCT
1605 
1606 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1607                                       bool maximum_compaction)
1608 {
1609   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1610 
1611 #ifdef  ASSERT
1612   if (TraceParallelOldGCMarkingPhase) {
1613     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1614                   "add_obj_bytes=" SIZE_FORMAT,
1615                   add_obj_count, add_obj_size * HeapWordSize);
1616     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1617                   "mark_bitmap_bytes=" SIZE_FORMAT,
1618                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1619   }
1620 #endif  // #ifdef ASSERT
1621 
1622   // Quick summarization of each space into itself, to see how much is live.
1623   summarize_spaces_quick();
1624 
1625   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1626   NOT_PRODUCT(print_region_ranges());
1627   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1628 
1629   // The amount of live data that will end up in old space (assuming it fits).
1630   size_t old_space_total_live = 0;
1631   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1632     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1633                                           _space_info[id].space()->bottom());
1634   }
1635 
1636   MutableSpace* const old_space = _space_info[old_space_id].space();
1637   const size_t old_capacity = old_space->capacity_in_words();
1638   if (old_space_total_live > old_capacity) {
1639     // XXX - should also try to expand
1640     maximum_compaction = true;
1641   }
1642 
1643   // Old generations.
1644   summarize_space(old_space_id, maximum_compaction);
1645 
1646   // Summarize the remaining spaces in the young gen.  The initial target space
1647   // is the old gen.  If a space does not fit entirely into the target, then the
1648   // remainder is compacted into the space itself and that space becomes the new
1649   // target.
1650   SpaceId dst_space_id = old_space_id;
1651   HeapWord* dst_space_end = old_space->end();
1652   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1653   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1654     const MutableSpace* space = _space_info[id].space();
1655     const size_t live = pointer_delta(_space_info[id].new_top(),
1656                                       space->bottom());
1657     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1658 
1659     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1660                                   SpaceId(id), space->bottom(), space->top());)
1661     if (live > 0 && live <= available) {
1662       // All the live data will fit.
1663       bool done = _summary_data.summarize(_space_info[id].split_info(),
1664                                           space->bottom(), space->top(),
1665                                           NULL,
1666                                           *new_top_addr, dst_space_end,
1667                                           new_top_addr);
1668       assert(done, "space must fit into old gen");
1669 
1670       // Reset the new_top value for the space.
1671       _space_info[id].set_new_top(space->bottom());
1672     } else if (live > 0) {
1673       // Attempt to fit part of the source space into the target space.
1674       HeapWord* next_src_addr = NULL;
1675       bool done = _summary_data.summarize(_space_info[id].split_info(),
1676                                           space->bottom(), space->top(),
1677                                           &next_src_addr,
1678                                           *new_top_addr, dst_space_end,
1679                                           new_top_addr);
1680       assert(!done, "space should not fit into old gen");
1681       assert(next_src_addr != NULL, "sanity");
1682 
1683       // The source space becomes the new target, so the remainder is compacted
1684       // within the space itself.
1685       dst_space_id = SpaceId(id);
1686       dst_space_end = space->end();
1687       new_top_addr = _space_info[id].new_top_addr();
1688       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1689                                     space->bottom(), dst_space_end,
1690                                     SpaceId(id), next_src_addr, space->top());)
1691       done = _summary_data.summarize(_space_info[id].split_info(),
1692                                      next_src_addr, space->top(),
1693                                      NULL,
1694                                      space->bottom(), dst_space_end,
1695                                      new_top_addr);
1696       assert(done, "space must fit when compacted into itself");
1697       assert(*new_top_addr <= space->top(), "usage should not grow");
1698     }
1699   }
1700 
1701   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1702   NOT_PRODUCT(print_region_ranges());
1703   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1704 }
1705 
1706 // This method should contain all heap-specific policy for invoking a full
1707 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1708 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1709 // before full gc, or any other specialized behavior, it needs to be added here.
1710 //
1711 // Note that this method should only be called from the vm_thread while at a
1712 // safepoint.
1713 //
1714 // Note that the all_soft_refs_clear flag in the collector policy
1715 // may be true because this method can be called without intervening
1716 // activity.  For example when the heap space is tight and full measure
1717 // are being taken to free space.
1718 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1719   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1720   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1721          "should be in vm thread");
1722 
1723   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1724   GCCause::Cause gc_cause = heap->gc_cause();
1725   assert(!heap->is_gc_active(), "not reentrant");
1726 
1727   PSAdaptiveSizePolicy* policy = heap->size_policy();
1728   IsGCActiveMark mark;
1729 
1730   if (ScavengeBeforeFullGC) {
1731     PSScavenge::invoke_no_policy();
1732   }
1733 
1734   const bool clear_all_soft_refs =
1735     heap->soft_ref_policy()->should_clear_all_soft_refs();
1736 
1737   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1738                                       maximum_heap_compaction);
1739 }
1740 
1741 // This method contains no policy. You should probably
1742 // be calling invoke() instead.
1743 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1744   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1745   assert(ref_processor() != NULL, "Sanity");
1746 
1747   if (GCLocker::check_active_before_gc()) {
1748     return false;
1749   }
1750 
1751   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1752 
1753   GCIdMark gc_id_mark;
1754   _gc_timer.register_gc_start();
1755   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1756 
1757   TimeStamp marking_start;
1758   TimeStamp compaction_start;
1759   TimeStamp collection_exit;
1760 
1761   GCCause::Cause gc_cause = heap->gc_cause();
1762   PSYoungGen* young_gen = heap->young_gen();
1763   PSOldGen* old_gen = heap->old_gen();
1764   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1765 
1766   // The scope of casr should end after code that can change
1767   // CollectorPolicy::_should_clear_all_soft_refs.
1768   ClearedAllSoftRefs casr(maximum_heap_compaction,
1769                           heap->soft_ref_policy());
1770 
1771   if (ZapUnusedHeapArea) {
1772     // Save information needed to minimize mangling
1773     heap->record_gen_tops_before_GC();
1774   }
1775 
1776   // Make sure data structures are sane, make the heap parsable, and do other
1777   // miscellaneous bookkeeping.
1778   pre_compact();
1779 
1780   PreGCValues pre_gc_values(heap);
1781 
1782   // Get the compaction manager reserved for the VM thread.
1783   ParCompactionManager* const vmthread_cm =
1784     ParCompactionManager::manager_array(gc_task_manager()->workers());
1785 
1786   {
1787     ResourceMark rm;
1788     HandleMark hm;
1789 
1790     // Set the number of GC threads to be used in this collection
1791     gc_task_manager()->set_active_gang();
1792     gc_task_manager()->task_idle_workers();
1793 
1794     GCTraceCPUTime tcpu;
1795     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1796 
1797     heap->pre_full_gc_dump(&_gc_timer);
1798 
1799     TraceCollectorStats tcs(counters());
1800     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause);
1801 
1802     if (log_is_enabled(Debug, gc, heap, exit)) {
1803       accumulated_time()->start();
1804     }
1805 
1806     // Let the size policy know we're starting
1807     size_policy->major_collection_begin();
1808 
1809     heap->prune_nmethods();
1810 
1811 #if COMPILER2_OR_JVMCI
1812     DerivedPointerTable::clear();
1813 #endif
1814 
1815     ref_processor()->enable_discovery();
1816     ref_processor()->setup_policy(maximum_heap_compaction);
1817 
1818     bool marked_for_unloading = false;
1819 
1820     marking_start.update();
1821     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1822 
1823     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1824       && GCCause::is_user_requested_gc(gc_cause);
1825     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1826 
1827 #if COMPILER2_OR_JVMCI
1828     assert(DerivedPointerTable::is_active(), "Sanity");
1829     DerivedPointerTable::set_active(false);
1830 #endif
1831 
1832     // adjust_roots() updates Universe::_intArrayKlassObj which is
1833     // needed by the compaction for filling holes in the dense prefix.
1834     adjust_roots(vmthread_cm);
1835 
1836     compaction_start.update();
1837     compact();
1838 
1839     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1840     // done before resizing.
1841     post_compact();
1842 
1843     // Let the size policy know we're done
1844     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1845 
1846     if (UseAdaptiveSizePolicy) {
1847       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1848       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1849                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1850 
1851       // Don't check if the size_policy is ready here.  Let
1852       // the size_policy check that internally.
1853       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1854           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1855         // Swap the survivor spaces if from_space is empty. The
1856         // resize_young_gen() called below is normally used after
1857         // a successful young GC and swapping of survivor spaces;
1858         // otherwise, it will fail to resize the young gen with
1859         // the current implementation.
1860         if (young_gen->from_space()->is_empty()) {
1861           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1862           young_gen->swap_spaces();
1863         }
1864 
1865         // Calculate optimal free space amounts
1866         assert(young_gen->max_size() >
1867           young_gen->from_space()->capacity_in_bytes() +
1868           young_gen->to_space()->capacity_in_bytes(),
1869           "Sizes of space in young gen are out-of-bounds");
1870 
1871         size_t young_live = young_gen->used_in_bytes();
1872         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1873         size_t old_live = old_gen->used_in_bytes();
1874         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1875         size_t max_old_gen_size = old_gen->max_gen_size();
1876         size_t max_eden_size = young_gen->max_size() -
1877           young_gen->from_space()->capacity_in_bytes() -
1878           young_gen->to_space()->capacity_in_bytes();
1879 
1880         // Used for diagnostics
1881         size_policy->clear_generation_free_space_flags();
1882 
1883         size_policy->compute_generations_free_space(young_live,
1884                                                     eden_live,
1885                                                     old_live,
1886                                                     cur_eden,
1887                                                     max_old_gen_size,
1888                                                     max_eden_size,
1889                                                     true /* full gc*/);
1890 
1891         size_policy->check_gc_overhead_limit(young_live,
1892                                              eden_live,
1893                                              max_old_gen_size,
1894                                              max_eden_size,
1895                                              true /* full gc*/,
1896                                              gc_cause,
1897                                              heap->soft_ref_policy());
1898 
1899         size_policy->decay_supplemental_growth(true /* full gc*/);
1900 
1901         heap->resize_old_gen(
1902           size_policy->calculated_old_free_size_in_bytes());
1903 
1904         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1905                                size_policy->calculated_survivor_size_in_bytes());
1906       }
1907 
1908       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1909     }
1910 
1911     if (UsePerfData) {
1912       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1913       counters->update_counters();
1914       counters->update_old_capacity(old_gen->capacity_in_bytes());
1915       counters->update_young_capacity(young_gen->capacity_in_bytes());
1916     }
1917 
1918     heap->resize_all_tlabs();
1919 
1920     // Resize the metaspace capacity after a collection
1921     MetaspaceGC::compute_new_size();
1922 
1923     if (log_is_enabled(Debug, gc, heap, exit)) {
1924       accumulated_time()->stop();
1925     }
1926 
1927     young_gen->print_used_change(pre_gc_values.young_gen_used());
1928     old_gen->print_used_change(pre_gc_values.old_gen_used());
1929     MetaspaceUtils::print_metaspace_change(pre_gc_values.metadata_used());
1930 
1931     // Track memory usage and detect low memory
1932     MemoryService::track_memory_usage();
1933     heap->update_counters();
1934     gc_task_manager()->release_idle_workers();
1935 
1936     heap->post_full_gc_dump(&_gc_timer);
1937   }
1938 
1939 #ifdef ASSERT
1940   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1941     ParCompactionManager* const cm =
1942       ParCompactionManager::manager_array(int(i));
1943     assert(cm->marking_stack()->is_empty(),       "should be empty");
1944     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1945   }
1946 #endif // ASSERT
1947 
1948   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1949     HandleMark hm;  // Discard invalid handles created during verification
1950     Universe::verify("After GC");
1951   }
1952 
1953   // Re-verify object start arrays
1954   if (VerifyObjectStartArray &&
1955       VerifyAfterGC) {
1956     old_gen->verify_object_start_array();
1957   }
1958 
1959   if (ZapUnusedHeapArea) {
1960     old_gen->object_space()->check_mangled_unused_area_complete();
1961   }
1962 
1963   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1964 
1965   collection_exit.update();
1966 
1967   heap->print_heap_after_gc();
1968   heap->trace_heap_after_gc(&_gc_tracer);
1969 
1970   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1971                          marking_start.ticks(), compaction_start.ticks(),
1972                          collection_exit.ticks());
1973   gc_task_manager()->print_task_time_stamps();
1974 
1975 #ifdef TRACESPINNING
1976   ParallelTaskTerminator::print_termination_counts();
1977 #endif
1978 
1979   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1980 
1981   _gc_timer.register_gc_end();
1982 
1983   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1984   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1985 
1986   return true;
1987 }
1988 
1989 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1990                                              PSYoungGen* young_gen,
1991                                              PSOldGen* old_gen) {
1992   MutableSpace* const eden_space = young_gen->eden_space();
1993   assert(!eden_space->is_empty(), "eden must be non-empty");
1994   assert(young_gen->virtual_space()->alignment() ==
1995          old_gen->virtual_space()->alignment(), "alignments do not match");
1996 
1997   // We also return false when it's a heterogenous heap because old generation cannot absorb data from eden
1998   // when it is allocated on different memory (example, nv-dimm) than young.
1999   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary) ||
2000       ParallelScavengeHeap::heap()->ps_collector_policy()->is_hetero_heap()) {
2001     return false;
2002   }
2003 
2004   // Both generations must be completely committed.
2005   if (young_gen->virtual_space()->uncommitted_size() != 0) {
2006     return false;
2007   }
2008   if (old_gen->virtual_space()->uncommitted_size() != 0) {
2009     return false;
2010   }
2011 
2012   // Figure out how much to take from eden.  Include the average amount promoted
2013   // in the total; otherwise the next young gen GC will simply bail out to a
2014   // full GC.
2015   const size_t alignment = old_gen->virtual_space()->alignment();
2016   const size_t eden_used = eden_space->used_in_bytes();
2017   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2018   const size_t absorb_size = align_up(eden_used + promoted, alignment);
2019   const size_t eden_capacity = eden_space->capacity_in_bytes();
2020 
2021   if (absorb_size >= eden_capacity) {
2022     return false; // Must leave some space in eden.
2023   }
2024 
2025   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2026   if (new_young_size < young_gen->min_gen_size()) {
2027     return false; // Respect young gen minimum size.
2028   }
2029 
2030   log_trace(gc, ergo, heap)(" absorbing " SIZE_FORMAT "K:  "
2031                             "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2032                             "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2033                             "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2034                             absorb_size / K,
2035                             eden_capacity / K, (eden_capacity - absorb_size) / K,
2036                             young_gen->from_space()->used_in_bytes() / K,
2037                             young_gen->to_space()->used_in_bytes() / K,
2038                             young_gen->capacity_in_bytes() / K, new_young_size / K);
2039 
2040   // Fill the unused part of the old gen.
2041   MutableSpace* const old_space = old_gen->object_space();
2042   HeapWord* const unused_start = old_space->top();
2043   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2044 
2045   if (unused_words > 0) {
2046     if (unused_words < CollectedHeap::min_fill_size()) {
2047       return false;  // If the old gen cannot be filled, must give up.
2048     }
2049     CollectedHeap::fill_with_objects(unused_start, unused_words);
2050   }
2051 
2052   // Take the live data from eden and set both top and end in the old gen to
2053   // eden top.  (Need to set end because reset_after_change() mangles the region
2054   // from end to virtual_space->high() in debug builds).
2055   HeapWord* const new_top = eden_space->top();
2056   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2057                                         absorb_size);
2058   young_gen->reset_after_change();
2059   old_space->set_top(new_top);
2060   old_space->set_end(new_top);
2061   old_gen->reset_after_change();
2062 
2063   // Update the object start array for the filler object and the data from eden.
2064   ObjectStartArray* const start_array = old_gen->start_array();
2065   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2066     start_array->allocate_block(p);
2067   }
2068 
2069   // Could update the promoted average here, but it is not typically updated at
2070   // full GCs and the value to use is unclear.  Something like
2071   //
2072   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2073 
2074   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2075   return true;
2076 }
2077 
2078 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2079   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2080     "shouldn't return NULL");
2081   return ParallelScavengeHeap::gc_task_manager();
2082 }
2083 
2084 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
2085 private:
2086   GCTaskQueue* _q;
2087 
2088 public:
2089   PCAddThreadRootsMarkingTaskClosure(GCTaskQueue* q) : _q(q) { }
2090   void do_thread(Thread* t) {
2091     _q->enqueue(new ThreadRootsMarkingTask(t));
2092   }
2093 };
2094 
2095 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2096                                       bool maximum_heap_compaction,
2097                                       ParallelOldTracer *gc_tracer) {
2098   // Recursively traverse all live objects and mark them
2099   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2100 
2101   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2102   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2103   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2104   TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2105   TaskTerminator terminator(active_gc_threads, qset);
2106 
2107   PCMarkAndPushClosure mark_and_push_closure(cm);
2108   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2109 
2110   // Need new claim bits before marking starts.
2111   ClassLoaderDataGraph::clear_claimed_marks();
2112 
2113   {
2114     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2115 
2116     ParallelScavengeHeap::ParStrongRootsScope psrs;
2117 
2118     GCTaskQueue* q = GCTaskQueue::create();
2119 
2120     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2121     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2122     // We scan the thread roots in parallel
2123     PCAddThreadRootsMarkingTaskClosure cl(q);
2124     Threads::java_threads_and_vm_thread_do(&cl);
2125     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2126     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2127     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2128     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2129     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2130     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2131 
2132     if (active_gc_threads > 1) {
2133       for (uint j = 0; j < active_gc_threads; j++) {
2134         q->enqueue(new StealMarkingTask(terminator.terminator()));
2135       }
2136     }
2137 
2138     gc_task_manager()->execute_and_wait(q);
2139   }
2140 
2141   // Process reference objects found during marking
2142   {
2143     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2144 
2145     ReferenceProcessorStats stats;
2146     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
2147 
2148     if (ref_processor()->processing_is_mt()) {
2149       ref_processor()->set_active_mt_degree(active_gc_threads);
2150 
2151       RefProcTaskExecutor task_executor;
2152       stats = ref_processor()->process_discovered_references(
2153         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2154         &task_executor, &pt);
2155     } else {
2156       stats = ref_processor()->process_discovered_references(
2157         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2158         &pt);
2159     }
2160 
2161     gc_tracer->report_gc_reference_stats(stats);
2162     pt.print_all_references();
2163   }
2164 
2165   // This is the point where the entire marking should have completed.
2166   assert(cm->marking_stacks_empty(), "Marking should have completed");
2167 
2168   {
2169     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
2170     WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl);
2171   }
2172 
2173   {
2174     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2175 
2176     // Follow system dictionary roots and unload classes.
2177     bool purged_class = SystemDictionary::do_unloading(&_gc_timer);
2178 
2179     // Unload nmethods.
2180     CodeCache::do_unloading(is_alive_closure(), purged_class);
2181 
2182     // Prune dead klasses from subklass/sibling/implementor lists.
2183     Klass::clean_weak_klass_links(purged_class);
2184   }
2185 
2186   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2187 }
2188 
2189 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2190   // Adjust the pointers to reflect the new locations
2191   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2192 
2193   // Need new claim bits when tracing through and adjusting pointers.
2194   ClassLoaderDataGraph::clear_claimed_marks();
2195 
2196   PCAdjustPointerClosure oop_closure(cm);
2197 
2198   // General strong roots.
2199   Universe::oops_do(&oop_closure);
2200   JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2201   Threads::oops_do(&oop_closure, NULL);
2202   ObjectSynchronizer::oops_do(&oop_closure);
2203   Management::oops_do(&oop_closure);
2204   JvmtiExport::oops_do(&oop_closure);
2205   SystemDictionary::oops_do(&oop_closure);
2206   CLDToOopClosure cld_closure(&oop_closure, ClassLoaderData::_claim_strong);
2207   ClassLoaderDataGraph::cld_do(&cld_closure);
2208 
2209   // Now adjust pointers in remaining weak roots.  (All of which should
2210   // have been cleared if they pointed to non-surviving objects.)
2211   WeakProcessor::oops_do(&oop_closure);
2212 
2213   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2214   CodeCache::blobs_do(&adjust_from_blobs);
2215   AOTLoader::oops_do(&oop_closure);
2216   ref_processor()->weak_oops_do(&oop_closure);
2217   // Roots were visited so references into the young gen in roots
2218   // may have been scanned.  Process them also.
2219   // Should the reference processor have a span that excludes
2220   // young gen objects?
2221   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2222 }
2223 
2224 // Helper class to print 8 region numbers per line and then print the total at the end.
2225 class FillableRegionLogger : public StackObj {
2226 private:
2227   Log(gc, compaction) log;
2228   static const int LineLength = 8;
2229   size_t _regions[LineLength];
2230   int _next_index;
2231   bool _enabled;
2232   size_t _total_regions;
2233 public:
2234   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
2235   ~FillableRegionLogger() {
2236     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2237   }
2238 
2239   void print_line() {
2240     if (!_enabled || _next_index == 0) {
2241       return;
2242     }
2243     FormatBuffer<> line("Fillable: ");
2244     for (int i = 0; i < _next_index; i++) {
2245       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2246     }
2247     log.trace("%s", line.buffer());
2248     _next_index = 0;
2249   }
2250 
2251   void handle(size_t region) {
2252     if (!_enabled) {
2253       return;
2254     }
2255     _regions[_next_index++] = region;
2256     if (_next_index == LineLength) {
2257       print_line();
2258     }
2259     _total_regions++;
2260   }
2261 };
2262 
2263 void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q,
2264                                                       uint parallel_gc_threads)
2265 {
2266   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2267 
2268   // Find the threads that are active
2269   unsigned int which = 0;
2270 
2271   // Find all regions that are available (can be filled immediately) and
2272   // distribute them to the thread stacks.  The iteration is done in reverse
2273   // order (high to low) so the regions will be removed in ascending order.
2274 
2275   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2276 
2277   which = 0;
2278   // id + 1 is used to test termination so unsigned  can
2279   // be used with an old_space_id == 0.
2280   FillableRegionLogger region_logger;
2281   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2282     SpaceInfo* const space_info = _space_info + id;
2283     MutableSpace* const space = space_info->space();
2284     HeapWord* const new_top = space_info->new_top();
2285 
2286     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2287     const size_t end_region =
2288       sd.addr_to_region_idx(sd.region_align_up(new_top));
2289 
2290     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2291       if (sd.region(cur)->claim_unsafe()) {
2292         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2293         cm->region_stack()->push(cur);
2294         region_logger.handle(cur);
2295         // Assign regions to tasks in round-robin fashion.
2296         if (++which == parallel_gc_threads) {
2297           which = 0;
2298         }
2299       }
2300     }
2301     region_logger.print_line();
2302   }
2303 }
2304 
2305 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2306 
2307 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2308                                                     uint parallel_gc_threads) {
2309   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2310 
2311   ParallelCompactData& sd = PSParallelCompact::summary_data();
2312 
2313   // Iterate over all the spaces adding tasks for updating
2314   // regions in the dense prefix.  Assume that 1 gc thread
2315   // will work on opening the gaps and the remaining gc threads
2316   // will work on the dense prefix.
2317   unsigned int space_id;
2318   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2319     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2320     const MutableSpace* const space = _space_info[space_id].space();
2321 
2322     if (dense_prefix_end == space->bottom()) {
2323       // There is no dense prefix for this space.
2324       continue;
2325     }
2326 
2327     // The dense prefix is before this region.
2328     size_t region_index_end_dense_prefix =
2329         sd.addr_to_region_idx(dense_prefix_end);
2330     RegionData* const dense_prefix_cp =
2331       sd.region(region_index_end_dense_prefix);
2332     assert(dense_prefix_end == space->end() ||
2333            dense_prefix_cp->available() ||
2334            dense_prefix_cp->claimed(),
2335            "The region after the dense prefix should always be ready to fill");
2336 
2337     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2338 
2339     // Is there dense prefix work?
2340     size_t total_dense_prefix_regions =
2341       region_index_end_dense_prefix - region_index_start;
2342     // How many regions of the dense prefix should be given to
2343     // each thread?
2344     if (total_dense_prefix_regions > 0) {
2345       uint tasks_for_dense_prefix = 1;
2346       if (total_dense_prefix_regions <=
2347           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2348         // Don't over partition.  This assumes that
2349         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2350         // so there are not many regions to process.
2351         tasks_for_dense_prefix = parallel_gc_threads;
2352       } else {
2353         // Over partition
2354         tasks_for_dense_prefix = parallel_gc_threads *
2355           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2356       }
2357       size_t regions_per_thread = total_dense_prefix_regions /
2358         tasks_for_dense_prefix;
2359       // Give each thread at least 1 region.
2360       if (regions_per_thread == 0) {
2361         regions_per_thread = 1;
2362       }
2363 
2364       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2365         if (region_index_start >= region_index_end_dense_prefix) {
2366           break;
2367         }
2368         // region_index_end is not processed
2369         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2370                                        region_index_end_dense_prefix);
2371         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2372                                              region_index_start,
2373                                              region_index_end));
2374         region_index_start = region_index_end;
2375       }
2376     }
2377     // This gets any part of the dense prefix that did not
2378     // fit evenly.
2379     if (region_index_start < region_index_end_dense_prefix) {
2380       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2381                                            region_index_start,
2382                                            region_index_end_dense_prefix));
2383     }
2384   }
2385 }
2386 
2387 void PSParallelCompact::enqueue_region_stealing_tasks(
2388                                      GCTaskQueue* q,
2389                                      ParallelTaskTerminator* terminator_ptr,
2390                                      uint parallel_gc_threads) {
2391   GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2392 
2393   // Once a thread has drained it's stack, it should try to steal regions from
2394   // other threads.
2395   for (uint j = 0; j < parallel_gc_threads; j++) {
2396     q->enqueue(new CompactionWithStealingTask(terminator_ptr));
2397   }
2398 }
2399 
2400 #ifdef ASSERT
2401 // Write a histogram of the number of times the block table was filled for a
2402 // region.
2403 void PSParallelCompact::write_block_fill_histogram()
2404 {
2405   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2406     return;
2407   }
2408 
2409   Log(gc, compaction) log;
2410   ResourceMark rm;
2411   LogStream ls(log.trace());
2412   outputStream* out = &ls;
2413 
2414   typedef ParallelCompactData::RegionData rd_t;
2415   ParallelCompactData& sd = summary_data();
2416 
2417   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2418     MutableSpace* const spc = _space_info[id].space();
2419     if (spc->bottom() != spc->top()) {
2420       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2421       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2422       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2423 
2424       size_t histo[5] = { 0, 0, 0, 0, 0 };
2425       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2426       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2427 
2428       for (const rd_t* cur = beg; cur < end; ++cur) {
2429         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2430       }
2431       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2432       for (size_t i = 0; i < histo_len; ++i) {
2433         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2434                    histo[i], 100.0 * histo[i] / region_cnt);
2435       }
2436       out->cr();
2437     }
2438   }
2439 }
2440 #endif // #ifdef ASSERT
2441 
2442 void PSParallelCompact::compact() {
2443   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2444 
2445   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2446   PSOldGen* old_gen = heap->old_gen();
2447   old_gen->start_array()->reset();
2448   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2449   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2450   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2451   TaskTerminator terminator(active_gc_threads, qset);
2452 
2453   GCTaskQueue* q = GCTaskQueue::create();
2454   prepare_region_draining_tasks(q, active_gc_threads);
2455   enqueue_dense_prefix_tasks(q, active_gc_threads);
2456   enqueue_region_stealing_tasks(q, terminator.terminator(), active_gc_threads);
2457 
2458   {
2459     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2460 
2461     gc_task_manager()->execute_and_wait(q);
2462 
2463 #ifdef  ASSERT
2464     // Verify that all regions have been processed before the deferred updates.
2465     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2466       verify_complete(SpaceId(id));
2467     }
2468 #endif
2469   }
2470 
2471   {
2472     // Update the deferred objects, if any.  Any compaction manager can be used.
2473     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2474     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2475     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2476       update_deferred_objects(cm, SpaceId(id));
2477     }
2478   }
2479 
2480   DEBUG_ONLY(write_block_fill_histogram());
2481 }
2482 
2483 #ifdef  ASSERT
2484 void PSParallelCompact::verify_complete(SpaceId space_id) {
2485   // All Regions between space bottom() to new_top() should be marked as filled
2486   // and all Regions between new_top() and top() should be available (i.e.,
2487   // should have been emptied).
2488   ParallelCompactData& sd = summary_data();
2489   SpaceInfo si = _space_info[space_id];
2490   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2491   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2492   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2493   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2494   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2495 
2496   bool issued_a_warning = false;
2497 
2498   size_t cur_region;
2499   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2500     const RegionData* const c = sd.region(cur_region);
2501     if (!c->completed()) {
2502       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2503                       cur_region, c->destination_count());
2504       issued_a_warning = true;
2505     }
2506   }
2507 
2508   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2509     const RegionData* const c = sd.region(cur_region);
2510     if (!c->available()) {
2511       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2512                       cur_region, c->destination_count());
2513       issued_a_warning = true;
2514     }
2515   }
2516 
2517   if (issued_a_warning) {
2518     print_region_ranges();
2519   }
2520 }
2521 #endif  // #ifdef ASSERT
2522 
2523 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2524   _start_array->allocate_block(addr);
2525   compaction_manager()->update_contents(oop(addr));
2526 }
2527 
2528 // Update interior oops in the ranges of regions [beg_region, end_region).
2529 void
2530 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2531                                                        SpaceId space_id,
2532                                                        size_t beg_region,
2533                                                        size_t end_region) {
2534   ParallelCompactData& sd = summary_data();
2535   ParMarkBitMap* const mbm = mark_bitmap();
2536 
2537   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2538   HeapWord* const end_addr = sd.region_to_addr(end_region);
2539   assert(beg_region <= end_region, "bad region range");
2540   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2541 
2542 #ifdef  ASSERT
2543   // Claim the regions to avoid triggering an assert when they are marked as
2544   // filled.
2545   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2546     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2547   }
2548 #endif  // #ifdef ASSERT
2549 
2550   if (beg_addr != space(space_id)->bottom()) {
2551     // Find the first live object or block of dead space that *starts* in this
2552     // range of regions.  If a partial object crosses onto the region, skip it;
2553     // it will be marked for 'deferred update' when the object head is
2554     // processed.  If dead space crosses onto the region, it is also skipped; it
2555     // will be filled when the prior region is processed.  If neither of those
2556     // apply, the first word in the region is the start of a live object or dead
2557     // space.
2558     assert(beg_addr > space(space_id)->bottom(), "sanity");
2559     const RegionData* const cp = sd.region(beg_region);
2560     if (cp->partial_obj_size() != 0) {
2561       beg_addr = sd.partial_obj_end(beg_region);
2562     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2563       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2564     }
2565   }
2566 
2567   if (beg_addr < end_addr) {
2568     // A live object or block of dead space starts in this range of Regions.
2569      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2570 
2571     // Create closures and iterate.
2572     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2573     FillClosure fill_closure(cm, space_id);
2574     ParMarkBitMap::IterationStatus status;
2575     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2576                           dense_prefix_end);
2577     if (status == ParMarkBitMap::incomplete) {
2578       update_closure.do_addr(update_closure.source());
2579     }
2580   }
2581 
2582   // Mark the regions as filled.
2583   RegionData* const beg_cp = sd.region(beg_region);
2584   RegionData* const end_cp = sd.region(end_region);
2585   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2586     cp->set_completed();
2587   }
2588 }
2589 
2590 // Return the SpaceId for the space containing addr.  If addr is not in the
2591 // heap, last_space_id is returned.  In debug mode it expects the address to be
2592 // in the heap and asserts such.
2593 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2594   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2595 
2596   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2597     if (_space_info[id].space()->contains(addr)) {
2598       return SpaceId(id);
2599     }
2600   }
2601 
2602   assert(false, "no space contains the addr");
2603   return last_space_id;
2604 }
2605 
2606 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2607                                                 SpaceId id) {
2608   assert(id < last_space_id, "bad space id");
2609 
2610   ParallelCompactData& sd = summary_data();
2611   const SpaceInfo* const space_info = _space_info + id;
2612   ObjectStartArray* const start_array = space_info->start_array();
2613 
2614   const MutableSpace* const space = space_info->space();
2615   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2616   HeapWord* const beg_addr = space_info->dense_prefix();
2617   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2618 
2619   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2620   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2621   const RegionData* cur_region;
2622   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2623     HeapWord* const addr = cur_region->deferred_obj_addr();
2624     if (addr != NULL) {
2625       if (start_array != NULL) {
2626         start_array->allocate_block(addr);
2627       }
2628       cm->update_contents(oop(addr));
2629       assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2630     }
2631   }
2632 }
2633 
2634 // Skip over count live words starting from beg, and return the address of the
2635 // next live word.  Unless marked, the word corresponding to beg is assumed to
2636 // be dead.  Callers must either ensure beg does not correspond to the middle of
2637 // an object, or account for those live words in some other way.  Callers must
2638 // also ensure that there are enough live words in the range [beg, end) to skip.
2639 HeapWord*
2640 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2641 {
2642   assert(count > 0, "sanity");
2643 
2644   ParMarkBitMap* m = mark_bitmap();
2645   idx_t bits_to_skip = m->words_to_bits(count);
2646   idx_t cur_beg = m->addr_to_bit(beg);
2647   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2648 
2649   do {
2650     cur_beg = m->find_obj_beg(cur_beg, search_end);
2651     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2652     const size_t obj_bits = cur_end - cur_beg + 1;
2653     if (obj_bits > bits_to_skip) {
2654       return m->bit_to_addr(cur_beg + bits_to_skip);
2655     }
2656     bits_to_skip -= obj_bits;
2657     cur_beg = cur_end + 1;
2658   } while (bits_to_skip > 0);
2659 
2660   // Skipping the desired number of words landed just past the end of an object.
2661   // Find the start of the next object.
2662   cur_beg = m->find_obj_beg(cur_beg, search_end);
2663   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2664   return m->bit_to_addr(cur_beg);
2665 }
2666 
2667 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2668                                             SpaceId src_space_id,
2669                                             size_t src_region_idx)
2670 {
2671   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2672 
2673   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2674   if (split_info.dest_region_addr() == dest_addr) {
2675     // The partial object ending at the split point contains the first word to
2676     // be copied to dest_addr.
2677     return split_info.first_src_addr();
2678   }
2679 
2680   const ParallelCompactData& sd = summary_data();
2681   ParMarkBitMap* const bitmap = mark_bitmap();
2682   const size_t RegionSize = ParallelCompactData::RegionSize;
2683 
2684   assert(sd.is_region_aligned(dest_addr), "not aligned");
2685   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2686   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2687   HeapWord* const src_region_destination = src_region_ptr->destination();
2688 
2689   assert(dest_addr >= src_region_destination, "wrong src region");
2690   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2691 
2692   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2693   HeapWord* const src_region_end = src_region_beg + RegionSize;
2694 
2695   HeapWord* addr = src_region_beg;
2696   if (dest_addr == src_region_destination) {
2697     // Return the first live word in the source region.
2698     if (partial_obj_size == 0) {
2699       addr = bitmap->find_obj_beg(addr, src_region_end);
2700       assert(addr < src_region_end, "no objects start in src region");
2701     }
2702     return addr;
2703   }
2704 
2705   // Must skip some live data.
2706   size_t words_to_skip = dest_addr - src_region_destination;
2707   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2708 
2709   if (partial_obj_size >= words_to_skip) {
2710     // All the live words to skip are part of the partial object.
2711     addr += words_to_skip;
2712     if (partial_obj_size == words_to_skip) {
2713       // Find the first live word past the partial object.
2714       addr = bitmap->find_obj_beg(addr, src_region_end);
2715       assert(addr < src_region_end, "wrong src region");
2716     }
2717     return addr;
2718   }
2719 
2720   // Skip over the partial object (if any).
2721   if (partial_obj_size != 0) {
2722     words_to_skip -= partial_obj_size;
2723     addr += partial_obj_size;
2724   }
2725 
2726   // Skip over live words due to objects that start in the region.
2727   addr = skip_live_words(addr, src_region_end, words_to_skip);
2728   assert(addr < src_region_end, "wrong src region");
2729   return addr;
2730 }
2731 
2732 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2733                                                      SpaceId src_space_id,
2734                                                      size_t beg_region,
2735                                                      HeapWord* end_addr)
2736 {
2737   ParallelCompactData& sd = summary_data();
2738 
2739 #ifdef ASSERT
2740   MutableSpace* const src_space = _space_info[src_space_id].space();
2741   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2742   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2743          "src_space_id does not match beg_addr");
2744   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2745          "src_space_id does not match end_addr");
2746 #endif // #ifdef ASSERT
2747 
2748   RegionData* const beg = sd.region(beg_region);
2749   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2750 
2751   // Regions up to new_top() are enqueued if they become available.
2752   HeapWord* const new_top = _space_info[src_space_id].new_top();
2753   RegionData* const enqueue_end =
2754     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2755 
2756   for (RegionData* cur = beg; cur < end; ++cur) {
2757     assert(cur->data_size() > 0, "region must have live data");
2758     cur->decrement_destination_count();
2759     if (cur < enqueue_end && cur->available() && cur->claim()) {
2760       cm->push_region(sd.region(cur));
2761     }
2762   }
2763 }
2764 
2765 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2766                                           SpaceId& src_space_id,
2767                                           HeapWord*& src_space_top,
2768                                           HeapWord* end_addr)
2769 {
2770   typedef ParallelCompactData::RegionData RegionData;
2771 
2772   ParallelCompactData& sd = PSParallelCompact::summary_data();
2773   const size_t region_size = ParallelCompactData::RegionSize;
2774 
2775   size_t src_region_idx = 0;
2776 
2777   // Skip empty regions (if any) up to the top of the space.
2778   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2779   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2780   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2781   const RegionData* const top_region_ptr =
2782     sd.addr_to_region_ptr(top_aligned_up);
2783   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2784     ++src_region_ptr;
2785   }
2786 
2787   if (src_region_ptr < top_region_ptr) {
2788     // The next source region is in the current space.  Update src_region_idx
2789     // and the source address to match src_region_ptr.
2790     src_region_idx = sd.region(src_region_ptr);
2791     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2792     if (src_region_addr > closure.source()) {
2793       closure.set_source(src_region_addr);
2794     }
2795     return src_region_idx;
2796   }
2797 
2798   // Switch to a new source space and find the first non-empty region.
2799   unsigned int space_id = src_space_id + 1;
2800   assert(space_id < last_space_id, "not enough spaces");
2801 
2802   HeapWord* const destination = closure.destination();
2803 
2804   do {
2805     MutableSpace* space = _space_info[space_id].space();
2806     HeapWord* const bottom = space->bottom();
2807     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2808 
2809     // Iterate over the spaces that do not compact into themselves.
2810     if (bottom_cp->destination() != bottom) {
2811       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2812       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2813 
2814       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2815         if (src_cp->live_obj_size() > 0) {
2816           // Found it.
2817           assert(src_cp->destination() == destination,
2818                  "first live obj in the space must match the destination");
2819           assert(src_cp->partial_obj_size() == 0,
2820                  "a space cannot begin with a partial obj");
2821 
2822           src_space_id = SpaceId(space_id);
2823           src_space_top = space->top();
2824           const size_t src_region_idx = sd.region(src_cp);
2825           closure.set_source(sd.region_to_addr(src_region_idx));
2826           return src_region_idx;
2827         } else {
2828           assert(src_cp->data_size() == 0, "sanity");
2829         }
2830       }
2831     }
2832   } while (++space_id < last_space_id);
2833 
2834   assert(false, "no source region was found");
2835   return 0;
2836 }
2837 
2838 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2839 {
2840   typedef ParMarkBitMap::IterationStatus IterationStatus;
2841   const size_t RegionSize = ParallelCompactData::RegionSize;
2842   ParMarkBitMap* const bitmap = mark_bitmap();
2843   ParallelCompactData& sd = summary_data();
2844   RegionData* const region_ptr = sd.region(region_idx);
2845 
2846   // Get the items needed to construct the closure.
2847   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2848   SpaceId dest_space_id = space_id(dest_addr);
2849   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2850   HeapWord* new_top = _space_info[dest_space_id].new_top();
2851   assert(dest_addr < new_top, "sanity");
2852   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2853 
2854   // Get the source region and related info.
2855   size_t src_region_idx = region_ptr->source_region();
2856   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2857   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2858 
2859   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2860   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2861 
2862   // Adjust src_region_idx to prepare for decrementing destination counts (the
2863   // destination count is not decremented when a region is copied to itself).
2864   if (src_region_idx == region_idx) {
2865     src_region_idx += 1;
2866   }
2867 
2868   if (bitmap->is_unmarked(closure.source())) {
2869     // The first source word is in the middle of an object; copy the remainder
2870     // of the object or as much as will fit.  The fact that pointer updates were
2871     // deferred will be noted when the object header is processed.
2872     HeapWord* const old_src_addr = closure.source();
2873     closure.copy_partial_obj();
2874     if (closure.is_full()) {
2875       decrement_destination_counts(cm, src_space_id, src_region_idx,
2876                                    closure.source());
2877       region_ptr->set_deferred_obj_addr(NULL);
2878       region_ptr->set_completed();
2879       return;
2880     }
2881 
2882     HeapWord* const end_addr = sd.region_align_down(closure.source());
2883     if (sd.region_align_down(old_src_addr) != end_addr) {
2884       // The partial object was copied from more than one source region.
2885       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2886 
2887       // Move to the next source region, possibly switching spaces as well.  All
2888       // args except end_addr may be modified.
2889       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2890                                        end_addr);
2891     }
2892   }
2893 
2894   do {
2895     HeapWord* const cur_addr = closure.source();
2896     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2897                                     src_space_top);
2898     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2899 
2900     if (status == ParMarkBitMap::incomplete) {
2901       // The last obj that starts in the source region does not end in the
2902       // region.
2903       assert(closure.source() < end_addr, "sanity");
2904       HeapWord* const obj_beg = closure.source();
2905       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2906                                        src_space_top);
2907       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2908       if (obj_end < range_end) {
2909         // The end was found; the entire object will fit.
2910         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2911         assert(status != ParMarkBitMap::would_overflow, "sanity");
2912       } else {
2913         // The end was not found; the object will not fit.
2914         assert(range_end < src_space_top, "obj cannot cross space boundary");
2915         status = ParMarkBitMap::would_overflow;
2916       }
2917     }
2918 
2919     if (status == ParMarkBitMap::would_overflow) {
2920       // The last object did not fit.  Note that interior oop updates were
2921       // deferred, then copy enough of the object to fill the region.
2922       region_ptr->set_deferred_obj_addr(closure.destination());
2923       status = closure.copy_until_full(); // copies from closure.source()
2924 
2925       decrement_destination_counts(cm, src_space_id, src_region_idx,
2926                                    closure.source());
2927       region_ptr->set_completed();
2928       return;
2929     }
2930 
2931     if (status == ParMarkBitMap::full) {
2932       decrement_destination_counts(cm, src_space_id, src_region_idx,
2933                                    closure.source());
2934       region_ptr->set_deferred_obj_addr(NULL);
2935       region_ptr->set_completed();
2936       return;
2937     }
2938 
2939     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2940 
2941     // Move to the next source region, possibly switching spaces as well.  All
2942     // args except end_addr may be modified.
2943     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2944                                      end_addr);
2945   } while (true);
2946 }
2947 
2948 void PSParallelCompact::fill_blocks(size_t region_idx)
2949 {
2950   // Fill in the block table elements for the specified region.  Each block
2951   // table element holds the number of live words in the region that are to the
2952   // left of the first object that starts in the block.  Thus only blocks in
2953   // which an object starts need to be filled.
2954   //
2955   // The algorithm scans the section of the bitmap that corresponds to the
2956   // region, keeping a running total of the live words.  When an object start is
2957   // found, if it's the first to start in the block that contains it, the
2958   // current total is written to the block table element.
2959   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2960   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2961   const size_t RegionSize = ParallelCompactData::RegionSize;
2962 
2963   ParallelCompactData& sd = summary_data();
2964   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2965   if (partial_obj_size >= RegionSize) {
2966     return; // No objects start in this region.
2967   }
2968 
2969   // Ensure the first loop iteration decides that the block has changed.
2970   size_t cur_block = sd.block_count();
2971 
2972   const ParMarkBitMap* const bitmap = mark_bitmap();
2973 
2974   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2975   assert((size_t)1 << Log2BitsPerBlock ==
2976          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2977 
2978   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2979   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2980   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2981   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2982   while (beg_bit < range_end) {
2983     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2984     if (new_block != cur_block) {
2985       cur_block = new_block;
2986       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2987     }
2988 
2989     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2990     if (end_bit < range_end - 1) {
2991       live_bits += end_bit - beg_bit + 1;
2992       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2993     } else {
2994       return;
2995     }
2996   }
2997 }
2998 
2999 void
3000 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3001   const MutableSpace* sp = space(space_id);
3002   if (sp->is_empty()) {
3003     return;
3004   }
3005 
3006   ParallelCompactData& sd = PSParallelCompact::summary_data();
3007   ParMarkBitMap* const bitmap = mark_bitmap();
3008   HeapWord* const dp_addr = dense_prefix(space_id);
3009   HeapWord* beg_addr = sp->bottom();
3010   HeapWord* end_addr = sp->top();
3011 
3012   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3013 
3014   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3015   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3016   if (beg_region < dp_region) {
3017     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3018   }
3019 
3020   // The destination of the first live object that starts in the region is one
3021   // past the end of the partial object entering the region (if any).
3022   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3023   HeapWord* const new_top = _space_info[space_id].new_top();
3024   assert(new_top >= dest_addr, "bad new_top value");
3025   const size_t words = pointer_delta(new_top, dest_addr);
3026 
3027   if (words > 0) {
3028     ObjectStartArray* start_array = _space_info[space_id].start_array();
3029     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3030 
3031     ParMarkBitMap::IterationStatus status;
3032     status = bitmap->iterate(&closure, dest_addr, end_addr);
3033     assert(status == ParMarkBitMap::full, "iteration not complete");
3034     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3035            "live objects skipped because closure is full");
3036   }
3037 }
3038 
3039 jlong PSParallelCompact::millis_since_last_gc() {
3040   // We need a monotonically non-decreasing time in ms but
3041   // os::javaTimeMillis() does not guarantee monotonicity.
3042   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3043   jlong ret_val = now - _time_of_last_gc;
3044   // XXX See note in genCollectedHeap::millis_since_last_gc().
3045   if (ret_val < 0) {
3046     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3047     return 0;
3048   }
3049   return ret_val;
3050 }
3051 
3052 void PSParallelCompact::reset_millis_since_last_gc() {
3053   // We need a monotonically non-decreasing time in ms but
3054   // os::javaTimeMillis() does not guarantee monotonicity.
3055   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3056 }
3057 
3058 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3059 {
3060   if (source() != destination()) {
3061     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3062     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3063   }
3064   update_state(words_remaining());
3065   assert(is_full(), "sanity");
3066   return ParMarkBitMap::full;
3067 }
3068 
3069 void MoveAndUpdateClosure::copy_partial_obj()
3070 {
3071   size_t words = words_remaining();
3072 
3073   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3074   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3075   if (end_addr < range_end) {
3076     words = bitmap()->obj_size(source(), end_addr);
3077   }
3078 
3079   // This test is necessary; if omitted, the pointer updates to a partial object
3080   // that crosses the dense prefix boundary could be overwritten.
3081   if (source() != destination()) {
3082     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3083     Copy::aligned_conjoint_words(source(), destination(), words);
3084   }
3085   update_state(words);
3086 }
3087 
3088 ParMarkBitMapClosure::IterationStatus
3089 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3090   assert(destination() != NULL, "sanity");
3091   assert(bitmap()->obj_size(addr) == words, "bad size");
3092 
3093   _source = addr;
3094   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3095          destination(), "wrong destination");
3096 
3097   if (words > words_remaining()) {
3098     return ParMarkBitMap::would_overflow;
3099   }
3100 
3101   // The start_array must be updated even if the object is not moving.
3102   if (_start_array != NULL) {
3103     _start_array->allocate_block(destination());
3104   }
3105 
3106   if (destination() != source()) {
3107     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3108     Copy::aligned_conjoint_words(source(), destination(), words);
3109   }
3110 
3111   oop moved_oop = (oop) destination();
3112   compaction_manager()->update_contents(moved_oop);
3113   assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3114 
3115   update_state(words);
3116   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3117   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3118 }
3119 
3120 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3121                                      ParCompactionManager* cm,
3122                                      PSParallelCompact::SpaceId space_id) :
3123   ParMarkBitMapClosure(mbm, cm),
3124   _space_id(space_id),
3125   _start_array(PSParallelCompact::start_array(space_id))
3126 {
3127 }
3128 
3129 // Updates the references in the object to their new values.
3130 ParMarkBitMapClosure::IterationStatus
3131 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3132   do_addr(addr);
3133   return ParMarkBitMap::incomplete;
3134 }
3135 
3136 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3137   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3138   _start_array(PSParallelCompact::start_array(space_id))
3139 {
3140   assert(space_id == PSParallelCompact::old_space_id,
3141          "cannot use FillClosure in the young gen");
3142 }
3143 
3144 ParMarkBitMapClosure::IterationStatus
3145 FillClosure::do_addr(HeapWord* addr, size_t size) {
3146   CollectedHeap::fill_with_objects(addr, size);
3147   HeapWord* const end = addr + size;
3148   do {
3149     _start_array->allocate_block(addr);
3150     addr += oop(addr)->size();
3151   } while (addr < end);
3152   return ParMarkBitMap::incomplete;
3153 }