1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "gc/serial/defNewGeneration.hpp"
  35 #include "gc/shared/adaptiveSizePolicy.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/cardTableRS.hpp"
  38 #include "gc/shared/collectedHeap.inline.hpp"
  39 #include "gc/shared/collectorCounters.hpp"
  40 #include "gc/shared/gcId.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "gc/shared/gcPolicyCounters.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/gcVMOperations.hpp"
  46 #include "gc/shared/genCollectedHeap.hpp"
  47 #include "gc/shared/genOopClosures.inline.hpp"
  48 #include "gc/shared/generationSpec.hpp"
  49 #include "gc/shared/oopStorageParState.inline.hpp"
  50 #include "gc/shared/scavengableNMethods.hpp"
  51 #include "gc/shared/space.hpp"
  52 #include "gc/shared/strongRootsScope.hpp"
  53 #include "gc/shared/weakProcessor.hpp"
  54 #include "gc/shared/workgroup.hpp"
  55 #include "memory/filemap.hpp"
  56 #include "memory/metaspaceCounters.hpp"
  57 #include "memory/resourceArea.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/flags/flagSetting.hpp"
  61 #include "runtime/handles.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/vmThread.hpp"
  65 #include "services/management.hpp"
  66 #include "services/memoryService.hpp"
  67 #include "utilities/debug.hpp"
  68 #include "utilities/formatBuffer.hpp"
  69 #include "utilities/macros.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 #include "utilities/vmError.hpp"
  72 
  73 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy,
  74                                    Generation::Name young,
  75                                    Generation::Name old,
  76                                    const char* policy_counters_name) :
  77   CollectedHeap(),
  78   _young_gen_spec(new GenerationSpec(young,
  79                                      policy->initial_young_size(),
  80                                      policy->max_young_size(),
  81                                      policy->gen_alignment())),
  82   _old_gen_spec(new GenerationSpec(old,
  83                                    policy->initial_old_size(),
  84                                    policy->max_old_size(),
  85                                    policy->gen_alignment())),
  86   _rem_set(NULL),
  87   _gen_policy(policy),
  88   _soft_ref_gen_policy(),
  89   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
  90   _full_collections_completed(0),
  91   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)) {
  92 }
  93 
  94 jint GenCollectedHeap::initialize() {
  95   // While there are no constraints in the GC code that HeapWordSize
  96   // be any particular value, there are multiple other areas in the
  97   // system which believe this to be true (e.g. oop->object_size in some
  98   // cases incorrectly returns the size in wordSize units rather than
  99   // HeapWordSize).
 100   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 101 
 102   // Allocate space for the heap.
 103 
 104   char* heap_address;
 105   ReservedSpace heap_rs;
 106 
 107   size_t heap_alignment = collector_policy()->heap_alignment();
 108 
 109   heap_address = allocate(heap_alignment, &heap_rs);
 110 
 111   if (!heap_rs.is_reserved()) {
 112     vm_shutdown_during_initialization(
 113       "Could not reserve enough space for object heap");
 114     return JNI_ENOMEM;
 115   }
 116 
 117   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 118 
 119   _rem_set = create_rem_set(reserved_region());
 120   _rem_set->initialize();
 121   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 122   bs->initialize();
 123   BarrierSet::set_barrier_set(bs);
 124 
 125   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size(), false, false);
 126   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 127   heap_rs = heap_rs.last_part(_young_gen_spec->max_size());
 128 
 129   ReservedSpace old_rs = heap_rs.first_part(_old_gen_spec->max_size(), false, false);
 130   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 131   clear_incremental_collection_failed();
 132 
 133   return JNI_OK;
 134 }
 135 
 136 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 137   return new CardTableRS(reserved_region, false /* scan_concurrently */);
 138 }
 139 
 140 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 141                                               size_t init_promo_size,
 142                                               size_t init_survivor_size) {
 143   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 144   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 145                                         init_promo_size,
 146                                         init_survivor_size,
 147                                         max_gc_pause_sec,
 148                                         GCTimeRatio);
 149 }
 150 
 151 char* GenCollectedHeap::allocate(size_t alignment,
 152                                  ReservedSpace* heap_rs){
 153   // Now figure out the total size.
 154   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 155   assert(alignment % pageSize == 0, "Must be");
 156 
 157   // Check for overflow.
 158   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 159   if (total_reserved < _young_gen_spec->max_size()) {
 160     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 161                                   "the maximum representable size");
 162   }
 163   assert(total_reserved % alignment == 0,
 164          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 165          SIZE_FORMAT, total_reserved, alignment);
 166 
 167   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 168 
 169   os::trace_page_sizes("Heap",
 170                        collector_policy()->min_heap_byte_size(),
 171                        total_reserved,
 172                        alignment,
 173                        heap_rs->base(),
 174                        heap_rs->size());
 175 
 176   return heap_rs->base();
 177 }
 178 
 179 namespace {
 180   class GenIsScavengable : public BoolObjectClosure {
 181   public:
 182     bool do_object_b(oop obj) {
 183       return GenCollectedHeap::heap()->is_in_young(obj);
 184     }
 185   };
 186 
 187   GenIsScavengable _is_scavengable;
 188 }
 189 
 190 void GenCollectedHeap::post_initialize() {
 191   CollectedHeap::post_initialize();
 192   ref_processing_init();
 193 
 194   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 195 
 196   initialize_size_policy(def_new_gen->eden()->capacity(),
 197                          _old_gen->capacity(),
 198                          def_new_gen->from()->capacity());
 199 
 200   MarkSweep::initialize();
 201 
 202   ScavengableNMethods::initialize(&_is_scavengable);
 203 }
 204 
 205 void GenCollectedHeap::ref_processing_init() {
 206   _young_gen->ref_processor_init();
 207   _old_gen->ref_processor_init();
 208 }
 209 
 210 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 211   return _young_gen_spec;
 212 }
 213 
 214 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 215   return _old_gen_spec;
 216 }
 217 
 218 size_t GenCollectedHeap::capacity() const {
 219   return _young_gen->capacity() + _old_gen->capacity();
 220 }
 221 
 222 size_t GenCollectedHeap::used() const {
 223   return _young_gen->used() + _old_gen->used();
 224 }
 225 
 226 void GenCollectedHeap::save_used_regions() {
 227   _old_gen->save_used_region();
 228   _young_gen->save_used_region();
 229 }
 230 
 231 size_t GenCollectedHeap::max_capacity() const {
 232   return _young_gen->max_capacity() + _old_gen->max_capacity();
 233 }
 234 
 235 // Update the _full_collections_completed counter
 236 // at the end of a stop-world full GC.
 237 unsigned int GenCollectedHeap::update_full_collections_completed() {
 238   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 239   assert(_full_collections_completed <= _total_full_collections,
 240          "Can't complete more collections than were started");
 241   _full_collections_completed = _total_full_collections;
 242   ml.notify_all();
 243   return _full_collections_completed;
 244 }
 245 
 246 // Update the _full_collections_completed counter, as appropriate,
 247 // at the end of a concurrent GC cycle. Note the conditional update
 248 // below to allow this method to be called by a concurrent collector
 249 // without synchronizing in any manner with the VM thread (which
 250 // may already have initiated a STW full collection "concurrently").
 251 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 252   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 253   assert((_full_collections_completed <= _total_full_collections) &&
 254          (count <= _total_full_collections),
 255          "Can't complete more collections than were started");
 256   if (count > _full_collections_completed) {
 257     _full_collections_completed = count;
 258     ml.notify_all();
 259   }
 260   return _full_collections_completed;
 261 }
 262 
 263 // Return true if any of the following is true:
 264 // . the allocation won't fit into the current young gen heap
 265 // . gc locker is occupied (jni critical section)
 266 // . heap memory is tight -- the most recent previous collection
 267 //   was a full collection because a partial collection (would
 268 //   have) failed and is likely to fail again
 269 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 270   size_t young_capacity = _young_gen->capacity_before_gc();
 271   return    (word_size > heap_word_size(young_capacity))
 272          || GCLocker::is_active_and_needs_gc()
 273          || incremental_collection_failed();
 274 }
 275 
 276 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 277   HeapWord* result = NULL;
 278   if (_old_gen->should_allocate(size, is_tlab)) {
 279     result = _old_gen->expand_and_allocate(size, is_tlab);
 280   }
 281   if (result == NULL) {
 282     if (_young_gen->should_allocate(size, is_tlab)) {
 283       result = _young_gen->expand_and_allocate(size, is_tlab);
 284     }
 285   }
 286   assert(result == NULL || is_in_reserved(result), "result not in heap");
 287   return result;
 288 }
 289 
 290 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 291                                               bool is_tlab,
 292                                               bool* gc_overhead_limit_was_exceeded) {
 293   // In general gc_overhead_limit_was_exceeded should be false so
 294   // set it so here and reset it to true only if the gc time
 295   // limit is being exceeded as checked below.
 296   *gc_overhead_limit_was_exceeded = false;
 297 
 298   HeapWord* result = NULL;
 299 
 300   // Loop until the allocation is satisfied, or unsatisfied after GC.
 301   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 302     HandleMark hm; // Discard any handles allocated in each iteration.
 303 
 304     // First allocation attempt is lock-free.
 305     Generation *young = _young_gen;
 306     assert(young->supports_inline_contig_alloc(),
 307       "Otherwise, must do alloc within heap lock");
 308     if (young->should_allocate(size, is_tlab)) {
 309       result = young->par_allocate(size, is_tlab);
 310       if (result != NULL) {
 311         assert(is_in_reserved(result), "result not in heap");
 312         return result;
 313       }
 314     }
 315     uint gc_count_before;  // Read inside the Heap_lock locked region.
 316     {
 317       MutexLocker ml(Heap_lock);
 318       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 319       // Note that only large objects get a shot at being
 320       // allocated in later generations.
 321       bool first_only = !should_try_older_generation_allocation(size);
 322 
 323       result = attempt_allocation(size, is_tlab, first_only);
 324       if (result != NULL) {
 325         assert(is_in_reserved(result), "result not in heap");
 326         return result;
 327       }
 328 
 329       if (GCLocker::is_active_and_needs_gc()) {
 330         if (is_tlab) {
 331           return NULL;  // Caller will retry allocating individual object.
 332         }
 333         if (!is_maximal_no_gc()) {
 334           // Try and expand heap to satisfy request.
 335           result = expand_heap_and_allocate(size, is_tlab);
 336           // Result could be null if we are out of space.
 337           if (result != NULL) {
 338             return result;
 339           }
 340         }
 341 
 342         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 343           return NULL; // We didn't get to do a GC and we didn't get any memory.
 344         }
 345 
 346         // If this thread is not in a jni critical section, we stall
 347         // the requestor until the critical section has cleared and
 348         // GC allowed. When the critical section clears, a GC is
 349         // initiated by the last thread exiting the critical section; so
 350         // we retry the allocation sequence from the beginning of the loop,
 351         // rather than causing more, now probably unnecessary, GC attempts.
 352         JavaThread* jthr = JavaThread::current();
 353         if (!jthr->in_critical()) {
 354           MutexUnlocker mul(Heap_lock);
 355           // Wait for JNI critical section to be exited
 356           GCLocker::stall_until_clear();
 357           gclocker_stalled_count += 1;
 358           continue;
 359         } else {
 360           if (CheckJNICalls) {
 361             fatal("Possible deadlock due to allocating while"
 362                   " in jni critical section");
 363           }
 364           return NULL;
 365         }
 366       }
 367 
 368       // Read the gc count while the heap lock is held.
 369       gc_count_before = total_collections();
 370     }
 371 
 372     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 373     VMThread::execute(&op);
 374     if (op.prologue_succeeded()) {
 375       result = op.result();
 376       if (op.gc_locked()) {
 377          assert(result == NULL, "must be NULL if gc_locked() is true");
 378          continue;  // Retry and/or stall as necessary.
 379       }
 380 
 381       // Allocation has failed and a collection
 382       // has been done.  If the gc time limit was exceeded the
 383       // this time, return NULL so that an out-of-memory
 384       // will be thrown.  Clear gc_overhead_limit_exceeded
 385       // so that the overhead exceeded does not persist.
 386 
 387       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 388       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 389 
 390       if (limit_exceeded && softrefs_clear) {
 391         *gc_overhead_limit_was_exceeded = true;
 392         size_policy()->set_gc_overhead_limit_exceeded(false);
 393         if (op.result() != NULL) {
 394           CollectedHeap::fill_with_object(op.result(), size);
 395         }
 396         return NULL;
 397       }
 398       assert(result == NULL || is_in_reserved(result),
 399              "result not in heap");
 400       return result;
 401     }
 402 
 403     // Give a warning if we seem to be looping forever.
 404     if ((QueuedAllocationWarningCount > 0) &&
 405         (try_count % QueuedAllocationWarningCount == 0)) {
 406           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 407                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 408     }
 409   }
 410 }
 411 
 412 #ifndef PRODUCT
 413 // Override of memory state checking method in CollectedHeap:
 414 // Some collectors (CMS for example) can't have badHeapWordVal written
 415 // in the first two words of an object. (For instance , in the case of
 416 // CMS these words hold state used to synchronize between certain
 417 // (concurrent) GC steps and direct allocating mutators.)
 418 // The skip_header_HeapWords() method below, allows us to skip
 419 // over the requisite number of HeapWord's. Note that (for
 420 // generational collectors) this means that those many words are
 421 // skipped in each object, irrespective of the generation in which
 422 // that object lives. The resultant loss of precision seems to be
 423 // harmless and the pain of avoiding that imprecision appears somewhat
 424 // higher than we are prepared to pay for such rudimentary debugging
 425 // support.
 426 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 427                                                          size_t size) {
 428   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 429     // We are asked to check a size in HeapWords,
 430     // but the memory is mangled in juint words.
 431     juint* start = (juint*) (addr + skip_header_HeapWords());
 432     juint* end   = (juint*) (addr + size);
 433     for (juint* slot = start; slot < end; slot += 1) {
 434       assert(*slot == badHeapWordVal,
 435              "Found non badHeapWordValue in pre-allocation check");
 436     }
 437   }
 438 }
 439 #endif
 440 
 441 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 442                                                bool is_tlab,
 443                                                bool first_only) {
 444   HeapWord* res = NULL;
 445 
 446   if (_young_gen->should_allocate(size, is_tlab)) {
 447     res = _young_gen->allocate(size, is_tlab);
 448     if (res != NULL || first_only) {
 449       return res;
 450     }
 451   }
 452 
 453   if (_old_gen->should_allocate(size, is_tlab)) {
 454     res = _old_gen->allocate(size, is_tlab);
 455   }
 456 
 457   return res;
 458 }
 459 
 460 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 461                                          bool* gc_overhead_limit_was_exceeded) {
 462   return mem_allocate_work(size,
 463                            false /* is_tlab */,
 464                            gc_overhead_limit_was_exceeded);
 465 }
 466 
 467 bool GenCollectedHeap::must_clear_all_soft_refs() {
 468   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 469          _gc_cause == GCCause::_wb_full_gc;
 470 }
 471 
 472 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 473                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 474                                           bool restore_marks_for_biased_locking) {
 475   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 476   GCTraceTime(Trace, gc, phases) t1(title);
 477   TraceCollectorStats tcs(gen->counters());
 478   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 479 
 480   gen->stat_record()->invocations++;
 481   gen->stat_record()->accumulated_time.start();
 482 
 483   // Must be done anew before each collection because
 484   // a previous collection will do mangling and will
 485   // change top of some spaces.
 486   record_gen_tops_before_GC();
 487 
 488   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 489 
 490   if (run_verification && VerifyBeforeGC) {
 491     HandleMark hm;  // Discard invalid handles created during verification
 492     Universe::verify("Before GC");
 493   }
 494   COMPILER2_PRESENT(DerivedPointerTable::clear());
 495 
 496   if (restore_marks_for_biased_locking) {
 497     // We perform this mark word preservation work lazily
 498     // because it's only at this point that we know whether we
 499     // absolutely have to do it; we want to avoid doing it for
 500     // scavenge-only collections where it's unnecessary
 501     BiasedLocking::preserve_marks();
 502   }
 503 
 504   // Do collection work
 505   {
 506     // Note on ref discovery: For what appear to be historical reasons,
 507     // GCH enables and disabled (by enqueing) refs discovery.
 508     // In the future this should be moved into the generation's
 509     // collect method so that ref discovery and enqueueing concerns
 510     // are local to a generation. The collect method could return
 511     // an appropriate indication in the case that notification on
 512     // the ref lock was needed. This will make the treatment of
 513     // weak refs more uniform (and indeed remove such concerns
 514     // from GCH). XXX
 515 
 516     HandleMark hm;  // Discard invalid handles created during gc
 517     save_marks();   // save marks for all gens
 518     // We want to discover references, but not process them yet.
 519     // This mode is disabled in process_discovered_references if the
 520     // generation does some collection work, or in
 521     // enqueue_discovered_references if the generation returns
 522     // without doing any work.
 523     ReferenceProcessor* rp = gen->ref_processor();
 524     // If the discovery of ("weak") refs in this generation is
 525     // atomic wrt other collectors in this configuration, we
 526     // are guaranteed to have empty discovered ref lists.
 527     if (rp->discovery_is_atomic()) {
 528       rp->enable_discovery();
 529       rp->setup_policy(clear_soft_refs);
 530     } else {
 531       // collect() below will enable discovery as appropriate
 532     }
 533     gen->collect(full, clear_soft_refs, size, is_tlab);
 534     if (!rp->enqueuing_is_done()) {
 535       rp->disable_discovery();
 536     } else {
 537       rp->set_enqueuing_is_done(false);
 538     }
 539     rp->verify_no_references_recorded();
 540   }
 541 
 542   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 543 
 544   gen->stat_record()->accumulated_time.stop();
 545 
 546   update_gc_stats(gen, full);
 547 
 548   if (run_verification && VerifyAfterGC) {
 549     HandleMark hm;  // Discard invalid handles created during verification
 550     Universe::verify("After GC");
 551   }
 552 }
 553 
 554 void GenCollectedHeap::do_collection(bool           full,
 555                                      bool           clear_all_soft_refs,
 556                                      size_t         size,
 557                                      bool           is_tlab,
 558                                      GenerationType max_generation) {
 559   ResourceMark rm;
 560   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 561 
 562   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 563   assert(my_thread->is_VM_thread() ||
 564          my_thread->is_ConcurrentGC_thread(),
 565          "incorrect thread type capability");
 566   assert(Heap_lock->is_locked(),
 567          "the requesting thread should have the Heap_lock");
 568   guarantee(!is_gc_active(), "collection is not reentrant");
 569 
 570   if (GCLocker::check_active_before_gc()) {
 571     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 572   }
 573 
 574   GCIdMark gc_id_mark;
 575 
 576   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 577                           soft_ref_policy()->should_clear_all_soft_refs();
 578 
 579   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 580 
 581   const size_t metadata_prev_used = MetaspaceUtils::used_bytes();
 582 
 583   print_heap_before_gc();
 584 
 585   {
 586     FlagSetting fl(_is_gc_active, true);
 587 
 588     bool complete = full && (max_generation == OldGen);
 589     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 590     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 591 
 592     FormatBuffer<> gc_string("%s", "Pause ");
 593     if (do_young_collection) {
 594       gc_string.append("Young");
 595     } else {
 596       gc_string.append("Full");
 597     }
 598 
 599     GCTraceCPUTime tcpu;
 600     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 601 
 602     gc_prologue(complete);
 603     increment_total_collections(complete);
 604 
 605     size_t young_prev_used = _young_gen->used();
 606     size_t old_prev_used = _old_gen->used();
 607 
 608     bool run_verification = total_collections() >= VerifyGCStartAt;
 609 
 610     bool prepared_for_verification = false;
 611     bool collected_old = false;
 612 
 613     if (do_young_collection) {
 614       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 615         prepare_for_verify();
 616         prepared_for_verification = true;
 617       }
 618 
 619       collect_generation(_young_gen,
 620                          full,
 621                          size,
 622                          is_tlab,
 623                          run_verification && VerifyGCLevel <= 0,
 624                          do_clear_all_soft_refs,
 625                          false);
 626 
 627       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 628           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 629         // Allocation request was met by young GC.
 630         size = 0;
 631       }
 632     }
 633 
 634     bool must_restore_marks_for_biased_locking = false;
 635 
 636     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 637       if (!complete) {
 638         // The full_collections increment was missed above.
 639         increment_total_full_collections();
 640       }
 641 
 642       if (!prepared_for_verification && run_verification &&
 643           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 644         prepare_for_verify();
 645       }
 646 
 647       if (do_young_collection) {
 648         // We did a young GC. Need a new GC id for the old GC.
 649         GCIdMark gc_id_mark;
 650         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 651         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 652       } else {
 653         // No young GC done. Use the same GC id as was set up earlier in this method.
 654         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 655       }
 656 
 657       must_restore_marks_for_biased_locking = true;
 658       collected_old = true;
 659     }
 660 
 661     // Update "complete" boolean wrt what actually transpired --
 662     // for instance, a promotion failure could have led to
 663     // a whole heap collection.
 664     complete = complete || collected_old;
 665 
 666     // Adjust generation sizes.
 667     if (collected_old) {
 668       _old_gen->compute_new_size();
 669     }
 670     _young_gen->compute_new_size();
 671 
 672     if (complete) {
 673       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 674       ClassLoaderDataGraph::purge();
 675       MetaspaceUtils::verify_metrics();
 676       // Resize the metaspace capacity after full collections
 677       MetaspaceGC::compute_new_size();
 678       update_full_collections_completed();
 679     }
 680 
 681     print_heap_change(young_prev_used, old_prev_used);
 682     MetaspaceUtils::print_metaspace_change(metadata_prev_used);
 683 
 684     // Track memory usage and detect low memory after GC finishes
 685     MemoryService::track_memory_usage();
 686 
 687     gc_epilogue(complete);
 688 
 689     if (must_restore_marks_for_biased_locking) {
 690       BiasedLocking::restore_marks();
 691     }
 692   }
 693 
 694   print_heap_after_gc();
 695 
 696 #ifdef TRACESPINNING
 697   ParallelTaskTerminator::print_termination_counts();
 698 #endif
 699 }
 700 
 701 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 702   ScavengableNMethods::register_nmethod(nm);
 703 }
 704 
 705 void GenCollectedHeap::unregister_nmethod(nmethod* nm) {
 706   ScavengableNMethods::unregister_nmethod(nm);
 707 }
 708 
 709 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 710   ScavengableNMethods::verify_nmethod(nm);
 711 }
 712 
 713 void GenCollectedHeap::flush_nmethod(nmethod* nm) {
 714   ScavengableNMethods::flush_nmethod(nm);
 715 }
 716 
 717 void GenCollectedHeap::prune_nmethods() {
 718   ScavengableNMethods::prune_nmethods();
 719 }
 720 
 721 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 722   GCCauseSetter x(this, GCCause::_allocation_failure);
 723   HeapWord* result = NULL;
 724 
 725   assert(size != 0, "Precondition violated");
 726   if (GCLocker::is_active_and_needs_gc()) {
 727     // GC locker is active; instead of a collection we will attempt
 728     // to expand the heap, if there's room for expansion.
 729     if (!is_maximal_no_gc()) {
 730       result = expand_heap_and_allocate(size, is_tlab);
 731     }
 732     return result;   // Could be null if we are out of space.
 733   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 734     // Do an incremental collection.
 735     do_collection(false,                     // full
 736                   false,                     // clear_all_soft_refs
 737                   size,                      // size
 738                   is_tlab,                   // is_tlab
 739                   GenCollectedHeap::OldGen); // max_generation
 740   } else {
 741     log_trace(gc)(" :: Trying full because partial may fail :: ");
 742     // Try a full collection; see delta for bug id 6266275
 743     // for the original code and why this has been simplified
 744     // with from-space allocation criteria modified and
 745     // such allocation moved out of the safepoint path.
 746     do_collection(true,                      // full
 747                   false,                     // clear_all_soft_refs
 748                   size,                      // size
 749                   is_tlab,                   // is_tlab
 750                   GenCollectedHeap::OldGen); // max_generation
 751   }
 752 
 753   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 754 
 755   if (result != NULL) {
 756     assert(is_in_reserved(result), "result not in heap");
 757     return result;
 758   }
 759 
 760   // OK, collection failed, try expansion.
 761   result = expand_heap_and_allocate(size, is_tlab);
 762   if (result != NULL) {
 763     return result;
 764   }
 765 
 766   // If we reach this point, we're really out of memory. Try every trick
 767   // we can to reclaim memory. Force collection of soft references. Force
 768   // a complete compaction of the heap. Any additional methods for finding
 769   // free memory should be here, especially if they are expensive. If this
 770   // attempt fails, an OOM exception will be thrown.
 771   {
 772     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 773 
 774     do_collection(true,                      // full
 775                   true,                      // clear_all_soft_refs
 776                   size,                      // size
 777                   is_tlab,                   // is_tlab
 778                   GenCollectedHeap::OldGen); // max_generation
 779   }
 780 
 781   result = attempt_allocation(size, is_tlab, false /* first_only */);
 782   if (result != NULL) {
 783     assert(is_in_reserved(result), "result not in heap");
 784     return result;
 785   }
 786 
 787   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 788     "Flag should have been handled and cleared prior to this point");
 789 
 790   // What else?  We might try synchronous finalization later.  If the total
 791   // space available is large enough for the allocation, then a more
 792   // complete compaction phase than we've tried so far might be
 793   // appropriate.
 794   return NULL;
 795 }
 796 
 797 #ifdef ASSERT
 798 class AssertNonScavengableClosure: public OopClosure {
 799 public:
 800   virtual void do_oop(oop* p) {
 801     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 802       "Referent should not be scavengable.");  }
 803   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 804 };
 805 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 806 #endif
 807 
 808 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 809                                      ScanningOption so,
 810                                      OopClosure* strong_roots,
 811                                      CLDClosure* strong_cld_closure,
 812                                      CLDClosure* weak_cld_closure,
 813                                      CodeBlobToOopClosure* code_roots) {
 814   // General roots.
 815   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 816   assert(code_roots != NULL, "code root closure should always be set");
 817   // _n_termination for _process_strong_tasks should be set up stream
 818   // in a method not running in a GC worker.  Otherwise the GC worker
 819   // could be trying to change the termination condition while the task
 820   // is executing in another GC worker.
 821 
 822   if (_process_strong_tasks->try_claim_task(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 823     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 824   }
 825 
 826   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 827   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 828 
 829   bool is_par = scope->n_threads() > 1;
 830   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 831 
 832   if (_process_strong_tasks->try_claim_task(GCH_PS_Universe_oops_do)) {
 833     Universe::oops_do(strong_roots);
 834   }
 835   // Global (strong) JNI handles
 836   if (_process_strong_tasks->try_claim_task(GCH_PS_JNIHandles_oops_do)) {
 837     JNIHandles::oops_do(strong_roots);
 838   }
 839 
 840   if (_process_strong_tasks->try_claim_task(GCH_PS_ObjectSynchronizer_oops_do)) {
 841     ObjectSynchronizer::oops_do(strong_roots);
 842   }
 843   if (_process_strong_tasks->try_claim_task(GCH_PS_Management_oops_do)) {
 844     Management::oops_do(strong_roots);
 845   }
 846   if (_process_strong_tasks->try_claim_task(GCH_PS_jvmti_oops_do)) {
 847     JvmtiExport::oops_do(strong_roots);
 848   }
 849   if (UseAOT && _process_strong_tasks->try_claim_task(GCH_PS_aot_oops_do)) {
 850     AOTLoader::oops_do(strong_roots);
 851   }
 852 
 853   if (_process_strong_tasks->try_claim_task(GCH_PS_SystemDictionary_oops_do)) {
 854     SystemDictionary::oops_do(strong_roots);
 855   }
 856 
 857   if (_process_strong_tasks->try_claim_task(GCH_PS_CodeCache_oops_do)) {
 858     if (so & SO_ScavengeCodeCache) {
 859       assert(code_roots != NULL, "must supply closure for code cache");
 860 
 861       // We only visit parts of the CodeCache when scavenging.
 862       ScavengableNMethods::scavengable_nmethods_do(code_roots);
 863     }
 864     if (so & SO_AllCodeCache) {
 865       assert(code_roots != NULL, "must supply closure for code cache");
 866 
 867       // CMSCollector uses this to do intermediate-strength collections.
 868       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 869       CodeCache::blobs_do(code_roots);
 870     }
 871     // Verify that the code cache contents are not subject to
 872     // movement by a scavenging collection.
 873     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 874     DEBUG_ONLY(ScavengableNMethods::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 875   }
 876 }
 877 
 878 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 879                                            OopsInGenClosure* root_closure,
 880                                            OopsInGenClosure* old_gen_closure,
 881                                            CLDClosure* cld_closure) {
 882   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 883 
 884   process_roots(scope, SO_ScavengeCodeCache, root_closure,
 885                 cld_closure, cld_closure, &mark_code_closure);
 886 
 887   if (_process_strong_tasks->try_claim_task(GCH_PS_younger_gens)) {
 888     root_closure->reset_generation();
 889   }
 890 
 891   // When collection is parallel, all threads get to cooperate to do
 892   // old generation scanning.
 893   old_gen_closure->set_generation(_old_gen);
 894   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 895   old_gen_closure->reset_generation();
 896 
 897   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 898 }
 899 
 900 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 901                                           bool is_adjust_phase,
 902                                           ScanningOption so,
 903                                           bool only_strong_roots,
 904                                           OopsInGenClosure* root_closure,
 905                                           CLDClosure* cld_closure) {
 906   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 907   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 908 
 909   process_roots(scope, so, root_closure, cld_closure, weak_cld_closure, &mark_code_closure);
 910   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 911 }
 912 
 913 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 914   WeakProcessor::oops_do(root_closure);
 915   _young_gen->ref_processor()->weak_oops_do(root_closure);
 916   _old_gen->ref_processor()->weak_oops_do(root_closure);
 917 }
 918 
 919 bool GenCollectedHeap::no_allocs_since_save_marks() {
 920   return _young_gen->no_allocs_since_save_marks() &&
 921          _old_gen->no_allocs_since_save_marks();
 922 }
 923 
 924 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 925   return _young_gen->supports_inline_contig_alloc();
 926 }
 927 
 928 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 929   return _young_gen->top_addr();
 930 }
 931 
 932 HeapWord** GenCollectedHeap::end_addr() const {
 933   return _young_gen->end_addr();
 934 }
 935 
 936 // public collection interfaces
 937 
 938 void GenCollectedHeap::collect(GCCause::Cause cause) {
 939   if (cause == GCCause::_wb_young_gc) {
 940     // Young collection for the WhiteBox API.
 941     collect(cause, YoungGen);
 942   } else {
 943 #ifdef ASSERT
 944   if (cause == GCCause::_scavenge_alot) {
 945     // Young collection only.
 946     collect(cause, YoungGen);
 947   } else {
 948     // Stop-the-world full collection.
 949     collect(cause, OldGen);
 950   }
 951 #else
 952     // Stop-the-world full collection.
 953     collect(cause, OldGen);
 954 #endif
 955   }
 956 }
 957 
 958 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 959   // The caller doesn't have the Heap_lock
 960   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 961   MutexLocker ml(Heap_lock);
 962   collect_locked(cause, max_generation);
 963 }
 964 
 965 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 966   // The caller has the Heap_lock
 967   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 968   collect_locked(cause, OldGen);
 969 }
 970 
 971 // this is the private collection interface
 972 // The Heap_lock is expected to be held on entry.
 973 
 974 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 975   // Read the GC count while holding the Heap_lock
 976   unsigned int gc_count_before      = total_collections();
 977   unsigned int full_gc_count_before = total_full_collections();
 978   {
 979     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 980     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 981                          cause, max_generation);
 982     VMThread::execute(&op);
 983   }
 984 }
 985 
 986 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 987    do_full_collection(clear_all_soft_refs, OldGen);
 988 }
 989 
 990 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 991                                           GenerationType last_generation) {
 992   GenerationType local_last_generation;
 993   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 994       gc_cause() == GCCause::_gc_locker) {
 995     local_last_generation = YoungGen;
 996   } else {
 997     local_last_generation = last_generation;
 998   }
 999 
1000   do_collection(true,                   // full
1001                 clear_all_soft_refs,    // clear_all_soft_refs
1002                 0,                      // size
1003                 false,                  // is_tlab
1004                 local_last_generation); // last_generation
1005   // Hack XXX FIX ME !!!
1006   // A scavenge may not have been attempted, or may have
1007   // been attempted and failed, because the old gen was too full
1008   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
1009       incremental_collection_will_fail(false /* don't consult_young */)) {
1010     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
1011     // This time allow the old gen to be collected as well
1012     do_collection(true,                // full
1013                   clear_all_soft_refs, // clear_all_soft_refs
1014                   0,                   // size
1015                   false,               // is_tlab
1016                   OldGen);             // last_generation
1017   }
1018 }
1019 
1020 bool GenCollectedHeap::is_in_young(oop p) {
1021   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
1022   assert(result == _young_gen->is_in_reserved(p),
1023          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1024   return result;
1025 }
1026 
1027 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1028 bool GenCollectedHeap::is_in(const void* p) const {
1029   return _young_gen->is_in(p) || _old_gen->is_in(p);
1030 }
1031 
1032 #ifdef ASSERT
1033 // Don't implement this by using is_in_young().  This method is used
1034 // in some cases to check that is_in_young() is correct.
1035 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1036   assert(is_in_reserved(p) || p == NULL,
1037     "Does not work if address is non-null and outside of the heap");
1038   return p < _young_gen->reserved().end() && p != NULL;
1039 }
1040 #endif
1041 
1042 void GenCollectedHeap::oop_iterate(OopIterateClosure* cl) {
1043   _young_gen->oop_iterate(cl);
1044   _old_gen->oop_iterate(cl);
1045 }
1046 
1047 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1048   _young_gen->object_iterate(cl);
1049   _old_gen->object_iterate(cl);
1050 }
1051 
1052 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
1053   _young_gen->safe_object_iterate(cl);
1054   _old_gen->safe_object_iterate(cl);
1055 }
1056 
1057 Space* GenCollectedHeap::space_containing(const void* addr) const {
1058   Space* res = _young_gen->space_containing(addr);
1059   if (res != NULL) {
1060     return res;
1061   }
1062   res = _old_gen->space_containing(addr);
1063   assert(res != NULL, "Could not find containing space");
1064   return res;
1065 }
1066 
1067 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1068   assert(is_in_reserved(addr), "block_start of address outside of heap");
1069   if (_young_gen->is_in_reserved(addr)) {
1070     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1071     return _young_gen->block_start(addr);
1072   }
1073 
1074   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1075   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1076   return _old_gen->block_start(addr);
1077 }
1078 
1079 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1080   assert(is_in_reserved(addr), "block_size of address outside of heap");
1081   if (_young_gen->is_in_reserved(addr)) {
1082     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1083     return _young_gen->block_size(addr);
1084   }
1085 
1086   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1087   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1088   return _old_gen->block_size(addr);
1089 }
1090 
1091 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1092   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1093   assert(block_start(addr) == addr, "addr must be a block start");
1094   if (_young_gen->is_in_reserved(addr)) {
1095     return _young_gen->block_is_obj(addr);
1096   }
1097 
1098   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1099   return _old_gen->block_is_obj(addr);
1100 }
1101 
1102 bool GenCollectedHeap::supports_tlab_allocation() const {
1103   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1104   return _young_gen->supports_tlab_allocation();
1105 }
1106 
1107 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1108   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1109   if (_young_gen->supports_tlab_allocation()) {
1110     return _young_gen->tlab_capacity();
1111   }
1112   return 0;
1113 }
1114 
1115 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1116   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1117   if (_young_gen->supports_tlab_allocation()) {
1118     return _young_gen->tlab_used();
1119   }
1120   return 0;
1121 }
1122 
1123 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1124   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1125   if (_young_gen->supports_tlab_allocation()) {
1126     return _young_gen->unsafe_max_tlab_alloc();
1127   }
1128   return 0;
1129 }
1130 
1131 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t min_size,
1132                                               size_t requested_size,
1133                                               size_t* actual_size) {
1134   bool gc_overhead_limit_was_exceeded;
1135   HeapWord* result = mem_allocate_work(requested_size /* size */,
1136                                        true /* is_tlab */,
1137                                        &gc_overhead_limit_was_exceeded);
1138   if (result != NULL) {
1139     *actual_size = requested_size;
1140   }
1141 
1142   return result;
1143 }
1144 
1145 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1146 // from the list headed by "*prev_ptr".
1147 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1148   bool first = true;
1149   size_t min_size = 0;   // "first" makes this conceptually infinite.
1150   ScratchBlock **smallest_ptr, *smallest;
1151   ScratchBlock  *cur = *prev_ptr;
1152   while (cur) {
1153     assert(*prev_ptr == cur, "just checking");
1154     if (first || cur->num_words < min_size) {
1155       smallest_ptr = prev_ptr;
1156       smallest     = cur;
1157       min_size     = smallest->num_words;
1158       first        = false;
1159     }
1160     prev_ptr = &cur->next;
1161     cur     =  cur->next;
1162   }
1163   smallest      = *smallest_ptr;
1164   *smallest_ptr = smallest->next;
1165   return smallest;
1166 }
1167 
1168 // Sort the scratch block list headed by res into decreasing size order,
1169 // and set "res" to the result.
1170 static void sort_scratch_list(ScratchBlock*& list) {
1171   ScratchBlock* sorted = NULL;
1172   ScratchBlock* unsorted = list;
1173   while (unsorted) {
1174     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1175     smallest->next  = sorted;
1176     sorted          = smallest;
1177   }
1178   list = sorted;
1179 }
1180 
1181 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1182                                                size_t max_alloc_words) {
1183   ScratchBlock* res = NULL;
1184   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1185   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1186   sort_scratch_list(res);
1187   return res;
1188 }
1189 
1190 void GenCollectedHeap::release_scratch() {
1191   _young_gen->reset_scratch();
1192   _old_gen->reset_scratch();
1193 }
1194 
1195 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1196   void do_generation(Generation* gen) {
1197     gen->prepare_for_verify();
1198   }
1199 };
1200 
1201 void GenCollectedHeap::prepare_for_verify() {
1202   ensure_parsability(false);        // no need to retire TLABs
1203   GenPrepareForVerifyClosure blk;
1204   generation_iterate(&blk, false);
1205 }
1206 
1207 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1208                                           bool old_to_young) {
1209   if (old_to_young) {
1210     cl->do_generation(_old_gen);
1211     cl->do_generation(_young_gen);
1212   } else {
1213     cl->do_generation(_young_gen);
1214     cl->do_generation(_old_gen);
1215   }
1216 }
1217 
1218 bool GenCollectedHeap::is_maximal_no_gc() const {
1219   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1220 }
1221 
1222 void GenCollectedHeap::save_marks() {
1223   _young_gen->save_marks();
1224   _old_gen->save_marks();
1225 }
1226 
1227 GenCollectedHeap* GenCollectedHeap::heap() {
1228   CollectedHeap* heap = Universe::heap();
1229   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1230   assert(heap->kind() == CollectedHeap::Serial ||
1231          heap->kind() == CollectedHeap::CMS, "Invalid name");
1232   return (GenCollectedHeap*) heap;
1233 }
1234 
1235 #if INCLUDE_SERIALGC
1236 void GenCollectedHeap::prepare_for_compaction() {
1237   // Start by compacting into same gen.
1238   CompactPoint cp(_old_gen);
1239   _old_gen->prepare_for_compaction(&cp);
1240   _young_gen->prepare_for_compaction(&cp);
1241 }
1242 #endif // INCLUDE_SERIALGC
1243 
1244 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1245   log_debug(gc, verify)("%s", _old_gen->name());
1246   _old_gen->verify();
1247 
1248   log_debug(gc, verify)("%s", _old_gen->name());
1249   _young_gen->verify();
1250 
1251   log_debug(gc, verify)("RemSet");
1252   rem_set()->verify();
1253 }
1254 
1255 void GenCollectedHeap::print_on(outputStream* st) const {
1256   _young_gen->print_on(st);
1257   _old_gen->print_on(st);
1258   MetaspaceUtils::print_on(st);
1259 }
1260 
1261 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1262 }
1263 
1264 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1265 }
1266 
1267 void GenCollectedHeap::print_tracing_info() const {
1268   if (log_is_enabled(Debug, gc, heap, exit)) {
1269     LogStreamHandle(Debug, gc, heap, exit) lsh;
1270     _young_gen->print_summary_info_on(&lsh);
1271     _old_gen->print_summary_info_on(&lsh);
1272   }
1273 }
1274 
1275 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1276   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1277                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1278   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1279                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1280 }
1281 
1282 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1283  private:
1284   bool _full;
1285  public:
1286   void do_generation(Generation* gen) {
1287     gen->gc_prologue(_full);
1288   }
1289   GenGCPrologueClosure(bool full) : _full(full) {};
1290 };
1291 
1292 void GenCollectedHeap::gc_prologue(bool full) {
1293   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1294 
1295   // Fill TLAB's and such
1296   ensure_parsability(true);   // retire TLABs
1297 
1298   // Walk generations
1299   GenGCPrologueClosure blk(full);
1300   generation_iterate(&blk, false);  // not old-to-young.
1301 };
1302 
1303 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1304  private:
1305   bool _full;
1306  public:
1307   void do_generation(Generation* gen) {
1308     gen->gc_epilogue(_full);
1309   }
1310   GenGCEpilogueClosure(bool full) : _full(full) {};
1311 };
1312 
1313 void GenCollectedHeap::gc_epilogue(bool full) {
1314 #if COMPILER2_OR_JVMCI
1315   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1316   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1317   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1318 #endif // COMPILER2_OR_JVMCI
1319 
1320   resize_all_tlabs();
1321 
1322   GenGCEpilogueClosure blk(full);
1323   generation_iterate(&blk, false);  // not old-to-young.
1324 
1325   if (!CleanChunkPoolAsync) {
1326     Chunk::clean_chunk_pool();
1327   }
1328 
1329   MetaspaceCounters::update_performance_counters();
1330   CompressedClassSpaceCounters::update_performance_counters();
1331 };
1332 
1333 #ifndef PRODUCT
1334 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1335  private:
1336  public:
1337   void do_generation(Generation* gen) {
1338     gen->record_spaces_top();
1339   }
1340 };
1341 
1342 void GenCollectedHeap::record_gen_tops_before_GC() {
1343   if (ZapUnusedHeapArea) {
1344     GenGCSaveTopsBeforeGCClosure blk;
1345     generation_iterate(&blk, false);  // not old-to-young.
1346   }
1347 }
1348 #endif  // not PRODUCT
1349 
1350 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1351  public:
1352   void do_generation(Generation* gen) {
1353     gen->ensure_parsability();
1354   }
1355 };
1356 
1357 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1358   CollectedHeap::ensure_parsability(retire_tlabs);
1359   GenEnsureParsabilityClosure ep_cl;
1360   generation_iterate(&ep_cl, false);
1361 }
1362 
1363 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1364                                               oop obj,
1365                                               size_t obj_size) {
1366   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1367   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1368   HeapWord* result = NULL;
1369 
1370   result = old_gen->expand_and_allocate(obj_size, false);
1371 
1372   if (result != NULL) {
1373     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1374   }
1375   return oop(result);
1376 }
1377 
1378 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1379   jlong _time;   // in ms
1380   jlong _now;    // in ms
1381 
1382  public:
1383   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1384 
1385   jlong time() { return _time; }
1386 
1387   void do_generation(Generation* gen) {
1388     _time = MIN2(_time, gen->time_of_last_gc(_now));
1389   }
1390 };
1391 
1392 jlong GenCollectedHeap::millis_since_last_gc() {
1393   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1394   // provided the underlying platform provides such a time source
1395   // (and it is bug free). So we still have to guard against getting
1396   // back a time later than 'now'.
1397   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1398   GenTimeOfLastGCClosure tolgc_cl(now);
1399   // iterate over generations getting the oldest
1400   // time that a generation was collected
1401   generation_iterate(&tolgc_cl, false);
1402 
1403   jlong retVal = now - tolgc_cl.time();
1404   if (retVal < 0) {
1405     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1406        ". returning zero instead.", retVal);
1407     return 0;
1408   }
1409   return retVal;
1410 }