1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "gc/parallel/adjoiningGenerations.hpp"
  28 #include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp"
  29 #include "gc/parallel/adjoiningVirtualSpaces.hpp"
  30 #include "gc/parallel/gcTaskManager.hpp"
  31 #include "gc/parallel/generationSizer.hpp"
  32 #include "gc/parallel/objectStartArray.inline.hpp"
  33 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  34 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  35 #include "gc/parallel/psMarkSweepProxy.hpp"
  36 #include "gc/parallel/psMemoryPool.hpp"
  37 #include "gc/parallel/psParallelCompact.inline.hpp"
  38 #include "gc/parallel/psPromotionManager.hpp"
  39 #include "gc/parallel/psScavenge.hpp"
  40 #include "gc/parallel/psVMOperations.hpp"
  41 #include "gc/shared/gcHeapSummary.hpp"
  42 #include "gc/shared/gcLocker.hpp"
  43 #include "gc/shared/gcWhen.hpp"
  44 #include "gc/shared/scavengableNMethods.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceCounters.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/vmThread.hpp"
  51 #include "services/memoryManager.hpp"
  52 #include "services/memTracker.hpp"
  53 #include "utilities/macros.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  57 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  58 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  59 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  60 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  61 
  62 jint ParallelScavengeHeap::initialize() {
  63   size_t heap_size = _collector_policy->heap_reserved_size_bytes();
  64 
  65   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
  66 
  67   os::trace_page_sizes("Heap",
  68                        _collector_policy->min_heap_byte_size(),
  69                        heap_size,
  70                        generation_alignment(),
  71                        heap_rs.base(),
  72                        heap_rs.size());
  73 
  74   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  75 
  76   PSCardTable* card_table = new PSCardTable(reserved_region());
  77   card_table->initialize();
  78   CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table);
  79   barrier_set->initialize();
  80   BarrierSet::set_barrier_set(barrier_set);
  81 
  82   // Make up the generations
  83   // Calculate the maximum size that a generation can grow.  This
  84   // includes growth into the other generation.  Note that the
  85   // parameter _max_gen_size is kept as the maximum
  86   // size of the generation as the boundaries currently stand.
  87   // _max_gen_size is still used as that value.
  88   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  89   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  90 
  91   _gens = AdjoiningGenerations::create_adjoining_generations(heap_rs, _collector_policy, generation_alignment());
  92 
  93   _old_gen = _gens->old_gen();
  94   _young_gen = _gens->young_gen();
  95 
  96   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
  97   const size_t old_capacity = _old_gen->capacity_in_bytes();
  98   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
  99   _size_policy =
 100     new PSAdaptiveSizePolicy(eden_capacity,
 101                              initial_promo_size,
 102                              young_gen()->to_space()->capacity_in_bytes(),
 103                              _collector_policy->gen_alignment(),
 104                              max_gc_pause_sec,
 105                              max_gc_minor_pause_sec,
 106                              GCTimeRatio
 107                              );
 108 
 109   assert(_collector_policy->is_hetero_heap() || !UseAdaptiveGCBoundary ||
 110     (old_gen()->virtual_space()->high_boundary() ==
 111      young_gen()->virtual_space()->low_boundary()),
 112     "Boundaries must meet");
 113   // initialize the policy counters - 2 collectors, 2 generations
 114   _gc_policy_counters =
 115     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
 116 
 117   // Set up the GCTaskManager
 118   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 119 
 120   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 121     return JNI_ENOMEM;
 122   }
 123 
 124   return JNI_OK;
 125 }
 126 
 127 void ParallelScavengeHeap::initialize_serviceability() {
 128 
 129   _eden_pool = new EdenMutableSpacePool(_young_gen,
 130                                         _young_gen->eden_space(),
 131                                         "PS Eden Space",
 132                                         false /* support_usage_threshold */);
 133 
 134   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,
 135                                                 "PS Survivor Space",
 136                                                 false /* support_usage_threshold */);
 137 
 138   _old_pool = new PSGenerationPool(_old_gen,
 139                                    "PS Old Gen",
 140                                    true /* support_usage_threshold */);
 141 
 142   _young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
 143   _old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
 144 
 145   _old_manager->add_pool(_eden_pool);
 146   _old_manager->add_pool(_survivor_pool);
 147   _old_manager->add_pool(_old_pool);
 148 
 149   _young_manager->add_pool(_eden_pool);
 150   _young_manager->add_pool(_survivor_pool);
 151 
 152 }
 153 
 154 class PSIsScavengable : public BoolObjectClosure {
 155   bool do_object_b(oop obj) {
 156     return ParallelScavengeHeap::heap()->is_in_young(obj);
 157   }
 158 };
 159 
 160 static PSIsScavengable _is_scavengable;
 161 
 162 void ParallelScavengeHeap::post_initialize() {
 163   CollectedHeap::post_initialize();
 164   // Need to init the tenuring threshold
 165   PSScavenge::initialize();
 166   if (UseParallelOldGC) {
 167     PSParallelCompact::post_initialize();
 168   } else {
 169     PSMarkSweepProxy::initialize();
 170   }
 171   PSPromotionManager::initialize();
 172 
 173   ScavengableNMethods::initialize(&_is_scavengable);
 174 }
 175 
 176 void ParallelScavengeHeap::update_counters() {
 177   young_gen()->update_counters();
 178   old_gen()->update_counters();
 179   MetaspaceCounters::update_performance_counters();
 180   CompressedClassSpaceCounters::update_performance_counters();
 181 }
 182 
 183 size_t ParallelScavengeHeap::capacity() const {
 184   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 185   return value;
 186 }
 187 
 188 size_t ParallelScavengeHeap::used() const {
 189   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 190   return value;
 191 }
 192 
 193 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 194   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 195 }
 196 
 197 
 198 size_t ParallelScavengeHeap::max_capacity() const {
 199   size_t estimated = reserved_region().byte_size();
 200   if (UseAdaptiveSizePolicy) {
 201     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 202   } else {
 203     estimated -= young_gen()->to_space()->capacity_in_bytes();
 204   }
 205   return MAX2(estimated, capacity());
 206 }
 207 
 208 bool ParallelScavengeHeap::is_in(const void* p) const {
 209   return young_gen()->is_in(p) || old_gen()->is_in(p);
 210 }
 211 
 212 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 213   return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
 214 }
 215 
 216 // There are two levels of allocation policy here.
 217 //
 218 // When an allocation request fails, the requesting thread must invoke a VM
 219 // operation, transfer control to the VM thread, and await the results of a
 220 // garbage collection. That is quite expensive, and we should avoid doing it
 221 // multiple times if possible.
 222 //
 223 // To accomplish this, we have a basic allocation policy, and also a
 224 // failed allocation policy.
 225 //
 226 // The basic allocation policy controls how you allocate memory without
 227 // attempting garbage collection. It is okay to grab locks and
 228 // expand the heap, if that can be done without coming to a safepoint.
 229 // It is likely that the basic allocation policy will not be very
 230 // aggressive.
 231 //
 232 // The failed allocation policy is invoked from the VM thread after
 233 // the basic allocation policy is unable to satisfy a mem_allocate
 234 // request. This policy needs to cover the entire range of collection,
 235 // heap expansion, and out-of-memory conditions. It should make every
 236 // attempt to allocate the requested memory.
 237 
 238 // Basic allocation policy. Should never be called at a safepoint, or
 239 // from the VM thread.
 240 //
 241 // This method must handle cases where many mem_allocate requests fail
 242 // simultaneously. When that happens, only one VM operation will succeed,
 243 // and the rest will not be executed. For that reason, this method loops
 244 // during failed allocation attempts. If the java heap becomes exhausted,
 245 // we rely on the size_policy object to force a bail out.
 246 HeapWord* ParallelScavengeHeap::mem_allocate(
 247                                      size_t size,
 248                                      bool* gc_overhead_limit_was_exceeded) {
 249   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 250   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 251   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 252 
 253   // In general gc_overhead_limit_was_exceeded should be false so
 254   // set it so here and reset it to true only if the gc time
 255   // limit is being exceeded as checked below.
 256   *gc_overhead_limit_was_exceeded = false;
 257 
 258   HeapWord* result = young_gen()->allocate(size);
 259 
 260   uint loop_count = 0;
 261   uint gc_count = 0;
 262   uint gclocker_stalled_count = 0;
 263 
 264   while (result == NULL) {
 265     // We don't want to have multiple collections for a single filled generation.
 266     // To prevent this, each thread tracks the total_collections() value, and if
 267     // the count has changed, does not do a new collection.
 268     //
 269     // The collection count must be read only while holding the heap lock. VM
 270     // operations also hold the heap lock during collections. There is a lock
 271     // contention case where thread A blocks waiting on the Heap_lock, while
 272     // thread B is holding it doing a collection. When thread A gets the lock,
 273     // the collection count has already changed. To prevent duplicate collections,
 274     // The policy MUST attempt allocations during the same period it reads the
 275     // total_collections() value!
 276     {
 277       MutexLocker ml(Heap_lock);
 278       gc_count = total_collections();
 279 
 280       result = young_gen()->allocate(size);
 281       if (result != NULL) {
 282         return result;
 283       }
 284 
 285       // If certain conditions hold, try allocating from the old gen.
 286       result = mem_allocate_old_gen(size);
 287       if (result != NULL) {
 288         return result;
 289       }
 290 
 291       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 292         return NULL;
 293       }
 294 
 295       // Failed to allocate without a gc.
 296       if (GCLocker::is_active_and_needs_gc()) {
 297         // If this thread is not in a jni critical section, we stall
 298         // the requestor until the critical section has cleared and
 299         // GC allowed. When the critical section clears, a GC is
 300         // initiated by the last thread exiting the critical section; so
 301         // we retry the allocation sequence from the beginning of the loop,
 302         // rather than causing more, now probably unnecessary, GC attempts.
 303         JavaThread* jthr = JavaThread::current();
 304         if (!jthr->in_critical()) {
 305           MutexUnlocker mul(Heap_lock);
 306           GCLocker::stall_until_clear();
 307           gclocker_stalled_count += 1;
 308           continue;
 309         } else {
 310           if (CheckJNICalls) {
 311             fatal("Possible deadlock due to allocating while"
 312                   " in jni critical section");
 313           }
 314           return NULL;
 315         }
 316       }
 317     }
 318 
 319     if (result == NULL) {
 320       // Generate a VM operation
 321       VM_ParallelGCFailedAllocation op(size, gc_count);
 322       VMThread::execute(&op);
 323 
 324       // Did the VM operation execute? If so, return the result directly.
 325       // This prevents us from looping until time out on requests that can
 326       // not be satisfied.
 327       if (op.prologue_succeeded()) {
 328         assert(is_in_or_null(op.result()), "result not in heap");
 329 
 330         // If GC was locked out during VM operation then retry allocation
 331         // and/or stall as necessary.
 332         if (op.gc_locked()) {
 333           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 334           continue;  // retry and/or stall as necessary
 335         }
 336 
 337         // Exit the loop if the gc time limit has been exceeded.
 338         // The allocation must have failed above ("result" guarding
 339         // this path is NULL) and the most recent collection has exceeded the
 340         // gc overhead limit (although enough may have been collected to
 341         // satisfy the allocation).  Exit the loop so that an out-of-memory
 342         // will be thrown (return a NULL ignoring the contents of
 343         // op.result()),
 344         // but clear gc_overhead_limit_exceeded so that the next collection
 345         // starts with a clean slate (i.e., forgets about previous overhead
 346         // excesses).  Fill op.result() with a filler object so that the
 347         // heap remains parsable.
 348         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 349         const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 350 
 351         if (limit_exceeded && softrefs_clear) {
 352           *gc_overhead_limit_was_exceeded = true;
 353           size_policy()->set_gc_overhead_limit_exceeded(false);
 354           log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
 355           if (op.result() != NULL) {
 356             CollectedHeap::fill_with_object(op.result(), size);
 357           }
 358           return NULL;
 359         }
 360 
 361         return op.result();
 362       }
 363     }
 364 
 365     // The policy object will prevent us from looping forever. If the
 366     // time spent in gc crosses a threshold, we will bail out.
 367     loop_count++;
 368     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 369         (loop_count % QueuedAllocationWarningCount == 0)) {
 370       log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
 371       log_warning(gc)("\tsize=" SIZE_FORMAT, size);
 372     }
 373   }
 374 
 375   return result;
 376 }
 377 
 378 // A "death march" is a series of ultra-slow allocations in which a full gc is
 379 // done before each allocation, and after the full gc the allocation still
 380 // cannot be satisfied from the young gen.  This routine detects that condition;
 381 // it should be called after a full gc has been done and the allocation
 382 // attempted from the young gen. The parameter 'addr' should be the result of
 383 // that young gen allocation attempt.
 384 void
 385 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 386   if (addr != NULL) {
 387     _death_march_count = 0;  // death march has ended
 388   } else if (_death_march_count == 0) {
 389     if (should_alloc_in_eden(size)) {
 390       _death_march_count = 1;    // death march has started
 391     }
 392   }
 393 }
 394 
 395 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 396   if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
 397     // Size is too big for eden, or gc is locked out.
 398     return old_gen()->allocate(size);
 399   }
 400 
 401   // If a "death march" is in progress, allocate from the old gen a limited
 402   // number of times before doing a GC.
 403   if (_death_march_count > 0) {
 404     if (_death_march_count < 64) {
 405       ++_death_march_count;
 406       return old_gen()->allocate(size);
 407     } else {
 408       _death_march_count = 0;
 409     }
 410   }
 411   return NULL;
 412 }
 413 
 414 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 415   if (UseParallelOldGC) {
 416     // The do_full_collection() parameter clear_all_soft_refs
 417     // is interpreted here as maximum_compaction which will
 418     // cause SoftRefs to be cleared.
 419     bool maximum_compaction = clear_all_soft_refs;
 420     PSParallelCompact::invoke(maximum_compaction);
 421   } else {
 422     PSMarkSweepProxy::invoke(clear_all_soft_refs);
 423   }
 424 }
 425 
 426 // Failed allocation policy. Must be called from the VM thread, and
 427 // only at a safepoint! Note that this method has policy for allocation
 428 // flow, and NOT collection policy. So we do not check for gc collection
 429 // time over limit here, that is the responsibility of the heap specific
 430 // collection methods. This method decides where to attempt allocations,
 431 // and when to attempt collections, but no collection specific policy.
 432 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 433   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 434   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 435   assert(!is_gc_active(), "not reentrant");
 436   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 437 
 438   // We assume that allocation in eden will fail unless we collect.
 439 
 440   // First level allocation failure, scavenge and allocate in young gen.
 441   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 442   const bool invoked_full_gc = PSScavenge::invoke();
 443   HeapWord* result = young_gen()->allocate(size);
 444 
 445   // Second level allocation failure.
 446   //   Mark sweep and allocate in young generation.
 447   if (result == NULL && !invoked_full_gc) {
 448     do_full_collection(false);
 449     result = young_gen()->allocate(size);
 450   }
 451 
 452   death_march_check(result, size);
 453 
 454   // Third level allocation failure.
 455   //   After mark sweep and young generation allocation failure,
 456   //   allocate in old generation.
 457   if (result == NULL) {
 458     result = old_gen()->allocate(size);
 459   }
 460 
 461   // Fourth level allocation failure. We're running out of memory.
 462   //   More complete mark sweep and allocate in young generation.
 463   if (result == NULL) {
 464     do_full_collection(true);
 465     result = young_gen()->allocate(size);
 466   }
 467 
 468   // Fifth level allocation failure.
 469   //   After more complete mark sweep, allocate in old generation.
 470   if (result == NULL) {
 471     result = old_gen()->allocate(size);
 472   }
 473 
 474   return result;
 475 }
 476 
 477 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 478   CollectedHeap::ensure_parsability(retire_tlabs);
 479   young_gen()->eden_space()->ensure_parsability();
 480 }
 481 
 482 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 483   return young_gen()->eden_space()->tlab_capacity(thr);
 484 }
 485 
 486 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
 487   return young_gen()->eden_space()->tlab_used(thr);
 488 }
 489 
 490 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 491   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 492 }
 493 
 494 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) {
 495   HeapWord* result = young_gen()->allocate(requested_size);
 496   if (result != NULL) {
 497     *actual_size = requested_size;
 498   }
 499 
 500   return result;
 501 }
 502 
 503 void ParallelScavengeHeap::resize_all_tlabs() {
 504   CollectedHeap::resize_all_tlabs();
 505 }
 506 
 507 // This method is used by System.gc() and JVMTI.
 508 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 509   assert(!Heap_lock->owned_by_self(),
 510     "this thread should not own the Heap_lock");
 511 
 512   uint gc_count      = 0;
 513   uint full_gc_count = 0;
 514   {
 515     MutexLocker ml(Heap_lock);
 516     // This value is guarded by the Heap_lock
 517     gc_count      = total_collections();
 518     full_gc_count = total_full_collections();
 519   }
 520 
 521   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 522   VMThread::execute(&op);
 523 }
 524 
 525 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 526   young_gen()->object_iterate(cl);
 527   old_gen()->object_iterate(cl);
 528 }
 529 
 530 
 531 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 532   if (young_gen()->is_in_reserved(addr)) {
 533     assert(young_gen()->is_in(addr),
 534            "addr should be in allocated part of young gen");
 535     // called from os::print_location by find or VMError
 536     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 537     Unimplemented();
 538   } else if (old_gen()->is_in_reserved(addr)) {
 539     assert(old_gen()->is_in(addr),
 540            "addr should be in allocated part of old gen");
 541     return old_gen()->start_array()->object_start((HeapWord*)addr);
 542   }
 543   return 0;
 544 }
 545 
 546 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 547   return block_start(addr) == addr;
 548 }
 549 
 550 jlong ParallelScavengeHeap::millis_since_last_gc() {
 551   return UseParallelOldGC ?
 552     PSParallelCompact::millis_since_last_gc() :
 553     PSMarkSweepProxy::millis_since_last_gc();
 554 }
 555 
 556 void ParallelScavengeHeap::prepare_for_verify() {
 557   ensure_parsability(false);  // no need to retire TLABs for verification
 558 }
 559 
 560 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 561   PSOldGen* old = old_gen();
 562   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 563   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 564   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 565 
 566   PSYoungGen* young = young_gen();
 567   VirtualSpaceSummary young_summary(young->reserved().start(),
 568     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 569 
 570   MutableSpace* eden = young_gen()->eden_space();
 571   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 572 
 573   MutableSpace* from = young_gen()->from_space();
 574   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 575 
 576   MutableSpace* to = young_gen()->to_space();
 577   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 578 
 579   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 580   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 581 }
 582 
 583 void ParallelScavengeHeap::print_on(outputStream* st) const {
 584   young_gen()->print_on(st);
 585   old_gen()->print_on(st);
 586   MetaspaceUtils::print_on(st);
 587 }
 588 
 589 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 590   this->CollectedHeap::print_on_error(st);
 591 
 592   if (UseParallelOldGC) {
 593     st->cr();
 594     PSParallelCompact::print_on_error(st);
 595   }
 596 }
 597 
 598 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 599   PSScavenge::gc_task_manager()->threads_do(tc);
 600 }
 601 
 602 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 603   PSScavenge::gc_task_manager()->print_threads_on(st);
 604 }
 605 
 606 void ParallelScavengeHeap::print_tracing_info() const {
 607   AdaptiveSizePolicyOutput::print();
 608   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
 609   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
 610       UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweepProxy::accumulated_time()->seconds());
 611 }
 612 
 613 
 614 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
 615   // Why do we need the total_collections()-filter below?
 616   if (total_collections() > 0) {
 617     log_debug(gc, verify)("Tenured");
 618     old_gen()->verify();
 619 
 620     log_debug(gc, verify)("Eden");
 621     young_gen()->verify();
 622   }
 623 }
 624 
 625 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 626   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 627   gc_tracer->report_gc_heap_summary(when, heap_summary);
 628 
 629   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 630   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 631 }
 632 
 633 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 634   CollectedHeap* heap = Universe::heap();
 635   assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 636   assert(heap->kind() == CollectedHeap::Parallel, "Invalid name");
 637   return (ParallelScavengeHeap*)heap;
 638 }
 639 
 640 CardTableBarrierSet* ParallelScavengeHeap::barrier_set() {
 641   return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
 642 }
 643 
 644 PSCardTable* ParallelScavengeHeap::card_table() {
 645   return static_cast<PSCardTable*>(barrier_set()->card_table());
 646 }
 647 
 648 // Before delegating the resize to the young generation,
 649 // the reserved space for the young and old generations
 650 // may be changed to accommodate the desired resize.
 651 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 652     size_t survivor_size) {
 653   if (UseAdaptiveGCBoundary) {
 654     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 655       size_policy()->reset_bytes_absorbed_from_eden();
 656       return;  // The generation changed size already.
 657     }
 658     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 659   }
 660 
 661   // Delegate the resize to the generation.
 662   _young_gen->resize(eden_size, survivor_size);
 663 }
 664 
 665 // Before delegating the resize to the old generation,
 666 // the reserved space for the young and old generations
 667 // may be changed to accommodate the desired resize.
 668 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 669   if (UseAdaptiveGCBoundary) {
 670     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 671       size_policy()->reset_bytes_absorbed_from_eden();
 672       return;  // The generation changed size already.
 673     }
 674     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 675   }
 676 
 677   // Delegate the resize to the generation.
 678   _old_gen->resize(desired_free_space);
 679 }
 680 
 681 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 682   // nothing particular
 683 }
 684 
 685 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 686   // nothing particular
 687 }
 688 
 689 #ifndef PRODUCT
 690 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 691   if (ZapUnusedHeapArea) {
 692     young_gen()->record_spaces_top();
 693     old_gen()->record_spaces_top();
 694   }
 695 }
 696 
 697 void ParallelScavengeHeap::gen_mangle_unused_area() {
 698   if (ZapUnusedHeapArea) {
 699     young_gen()->eden_space()->mangle_unused_area();
 700     young_gen()->to_space()->mangle_unused_area();
 701     young_gen()->from_space()->mangle_unused_area();
 702     old_gen()->object_space()->mangle_unused_area();
 703   }
 704 }
 705 #endif
 706 
 707 void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
 708   ScavengableNMethods::register_nmethod(nm);
 709 }
 710 
 711 void ParallelScavengeHeap::unregister_nmethod(nmethod* nm) {
 712   ScavengableNMethods::unregister_nmethod(nm);
 713 }
 714 
 715 void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
 716   ScavengableNMethods::verify_nmethod(nm);
 717 }
 718 
 719 void ParallelScavengeHeap::flush_nmethod(nmethod* nm) {
 720   // nothing particular
 721 }
 722 
 723 void ParallelScavengeHeap::prune_scavengable_nmethods() {
 724   ScavengableNMethods::prune_nmethods();
 725 }
 726 
 727 GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
 728   GrowableArray<GCMemoryManager*> memory_managers(2);
 729   memory_managers.append(_young_manager);
 730   memory_managers.append(_old_manager);
 731   return memory_managers;
 732 }
 733 
 734 GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
 735   GrowableArray<MemoryPool*> memory_pools(3);
 736   memory_pools.append(_eden_pool);
 737   memory_pools.append(_survivor_pool);
 738   memory_pools.append(_old_pool);
 739   return memory_pools;
 740 }