1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/gcId.hpp"
  27 #include "gc/shared/workgroup.hpp"
  28 #include "gc/shared/workerManager.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/iterator.hpp"
  32 #include "runtime/atomic.hpp"
  33 #include "runtime/os.hpp"
  34 #include "runtime/semaphore.hpp"
  35 #include "runtime/thread.inline.hpp"
  36 
  37 // Definitions of WorkGang methods.
  38 
  39 // The current implementation will exit if the allocation
  40 // of any worker fails.
  41 void  AbstractWorkGang::initialize_workers() {
  42   log_develop_trace(gc, workgang)("Constructing work gang %s with %u threads", name(), total_workers());
  43   _workers = NEW_C_HEAP_ARRAY(AbstractGangWorker*, total_workers(), mtInternal);
  44   add_workers(true);
  45 }
  46 
  47 
  48 AbstractGangWorker* AbstractWorkGang::install_worker(uint worker_id) {
  49   AbstractGangWorker* new_worker = allocate_worker(worker_id);
  50   set_thread(worker_id, new_worker);
  51   return new_worker;
  52 }
  53 
  54 void AbstractWorkGang::add_workers(bool initializing) {
  55   add_workers(_active_workers, initializing);
  56 }
  57 
  58 void AbstractWorkGang::add_workers(uint active_workers, bool initializing) {
  59 
  60   os::ThreadType worker_type;
  61   if (are_ConcurrentGC_threads()) {
  62     worker_type = os::cgc_thread;
  63   } else {
  64     worker_type = os::pgc_thread;
  65   }
  66   uint previous_created_workers = _created_workers;
  67 
  68   _created_workers = WorkerManager::add_workers(this,
  69                                                 active_workers,
  70                                                 _total_workers,
  71                                                 _created_workers,
  72                                                 worker_type,
  73                                                 initializing);
  74   _active_workers = MIN2(_created_workers, _active_workers);
  75 
  76   WorkerManager::log_worker_creation(this, previous_created_workers, _active_workers, _created_workers, initializing);
  77 }
  78 
  79 AbstractGangWorker* AbstractWorkGang::worker(uint i) const {
  80   // Array index bounds checking.
  81   AbstractGangWorker* result = NULL;
  82   assert(_workers != NULL, "No workers for indexing");
  83   assert(i < total_workers(), "Worker index out of bounds");
  84   result = _workers[i];
  85   assert(result != NULL, "Indexing to null worker");
  86   return result;
  87 }
  88 
  89 void AbstractWorkGang::threads_do(ThreadClosure* tc) const {
  90   assert(tc != NULL, "Null ThreadClosure");
  91   uint workers = created_workers();
  92   for (uint i = 0; i < workers; i++) {
  93     tc->do_thread(worker(i));
  94   }
  95 }
  96 
  97 static void run_foreground_task_if_needed(AbstractGangTask* task, uint num_workers,
  98                                           bool add_foreground_work) {
  99   if (add_foreground_work) {
 100     log_develop_trace(gc, workgang)("Running work gang: %s task: %s worker: foreground",
 101       Thread::current()->name(), task->name());
 102     task->work(num_workers);
 103     log_develop_trace(gc, workgang)("Finished work gang: %s task: %s worker: foreground "
 104       "thread: " PTR_FORMAT, Thread::current()->name(), task->name(), p2i(Thread::current()));
 105   }
 106 }
 107 
 108 // WorkGang dispatcher implemented with semaphores.
 109 //
 110 // Semaphores don't require the worker threads to re-claim the lock when they wake up.
 111 // This helps lowering the latency when starting and stopping the worker threads.
 112 class SemaphoreGangTaskDispatcher : public GangTaskDispatcher {
 113   // The task currently being dispatched to the GangWorkers.
 114   AbstractGangTask* _task;
 115 
 116   volatile uint _started;
 117   volatile uint _not_finished;
 118 
 119   // Semaphore used to start the GangWorkers.
 120   Semaphore* _start_semaphore;
 121   // Semaphore used to notify the coordinator that all workers are done.
 122   Semaphore* _end_semaphore;
 123 
 124 public:
 125   SemaphoreGangTaskDispatcher() :
 126       _task(NULL),
 127       _started(0),
 128       _not_finished(0),
 129       _start_semaphore(new Semaphore()),
 130       _end_semaphore(new Semaphore())
 131 { }
 132 
 133   ~SemaphoreGangTaskDispatcher() {
 134     delete _start_semaphore;
 135     delete _end_semaphore;
 136   }
 137 
 138   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers, bool add_foreground_work) {
 139     // No workers are allowed to read the state variables until they have been signaled.
 140     _task         = task;
 141     _not_finished = num_workers;
 142 
 143     // Dispatch 'num_workers' number of tasks.
 144     _start_semaphore->signal(num_workers);
 145 
 146     run_foreground_task_if_needed(task, num_workers, add_foreground_work);
 147 
 148     // Wait for the last worker to signal the coordinator.
 149     _end_semaphore->wait();
 150 
 151     // No workers are allowed to read the state variables after the coordinator has been signaled.
 152     assert(_not_finished == 0, "%d not finished workers?", _not_finished);
 153     _task    = NULL;
 154     _started = 0;
 155 
 156   }
 157 
 158   WorkData worker_wait_for_task() {
 159     // Wait for the coordinator to dispatch a task.
 160     _start_semaphore->wait();
 161 
 162     uint num_started = Atomic::add(&_started, 1u);
 163 
 164     // Subtract one to get a zero-indexed worker id.
 165     uint worker_id = num_started - 1;
 166 
 167     return WorkData(_task, worker_id);
 168   }
 169 
 170   void worker_done_with_task() {
 171     // Mark that the worker is done with the task.
 172     // The worker is not allowed to read the state variables after this line.
 173     uint not_finished = Atomic::sub(&_not_finished, 1u);
 174 
 175     // The last worker signals to the coordinator that all work is completed.
 176     if (not_finished == 0) {
 177       _end_semaphore->signal();
 178     }
 179   }
 180 };
 181 
 182 WorkGang::WorkGang(const char* name,
 183                    uint  workers,
 184                    bool  are_GC_task_threads,
 185                    bool  are_ConcurrentGC_threads) :
 186     AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
 187     _dispatcher(new SemaphoreGangTaskDispatcher())
 188 { }
 189 
 190 WorkGang::~WorkGang() {
 191   delete _dispatcher;
 192 }
 193 
 194 AbstractGangWorker* WorkGang::allocate_worker(uint worker_id) {
 195   return new GangWorker(this, worker_id);
 196 }
 197 
 198 void WorkGang::run_task(AbstractGangTask* task) {
 199   run_task(task, active_workers());
 200 }
 201 
 202 void WorkGang::run_task(AbstractGangTask* task, uint num_workers, bool add_foreground_work) {
 203   guarantee(num_workers <= total_workers(),
 204             "Trying to execute task %s with %u workers which is more than the amount of total workers %u.",
 205             task->name(), num_workers, total_workers());
 206   guarantee(num_workers > 0, "Trying to execute task %s with zero workers", task->name());
 207   uint old_num_workers = _active_workers;
 208   update_active_workers(num_workers);
 209   _dispatcher->coordinator_execute_on_workers(task, num_workers, add_foreground_work);
 210   update_active_workers(old_num_workers);
 211 }
 212 
 213 AbstractGangWorker::AbstractGangWorker(AbstractWorkGang* gang, uint id) {
 214   _gang = gang;
 215   set_id(id);
 216   set_name("%s#%d", gang->name(), id);
 217 }
 218 
 219 void AbstractGangWorker::run() {
 220   initialize();
 221   loop();
 222 }
 223 
 224 void AbstractGangWorker::initialize() {
 225   assert(_gang != NULL, "No gang to run in");
 226   os::set_priority(this, NearMaxPriority);
 227   log_develop_trace(gc, workgang)("Running gang worker for gang %s id %u", gang()->name(), id());
 228   assert(!Thread::current()->is_VM_thread(), "VM thread should not be part"
 229          " of a work gang");
 230 }
 231 
 232 bool AbstractGangWorker::is_GC_task_thread() const {
 233   return gang()->are_GC_task_threads();
 234 }
 235 
 236 bool AbstractGangWorker::is_ConcurrentGC_thread() const {
 237   return gang()->are_ConcurrentGC_threads();
 238 }
 239 
 240 void AbstractGangWorker::print_on(outputStream* st) const {
 241   st->print("\"%s\" ", name());
 242   Thread::print_on(st);
 243   st->cr();
 244 }
 245 
 246 void AbstractGangWorker::print() const { print_on(tty); }
 247 
 248 WorkData GangWorker::wait_for_task() {
 249   return gang()->dispatcher()->worker_wait_for_task();
 250 }
 251 
 252 void GangWorker::signal_task_done() {
 253   gang()->dispatcher()->worker_done_with_task();
 254 }
 255 
 256 void GangWorker::run_task(WorkData data) {
 257   GCIdMark gc_id_mark(data._task->gc_id());
 258   log_develop_trace(gc, workgang)("Running work gang: %s task: %s worker: %u", name(), data._task->name(), data._worker_id);
 259 
 260   data._task->work(data._worker_id);
 261 
 262   log_develop_trace(gc, workgang)("Finished work gang: %s task: %s worker: %u thread: " PTR_FORMAT,
 263                                   name(), data._task->name(), data._worker_id, p2i(Thread::current()));
 264 }
 265 
 266 void GangWorker::loop() {
 267   while (true) {
 268     WorkData data = wait_for_task();
 269 
 270     run_task(data);
 271 
 272     signal_task_done();
 273   }
 274 }
 275 
 276 // *** WorkGangBarrierSync
 277 
 278 WorkGangBarrierSync::WorkGangBarrierSync()
 279   : _monitor(Mutex::safepoint, "work gang barrier sync", true,
 280              Monitor::_safepoint_check_never),
 281     _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) {
 282 }
 283 
 284 WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name)
 285   : _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never),
 286     _n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) {
 287 }
 288 
 289 void WorkGangBarrierSync::set_n_workers(uint n_workers) {
 290   _n_workers    = n_workers;
 291   _n_completed  = 0;
 292   _should_reset = false;
 293   _aborted      = false;
 294 }
 295 
 296 bool WorkGangBarrierSync::enter() {
 297   MonitorLocker ml(monitor(), Mutex::_no_safepoint_check_flag);
 298   if (should_reset()) {
 299     // The should_reset() was set and we are the first worker to enter
 300     // the sync barrier. We will zero the n_completed() count which
 301     // effectively resets the barrier.
 302     zero_completed();
 303     set_should_reset(false);
 304   }
 305   inc_completed();
 306   if (n_completed() == n_workers()) {
 307     // At this point we would like to reset the barrier to be ready in
 308     // case it is used again. However, we cannot set n_completed() to
 309     // 0, even after the notify_all(), given that some other workers
 310     // might still be waiting for n_completed() to become ==
 311     // n_workers(). So, if we set n_completed() to 0, those workers
 312     // will get stuck (as they will wake up, see that n_completed() !=
 313     // n_workers() and go back to sleep). Instead, we raise the
 314     // should_reset() flag and the barrier will be reset the first
 315     // time a worker enters it again.
 316     set_should_reset(true);
 317     ml.notify_all();
 318   } else {
 319     while (n_completed() != n_workers() && !aborted()) {
 320       ml.wait();
 321     }
 322   }
 323   return !aborted();
 324 }
 325 
 326 void WorkGangBarrierSync::abort() {
 327   MutexLocker x(monitor(), Mutex::_no_safepoint_check_flag);
 328   set_aborted();
 329   monitor()->notify_all();
 330 }
 331 
 332 // SubTasksDone functions.
 333 
 334 SubTasksDone::SubTasksDone(uint n) :
 335   _tasks(NULL), _n_tasks(n), _threads_completed(0) {
 336   _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal);
 337   clear();
 338 }
 339 
 340 bool SubTasksDone::valid() {
 341   return _tasks != NULL;
 342 }
 343 
 344 void SubTasksDone::clear() {
 345   for (uint i = 0; i < _n_tasks; i++) {
 346     _tasks[i] = 0;
 347   }
 348   _threads_completed = 0;
 349 #ifdef ASSERT
 350   _claimed = 0;
 351 #endif
 352 }
 353 
 354 bool SubTasksDone::try_claim_task(uint t) {
 355   assert(t < _n_tasks, "bad task id.");
 356   uint old = _tasks[t];
 357   if (old == 0) {
 358     old = Atomic::cmpxchg(&_tasks[t], 0u, 1u);
 359   }
 360   bool res = old == 0;
 361 #ifdef ASSERT
 362   if (res) {
 363     assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?");
 364     Atomic::inc(&_claimed);
 365   }
 366 #endif
 367   return res;
 368 }
 369 
 370 void SubTasksDone::all_tasks_completed(uint n_threads) {
 371   uint observed = _threads_completed;
 372   uint old;
 373   do {
 374     old = observed;
 375     observed = Atomic::cmpxchg(&_threads_completed, old, old+1);
 376   } while (observed != old);
 377   // If this was the last thread checking in, clear the tasks.
 378   uint adjusted_thread_count = (n_threads == 0 ? 1 : n_threads);
 379   if (observed + 1 == adjusted_thread_count) {
 380     clear();
 381   }
 382 }
 383 
 384 
 385 SubTasksDone::~SubTasksDone() {
 386   FREE_C_HEAP_ARRAY(uint, _tasks);
 387 }
 388 
 389 // *** SequentialSubTasksDone
 390 
 391 void SequentialSubTasksDone::clear() {
 392   _n_tasks   = _n_claimed   = 0;
 393   _n_threads = _n_completed = 0;
 394 }
 395 
 396 bool SequentialSubTasksDone::valid() {
 397   return _n_threads > 0;
 398 }
 399 
 400 bool SequentialSubTasksDone::try_claim_task(uint& t) {
 401   t = _n_claimed;
 402   while (t < _n_tasks) {
 403     uint res = Atomic::cmpxchg(&_n_claimed, t, t+1);
 404     if (res == t) {
 405       return true;
 406     }
 407     t = res;
 408   }
 409   return false;
 410 }
 411 
 412 bool SequentialSubTasksDone::all_tasks_completed() {
 413   uint complete = _n_completed;
 414   while (true) {
 415     uint res = Atomic::cmpxchg(&_n_completed, complete, complete+1);
 416     if (res == complete) {
 417       break;
 418     }
 419     complete = res;
 420   }
 421   if (complete+1 == _n_threads) {
 422     clear();
 423     return true;
 424   }
 425   return false;
 426 }