1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  35 #include "gc_implementation/g1/g1RemSet.hpp"
  36 #include "gc_implementation/g1/heapRegion.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  39 #include "gc_implementation/shared/vmGCOperations.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "memory/allocation.hpp"
  44 #include "memory/genOopClosures.inline.hpp"
  45 #include "memory/referencePolicy.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/prefetch.inline.hpp"
  52 #include "services/memTracker.hpp"
  53 
  54 // Concurrent marking bit map wrapper
  55 
  56 CMBitMapRO::CMBitMapRO(int shifter) :
  57   _bm(),
  58   _shifter(shifter) {
  59   _bmStartWord = 0;
  60   _bmWordSize = 0;
  61 }
  62 
  63 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  64                                                const HeapWord* limit) const {
  65   // First we must round addr *up* to a possible object boundary.
  66   addr = (HeapWord*)align_size_up((intptr_t)addr,
  67                                   HeapWordSize << _shifter);
  68   size_t addrOffset = heapWordToOffset(addr);
  69   if (limit == NULL) {
  70     limit = _bmStartWord + _bmWordSize;
  71   }
  72   size_t limitOffset = heapWordToOffset(limit);
  73   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  74   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  75   assert(nextAddr >= addr, "get_next_one postcondition");
  76   assert(nextAddr == limit || isMarked(nextAddr),
  77          "get_next_one postcondition");
  78   return nextAddr;
  79 }
  80 
  81 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  82                                                  const HeapWord* limit) const {
  83   size_t addrOffset = heapWordToOffset(addr);
  84   if (limit == NULL) {
  85     limit = _bmStartWord + _bmWordSize;
  86   }
  87   size_t limitOffset = heapWordToOffset(limit);
  88   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  89   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  90   assert(nextAddr >= addr, "get_next_one postcondition");
  91   assert(nextAddr == limit || !isMarked(nextAddr),
  92          "get_next_one postcondition");
  93   return nextAddr;
  94 }
  95 
  96 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  97   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  98   return (int) (diff >> _shifter);
  99 }
 100 
 101 #ifndef PRODUCT
 102 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
 103   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 104   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 105          "size inconsistency");
 106   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
 107          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
 108 }
 109 #endif
 110 
 111 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 112   _bm.print_on_error(st, prefix);
 113 }
 114 
 115 bool CMBitMap::allocate(ReservedSpace heap_rs) {
 116   _bmStartWord = (HeapWord*)(heap_rs.base());
 117   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
 118   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
 119                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
 120   if (!brs.is_reserved()) {
 121     warning("ConcurrentMark marking bit map allocation failure");
 122     return false;
 123   }
 124   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
 125   // For now we'll just commit all of the bit map up front.
 126   // Later on we'll try to be more parsimonious with swap.
 127   if (!_virtual_space.initialize(brs, brs.size())) {
 128     warning("ConcurrentMark marking bit map backing store failure");
 129     return false;
 130   }
 131   assert(_virtual_space.committed_size() == brs.size(),
 132          "didn't reserve backing store for all of concurrent marking bit map?");
 133   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
 134   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
 135          _bmWordSize, "inconsistency in bit map sizing");
 136   _bm.set_size(_bmWordSize >> _shifter);
 137   return true;
 138 }
 139 
 140 void CMBitMap::clearAll() {
 141   _bm.clear();
 142   return;
 143 }
 144 
 145 void CMBitMap::markRange(MemRegion mr) {
 146   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 147   assert(!mr.is_empty(), "unexpected empty region");
 148   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 149           ((HeapWord *) mr.end())),
 150          "markRange memory region end is not card aligned");
 151   // convert address range into offset range
 152   _bm.at_put_range(heapWordToOffset(mr.start()),
 153                    heapWordToOffset(mr.end()), true);
 154 }
 155 
 156 void CMBitMap::clearRange(MemRegion mr) {
 157   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 158   assert(!mr.is_empty(), "unexpected empty region");
 159   // convert address range into offset range
 160   _bm.at_put_range(heapWordToOffset(mr.start()),
 161                    heapWordToOffset(mr.end()), false);
 162 }
 163 
 164 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 165                                             HeapWord* end_addr) {
 166   HeapWord* start = getNextMarkedWordAddress(addr);
 167   start = MIN2(start, end_addr);
 168   HeapWord* end   = getNextUnmarkedWordAddress(start);
 169   end = MIN2(end, end_addr);
 170   assert(start <= end, "Consistency check");
 171   MemRegion mr(start, end);
 172   if (!mr.is_empty()) {
 173     clearRange(mr);
 174   }
 175   return mr;
 176 }
 177 
 178 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 179   _base(NULL), _cm(cm)
 180 #ifdef ASSERT
 181   , _drain_in_progress(false)
 182   , _drain_in_progress_yields(false)
 183 #endif
 184 {}
 185 
 186 bool CMMarkStack::allocate(size_t capacity) {
 187   // allocate a stack of the requisite depth
 188   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 189   if (!rs.is_reserved()) {
 190     warning("ConcurrentMark MarkStack allocation failure");
 191     return false;
 192   }
 193   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 194   if (!_virtual_space.initialize(rs, rs.size())) {
 195     warning("ConcurrentMark MarkStack backing store failure");
 196     // Release the virtual memory reserved for the marking stack
 197     rs.release();
 198     return false;
 199   }
 200   assert(_virtual_space.committed_size() == rs.size(),
 201          "Didn't reserve backing store for all of ConcurrentMark stack?");
 202   _base = (oop*) _virtual_space.low();
 203   setEmpty();
 204   _capacity = (jint) capacity;
 205   _saved_index = -1;
 206   _should_expand = false;
 207   NOT_PRODUCT(_max_depth = 0);
 208   return true;
 209 }
 210 
 211 void CMMarkStack::expand() {
 212   // Called, during remark, if we've overflown the marking stack during marking.
 213   assert(isEmpty(), "stack should been emptied while handling overflow");
 214   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 215   // Clear expansion flag
 216   _should_expand = false;
 217   if (_capacity == (jint) MarkStackSizeMax) {
 218     if (PrintGCDetails && Verbose) {
 219       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 220     }
 221     return;
 222   }
 223   // Double capacity if possible
 224   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 225   // Do not give up existing stack until we have managed to
 226   // get the double capacity that we desired.
 227   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 228                                                            sizeof(oop)));
 229   if (rs.is_reserved()) {
 230     // Release the backing store associated with old stack
 231     _virtual_space.release();
 232     // Reinitialize virtual space for new stack
 233     if (!_virtual_space.initialize(rs, rs.size())) {
 234       fatal("Not enough swap for expanded marking stack capacity");
 235     }
 236     _base = (oop*)(_virtual_space.low());
 237     _index = 0;
 238     _capacity = new_capacity;
 239   } else {
 240     if (PrintGCDetails && Verbose) {
 241       // Failed to double capacity, continue;
 242       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 243                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 244                           _capacity / K, new_capacity / K);
 245     }
 246   }
 247 }
 248 
 249 void CMMarkStack::set_should_expand() {
 250   // If we're resetting the marking state because of an
 251   // marking stack overflow, record that we should, if
 252   // possible, expand the stack.
 253   _should_expand = _cm->has_overflown();
 254 }
 255 
 256 CMMarkStack::~CMMarkStack() {
 257   if (_base != NULL) {
 258     _base = NULL;
 259     _virtual_space.release();
 260   }
 261 }
 262 
 263 void CMMarkStack::par_push(oop ptr) {
 264   while (true) {
 265     if (isFull()) {
 266       _overflow = true;
 267       return;
 268     }
 269     // Otherwise...
 270     jint index = _index;
 271     jint next_index = index+1;
 272     jint res = Atomic::cmpxchg(next_index, &_index, index);
 273     if (res == index) {
 274       _base[index] = ptr;
 275       // Note that we don't maintain this atomically.  We could, but it
 276       // doesn't seem necessary.
 277       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 278       return;
 279     }
 280     // Otherwise, we need to try again.
 281   }
 282 }
 283 
 284 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 285   while (true) {
 286     if (isFull()) {
 287       _overflow = true;
 288       return;
 289     }
 290     // Otherwise...
 291     jint index = _index;
 292     jint next_index = index + n;
 293     if (next_index > _capacity) {
 294       _overflow = true;
 295       return;
 296     }
 297     jint res = Atomic::cmpxchg(next_index, &_index, index);
 298     if (res == index) {
 299       for (int i = 0; i < n; i++) {
 300         int  ind = index + i;
 301         assert(ind < _capacity, "By overflow test above.");
 302         _base[ind] = ptr_arr[i];
 303       }
 304       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 305       return;
 306     }
 307     // Otherwise, we need to try again.
 308   }
 309 }
 310 
 311 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 312   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 313   jint start = _index;
 314   jint next_index = start + n;
 315   if (next_index > _capacity) {
 316     _overflow = true;
 317     return;
 318   }
 319   // Otherwise.
 320   _index = next_index;
 321   for (int i = 0; i < n; i++) {
 322     int ind = start + i;
 323     assert(ind < _capacity, "By overflow test above.");
 324     _base[ind] = ptr_arr[i];
 325   }
 326   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 327 }
 328 
 329 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 330   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 331   jint index = _index;
 332   if (index == 0) {
 333     *n = 0;
 334     return false;
 335   } else {
 336     int k = MIN2(max, index);
 337     jint  new_ind = index - k;
 338     for (int j = 0; j < k; j++) {
 339       ptr_arr[j] = _base[new_ind + j];
 340     }
 341     _index = new_ind;
 342     *n = k;
 343     return true;
 344   }
 345 }
 346 
 347 template<class OopClosureClass>
 348 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 349   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 350          || SafepointSynchronize::is_at_safepoint(),
 351          "Drain recursion must be yield-safe.");
 352   bool res = true;
 353   debug_only(_drain_in_progress = true);
 354   debug_only(_drain_in_progress_yields = yield_after);
 355   while (!isEmpty()) {
 356     oop newOop = pop();
 357     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 358     assert(newOop->is_oop(), "Expected an oop");
 359     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 360            "only grey objects on this stack");
 361     newOop->oop_iterate(cl);
 362     if (yield_after && _cm->do_yield_check()) {
 363       res = false;
 364       break;
 365     }
 366   }
 367   debug_only(_drain_in_progress = false);
 368   return res;
 369 }
 370 
 371 void CMMarkStack::note_start_of_gc() {
 372   assert(_saved_index == -1,
 373          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 374   _saved_index = _index;
 375 }
 376 
 377 void CMMarkStack::note_end_of_gc() {
 378   // This is intentionally a guarantee, instead of an assert. If we
 379   // accidentally add something to the mark stack during GC, it
 380   // will be a correctness issue so it's better if we crash. we'll
 381   // only check this once per GC anyway, so it won't be a performance
 382   // issue in any way.
 383   guarantee(_saved_index == _index,
 384             err_msg("saved index: %d index: %d", _saved_index, _index));
 385   _saved_index = -1;
 386 }
 387 
 388 void CMMarkStack::oops_do(OopClosure* f) {
 389   assert(_saved_index == _index,
 390          err_msg("saved index: %d index: %d", _saved_index, _index));
 391   for (int i = 0; i < _index; i += 1) {
 392     f->do_oop(&_base[i]);
 393   }
 394 }
 395 
 396 bool ConcurrentMark::not_yet_marked(oop obj) const {
 397   return _g1h->is_obj_ill(obj);
 398 }
 399 
 400 CMRootRegions::CMRootRegions() :
 401   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 402   _should_abort(false),  _next_survivor(NULL) { }
 403 
 404 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 405   _young_list = g1h->young_list();
 406   _cm = cm;
 407 }
 408 
 409 void CMRootRegions::prepare_for_scan() {
 410   assert(!scan_in_progress(), "pre-condition");
 411 
 412   // Currently, only survivors can be root regions.
 413   assert(_next_survivor == NULL, "pre-condition");
 414   _next_survivor = _young_list->first_survivor_region();
 415   _scan_in_progress = (_next_survivor != NULL);
 416   _should_abort = false;
 417 }
 418 
 419 HeapRegion* CMRootRegions::claim_next() {
 420   if (_should_abort) {
 421     // If someone has set the should_abort flag, we return NULL to
 422     // force the caller to bail out of their loop.
 423     return NULL;
 424   }
 425 
 426   // Currently, only survivors can be root regions.
 427   HeapRegion* res = _next_survivor;
 428   if (res != NULL) {
 429     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 430     // Read it again in case it changed while we were waiting for the lock.
 431     res = _next_survivor;
 432     if (res != NULL) {
 433       if (res == _young_list->last_survivor_region()) {
 434         // We just claimed the last survivor so store NULL to indicate
 435         // that we're done.
 436         _next_survivor = NULL;
 437       } else {
 438         _next_survivor = res->get_next_young_region();
 439       }
 440     } else {
 441       // Someone else claimed the last survivor while we were trying
 442       // to take the lock so nothing else to do.
 443     }
 444   }
 445   assert(res == NULL || res->is_survivor(), "post-condition");
 446 
 447   return res;
 448 }
 449 
 450 void CMRootRegions::scan_finished() {
 451   assert(scan_in_progress(), "pre-condition");
 452 
 453   // Currently, only survivors can be root regions.
 454   if (!_should_abort) {
 455     assert(_next_survivor == NULL, "we should have claimed all survivors");
 456   }
 457   _next_survivor = NULL;
 458 
 459   {
 460     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 461     _scan_in_progress = false;
 462     RootRegionScan_lock->notify_all();
 463   }
 464 }
 465 
 466 bool CMRootRegions::wait_until_scan_finished() {
 467   if (!scan_in_progress()) return false;
 468 
 469   {
 470     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 471     while (scan_in_progress()) {
 472       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 473     }
 474   }
 475   return true;
 476 }
 477 
 478 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 479 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 480 #endif // _MSC_VER
 481 
 482 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 483   return MAX2((n_par_threads + 2) / 4, 1U);
 484 }
 485 
 486 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
 487   _g1h(g1h),
 488   _markBitMap1(log2_intptr(MinObjAlignment)),
 489   _markBitMap2(log2_intptr(MinObjAlignment)),
 490   _parallel_marking_threads(0),
 491   _max_parallel_marking_threads(0),
 492   _sleep_factor(0.0),
 493   _marking_task_overhead(1.0),
 494   _cleanup_sleep_factor(0.0),
 495   _cleanup_task_overhead(1.0),
 496   _cleanup_list("Cleanup List"),
 497   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 498   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
 499             CardTableModRefBS::card_shift,
 500             false /* in_resource_area*/),
 501 
 502   _prevMarkBitMap(&_markBitMap1),
 503   _nextMarkBitMap(&_markBitMap2),
 504 
 505   _markStack(this),
 506   // _finger set in set_non_marking_state
 507 
 508   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 509   // _active_tasks set in set_non_marking_state
 510   // _tasks set inside the constructor
 511   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 512   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 513 
 514   _has_overflown(false),
 515   _concurrent(false),
 516   _has_aborted(false),
 517   _aborted_gc_id(GCId::undefined()),
 518   _restart_for_overflow(false),
 519   _concurrent_marking_in_progress(false),
 520 
 521   // _verbose_level set below
 522 
 523   _init_times(),
 524   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 525   _cleanup_times(),
 526   _total_counting_time(0.0),
 527   _total_rs_scrub_time(0.0),
 528 
 529   _parallel_workers(NULL),
 530 
 531   _count_card_bitmaps(NULL),
 532   _count_marked_bytes(NULL),
 533   _completed_initialization(false) {
 534   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 535   if (verbose_level < no_verbose) {
 536     verbose_level = no_verbose;
 537   }
 538   if (verbose_level > high_verbose) {
 539     verbose_level = high_verbose;
 540   }
 541   _verbose_level = verbose_level;
 542 
 543   if (verbose_low()) {
 544     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 545                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 546   }
 547 
 548   if (!_markBitMap1.allocate(heap_rs)) {
 549     warning("Failed to allocate first CM bit map");
 550     return;
 551   }
 552   if (!_markBitMap2.allocate(heap_rs)) {
 553     warning("Failed to allocate second CM bit map");
 554     return;
 555   }
 556 
 557   // Create & start a ConcurrentMark thread.
 558   _cmThread = new ConcurrentMarkThread(this);
 559   assert(cmThread() != NULL, "CM Thread should have been created");
 560   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 561   if (_cmThread->osthread() == NULL) {
 562       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 563   }
 564 
 565   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 566   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
 567   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
 568 
 569   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 570   satb_qs.set_buffer_size(G1SATBBufferSize);
 571 
 572   _root_regions.init(_g1h, this);
 573 
 574   if (ConcGCThreads > ParallelGCThreads) {
 575     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 576             "than ParallelGCThreads (" UINTX_FORMAT ").",
 577             ConcGCThreads, ParallelGCThreads);
 578     return;
 579   }
 580   if (ParallelGCThreads == 0) {
 581     // if we are not running with any parallel GC threads we will not
 582     // spawn any marking threads either
 583     _parallel_marking_threads =       0;
 584     _max_parallel_marking_threads =   0;
 585     _sleep_factor             =     0.0;
 586     _marking_task_overhead    =     1.0;
 587   } else {
 588     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 589       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 590       // if both are set
 591       _sleep_factor             = 0.0;
 592       _marking_task_overhead    = 1.0;
 593     } else if (G1MarkingOverheadPercent > 0) {
 594       // We will calculate the number of parallel marking threads based
 595       // on a target overhead with respect to the soft real-time goal
 596       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 597       double overall_cm_overhead =
 598         (double) MaxGCPauseMillis * marking_overhead /
 599         (double) GCPauseIntervalMillis;
 600       double cpu_ratio = 1.0 / (double) os::processor_count();
 601       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 602       double marking_task_overhead =
 603         overall_cm_overhead / marking_thread_num *
 604                                                 (double) os::processor_count();
 605       double sleep_factor =
 606                          (1.0 - marking_task_overhead) / marking_task_overhead;
 607 
 608       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 609       _sleep_factor             = sleep_factor;
 610       _marking_task_overhead    = marking_task_overhead;
 611     } else {
 612       // Calculate the number of parallel marking threads by scaling
 613       // the number of parallel GC threads.
 614       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 615       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 616       _sleep_factor             = 0.0;
 617       _marking_task_overhead    = 1.0;
 618     }
 619 
 620     assert(ConcGCThreads > 0, "Should have been set");
 621     _parallel_marking_threads = (uint) ConcGCThreads;
 622     _max_parallel_marking_threads = _parallel_marking_threads;
 623 
 624     if (parallel_marking_threads() > 1) {
 625       _cleanup_task_overhead = 1.0;
 626     } else {
 627       _cleanup_task_overhead = marking_task_overhead();
 628     }
 629     _cleanup_sleep_factor =
 630                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 631 
 632 #if 0
 633     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 634     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 635     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 636     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 637     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 638 #endif
 639 
 640     guarantee(parallel_marking_threads() > 0, "peace of mind");
 641     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 642          _max_parallel_marking_threads, false, true);
 643     if (_parallel_workers == NULL) {
 644       vm_exit_during_initialization("Failed necessary allocation.");
 645     } else {
 646       _parallel_workers->initialize_workers();
 647     }
 648   }
 649 
 650   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 651     uintx mark_stack_size =
 652       MIN2(MarkStackSizeMax,
 653           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 654     // Verify that the calculated value for MarkStackSize is in range.
 655     // It would be nice to use the private utility routine from Arguments.
 656     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 657       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 658               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 659               mark_stack_size, (uintx) 1, MarkStackSizeMax);
 660       return;
 661     }
 662     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 663   } else {
 664     // Verify MarkStackSize is in range.
 665     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 666       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 667         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 668           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 669                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 670                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
 671           return;
 672         }
 673       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 674         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 675           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 676                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 677                   MarkStackSize, MarkStackSizeMax);
 678           return;
 679         }
 680       }
 681     }
 682   }
 683 
 684   if (!_markStack.allocate(MarkStackSize)) {
 685     warning("Failed to allocate CM marking stack");
 686     return;
 687   }
 688 
 689   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 690   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 691 
 692   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 693   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 694 
 695   BitMap::idx_t card_bm_size = _card_bm.size();
 696 
 697   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 698   _active_tasks = _max_worker_id;
 699 
 700   size_t max_regions = (size_t) _g1h->max_regions();
 701   for (uint i = 0; i < _max_worker_id; ++i) {
 702     CMTaskQueue* task_queue = new CMTaskQueue();
 703     task_queue->initialize();
 704     _task_queues->register_queue(i, task_queue);
 705 
 706     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 707     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 708 
 709     _tasks[i] = new CMTask(i, this,
 710                            _count_marked_bytes[i],
 711                            &_count_card_bitmaps[i],
 712                            task_queue, _task_queues);
 713 
 714     _accum_task_vtime[i] = 0.0;
 715   }
 716 
 717   // Calculate the card number for the bottom of the heap. Used
 718   // in biasing indexes into the accounting card bitmaps.
 719   _heap_bottom_card_num =
 720     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 721                                 CardTableModRefBS::card_shift);
 722 
 723   // Clear all the liveness counting data
 724   clear_all_count_data();
 725 
 726   // so that the call below can read a sensible value
 727   _heap_start = (HeapWord*) heap_rs.base();
 728   set_non_marking_state();
 729   _completed_initialization = true;
 730 }
 731 
 732 void ConcurrentMark::update_g1_committed(bool force) {
 733   // If concurrent marking is not in progress, then we do not need to
 734   // update _heap_end.
 735   if (!concurrent_marking_in_progress() && !force) return;
 736 
 737   MemRegion committed = _g1h->g1_committed();
 738   assert(committed.start() == _heap_start, "start shouldn't change");
 739   HeapWord* new_end = committed.end();
 740   if (new_end > _heap_end) {
 741     // The heap has been expanded.
 742 
 743     _heap_end = new_end;
 744   }
 745   // Notice that the heap can also shrink. However, this only happens
 746   // during a Full GC (at least currently) and the entire marking
 747   // phase will bail out and the task will not be restarted. So, let's
 748   // do nothing.
 749 }
 750 
 751 void ConcurrentMark::reset() {
 752   // Starting values for these two. This should be called in a STW
 753   // phase. CM will be notified of any future g1_committed expansions
 754   // will be at the end of evacuation pauses, when tasks are
 755   // inactive.
 756   MemRegion committed = _g1h->g1_committed();
 757   _heap_start = committed.start();
 758   _heap_end   = committed.end();
 759 
 760   // Separated the asserts so that we know which one fires.
 761   assert(_heap_start != NULL, "heap bounds should look ok");
 762   assert(_heap_end != NULL, "heap bounds should look ok");
 763   assert(_heap_start < _heap_end, "heap bounds should look ok");
 764 
 765   // Reset all the marking data structures and any necessary flags
 766   reset_marking_state();
 767 
 768   if (verbose_low()) {
 769     gclog_or_tty->print_cr("[global] resetting");
 770   }
 771 
 772   // We do reset all of them, since different phases will use
 773   // different number of active threads. So, it's easiest to have all
 774   // of them ready.
 775   for (uint i = 0; i < _max_worker_id; ++i) {
 776     _tasks[i]->reset(_nextMarkBitMap);
 777   }
 778 
 779   // we need this to make sure that the flag is on during the evac
 780   // pause with initial mark piggy-backed
 781   set_concurrent_marking_in_progress();
 782 }
 783 
 784 
 785 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 786   _markStack.set_should_expand();
 787   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 788   if (clear_overflow) {
 789     clear_has_overflown();
 790   } else {
 791     assert(has_overflown(), "pre-condition");
 792   }
 793   _finger = _heap_start;
 794 
 795   for (uint i = 0; i < _max_worker_id; ++i) {
 796     CMTaskQueue* queue = _task_queues->queue(i);
 797     queue->set_empty();
 798   }
 799 }
 800 
 801 void ConcurrentMark::set_concurrency(uint active_tasks) {
 802   assert(active_tasks <= _max_worker_id, "we should not have more");
 803 
 804   _active_tasks = active_tasks;
 805   // Need to update the three data structures below according to the
 806   // number of active threads for this phase.
 807   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 808   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 809   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 810 }
 811 
 812 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 813   set_concurrency(active_tasks);
 814 
 815   _concurrent = concurrent;
 816   // We propagate this to all tasks, not just the active ones.
 817   for (uint i = 0; i < _max_worker_id; ++i)
 818     _tasks[i]->set_concurrent(concurrent);
 819 
 820   if (concurrent) {
 821     set_concurrent_marking_in_progress();
 822   } else {
 823     // We currently assume that the concurrent flag has been set to
 824     // false before we start remark. At this point we should also be
 825     // in a STW phase.
 826     assert(!concurrent_marking_in_progress(), "invariant");
 827     assert(out_of_regions(),
 828            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 829                    p2i(_finger), p2i(_heap_end)));
 830     update_g1_committed(true);
 831   }
 832 }
 833 
 834 void ConcurrentMark::set_non_marking_state() {
 835   // We set the global marking state to some default values when we're
 836   // not doing marking.
 837   reset_marking_state();
 838   _active_tasks = 0;
 839   clear_concurrent_marking_in_progress();
 840 }
 841 
 842 ConcurrentMark::~ConcurrentMark() {
 843   // The ConcurrentMark instance is never freed.
 844   ShouldNotReachHere();
 845 }
 846 
 847 void ConcurrentMark::clearNextBitmap() {
 848   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 849   G1CollectorPolicy* g1p = g1h->g1_policy();
 850 
 851   // Make sure that the concurrent mark thread looks to still be in
 852   // the current cycle.
 853   guarantee(cmThread()->during_cycle(), "invariant");
 854 
 855   // We are finishing up the current cycle by clearing the next
 856   // marking bitmap and getting it ready for the next cycle. During
 857   // this time no other cycle can start. So, let's make sure that this
 858   // is the case.
 859   guarantee(!g1h->mark_in_progress(), "invariant");
 860 
 861   // clear the mark bitmap (no grey objects to start with).
 862   // We need to do this in chunks and offer to yield in between
 863   // each chunk.
 864   HeapWord* start  = _nextMarkBitMap->startWord();
 865   HeapWord* end    = _nextMarkBitMap->endWord();
 866   HeapWord* cur    = start;
 867   size_t chunkSize = M;
 868   while (cur < end) {
 869     HeapWord* next = cur + chunkSize;
 870     if (next > end) {
 871       next = end;
 872     }
 873     MemRegion mr(cur,next);
 874     _nextMarkBitMap->clearRange(mr);
 875     cur = next;
 876     do_yield_check();
 877 
 878     // Repeat the asserts from above. We'll do them as asserts here to
 879     // minimize their overhead on the product. However, we'll have
 880     // them as guarantees at the beginning / end of the bitmap
 881     // clearing to get some checking in the product.
 882     assert(cmThread()->during_cycle(), "invariant");
 883     assert(!g1h->mark_in_progress(), "invariant");
 884   }
 885 
 886   // Clear the liveness counting data
 887   clear_all_count_data();
 888 
 889   // Repeat the asserts from above.
 890   guarantee(cmThread()->during_cycle(), "invariant");
 891   guarantee(!g1h->mark_in_progress(), "invariant");
 892 }
 893 
 894 bool ConcurrentMark::nextMarkBitmapIsClear() {
 895   return _nextMarkBitMap->getNextMarkedWordAddress(_heap_start, _heap_end) == _heap_end;
 896 }
 897 
 898 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 899 public:
 900   bool doHeapRegion(HeapRegion* r) {
 901     if (!r->continuesHumongous()) {
 902       r->note_start_of_marking();
 903     }
 904     return false;
 905   }
 906 };
 907 
 908 void ConcurrentMark::checkpointRootsInitialPre() {
 909   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 910   G1CollectorPolicy* g1p = g1h->g1_policy();
 911 
 912   _has_aborted = false;
 913 
 914 #ifndef PRODUCT
 915   if (G1PrintReachableAtInitialMark) {
 916     print_reachable("at-cycle-start",
 917                     VerifyOption_G1UsePrevMarking, true /* all */);
 918   }
 919 #endif
 920 
 921   // Initialize marking structures. This has to be done in a STW phase.
 922   reset();
 923 
 924   // For each region note start of marking.
 925   NoteStartOfMarkHRClosure startcl;
 926   g1h->heap_region_iterate(&startcl);
 927 }
 928 
 929 
 930 void ConcurrentMark::checkpointRootsInitialPost() {
 931   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 932 
 933   // If we force an overflow during remark, the remark operation will
 934   // actually abort and we'll restart concurrent marking. If we always
 935   // force an overflow during remark we'll never actually complete the
 936   // marking phase. So, we initialize this here, at the start of the
 937   // cycle, so that at the remaining overflow number will decrease at
 938   // every remark and we'll eventually not need to cause one.
 939   force_overflow_stw()->init();
 940 
 941   // Start Concurrent Marking weak-reference discovery.
 942   ReferenceProcessor* rp = g1h->ref_processor_cm();
 943   // enable ("weak") refs discovery
 944   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 945   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 946 
 947   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 948   // This is the start of  the marking cycle, we're expected all
 949   // threads to have SATB queues with active set to false.
 950   satb_mq_set.set_active_all_threads(true, /* new active value */
 951                                      false /* expected_active */);
 952 
 953   _root_regions.prepare_for_scan();
 954 
 955   // update_g1_committed() will be called at the end of an evac pause
 956   // when marking is on. So, it's also called at the end of the
 957   // initial-mark pause to update the heap end, if the heap expands
 958   // during it. No need to call it here.
 959 }
 960 
 961 /*
 962  * Notice that in the next two methods, we actually leave the STS
 963  * during the barrier sync and join it immediately afterwards. If we
 964  * do not do this, the following deadlock can occur: one thread could
 965  * be in the barrier sync code, waiting for the other thread to also
 966  * sync up, whereas another one could be trying to yield, while also
 967  * waiting for the other threads to sync up too.
 968  *
 969  * Note, however, that this code is also used during remark and in
 970  * this case we should not attempt to leave / enter the STS, otherwise
 971  * we'll either hit an assert (debug / fastdebug) or deadlock
 972  * (product). So we should only leave / enter the STS if we are
 973  * operating concurrently.
 974  *
 975  * Because the thread that does the sync barrier has left the STS, it
 976  * is possible to be suspended for a Full GC or an evacuation pause
 977  * could occur. This is actually safe, since the entering the sync
 978  * barrier is one of the last things do_marking_step() does, and it
 979  * doesn't manipulate any data structures afterwards.
 980  */
 981 
 982 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 983   if (verbose_low()) {
 984     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 985   }
 986 
 987   if (concurrent()) {
 988     SuspendibleThreadSet::leave();
 989   }
 990 
 991   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
 992 
 993   if (concurrent()) {
 994     SuspendibleThreadSet::join();
 995   }
 996   // at this point everyone should have synced up and not be doing any
 997   // more work
 998 
 999   if (verbose_low()) {
1000     if (barrier_aborted) {
1001       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1002     } else {
1003       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1004     }
1005   }
1006 
1007   if (barrier_aborted) {
1008     // If the barrier aborted we ignore the overflow condition and
1009     // just abort the whole marking phase as quickly as possible.
1010     return;
1011   }
1012 
1013   // If we're executing the concurrent phase of marking, reset the marking
1014   // state; otherwise the marking state is reset after reference processing,
1015   // during the remark pause.
1016   // If we reset here as a result of an overflow during the remark we will
1017   // see assertion failures from any subsequent set_concurrency_and_phase()
1018   // calls.
1019   if (concurrent()) {
1020     // let the task associated with with worker 0 do this
1021     if (worker_id == 0) {
1022       // task 0 is responsible for clearing the global data structures
1023       // We should be here because of an overflow. During STW we should
1024       // not clear the overflow flag since we rely on it being true when
1025       // we exit this method to abort the pause and restart concurrent
1026       // marking.
1027       reset_marking_state(true /* clear_overflow */);
1028       force_overflow()->update();
1029 
1030       if (G1Log::fine()) {
1031         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1032         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1033       }
1034     }
1035   }
1036 
1037   // after this, each task should reset its own data structures then
1038   // then go into the second barrier
1039 }
1040 
1041 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1042   if (verbose_low()) {
1043     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1044   }
1045 
1046   if (concurrent()) {
1047     SuspendibleThreadSet::leave();
1048   }
1049 
1050   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1051 
1052   if (concurrent()) {
1053     SuspendibleThreadSet::join();
1054   }
1055   // at this point everything should be re-initialized and ready to go
1056 
1057   if (verbose_low()) {
1058     if (barrier_aborted) {
1059       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1060     } else {
1061       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1062     }
1063   }
1064 }
1065 
1066 #ifndef PRODUCT
1067 void ForceOverflowSettings::init() {
1068   _num_remaining = G1ConcMarkForceOverflow;
1069   _force = false;
1070   update();
1071 }
1072 
1073 void ForceOverflowSettings::update() {
1074   if (_num_remaining > 0) {
1075     _num_remaining -= 1;
1076     _force = true;
1077   } else {
1078     _force = false;
1079   }
1080 }
1081 
1082 bool ForceOverflowSettings::should_force() {
1083   if (_force) {
1084     _force = false;
1085     return true;
1086   } else {
1087     return false;
1088   }
1089 }
1090 #endif // !PRODUCT
1091 
1092 class CMConcurrentMarkingTask: public AbstractGangTask {
1093 private:
1094   ConcurrentMark*       _cm;
1095   ConcurrentMarkThread* _cmt;
1096 
1097 public:
1098   void work(uint worker_id) {
1099     assert(Thread::current()->is_ConcurrentGC_thread(),
1100            "this should only be done by a conc GC thread");
1101     ResourceMark rm;
1102 
1103     double start_vtime = os::elapsedVTime();
1104 
1105     SuspendibleThreadSet::join();
1106 
1107     assert(worker_id < _cm->active_tasks(), "invariant");
1108     CMTask* the_task = _cm->task(worker_id);
1109     the_task->record_start_time();
1110     if (!_cm->has_aborted()) {
1111       do {
1112         double start_vtime_sec = os::elapsedVTime();
1113         double start_time_sec = os::elapsedTime();
1114         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1115 
1116         the_task->do_marking_step(mark_step_duration_ms,
1117                                   true  /* do_termination */,
1118                                   false /* is_serial*/);
1119 
1120         double end_time_sec = os::elapsedTime();
1121         double end_vtime_sec = os::elapsedVTime();
1122         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1123         double elapsed_time_sec = end_time_sec - start_time_sec;
1124         _cm->clear_has_overflown();
1125 
1126         bool ret = _cm->do_yield_check(worker_id);
1127 
1128         jlong sleep_time_ms;
1129         if (!_cm->has_aborted() && the_task->has_aborted()) {
1130           sleep_time_ms =
1131             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1132           SuspendibleThreadSet::leave();
1133           os::sleep(Thread::current(), sleep_time_ms, false);
1134           SuspendibleThreadSet::join();
1135         }
1136         double end_time2_sec = os::elapsedTime();
1137         double elapsed_time2_sec = end_time2_sec - start_time_sec;
1138 
1139 #if 0
1140           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
1141                                  "overhead %1.4lf",
1142                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
1143                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
1144           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
1145                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
1146 #endif
1147       } while (!_cm->has_aborted() && the_task->has_aborted());
1148     }
1149     the_task->record_end_time();
1150     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1151 
1152     SuspendibleThreadSet::leave();
1153 
1154     double end_vtime = os::elapsedVTime();
1155     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1156   }
1157 
1158   CMConcurrentMarkingTask(ConcurrentMark* cm,
1159                           ConcurrentMarkThread* cmt) :
1160       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1161 
1162   ~CMConcurrentMarkingTask() { }
1163 };
1164 
1165 // Calculates the number of active workers for a concurrent
1166 // phase.
1167 uint ConcurrentMark::calc_parallel_marking_threads() {
1168   if (G1CollectedHeap::use_parallel_gc_threads()) {
1169     uint n_conc_workers = 0;
1170     if (!UseDynamicNumberOfGCThreads ||
1171         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1172          !ForceDynamicNumberOfGCThreads)) {
1173       n_conc_workers = max_parallel_marking_threads();
1174     } else {
1175       n_conc_workers =
1176         AdaptiveSizePolicy::calc_default_active_workers(
1177                                      max_parallel_marking_threads(),
1178                                      1, /* Minimum workers */
1179                                      parallel_marking_threads(),
1180                                      Threads::number_of_non_daemon_threads());
1181       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1182       // that scaling has already gone into "_max_parallel_marking_threads".
1183     }
1184     assert(n_conc_workers > 0, "Always need at least 1");
1185     return n_conc_workers;
1186   }
1187   // If we are not running with any parallel GC threads we will not
1188   // have spawned any marking threads either. Hence the number of
1189   // concurrent workers should be 0.
1190   return 0;
1191 }
1192 
1193 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1194   // Currently, only survivors can be root regions.
1195   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1196   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1197 
1198   const uintx interval = PrefetchScanIntervalInBytes;
1199   HeapWord* curr = hr->bottom();
1200   const HeapWord* end = hr->top();
1201   while (curr < end) {
1202     Prefetch::read(curr, interval);
1203     oop obj = oop(curr);
1204     int size = obj->oop_iterate(&cl);
1205     assert(size == obj->size(), "sanity");
1206     curr += size;
1207   }
1208 }
1209 
1210 class CMRootRegionScanTask : public AbstractGangTask {
1211 private:
1212   ConcurrentMark* _cm;
1213 
1214 public:
1215   CMRootRegionScanTask(ConcurrentMark* cm) :
1216     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1217 
1218   void work(uint worker_id) {
1219     assert(Thread::current()->is_ConcurrentGC_thread(),
1220            "this should only be done by a conc GC thread");
1221 
1222     CMRootRegions* root_regions = _cm->root_regions();
1223     HeapRegion* hr = root_regions->claim_next();
1224     while (hr != NULL) {
1225       _cm->scanRootRegion(hr, worker_id);
1226       hr = root_regions->claim_next();
1227     }
1228   }
1229 };
1230 
1231 void ConcurrentMark::scanRootRegions() {
1232   // Start of concurrent marking.
1233   ClassLoaderDataGraph::clear_claimed_marks();
1234 
1235   // scan_in_progress() will have been set to true only if there was
1236   // at least one root region to scan. So, if it's false, we
1237   // should not attempt to do any further work.
1238   if (root_regions()->scan_in_progress()) {
1239     _parallel_marking_threads = calc_parallel_marking_threads();
1240     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1241            "Maximum number of marking threads exceeded");
1242     uint active_workers = MAX2(1U, parallel_marking_threads());
1243 
1244     CMRootRegionScanTask task(this);
1245     if (use_parallel_marking_threads()) {
1246       _parallel_workers->set_active_workers((int) active_workers);
1247       _parallel_workers->run_task(&task);
1248     } else {
1249       task.work(0);
1250     }
1251 
1252     // It's possible that has_aborted() is true here without actually
1253     // aborting the survivor scan earlier. This is OK as it's
1254     // mainly used for sanity checking.
1255     root_regions()->scan_finished();
1256   }
1257 }
1258 
1259 void ConcurrentMark::markFromRoots() {
1260   // we might be tempted to assert that:
1261   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1262   //        "inconsistent argument?");
1263   // However that wouldn't be right, because it's possible that
1264   // a safepoint is indeed in progress as a younger generation
1265   // stop-the-world GC happens even as we mark in this generation.
1266 
1267   _restart_for_overflow = false;
1268   force_overflow_conc()->init();
1269 
1270   // _g1h has _n_par_threads
1271   _parallel_marking_threads = calc_parallel_marking_threads();
1272   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1273     "Maximum number of marking threads exceeded");
1274 
1275   uint active_workers = MAX2(1U, parallel_marking_threads());
1276 
1277   // Parallel task terminator is set in "set_concurrency_and_phase()"
1278   set_concurrency_and_phase(active_workers, true /* concurrent */);
1279 
1280   CMConcurrentMarkingTask markingTask(this, cmThread());
1281   if (use_parallel_marking_threads()) {
1282     _parallel_workers->set_active_workers((int)active_workers);
1283     // Don't set _n_par_threads because it affects MT in process_roots()
1284     // and the decisions on that MT processing is made elsewhere.
1285     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1286     _parallel_workers->run_task(&markingTask);
1287   } else {
1288     markingTask.work(0);
1289   }
1290   print_stats();
1291 }
1292 
1293 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1294   // world is stopped at this checkpoint
1295   assert(SafepointSynchronize::is_at_safepoint(),
1296          "world should be stopped");
1297 
1298   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1299 
1300   // If a full collection has happened, we shouldn't do this.
1301   if (has_aborted()) {
1302     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1303     return;
1304   }
1305 
1306   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1307 
1308   if (VerifyDuringGC) {
1309     HandleMark hm;  // handle scope
1310     Universe::heap()->prepare_for_verify();
1311     Universe::verify(VerifyOption_G1UsePrevMarking,
1312                      " VerifyDuringGC:(before)");
1313   }
1314   g1h->check_bitmaps("Remark Start");
1315 
1316   G1CollectorPolicy* g1p = g1h->g1_policy();
1317   g1p->record_concurrent_mark_remark_start();
1318 
1319   double start = os::elapsedTime();
1320 
1321   checkpointRootsFinalWork();
1322 
1323   double mark_work_end = os::elapsedTime();
1324 
1325   weakRefsWork(clear_all_soft_refs);
1326 
1327   if (has_overflown()) {
1328     // Oops.  We overflowed.  Restart concurrent marking.
1329     _restart_for_overflow = true;
1330     if (G1TraceMarkStackOverflow) {
1331       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1332     }
1333 
1334     // Verify the heap w.r.t. the previous marking bitmap.
1335     if (VerifyDuringGC) {
1336       HandleMark hm;  // handle scope
1337       Universe::heap()->prepare_for_verify();
1338       Universe::verify(VerifyOption_G1UsePrevMarking,
1339                        " VerifyDuringGC:(overflow)");
1340     }
1341 
1342     // Clear the marking state because we will be restarting
1343     // marking due to overflowing the global mark stack.
1344     reset_marking_state();
1345   } else {
1346     // Aggregate the per-task counting data that we have accumulated
1347     // while marking.
1348     aggregate_count_data();
1349 
1350     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1351     // We're done with marking.
1352     // This is the end of  the marking cycle, we're expected all
1353     // threads to have SATB queues with active set to true.
1354     satb_mq_set.set_active_all_threads(false, /* new active value */
1355                                        true /* expected_active */);
1356 
1357     if (VerifyDuringGC) {
1358       HandleMark hm;  // handle scope
1359       Universe::heap()->prepare_for_verify();
1360       Universe::verify(VerifyOption_G1UseNextMarking,
1361                        " VerifyDuringGC:(after)");
1362     }
1363     g1h->check_bitmaps("Remark End");
1364     assert(!restart_for_overflow(), "sanity");
1365     // Completely reset the marking state since marking completed
1366     set_non_marking_state();
1367   }
1368 
1369   // Expand the marking stack, if we have to and if we can.
1370   if (_markStack.should_expand()) {
1371     _markStack.expand();
1372   }
1373 
1374   // Statistics
1375   double now = os::elapsedTime();
1376   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1377   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1378   _remark_times.add((now - start) * 1000.0);
1379 
1380   g1p->record_concurrent_mark_remark_end();
1381 
1382   G1CMIsAliveClosure is_alive(g1h);
1383   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1384 }
1385 
1386 // Base class of the closures that finalize and verify the
1387 // liveness counting data.
1388 class CMCountDataClosureBase: public HeapRegionClosure {
1389 protected:
1390   G1CollectedHeap* _g1h;
1391   ConcurrentMark* _cm;
1392   CardTableModRefBS* _ct_bs;
1393 
1394   BitMap* _region_bm;
1395   BitMap* _card_bm;
1396 
1397   // Takes a region that's not empty (i.e., it has at least one
1398   // live object in it and sets its corresponding bit on the region
1399   // bitmap to 1. If the region is "starts humongous" it will also set
1400   // to 1 the bits on the region bitmap that correspond to its
1401   // associated "continues humongous" regions.
1402   void set_bit_for_region(HeapRegion* hr) {
1403     assert(!hr->continuesHumongous(), "should have filtered those out");
1404 
1405     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1406     if (!hr->startsHumongous()) {
1407       // Normal (non-humongous) case: just set the bit.
1408       _region_bm->par_at_put(index, true);
1409     } else {
1410       // Starts humongous case: calculate how many regions are part of
1411       // this humongous region and then set the bit range.
1412       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1413       _region_bm->par_at_put_range(index, end_index, true);
1414     }
1415   }
1416 
1417 public:
1418   CMCountDataClosureBase(G1CollectedHeap* g1h,
1419                          BitMap* region_bm, BitMap* card_bm):
1420     _g1h(g1h), _cm(g1h->concurrent_mark()),
1421     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1422     _region_bm(region_bm), _card_bm(card_bm) { }
1423 };
1424 
1425 // Closure that calculates the # live objects per region. Used
1426 // for verification purposes during the cleanup pause.
1427 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1428   CMBitMapRO* _bm;
1429   size_t _region_marked_bytes;
1430 
1431 public:
1432   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1433                          BitMap* region_bm, BitMap* card_bm) :
1434     CMCountDataClosureBase(g1h, region_bm, card_bm),
1435     _bm(bm), _region_marked_bytes(0) { }
1436 
1437   bool doHeapRegion(HeapRegion* hr) {
1438 
1439     if (hr->continuesHumongous()) {
1440       // We will ignore these here and process them when their
1441       // associated "starts humongous" region is processed (see
1442       // set_bit_for_heap_region()). Note that we cannot rely on their
1443       // associated "starts humongous" region to have their bit set to
1444       // 1 since, due to the region chunking in the parallel region
1445       // iteration, a "continues humongous" region might be visited
1446       // before its associated "starts humongous".
1447       return false;
1448     }
1449 
1450     HeapWord* ntams = hr->next_top_at_mark_start();
1451     HeapWord* start = hr->bottom();
1452 
1453     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1454            err_msg("Preconditions not met - "
1455                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1456                    p2i(start), p2i(ntams), p2i(hr->end())));
1457 
1458     // Find the first marked object at or after "start".
1459     start = _bm->getNextMarkedWordAddress(start, ntams);
1460 
1461     size_t marked_bytes = 0;
1462 
1463     while (start < ntams) {
1464       oop obj = oop(start);
1465       int obj_sz = obj->size();
1466       HeapWord* obj_end = start + obj_sz;
1467 
1468       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1469       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1470 
1471       // Note: if we're looking at the last region in heap - obj_end
1472       // could be actually just beyond the end of the heap; end_idx
1473       // will then correspond to a (non-existent) card that is also
1474       // just beyond the heap.
1475       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1476         // end of object is not card aligned - increment to cover
1477         // all the cards spanned by the object
1478         end_idx += 1;
1479       }
1480 
1481       // Set the bits in the card BM for the cards spanned by this object.
1482       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1483 
1484       // Add the size of this object to the number of marked bytes.
1485       marked_bytes += (size_t)obj_sz * HeapWordSize;
1486 
1487       // Find the next marked object after this one.
1488       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1489     }
1490 
1491     // Mark the allocated-since-marking portion...
1492     HeapWord* top = hr->top();
1493     if (ntams < top) {
1494       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1495       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1496 
1497       // Note: if we're looking at the last region in heap - top
1498       // could be actually just beyond the end of the heap; end_idx
1499       // will then correspond to a (non-existent) card that is also
1500       // just beyond the heap.
1501       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1502         // end of object is not card aligned - increment to cover
1503         // all the cards spanned by the object
1504         end_idx += 1;
1505       }
1506       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1507 
1508       // This definitely means the region has live objects.
1509       set_bit_for_region(hr);
1510     }
1511 
1512     // Update the live region bitmap.
1513     if (marked_bytes > 0) {
1514       set_bit_for_region(hr);
1515     }
1516 
1517     // Set the marked bytes for the current region so that
1518     // it can be queried by a calling verification routine
1519     _region_marked_bytes = marked_bytes;
1520 
1521     return false;
1522   }
1523 
1524   size_t region_marked_bytes() const { return _region_marked_bytes; }
1525 };
1526 
1527 // Heap region closure used for verifying the counting data
1528 // that was accumulated concurrently and aggregated during
1529 // the remark pause. This closure is applied to the heap
1530 // regions during the STW cleanup pause.
1531 
1532 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1533   G1CollectedHeap* _g1h;
1534   ConcurrentMark* _cm;
1535   CalcLiveObjectsClosure _calc_cl;
1536   BitMap* _region_bm;   // Region BM to be verified
1537   BitMap* _card_bm;     // Card BM to be verified
1538   bool _verbose;        // verbose output?
1539 
1540   BitMap* _exp_region_bm; // Expected Region BM values
1541   BitMap* _exp_card_bm;   // Expected card BM values
1542 
1543   int _failures;
1544 
1545 public:
1546   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1547                                 BitMap* region_bm,
1548                                 BitMap* card_bm,
1549                                 BitMap* exp_region_bm,
1550                                 BitMap* exp_card_bm,
1551                                 bool verbose) :
1552     _g1h(g1h), _cm(g1h->concurrent_mark()),
1553     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1554     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1555     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1556     _failures(0) { }
1557 
1558   int failures() const { return _failures; }
1559 
1560   bool doHeapRegion(HeapRegion* hr) {
1561     if (hr->continuesHumongous()) {
1562       // We will ignore these here and process them when their
1563       // associated "starts humongous" region is processed (see
1564       // set_bit_for_heap_region()). Note that we cannot rely on their
1565       // associated "starts humongous" region to have their bit set to
1566       // 1 since, due to the region chunking in the parallel region
1567       // iteration, a "continues humongous" region might be visited
1568       // before its associated "starts humongous".
1569       return false;
1570     }
1571 
1572     int failures = 0;
1573 
1574     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1575     // this region and set the corresponding bits in the expected region
1576     // and card bitmaps.
1577     bool res = _calc_cl.doHeapRegion(hr);
1578     assert(res == false, "should be continuing");
1579 
1580     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1581                     Mutex::_no_safepoint_check_flag);
1582 
1583     // Verify the marked bytes for this region.
1584     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1585     size_t act_marked_bytes = hr->next_marked_bytes();
1586 
1587     // We're not OK if expected marked bytes > actual marked bytes. It means
1588     // we have missed accounting some objects during the actual marking.
1589     if (exp_marked_bytes > act_marked_bytes) {
1590       if (_verbose) {
1591         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1592                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1593                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
1594       }
1595       failures += 1;
1596     }
1597 
1598     // Verify the bit, for this region, in the actual and expected
1599     // (which was just calculated) region bit maps.
1600     // We're not OK if the bit in the calculated expected region
1601     // bitmap is set and the bit in the actual region bitmap is not.
1602     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1603 
1604     bool expected = _exp_region_bm->at(index);
1605     bool actual = _region_bm->at(index);
1606     if (expected && !actual) {
1607       if (_verbose) {
1608         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1609                                "expected: %s, actual: %s",
1610                                hr->hrs_index(),
1611                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1612       }
1613       failures += 1;
1614     }
1615 
1616     // Verify that the card bit maps for the cards spanned by the current
1617     // region match. We have an error if we have a set bit in the expected
1618     // bit map and the corresponding bit in the actual bitmap is not set.
1619 
1620     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1621     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1622 
1623     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1624       expected = _exp_card_bm->at(i);
1625       actual = _card_bm->at(i);
1626 
1627       if (expected && !actual) {
1628         if (_verbose) {
1629           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1630                                  "expected: %s, actual: %s",
1631                                  hr->hrs_index(), i,
1632                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1633         }
1634         failures += 1;
1635       }
1636     }
1637 
1638     if (failures > 0 && _verbose)  {
1639       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1640                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1641                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1642                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1643     }
1644 
1645     _failures += failures;
1646 
1647     // We could stop iteration over the heap when we
1648     // find the first violating region by returning true.
1649     return false;
1650   }
1651 };
1652 
1653 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1654 protected:
1655   G1CollectedHeap* _g1h;
1656   ConcurrentMark* _cm;
1657   BitMap* _actual_region_bm;
1658   BitMap* _actual_card_bm;
1659 
1660   uint    _n_workers;
1661 
1662   BitMap* _expected_region_bm;
1663   BitMap* _expected_card_bm;
1664 
1665   int  _failures;
1666   bool _verbose;
1667 
1668 public:
1669   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1670                             BitMap* region_bm, BitMap* card_bm,
1671                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1672     : AbstractGangTask("G1 verify final counting"),
1673       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1674       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1675       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1676       _failures(0), _verbose(false),
1677       _n_workers(0) {
1678     assert(VerifyDuringGC, "don't call this otherwise");
1679 
1680     // Use the value already set as the number of active threads
1681     // in the call to run_task().
1682     if (G1CollectedHeap::use_parallel_gc_threads()) {
1683       assert( _g1h->workers()->active_workers() > 0,
1684         "Should have been previously set");
1685       _n_workers = _g1h->workers()->active_workers();
1686     } else {
1687       _n_workers = 1;
1688     }
1689 
1690     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1691     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1692 
1693     _verbose = _cm->verbose_medium();
1694   }
1695 
1696   void work(uint worker_id) {
1697     assert(worker_id < _n_workers, "invariant");
1698 
1699     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1700                                             _actual_region_bm, _actual_card_bm,
1701                                             _expected_region_bm,
1702                                             _expected_card_bm,
1703                                             _verbose);
1704 
1705     if (G1CollectedHeap::use_parallel_gc_threads()) {
1706       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1707                                             worker_id,
1708                                             _n_workers,
1709                                             HeapRegion::VerifyCountClaimValue);
1710     } else {
1711       _g1h->heap_region_iterate(&verify_cl);
1712     }
1713 
1714     Atomic::add(verify_cl.failures(), &_failures);
1715   }
1716 
1717   int failures() const { return _failures; }
1718 };
1719 
1720 // Closure that finalizes the liveness counting data.
1721 // Used during the cleanup pause.
1722 // Sets the bits corresponding to the interval [NTAMS, top]
1723 // (which contains the implicitly live objects) in the
1724 // card liveness bitmap. Also sets the bit for each region,
1725 // containing live data, in the region liveness bitmap.
1726 
1727 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1728  public:
1729   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1730                               BitMap* region_bm,
1731                               BitMap* card_bm) :
1732     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1733 
1734   bool doHeapRegion(HeapRegion* hr) {
1735 
1736     if (hr->continuesHumongous()) {
1737       // We will ignore these here and process them when their
1738       // associated "starts humongous" region is processed (see
1739       // set_bit_for_heap_region()). Note that we cannot rely on their
1740       // associated "starts humongous" region to have their bit set to
1741       // 1 since, due to the region chunking in the parallel region
1742       // iteration, a "continues humongous" region might be visited
1743       // before its associated "starts humongous".
1744       return false;
1745     }
1746 
1747     HeapWord* ntams = hr->next_top_at_mark_start();
1748     HeapWord* top   = hr->top();
1749 
1750     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1751 
1752     // Mark the allocated-since-marking portion...
1753     if (ntams < top) {
1754       // This definitely means the region has live objects.
1755       set_bit_for_region(hr);
1756 
1757       // Now set the bits in the card bitmap for [ntams, top)
1758       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1759       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1760 
1761       // Note: if we're looking at the last region in heap - top
1762       // could be actually just beyond the end of the heap; end_idx
1763       // will then correspond to a (non-existent) card that is also
1764       // just beyond the heap.
1765       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1766         // end of object is not card aligned - increment to cover
1767         // all the cards spanned by the object
1768         end_idx += 1;
1769       }
1770 
1771       assert(end_idx <= _card_bm->size(),
1772              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1773                      end_idx, _card_bm->size()));
1774       assert(start_idx < _card_bm->size(),
1775              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1776                      start_idx, _card_bm->size()));
1777 
1778       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1779     }
1780 
1781     // Set the bit for the region if it contains live data
1782     if (hr->next_marked_bytes() > 0) {
1783       set_bit_for_region(hr);
1784     }
1785 
1786     return false;
1787   }
1788 };
1789 
1790 class G1ParFinalCountTask: public AbstractGangTask {
1791 protected:
1792   G1CollectedHeap* _g1h;
1793   ConcurrentMark* _cm;
1794   BitMap* _actual_region_bm;
1795   BitMap* _actual_card_bm;
1796 
1797   uint    _n_workers;
1798 
1799 public:
1800   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1801     : AbstractGangTask("G1 final counting"),
1802       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1803       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1804       _n_workers(0) {
1805     // Use the value already set as the number of active threads
1806     // in the call to run_task().
1807     if (G1CollectedHeap::use_parallel_gc_threads()) {
1808       assert( _g1h->workers()->active_workers() > 0,
1809         "Should have been previously set");
1810       _n_workers = _g1h->workers()->active_workers();
1811     } else {
1812       _n_workers = 1;
1813     }
1814   }
1815 
1816   void work(uint worker_id) {
1817     assert(worker_id < _n_workers, "invariant");
1818 
1819     FinalCountDataUpdateClosure final_update_cl(_g1h,
1820                                                 _actual_region_bm,
1821                                                 _actual_card_bm);
1822 
1823     if (G1CollectedHeap::use_parallel_gc_threads()) {
1824       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1825                                             worker_id,
1826                                             _n_workers,
1827                                             HeapRegion::FinalCountClaimValue);
1828     } else {
1829       _g1h->heap_region_iterate(&final_update_cl);
1830     }
1831   }
1832 };
1833 
1834 class G1ParNoteEndTask;
1835 
1836 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1837   G1CollectedHeap* _g1;
1838   size_t _max_live_bytes;
1839   uint _regions_claimed;
1840   size_t _freed_bytes;
1841   FreeRegionList* _local_cleanup_list;
1842   HeapRegionSetCount _old_regions_removed;
1843   HeapRegionSetCount _humongous_regions_removed;
1844   HRRSCleanupTask* _hrrs_cleanup_task;
1845   double _claimed_region_time;
1846   double _max_region_time;
1847 
1848 public:
1849   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1850                              FreeRegionList* local_cleanup_list,
1851                              HRRSCleanupTask* hrrs_cleanup_task) :
1852     _g1(g1),
1853     _max_live_bytes(0), _regions_claimed(0),
1854     _freed_bytes(0),
1855     _claimed_region_time(0.0), _max_region_time(0.0),
1856     _local_cleanup_list(local_cleanup_list),
1857     _old_regions_removed(),
1858     _humongous_regions_removed(),
1859     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1860 
1861   size_t freed_bytes() { return _freed_bytes; }
1862   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1863   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1864 
1865   bool doHeapRegion(HeapRegion *hr) {
1866     if (hr->continuesHumongous()) {
1867       return false;
1868     }
1869     // We use a claim value of zero here because all regions
1870     // were claimed with value 1 in the FinalCount task.
1871     _g1->reset_gc_time_stamps(hr);
1872     double start = os::elapsedTime();
1873     _regions_claimed++;
1874     hr->note_end_of_marking();
1875     _max_live_bytes += hr->max_live_bytes();
1876 
1877     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1878       _freed_bytes += hr->used();
1879       hr->set_containing_set(NULL);
1880       if (hr->isHumongous()) {
1881         assert(hr->startsHumongous(), "we should only see starts humongous");
1882         _humongous_regions_removed.increment(1u, hr->capacity());
1883         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1884       } else {
1885         _old_regions_removed.increment(1u, hr->capacity());
1886         _g1->free_region(hr, _local_cleanup_list, true);
1887       }
1888     } else {
1889       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1890     }
1891 
1892     double region_time = (os::elapsedTime() - start);
1893     _claimed_region_time += region_time;
1894     if (region_time > _max_region_time) {
1895       _max_region_time = region_time;
1896     }
1897     return false;
1898   }
1899 
1900   size_t max_live_bytes() { return _max_live_bytes; }
1901   uint regions_claimed() { return _regions_claimed; }
1902   double claimed_region_time_sec() { return _claimed_region_time; }
1903   double max_region_time_sec() { return _max_region_time; }
1904 };
1905 
1906 class G1ParNoteEndTask: public AbstractGangTask {
1907   friend class G1NoteEndOfConcMarkClosure;
1908 
1909 protected:
1910   G1CollectedHeap* _g1h;
1911   size_t _max_live_bytes;
1912   size_t _freed_bytes;
1913   FreeRegionList* _cleanup_list;
1914 
1915 public:
1916   G1ParNoteEndTask(G1CollectedHeap* g1h,
1917                    FreeRegionList* cleanup_list) :
1918     AbstractGangTask("G1 note end"), _g1h(g1h),
1919     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1920 
1921   void work(uint worker_id) {
1922     double start = os::elapsedTime();
1923     FreeRegionList local_cleanup_list("Local Cleanup List");
1924     HRRSCleanupTask hrrs_cleanup_task;
1925     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1926                                            &hrrs_cleanup_task);
1927     if (G1CollectedHeap::use_parallel_gc_threads()) {
1928       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1929                                             _g1h->workers()->active_workers(),
1930                                             HeapRegion::NoteEndClaimValue);
1931     } else {
1932       _g1h->heap_region_iterate(&g1_note_end);
1933     }
1934     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1935 
1936     // Now update the lists
1937     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1938     {
1939       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1940       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1941       _max_live_bytes += g1_note_end.max_live_bytes();
1942       _freed_bytes += g1_note_end.freed_bytes();
1943 
1944       // If we iterate over the global cleanup list at the end of
1945       // cleanup to do this printing we will not guarantee to only
1946       // generate output for the newly-reclaimed regions (the list
1947       // might not be empty at the beginning of cleanup; we might
1948       // still be working on its previous contents). So we do the
1949       // printing here, before we append the new regions to the global
1950       // cleanup list.
1951 
1952       G1HRPrinter* hr_printer = _g1h->hr_printer();
1953       if (hr_printer->is_active()) {
1954         FreeRegionListIterator iter(&local_cleanup_list);
1955         while (iter.more_available()) {
1956           HeapRegion* hr = iter.get_next();
1957           hr_printer->cleanup(hr);
1958         }
1959       }
1960 
1961       _cleanup_list->add_ordered(&local_cleanup_list);
1962       assert(local_cleanup_list.is_empty(), "post-condition");
1963 
1964       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1965     }
1966   }
1967   size_t max_live_bytes() { return _max_live_bytes; }
1968   size_t freed_bytes() { return _freed_bytes; }
1969 };
1970 
1971 class G1ParScrubRemSetTask: public AbstractGangTask {
1972 protected:
1973   G1RemSet* _g1rs;
1974   BitMap* _region_bm;
1975   BitMap* _card_bm;
1976 public:
1977   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1978                        BitMap* region_bm, BitMap* card_bm) :
1979     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1980     _region_bm(region_bm), _card_bm(card_bm) { }
1981 
1982   void work(uint worker_id) {
1983     if (G1CollectedHeap::use_parallel_gc_threads()) {
1984       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1985                        HeapRegion::ScrubRemSetClaimValue);
1986     } else {
1987       _g1rs->scrub(_region_bm, _card_bm);
1988     }
1989   }
1990 
1991 };
1992 
1993 void ConcurrentMark::cleanup() {
1994   // world is stopped at this checkpoint
1995   assert(SafepointSynchronize::is_at_safepoint(),
1996          "world should be stopped");
1997   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1998 
1999   // If a full collection has happened, we shouldn't do this.
2000   if (has_aborted()) {
2001     g1h->set_marking_complete(); // So bitmap clearing isn't confused
2002     return;
2003   }
2004 
2005   g1h->verify_region_sets_optional();
2006 
2007   if (VerifyDuringGC) {
2008     HandleMark hm;  // handle scope
2009     Universe::heap()->prepare_for_verify();
2010     Universe::verify(VerifyOption_G1UsePrevMarking,
2011                      " VerifyDuringGC:(before)");
2012   }
2013   g1h->check_bitmaps("Cleanup Start");
2014 
2015   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
2016   g1p->record_concurrent_mark_cleanup_start();
2017 
2018   double start = os::elapsedTime();
2019 
2020   HeapRegionRemSet::reset_for_cleanup_tasks();
2021 
2022   uint n_workers;
2023 
2024   // Do counting once more with the world stopped for good measure.
2025   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2026 
2027   if (G1CollectedHeap::use_parallel_gc_threads()) {
2028    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2029            "sanity check");
2030 
2031     g1h->set_par_threads();
2032     n_workers = g1h->n_par_threads();
2033     assert(g1h->n_par_threads() == n_workers,
2034            "Should not have been reset");
2035     g1h->workers()->run_task(&g1_par_count_task);
2036     // Done with the parallel phase so reset to 0.
2037     g1h->set_par_threads(0);
2038 
2039     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2040            "sanity check");
2041   } else {
2042     n_workers = 1;
2043     g1_par_count_task.work(0);
2044   }
2045 
2046   if (VerifyDuringGC) {
2047     // Verify that the counting data accumulated during marking matches
2048     // that calculated by walking the marking bitmap.
2049 
2050     // Bitmaps to hold expected values
2051     BitMap expected_region_bm(_region_bm.size(), true);
2052     BitMap expected_card_bm(_card_bm.size(), true);
2053 
2054     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2055                                                  &_region_bm,
2056                                                  &_card_bm,
2057                                                  &expected_region_bm,
2058                                                  &expected_card_bm);
2059 
2060     if (G1CollectedHeap::use_parallel_gc_threads()) {
2061       g1h->set_par_threads((int)n_workers);
2062       g1h->workers()->run_task(&g1_par_verify_task);
2063       // Done with the parallel phase so reset to 0.
2064       g1h->set_par_threads(0);
2065 
2066       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
2067              "sanity check");
2068     } else {
2069       g1_par_verify_task.work(0);
2070     }
2071 
2072     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2073   }
2074 
2075   size_t start_used_bytes = g1h->used();
2076   g1h->set_marking_complete();
2077 
2078   double count_end = os::elapsedTime();
2079   double this_final_counting_time = (count_end - start);
2080   _total_counting_time += this_final_counting_time;
2081 
2082   if (G1PrintRegionLivenessInfo) {
2083     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2084     _g1h->heap_region_iterate(&cl);
2085   }
2086 
2087   // Install newly created mark bitMap as "prev".
2088   swapMarkBitMaps();
2089 
2090   g1h->reset_gc_time_stamp();
2091 
2092   // Note end of marking in all heap regions.
2093   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2094   if (G1CollectedHeap::use_parallel_gc_threads()) {
2095     g1h->set_par_threads((int)n_workers);
2096     g1h->workers()->run_task(&g1_par_note_end_task);
2097     g1h->set_par_threads(0);
2098 
2099     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
2100            "sanity check");
2101   } else {
2102     g1_par_note_end_task.work(0);
2103   }
2104   g1h->check_gc_time_stamps();
2105 
2106   if (!cleanup_list_is_empty()) {
2107     // The cleanup list is not empty, so we'll have to process it
2108     // concurrently. Notify anyone else that might be wanting free
2109     // regions that there will be more free regions coming soon.
2110     g1h->set_free_regions_coming();
2111   }
2112 
2113   // call below, since it affects the metric by which we sort the heap
2114   // regions.
2115   if (G1ScrubRemSets) {
2116     double rs_scrub_start = os::elapsedTime();
2117     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2118     if (G1CollectedHeap::use_parallel_gc_threads()) {
2119       g1h->set_par_threads((int)n_workers);
2120       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2121       g1h->set_par_threads(0);
2122 
2123       assert(g1h->check_heap_region_claim_values(
2124                                             HeapRegion::ScrubRemSetClaimValue),
2125              "sanity check");
2126     } else {
2127       g1_par_scrub_rs_task.work(0);
2128     }
2129 
2130     double rs_scrub_end = os::elapsedTime();
2131     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2132     _total_rs_scrub_time += this_rs_scrub_time;
2133   }
2134 
2135   // this will also free any regions totally full of garbage objects,
2136   // and sort the regions.
2137   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2138 
2139   // Statistics.
2140   double end = os::elapsedTime();
2141   _cleanup_times.add((end - start) * 1000.0);
2142 
2143   if (G1Log::fine()) {
2144     g1h->print_size_transition(gclog_or_tty,
2145                                start_used_bytes,
2146                                g1h->used(),
2147                                g1h->capacity());
2148   }
2149 
2150   // Clean up will have freed any regions completely full of garbage.
2151   // Update the soft reference policy with the new heap occupancy.
2152   Universe::update_heap_info_at_gc();
2153 
2154   if (VerifyDuringGC) {
2155     HandleMark hm;  // handle scope
2156     Universe::heap()->prepare_for_verify();
2157     Universe::verify(VerifyOption_G1UsePrevMarking,
2158                      " VerifyDuringGC:(after)");
2159   }
2160 
2161   g1h->check_bitmaps("Cleanup End");
2162 
2163   g1h->verify_region_sets_optional();
2164 
2165   // We need to make this be a "collection" so any collection pause that
2166   // races with it goes around and waits for completeCleanup to finish.
2167   g1h->increment_total_collections();
2168 
2169   // Clean out dead classes and update Metaspace sizes.
2170   ClassLoaderDataGraph::purge();
2171   MetaspaceGC::compute_new_size();
2172 
2173   // We reclaimed old regions so we should calculate the sizes to make
2174   // sure we update the old gen/space data.
2175   g1h->g1mm()->update_sizes();
2176 
2177   g1h->trace_heap_after_concurrent_cycle();
2178 }
2179 
2180 void ConcurrentMark::completeCleanup() {
2181   if (has_aborted()) return;
2182 
2183   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2184 
2185   _cleanup_list.verify_optional();
2186   FreeRegionList tmp_free_list("Tmp Free List");
2187 
2188   if (G1ConcRegionFreeingVerbose) {
2189     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2190                            "cleanup list has %u entries",
2191                            _cleanup_list.length());
2192   }
2193 
2194   // Noone else should be accessing the _cleanup_list at this point,
2195   // so it's not necessary to take any locks
2196   while (!_cleanup_list.is_empty()) {
2197     HeapRegion* hr = _cleanup_list.remove_head();
2198     assert(hr != NULL, "Got NULL from a non-empty list");
2199     hr->par_clear();
2200     tmp_free_list.add_ordered(hr);
2201 
2202     // Instead of adding one region at a time to the secondary_free_list,
2203     // we accumulate them in the local list and move them a few at a
2204     // time. This also cuts down on the number of notify_all() calls
2205     // we do during this process. We'll also append the local list when
2206     // _cleanup_list is empty (which means we just removed the last
2207     // region from the _cleanup_list).
2208     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2209         _cleanup_list.is_empty()) {
2210       if (G1ConcRegionFreeingVerbose) {
2211         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2212                                "appending %u entries to the secondary_free_list, "
2213                                "cleanup list still has %u entries",
2214                                tmp_free_list.length(),
2215                                _cleanup_list.length());
2216       }
2217 
2218       {
2219         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2220         g1h->secondary_free_list_add(&tmp_free_list);
2221         SecondaryFreeList_lock->notify_all();
2222       }
2223 
2224       if (G1StressConcRegionFreeing) {
2225         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2226           os::sleep(Thread::current(), (jlong) 1, false);
2227         }
2228       }
2229     }
2230   }
2231   assert(tmp_free_list.is_empty(), "post-condition");
2232 }
2233 
2234 // Supporting Object and Oop closures for reference discovery
2235 // and processing in during marking
2236 
2237 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2238   HeapWord* addr = (HeapWord*)obj;
2239   return addr != NULL &&
2240          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2241 }
2242 
2243 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2244 // Uses the CMTask associated with a worker thread (for serial reference
2245 // processing the CMTask for worker 0 is used) to preserve (mark) and
2246 // trace referent objects.
2247 //
2248 // Using the CMTask and embedded local queues avoids having the worker
2249 // threads operating on the global mark stack. This reduces the risk
2250 // of overflowing the stack - which we would rather avoid at this late
2251 // state. Also using the tasks' local queues removes the potential
2252 // of the workers interfering with each other that could occur if
2253 // operating on the global stack.
2254 
2255 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2256   ConcurrentMark* _cm;
2257   CMTask*         _task;
2258   int             _ref_counter_limit;
2259   int             _ref_counter;
2260   bool            _is_serial;
2261  public:
2262   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2263     _cm(cm), _task(task), _is_serial(is_serial),
2264     _ref_counter_limit(G1RefProcDrainInterval) {
2265     assert(_ref_counter_limit > 0, "sanity");
2266     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2267     _ref_counter = _ref_counter_limit;
2268   }
2269 
2270   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2271   virtual void do_oop(      oop* p) { do_oop_work(p); }
2272 
2273   template <class T> void do_oop_work(T* p) {
2274     if (!_cm->has_overflown()) {
2275       oop obj = oopDesc::load_decode_heap_oop(p);
2276       if (_cm->verbose_high()) {
2277         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2278                                "*"PTR_FORMAT" = "PTR_FORMAT,
2279                                _task->worker_id(), p2i(p), p2i((void*) obj));
2280       }
2281 
2282       _task->deal_with_reference(obj);
2283       _ref_counter--;
2284 
2285       if (_ref_counter == 0) {
2286         // We have dealt with _ref_counter_limit references, pushing them
2287         // and objects reachable from them on to the local stack (and
2288         // possibly the global stack). Call CMTask::do_marking_step() to
2289         // process these entries.
2290         //
2291         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2292         // there's nothing more to do (i.e. we're done with the entries that
2293         // were pushed as a result of the CMTask::deal_with_reference() calls
2294         // above) or we overflow.
2295         //
2296         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2297         // flag while there may still be some work to do. (See the comment at
2298         // the beginning of CMTask::do_marking_step() for those conditions -
2299         // one of which is reaching the specified time target.) It is only
2300         // when CMTask::do_marking_step() returns without setting the
2301         // has_aborted() flag that the marking step has completed.
2302         do {
2303           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2304           _task->do_marking_step(mark_step_duration_ms,
2305                                  false      /* do_termination */,
2306                                  _is_serial);
2307         } while (_task->has_aborted() && !_cm->has_overflown());
2308         _ref_counter = _ref_counter_limit;
2309       }
2310     } else {
2311       if (_cm->verbose_high()) {
2312          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2313       }
2314     }
2315   }
2316 };
2317 
2318 // 'Drain' oop closure used by both serial and parallel reference processing.
2319 // Uses the CMTask associated with a given worker thread (for serial
2320 // reference processing the CMtask for worker 0 is used). Calls the
2321 // do_marking_step routine, with an unbelievably large timeout value,
2322 // to drain the marking data structures of the remaining entries
2323 // added by the 'keep alive' oop closure above.
2324 
2325 class G1CMDrainMarkingStackClosure: public VoidClosure {
2326   ConcurrentMark* _cm;
2327   CMTask*         _task;
2328   bool            _is_serial;
2329  public:
2330   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2331     _cm(cm), _task(task), _is_serial(is_serial) {
2332     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2333   }
2334 
2335   void do_void() {
2336     do {
2337       if (_cm->verbose_high()) {
2338         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2339                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2340       }
2341 
2342       // We call CMTask::do_marking_step() to completely drain the local
2343       // and global marking stacks of entries pushed by the 'keep alive'
2344       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2345       //
2346       // CMTask::do_marking_step() is called in a loop, which we'll exit
2347       // if there's nothing more to do (i.e. we've completely drained the
2348       // entries that were pushed as a a result of applying the 'keep alive'
2349       // closure to the entries on the discovered ref lists) or we overflow
2350       // the global marking stack.
2351       //
2352       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2353       // flag while there may still be some work to do. (See the comment at
2354       // the beginning of CMTask::do_marking_step() for those conditions -
2355       // one of which is reaching the specified time target.) It is only
2356       // when CMTask::do_marking_step() returns without setting the
2357       // has_aborted() flag that the marking step has completed.
2358 
2359       _task->do_marking_step(1000000000.0 /* something very large */,
2360                              true         /* do_termination */,
2361                              _is_serial);
2362     } while (_task->has_aborted() && !_cm->has_overflown());
2363   }
2364 };
2365 
2366 // Implementation of AbstractRefProcTaskExecutor for parallel
2367 // reference processing at the end of G1 concurrent marking
2368 
2369 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2370 private:
2371   G1CollectedHeap* _g1h;
2372   ConcurrentMark*  _cm;
2373   WorkGang*        _workers;
2374   int              _active_workers;
2375 
2376 public:
2377   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2378                         ConcurrentMark* cm,
2379                         WorkGang* workers,
2380                         int n_workers) :
2381     _g1h(g1h), _cm(cm),
2382     _workers(workers), _active_workers(n_workers) { }
2383 
2384   // Executes the given task using concurrent marking worker threads.
2385   virtual void execute(ProcessTask& task);
2386   virtual void execute(EnqueueTask& task);
2387 };
2388 
2389 class G1CMRefProcTaskProxy: public AbstractGangTask {
2390   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2391   ProcessTask&     _proc_task;
2392   G1CollectedHeap* _g1h;
2393   ConcurrentMark*  _cm;
2394 
2395 public:
2396   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2397                      G1CollectedHeap* g1h,
2398                      ConcurrentMark* cm) :
2399     AbstractGangTask("Process reference objects in parallel"),
2400     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2401     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2402     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2403   }
2404 
2405   virtual void work(uint worker_id) {
2406     ResourceMark rm;
2407     HandleMark hm;
2408     CMTask* task = _cm->task(worker_id);
2409     G1CMIsAliveClosure g1_is_alive(_g1h);
2410     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2411     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2412 
2413     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2414   }
2415 };
2416 
2417 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2418   assert(_workers != NULL, "Need parallel worker threads.");
2419   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2420 
2421   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2422 
2423   // We need to reset the concurrency level before each
2424   // proxy task execution, so that the termination protocol
2425   // and overflow handling in CMTask::do_marking_step() knows
2426   // how many workers to wait for.
2427   _cm->set_concurrency(_active_workers);
2428   _g1h->set_par_threads(_active_workers);
2429   _workers->run_task(&proc_task_proxy);
2430   _g1h->set_par_threads(0);
2431 }
2432 
2433 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2434   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2435   EnqueueTask& _enq_task;
2436 
2437 public:
2438   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2439     AbstractGangTask("Enqueue reference objects in parallel"),
2440     _enq_task(enq_task) { }
2441 
2442   virtual void work(uint worker_id) {
2443     _enq_task.work(worker_id);
2444   }
2445 };
2446 
2447 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2448   assert(_workers != NULL, "Need parallel worker threads.");
2449   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2450 
2451   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2452 
2453   // Not strictly necessary but...
2454   //
2455   // We need to reset the concurrency level before each
2456   // proxy task execution, so that the termination protocol
2457   // and overflow handling in CMTask::do_marking_step() knows
2458   // how many workers to wait for.
2459   _cm->set_concurrency(_active_workers);
2460   _g1h->set_par_threads(_active_workers);
2461   _workers->run_task(&enq_task_proxy);
2462   _g1h->set_par_threads(0);
2463 }
2464 
2465 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2466   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2467 }
2468 
2469 // Helper class to get rid of some boilerplate code.
2470 class G1RemarkGCTraceTime : public GCTraceTime {
2471   static bool doit_and_prepend(bool doit) {
2472     if (doit) {
2473       gclog_or_tty->put(' ');
2474     }
2475     return doit;
2476   }
2477 
2478  public:
2479   G1RemarkGCTraceTime(const char* title, bool doit)
2480     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
2481         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
2482   }
2483 };
2484 
2485 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2486   if (has_overflown()) {
2487     // Skip processing the discovered references if we have
2488     // overflown the global marking stack. Reference objects
2489     // only get discovered once so it is OK to not
2490     // de-populate the discovered reference lists. We could have,
2491     // but the only benefit would be that, when marking restarts,
2492     // less reference objects are discovered.
2493     return;
2494   }
2495 
2496   ResourceMark rm;
2497   HandleMark   hm;
2498 
2499   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2500 
2501   // Is alive closure.
2502   G1CMIsAliveClosure g1_is_alive(g1h);
2503 
2504   // Inner scope to exclude the cleaning of the string and symbol
2505   // tables from the displayed time.
2506   {
2507     if (G1Log::finer()) {
2508       gclog_or_tty->put(' ');
2509     }
2510     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
2511 
2512     ReferenceProcessor* rp = g1h->ref_processor_cm();
2513 
2514     // See the comment in G1CollectedHeap::ref_processing_init()
2515     // about how reference processing currently works in G1.
2516 
2517     // Set the soft reference policy
2518     rp->setup_policy(clear_all_soft_refs);
2519     assert(_markStack.isEmpty(), "mark stack should be empty");
2520 
2521     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2522     // in serial reference processing. Note these closures are also
2523     // used for serially processing (by the the current thread) the
2524     // JNI references during parallel reference processing.
2525     //
2526     // These closures do not need to synchronize with the worker
2527     // threads involved in parallel reference processing as these
2528     // instances are executed serially by the current thread (e.g.
2529     // reference processing is not multi-threaded and is thus
2530     // performed by the current thread instead of a gang worker).
2531     //
2532     // The gang tasks involved in parallel reference processing create
2533     // their own instances of these closures, which do their own
2534     // synchronization among themselves.
2535     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2536     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2537 
2538     // We need at least one active thread. If reference processing
2539     // is not multi-threaded we use the current (VMThread) thread,
2540     // otherwise we use the work gang from the G1CollectedHeap and
2541     // we utilize all the worker threads we can.
2542     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2543     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2544     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2545 
2546     // Parallel processing task executor.
2547     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2548                                               g1h->workers(), active_workers);
2549     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2550 
2551     // Set the concurrency level. The phase was already set prior to
2552     // executing the remark task.
2553     set_concurrency(active_workers);
2554 
2555     // Set the degree of MT processing here.  If the discovery was done MT,
2556     // the number of threads involved during discovery could differ from
2557     // the number of active workers.  This is OK as long as the discovered
2558     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2559     rp->set_active_mt_degree(active_workers);
2560 
2561     // Process the weak references.
2562     const ReferenceProcessorStats& stats =
2563         rp->process_discovered_references(&g1_is_alive,
2564                                           &g1_keep_alive,
2565                                           &g1_drain_mark_stack,
2566                                           executor,
2567                                           g1h->gc_timer_cm(),
2568                                           concurrent_gc_id());
2569     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2570 
2571     // The do_oop work routines of the keep_alive and drain_marking_stack
2572     // oop closures will set the has_overflown flag if we overflow the
2573     // global marking stack.
2574 
2575     assert(_markStack.overflow() || _markStack.isEmpty(),
2576             "mark stack should be empty (unless it overflowed)");
2577 
2578     if (_markStack.overflow()) {
2579       // This should have been done already when we tried to push an
2580       // entry on to the global mark stack. But let's do it again.
2581       set_has_overflown();
2582     }
2583 
2584     assert(rp->num_q() == active_workers, "why not");
2585 
2586     rp->enqueue_discovered_references(executor);
2587 
2588     rp->verify_no_references_recorded();
2589     assert(!rp->discovery_enabled(), "Post condition");
2590   }
2591 
2592   if (has_overflown()) {
2593     // We can not trust g1_is_alive if the marking stack overflowed
2594     return;
2595   }
2596 
2597   assert(_markStack.isEmpty(), "Marking should have completed");
2598 
2599   // Unload Klasses, String, Symbols, Code Cache, etc.
2600 
2601   G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
2602 
2603   bool purged_classes;
2604 
2605   {
2606     G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
2607     purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
2608   }
2609 
2610   {
2611     G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
2612     weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2613   }
2614 
2615   if (G1StringDedup::is_enabled()) {
2616     G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
2617     G1StringDedup::unlink(&g1_is_alive);
2618   }
2619 }
2620 
2621 void ConcurrentMark::swapMarkBitMaps() {
2622   CMBitMapRO* temp = _prevMarkBitMap;
2623   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2624   _nextMarkBitMap  = (CMBitMap*)  temp;
2625 }
2626 
2627 class CMObjectClosure;
2628 
2629 // Closure for iterating over objects, currently only used for
2630 // processing SATB buffers.
2631 class CMObjectClosure : public ObjectClosure {
2632 private:
2633   CMTask* _task;
2634 
2635 public:
2636   void do_object(oop obj) {
2637     _task->deal_with_reference(obj);
2638   }
2639 
2640   CMObjectClosure(CMTask* task) : _task(task) { }
2641 };
2642 
2643 class G1RemarkThreadsClosure : public ThreadClosure {
2644   CMObjectClosure _cm_obj;
2645   G1CMOopClosure _cm_cl;
2646   MarkingCodeBlobClosure _code_cl;
2647   int _thread_parity;
2648   bool _is_par;
2649 
2650  public:
2651   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
2652     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2653     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
2654 
2655   void do_thread(Thread* thread) {
2656     if (thread->is_Java_thread()) {
2657       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2658         JavaThread* jt = (JavaThread*)thread;
2659 
2660         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2661         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2662         // * Alive if on the stack of an executing method
2663         // * Weakly reachable otherwise
2664         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2665         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2666         jt->nmethods_do(&_code_cl);
2667 
2668         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2669       }
2670     } else if (thread->is_VM_thread()) {
2671       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2672         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2673       }
2674     }
2675   }
2676 };
2677 
2678 class CMRemarkTask: public AbstractGangTask {
2679 private:
2680   ConcurrentMark* _cm;
2681   bool            _is_serial;
2682 public:
2683   void work(uint worker_id) {
2684     // Since all available tasks are actually started, we should
2685     // only proceed if we're supposed to be active.
2686     if (worker_id < _cm->active_tasks()) {
2687       CMTask* task = _cm->task(worker_id);
2688       task->record_start_time();
2689       {
2690         ResourceMark rm;
2691         HandleMark hm;
2692 
2693         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
2694         Threads::threads_do(&threads_f);
2695       }
2696 
2697       do {
2698         task->do_marking_step(1000000000.0 /* something very large */,
2699                               true         /* do_termination       */,
2700                               _is_serial);
2701       } while (task->has_aborted() && !_cm->has_overflown());
2702       // If we overflow, then we do not want to restart. We instead
2703       // want to abort remark and do concurrent marking again.
2704       task->record_end_time();
2705     }
2706   }
2707 
2708   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2709     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2710     _cm->terminator()->reset_for_reuse(active_workers);
2711   }
2712 };
2713 
2714 void ConcurrentMark::checkpointRootsFinalWork() {
2715   ResourceMark rm;
2716   HandleMark   hm;
2717   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2718 
2719   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
2720 
2721   g1h->ensure_parsability(false);
2722 
2723   if (G1CollectedHeap::use_parallel_gc_threads()) {
2724     G1CollectedHeap::StrongRootsScope srs(g1h);
2725     // this is remark, so we'll use up all active threads
2726     uint active_workers = g1h->workers()->active_workers();
2727     if (active_workers == 0) {
2728       assert(active_workers > 0, "Should have been set earlier");
2729       active_workers = (uint) ParallelGCThreads;
2730       g1h->workers()->set_active_workers(active_workers);
2731     }
2732     set_concurrency_and_phase(active_workers, false /* concurrent */);
2733     // Leave _parallel_marking_threads at it's
2734     // value originally calculated in the ConcurrentMark
2735     // constructor and pass values of the active workers
2736     // through the gang in the task.
2737 
2738     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2739     // We will start all available threads, even if we decide that the
2740     // active_workers will be fewer. The extra ones will just bail out
2741     // immediately.
2742     g1h->set_par_threads(active_workers);
2743     g1h->workers()->run_task(&remarkTask);
2744     g1h->set_par_threads(0);
2745   } else {
2746     G1CollectedHeap::StrongRootsScope srs(g1h);
2747     uint active_workers = 1;
2748     set_concurrency_and_phase(active_workers, false /* concurrent */);
2749 
2750     // Note - if there's no work gang then the VMThread will be
2751     // the thread to execute the remark - serially. We have
2752     // to pass true for the is_serial parameter so that
2753     // CMTask::do_marking_step() doesn't enter the sync
2754     // barriers in the event of an overflow. Doing so will
2755     // cause an assert that the current thread is not a
2756     // concurrent GC thread.
2757     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2758     remarkTask.work(0);
2759   }
2760   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2761   guarantee(has_overflown() ||
2762             satb_mq_set.completed_buffers_num() == 0,
2763             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2764                     BOOL_TO_STR(has_overflown()),
2765                     satb_mq_set.completed_buffers_num()));
2766 
2767   print_stats();
2768 }
2769 
2770 #ifndef PRODUCT
2771 
2772 class PrintReachableOopClosure: public OopClosure {
2773 private:
2774   G1CollectedHeap* _g1h;
2775   outputStream*    _out;
2776   VerifyOption     _vo;
2777   bool             _all;
2778 
2779 public:
2780   PrintReachableOopClosure(outputStream* out,
2781                            VerifyOption  vo,
2782                            bool          all) :
2783     _g1h(G1CollectedHeap::heap()),
2784     _out(out), _vo(vo), _all(all) { }
2785 
2786   void do_oop(narrowOop* p) { do_oop_work(p); }
2787   void do_oop(      oop* p) { do_oop_work(p); }
2788 
2789   template <class T> void do_oop_work(T* p) {
2790     oop         obj = oopDesc::load_decode_heap_oop(p);
2791     const char* str = NULL;
2792     const char* str2 = "";
2793 
2794     if (obj == NULL) {
2795       str = "";
2796     } else if (!_g1h->is_in_g1_reserved(obj)) {
2797       str = " O";
2798     } else {
2799       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2800       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2801       bool marked = _g1h->is_marked(obj, _vo);
2802 
2803       if (over_tams) {
2804         str = " >";
2805         if (marked) {
2806           str2 = " AND MARKED";
2807         }
2808       } else if (marked) {
2809         str = " M";
2810       } else {
2811         str = " NOT";
2812       }
2813     }
2814 
2815     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2816                    p2i(p), p2i((void*) obj), str, str2);
2817   }
2818 };
2819 
2820 class PrintReachableObjectClosure : public ObjectClosure {
2821 private:
2822   G1CollectedHeap* _g1h;
2823   outputStream*    _out;
2824   VerifyOption     _vo;
2825   bool             _all;
2826   HeapRegion*      _hr;
2827 
2828 public:
2829   PrintReachableObjectClosure(outputStream* out,
2830                               VerifyOption  vo,
2831                               bool          all,
2832                               HeapRegion*   hr) :
2833     _g1h(G1CollectedHeap::heap()),
2834     _out(out), _vo(vo), _all(all), _hr(hr) { }
2835 
2836   void do_object(oop o) {
2837     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2838     bool marked = _g1h->is_marked(o, _vo);
2839     bool print_it = _all || over_tams || marked;
2840 
2841     if (print_it) {
2842       _out->print_cr(" "PTR_FORMAT"%s",
2843                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2844       PrintReachableOopClosure oopCl(_out, _vo, _all);
2845       o->oop_iterate_no_header(&oopCl);
2846     }
2847   }
2848 };
2849 
2850 class PrintReachableRegionClosure : public HeapRegionClosure {
2851 private:
2852   G1CollectedHeap* _g1h;
2853   outputStream*    _out;
2854   VerifyOption     _vo;
2855   bool             _all;
2856 
2857 public:
2858   bool doHeapRegion(HeapRegion* hr) {
2859     HeapWord* b = hr->bottom();
2860     HeapWord* e = hr->end();
2861     HeapWord* t = hr->top();
2862     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2863     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2864                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2865     _out->cr();
2866 
2867     HeapWord* from = b;
2868     HeapWord* to   = t;
2869 
2870     if (to > from) {
2871       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2872       _out->cr();
2873       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2874       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2875       _out->cr();
2876     }
2877 
2878     return false;
2879   }
2880 
2881   PrintReachableRegionClosure(outputStream* out,
2882                               VerifyOption  vo,
2883                               bool          all) :
2884     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2885 };
2886 
2887 void ConcurrentMark::print_reachable(const char* str,
2888                                      VerifyOption vo,
2889                                      bool all) {
2890   gclog_or_tty->cr();
2891   gclog_or_tty->print_cr("== Doing heap dump... ");
2892 
2893   if (G1PrintReachableBaseFile == NULL) {
2894     gclog_or_tty->print_cr("  #### error: no base file defined");
2895     return;
2896   }
2897 
2898   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2899       (JVM_MAXPATHLEN - 1)) {
2900     gclog_or_tty->print_cr("  #### error: file name too long");
2901     return;
2902   }
2903 
2904   char file_name[JVM_MAXPATHLEN];
2905   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2906   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2907 
2908   fileStream fout(file_name);
2909   if (!fout.is_open()) {
2910     gclog_or_tty->print_cr("  #### error: could not open file");
2911     return;
2912   }
2913 
2914   outputStream* out = &fout;
2915   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2916   out->cr();
2917 
2918   out->print_cr("--- ITERATING OVER REGIONS");
2919   out->cr();
2920   PrintReachableRegionClosure rcl(out, vo, all);
2921   _g1h->heap_region_iterate(&rcl);
2922   out->cr();
2923 
2924   gclog_or_tty->print_cr("  done");
2925   gclog_or_tty->flush();
2926 }
2927 
2928 #endif // PRODUCT
2929 
2930 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2931   // Note we are overriding the read-only view of the prev map here, via
2932   // the cast.
2933   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2934 }
2935 
2936 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2937   _nextMarkBitMap->clearRange(mr);
2938 }
2939 
2940 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
2941   clearRangePrevBitmap(mr);
2942   clearRangeNextBitmap(mr);
2943 }
2944 
2945 HeapRegion*
2946 ConcurrentMark::claim_region(uint worker_id) {
2947   // "checkpoint" the finger
2948   HeapWord* finger = _finger;
2949 
2950   // _heap_end will not change underneath our feet; it only changes at
2951   // yield points.
2952   while (finger < _heap_end) {
2953     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2954 
2955     // Note on how this code handles humongous regions. In the
2956     // normal case the finger will reach the start of a "starts
2957     // humongous" (SH) region. Its end will either be the end of the
2958     // last "continues humongous" (CH) region in the sequence, or the
2959     // standard end of the SH region (if the SH is the only region in
2960     // the sequence). That way claim_region() will skip over the CH
2961     // regions. However, there is a subtle race between a CM thread
2962     // executing this method and a mutator thread doing a humongous
2963     // object allocation. The two are not mutually exclusive as the CM
2964     // thread does not need to hold the Heap_lock when it gets
2965     // here. So there is a chance that claim_region() will come across
2966     // a free region that's in the progress of becoming a SH or a CH
2967     // region. In the former case, it will either
2968     //   a) Miss the update to the region's end, in which case it will
2969     //      visit every subsequent CH region, will find their bitmaps
2970     //      empty, and do nothing, or
2971     //   b) Will observe the update of the region's end (in which case
2972     //      it will skip the subsequent CH regions).
2973     // If it comes across a region that suddenly becomes CH, the
2974     // scenario will be similar to b). So, the race between
2975     // claim_region() and a humongous object allocation might force us
2976     // to do a bit of unnecessary work (due to some unnecessary bitmap
2977     // iterations) but it should not introduce and correctness issues.
2978     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2979     HeapWord*   bottom        = curr_region->bottom();
2980     HeapWord*   end           = curr_region->end();
2981     HeapWord*   limit         = curr_region->next_top_at_mark_start();
2982 
2983     if (verbose_low()) {
2984       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2985                              "["PTR_FORMAT", "PTR_FORMAT"), "
2986                              "limit = "PTR_FORMAT,
2987                              worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2988     }
2989 
2990     // Is the gap between reading the finger and doing the CAS too long?
2991     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2992     if (res == finger) {
2993       // we succeeded
2994 
2995       // notice that _finger == end cannot be guaranteed here since,
2996       // someone else might have moved the finger even further
2997       assert(_finger >= end, "the finger should have moved forward");
2998 
2999       if (verbose_low()) {
3000         gclog_or_tty->print_cr("[%u] we were successful with region = "
3001                                PTR_FORMAT, worker_id, p2i(curr_region));
3002       }
3003 
3004       if (limit > bottom) {
3005         if (verbose_low()) {
3006           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
3007                                  "returning it ", worker_id, p2i(curr_region));
3008         }
3009         return curr_region;
3010       } else {
3011         assert(limit == bottom,
3012                "the region limit should be at bottom");
3013         if (verbose_low()) {
3014           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
3015                                  "returning NULL", worker_id, p2i(curr_region));
3016         }
3017         // we return NULL and the caller should try calling
3018         // claim_region() again.
3019         return NULL;
3020       }
3021     } else {
3022       assert(_finger > finger, "the finger should have moved forward");
3023       if (verbose_low()) {
3024         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
3025                                "global finger = "PTR_FORMAT", "
3026                                "our finger = "PTR_FORMAT,
3027                                worker_id, p2i(_finger), p2i(finger));
3028       }
3029 
3030       // read it again
3031       finger = _finger;
3032     }
3033   }
3034 
3035   return NULL;
3036 }
3037 
3038 #ifndef PRODUCT
3039 enum VerifyNoCSetOopsPhase {
3040   VerifyNoCSetOopsStack,
3041   VerifyNoCSetOopsQueues,
3042   VerifyNoCSetOopsSATBCompleted,
3043   VerifyNoCSetOopsSATBThread
3044 };
3045 
3046 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
3047 private:
3048   G1CollectedHeap* _g1h;
3049   VerifyNoCSetOopsPhase _phase;
3050   int _info;
3051 
3052   const char* phase_str() {
3053     switch (_phase) {
3054     case VerifyNoCSetOopsStack:         return "Stack";
3055     case VerifyNoCSetOopsQueues:        return "Queue";
3056     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
3057     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
3058     default:                            ShouldNotReachHere();
3059     }
3060     return NULL;
3061   }
3062 
3063   void do_object_work(oop obj) {
3064     guarantee(!_g1h->obj_in_cs(obj),
3065               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
3066                       p2i((void*) obj), phase_str(), _info));
3067   }
3068 
3069 public:
3070   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
3071 
3072   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
3073     _phase = phase;
3074     _info = info;
3075   }
3076 
3077   virtual void do_oop(oop* p) {
3078     oop obj = oopDesc::load_decode_heap_oop(p);
3079     do_object_work(obj);
3080   }
3081 
3082   virtual void do_oop(narrowOop* p) {
3083     // We should not come across narrow oops while scanning marking
3084     // stacks and SATB buffers.
3085     ShouldNotReachHere();
3086   }
3087 
3088   virtual void do_object(oop obj) {
3089     do_object_work(obj);
3090   }
3091 };
3092 
3093 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
3094                                          bool verify_enqueued_buffers,
3095                                          bool verify_thread_buffers,
3096                                          bool verify_fingers) {
3097   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3098   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3099     return;
3100   }
3101 
3102   VerifyNoCSetOopsClosure cl;
3103 
3104   if (verify_stacks) {
3105     // Verify entries on the global mark stack
3106     cl.set_phase(VerifyNoCSetOopsStack);
3107     _markStack.oops_do(&cl);
3108 
3109     // Verify entries on the task queues
3110     for (uint i = 0; i < _max_worker_id; i += 1) {
3111       cl.set_phase(VerifyNoCSetOopsQueues, i);
3112       CMTaskQueue* queue = _task_queues->queue(i);
3113       queue->oops_do(&cl);
3114     }
3115   }
3116 
3117   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
3118 
3119   // Verify entries on the enqueued SATB buffers
3120   if (verify_enqueued_buffers) {
3121     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
3122     satb_qs.iterate_completed_buffers_read_only(&cl);
3123   }
3124 
3125   // Verify entries on the per-thread SATB buffers
3126   if (verify_thread_buffers) {
3127     cl.set_phase(VerifyNoCSetOopsSATBThread);
3128     satb_qs.iterate_thread_buffers_read_only(&cl);
3129   }
3130 
3131   if (verify_fingers) {
3132     // Verify the global finger
3133     HeapWord* global_finger = finger();
3134     if (global_finger != NULL && global_finger < _heap_end) {
3135       // The global finger always points to a heap region boundary. We
3136       // use heap_region_containing_raw() to get the containing region
3137       // given that the global finger could be pointing to a free region
3138       // which subsequently becomes continues humongous. If that
3139       // happens, heap_region_containing() will return the bottom of the
3140       // corresponding starts humongous region and the check below will
3141       // not hold any more.
3142       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3143       guarantee(global_finger == global_hr->bottom(),
3144                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3145                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3146     }
3147 
3148     // Verify the task fingers
3149     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3150     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3151       CMTask* task = _tasks[i];
3152       HeapWord* task_finger = task->finger();
3153       if (task_finger != NULL && task_finger < _heap_end) {
3154         // See above note on the global finger verification.
3155         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3156         guarantee(task_finger == task_hr->bottom() ||
3157                   !task_hr->in_collection_set(),
3158                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3159                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3160       }
3161     }
3162   }
3163 }
3164 #endif // PRODUCT
3165 
3166 // Aggregate the counting data that was constructed concurrently
3167 // with marking.
3168 class AggregateCountDataHRClosure: public HeapRegionClosure {
3169   G1CollectedHeap* _g1h;
3170   ConcurrentMark* _cm;
3171   CardTableModRefBS* _ct_bs;
3172   BitMap* _cm_card_bm;
3173   uint _max_worker_id;
3174 
3175  public:
3176   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3177                               BitMap* cm_card_bm,
3178                               uint max_worker_id) :
3179     _g1h(g1h), _cm(g1h->concurrent_mark()),
3180     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3181     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3182 
3183   bool doHeapRegion(HeapRegion* hr) {
3184     if (hr->continuesHumongous()) {
3185       // We will ignore these here and process them when their
3186       // associated "starts humongous" region is processed.
3187       // Note that we cannot rely on their associated
3188       // "starts humongous" region to have their bit set to 1
3189       // since, due to the region chunking in the parallel region
3190       // iteration, a "continues humongous" region might be visited
3191       // before its associated "starts humongous".
3192       return false;
3193     }
3194 
3195     HeapWord* start = hr->bottom();
3196     HeapWord* limit = hr->next_top_at_mark_start();
3197     HeapWord* end = hr->end();
3198 
3199     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3200            err_msg("Preconditions not met - "
3201                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3202                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3203                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3204 
3205     assert(hr->next_marked_bytes() == 0, "Precondition");
3206 
3207     if (start == limit) {
3208       // NTAMS of this region has not been set so nothing to do.
3209       return false;
3210     }
3211 
3212     // 'start' should be in the heap.
3213     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3214     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3215     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3216 
3217     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3218     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3219     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3220 
3221     // If ntams is not card aligned then we bump card bitmap index
3222     // for limit so that we get the all the cards spanned by
3223     // the object ending at ntams.
3224     // Note: if this is the last region in the heap then ntams
3225     // could be actually just beyond the end of the the heap;
3226     // limit_idx will then  correspond to a (non-existent) card
3227     // that is also outside the heap.
3228     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3229       limit_idx += 1;
3230     }
3231 
3232     assert(limit_idx <= end_idx, "or else use atomics");
3233 
3234     // Aggregate the "stripe" in the count data associated with hr.
3235     uint hrs_index = hr->hrs_index();
3236     size_t marked_bytes = 0;
3237 
3238     for (uint i = 0; i < _max_worker_id; i += 1) {
3239       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3240       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3241 
3242       // Fetch the marked_bytes in this region for task i and
3243       // add it to the running total for this region.
3244       marked_bytes += marked_bytes_array[hrs_index];
3245 
3246       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3247       // into the global card bitmap.
3248       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3249 
3250       while (scan_idx < limit_idx) {
3251         assert(task_card_bm->at(scan_idx) == true, "should be");
3252         _cm_card_bm->set_bit(scan_idx);
3253         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3254 
3255         // BitMap::get_next_one_offset() can handle the case when
3256         // its left_offset parameter is greater than its right_offset
3257         // parameter. It does, however, have an early exit if
3258         // left_offset == right_offset. So let's limit the value
3259         // passed in for left offset here.
3260         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3261         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3262       }
3263     }
3264 
3265     // Update the marked bytes for this region.
3266     hr->add_to_marked_bytes(marked_bytes);
3267 
3268     // Next heap region
3269     return false;
3270   }
3271 };
3272 
3273 class G1AggregateCountDataTask: public AbstractGangTask {
3274 protected:
3275   G1CollectedHeap* _g1h;
3276   ConcurrentMark* _cm;
3277   BitMap* _cm_card_bm;
3278   uint _max_worker_id;
3279   int _active_workers;
3280 
3281 public:
3282   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3283                            ConcurrentMark* cm,
3284                            BitMap* cm_card_bm,
3285                            uint max_worker_id,
3286                            int n_workers) :
3287     AbstractGangTask("Count Aggregation"),
3288     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3289     _max_worker_id(max_worker_id),
3290     _active_workers(n_workers) { }
3291 
3292   void work(uint worker_id) {
3293     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3294 
3295     if (G1CollectedHeap::use_parallel_gc_threads()) {
3296       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3297                                             _active_workers,
3298                                             HeapRegion::AggregateCountClaimValue);
3299     } else {
3300       _g1h->heap_region_iterate(&cl);
3301     }
3302   }
3303 };
3304 
3305 
3306 void ConcurrentMark::aggregate_count_data() {
3307   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3308                         _g1h->workers()->active_workers() :
3309                         1);
3310 
3311   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3312                                            _max_worker_id, n_workers);
3313 
3314   if (G1CollectedHeap::use_parallel_gc_threads()) {
3315     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3316            "sanity check");
3317     _g1h->set_par_threads(n_workers);
3318     _g1h->workers()->run_task(&g1_par_agg_task);
3319     _g1h->set_par_threads(0);
3320 
3321     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3322            "sanity check");
3323     _g1h->reset_heap_region_claim_values();
3324   } else {
3325     g1_par_agg_task.work(0);
3326   }
3327 }
3328 
3329 // Clear the per-worker arrays used to store the per-region counting data
3330 void ConcurrentMark::clear_all_count_data() {
3331   // Clear the global card bitmap - it will be filled during
3332   // liveness count aggregation (during remark) and the
3333   // final counting task.
3334   _card_bm.clear();
3335 
3336   // Clear the global region bitmap - it will be filled as part
3337   // of the final counting task.
3338   _region_bm.clear();
3339 
3340   uint max_regions = _g1h->max_regions();
3341   assert(_max_worker_id > 0, "uninitialized");
3342 
3343   for (uint i = 0; i < _max_worker_id; i += 1) {
3344     BitMap* task_card_bm = count_card_bitmap_for(i);
3345     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3346 
3347     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3348     assert(marked_bytes_array != NULL, "uninitialized");
3349 
3350     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3351     task_card_bm->clear();
3352   }
3353 }
3354 
3355 void ConcurrentMark::print_stats() {
3356   if (verbose_stats()) {
3357     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3358     for (size_t i = 0; i < _active_tasks; ++i) {
3359       _tasks[i]->print_stats();
3360       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3361     }
3362   }
3363 }
3364 
3365 // abandon current marking iteration due to a Full GC
3366 void ConcurrentMark::abort() {
3367   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3368   // concurrent bitmap clearing.
3369   _nextMarkBitMap->clearAll();
3370 
3371   // Note we cannot clear the previous marking bitmap here
3372   // since VerifyDuringGC verifies the objects marked during
3373   // a full GC against the previous bitmap.
3374 
3375   // Clear the liveness counting data
3376   clear_all_count_data();
3377   // Empty mark stack
3378   reset_marking_state();
3379   for (uint i = 0; i < _max_worker_id; ++i) {
3380     _tasks[i]->clear_region_fields();
3381   }
3382   _first_overflow_barrier_sync.abort();
3383   _second_overflow_barrier_sync.abort();
3384   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3385   if (!gc_id.is_undefined()) {
3386     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3387     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3388     _aborted_gc_id = gc_id;
3389    }
3390   _has_aborted = true;
3391 
3392   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3393   satb_mq_set.abandon_partial_marking();
3394   // This can be called either during or outside marking, we'll read
3395   // the expected_active value from the SATB queue set.
3396   satb_mq_set.set_active_all_threads(
3397                                  false, /* new active value */
3398                                  satb_mq_set.is_active() /* expected_active */);
3399 
3400   _g1h->trace_heap_after_concurrent_cycle();
3401   _g1h->register_concurrent_cycle_end();
3402 }
3403 
3404 const GCId& ConcurrentMark::concurrent_gc_id() {
3405   if (has_aborted()) {
3406     return _aborted_gc_id;
3407   }
3408   return _g1h->gc_tracer_cm()->gc_id();
3409 }
3410 
3411 static void print_ms_time_info(const char* prefix, const char* name,
3412                                NumberSeq& ns) {
3413   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3414                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3415   if (ns.num() > 0) {
3416     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3417                            prefix, ns.sd(), ns.maximum());
3418   }
3419 }
3420 
3421 void ConcurrentMark::print_summary_info() {
3422   gclog_or_tty->print_cr(" Concurrent marking:");
3423   print_ms_time_info("  ", "init marks", _init_times);
3424   print_ms_time_info("  ", "remarks", _remark_times);
3425   {
3426     print_ms_time_info("     ", "final marks", _remark_mark_times);
3427     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3428 
3429   }
3430   print_ms_time_info("  ", "cleanups", _cleanup_times);
3431   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3432                          _total_counting_time,
3433                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3434                           (double)_cleanup_times.num()
3435                          : 0.0));
3436   if (G1ScrubRemSets) {
3437     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3438                            _total_rs_scrub_time,
3439                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3440                             (double)_cleanup_times.num()
3441                            : 0.0));
3442   }
3443   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3444                          (_init_times.sum() + _remark_times.sum() +
3445                           _cleanup_times.sum())/1000.0);
3446   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3447                 "(%8.2f s marking).",
3448                 cmThread()->vtime_accum(),
3449                 cmThread()->vtime_mark_accum());
3450 }
3451 
3452 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3453   if (use_parallel_marking_threads()) {
3454     _parallel_workers->print_worker_threads_on(st);
3455   }
3456 }
3457 
3458 void ConcurrentMark::print_on_error(outputStream* st) const {
3459   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3460       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3461   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3462   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3463 }
3464 
3465 // We take a break if someone is trying to stop the world.
3466 bool ConcurrentMark::do_yield_check(uint worker_id) {
3467   if (SuspendibleThreadSet::should_yield()) {
3468     if (worker_id == 0) {
3469       _g1h->g1_policy()->record_concurrent_pause();
3470     }
3471     SuspendibleThreadSet::yield();
3472     return true;
3473   } else {
3474     return false;
3475   }
3476 }
3477 
3478 bool ConcurrentMark::containing_card_is_marked(void* p) {
3479   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
3480   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
3481 }
3482 
3483 bool ConcurrentMark::containing_cards_are_marked(void* start,
3484                                                  void* last) {
3485   return containing_card_is_marked(start) &&
3486          containing_card_is_marked(last);
3487 }
3488 
3489 #ifndef PRODUCT
3490 // for debugging purposes
3491 void ConcurrentMark::print_finger() {
3492   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3493                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3494   for (uint i = 0; i < _max_worker_id; ++i) {
3495     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3496   }
3497   gclog_or_tty->cr();
3498 }
3499 #endif
3500 
3501 void CMTask::scan_object(oop obj) {
3502   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3503 
3504   if (_cm->verbose_high()) {
3505     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3506                            _worker_id, p2i((void*) obj));
3507   }
3508 
3509   size_t obj_size = obj->size();
3510   _words_scanned += obj_size;
3511 
3512   obj->oop_iterate(_cm_oop_closure);
3513   statsOnly( ++_objs_scanned );
3514   check_limits();
3515 }
3516 
3517 // Closure for iteration over bitmaps
3518 class CMBitMapClosure : public BitMapClosure {
3519 private:
3520   // the bitmap that is being iterated over
3521   CMBitMap*                   _nextMarkBitMap;
3522   ConcurrentMark*             _cm;
3523   CMTask*                     _task;
3524 
3525 public:
3526   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3527     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3528 
3529   bool do_bit(size_t offset) {
3530     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3531     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3532     assert( addr < _cm->finger(), "invariant");
3533 
3534     statsOnly( _task->increase_objs_found_on_bitmap() );
3535     assert(addr >= _task->finger(), "invariant");
3536 
3537     // We move that task's local finger along.
3538     _task->move_finger_to(addr);
3539 
3540     _task->scan_object(oop(addr));
3541     // we only partially drain the local queue and global stack
3542     _task->drain_local_queue(true);
3543     _task->drain_global_stack(true);
3544 
3545     // if the has_aborted flag has been raised, we need to bail out of
3546     // the iteration
3547     return !_task->has_aborted();
3548   }
3549 };
3550 
3551 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3552                                ConcurrentMark* cm,
3553                                CMTask* task)
3554   : _g1h(g1h), _cm(cm), _task(task) {
3555   assert(_ref_processor == NULL, "should be initialized to NULL");
3556 
3557   if (G1UseConcMarkReferenceProcessing) {
3558     _ref_processor = g1h->ref_processor_cm();
3559     assert(_ref_processor != NULL, "should not be NULL");
3560   }
3561 }
3562 
3563 void CMTask::setup_for_region(HeapRegion* hr) {
3564   assert(hr != NULL,
3565         "claim_region() should have filtered out NULL regions");
3566   assert(!hr->continuesHumongous(),
3567         "claim_region() should have filtered out continues humongous regions");
3568 
3569   if (_cm->verbose_low()) {
3570     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3571                            _worker_id, p2i(hr));
3572   }
3573 
3574   _curr_region  = hr;
3575   _finger       = hr->bottom();
3576   update_region_limit();
3577 }
3578 
3579 void CMTask::update_region_limit() {
3580   HeapRegion* hr            = _curr_region;
3581   HeapWord* bottom          = hr->bottom();
3582   HeapWord* limit           = hr->next_top_at_mark_start();
3583 
3584   if (limit == bottom) {
3585     if (_cm->verbose_low()) {
3586       gclog_or_tty->print_cr("[%u] found an empty region "
3587                              "["PTR_FORMAT", "PTR_FORMAT")",
3588                              _worker_id, p2i(bottom), p2i(limit));
3589     }
3590     // The region was collected underneath our feet.
3591     // We set the finger to bottom to ensure that the bitmap
3592     // iteration that will follow this will not do anything.
3593     // (this is not a condition that holds when we set the region up,
3594     // as the region is not supposed to be empty in the first place)
3595     _finger = bottom;
3596   } else if (limit >= _region_limit) {
3597     assert(limit >= _finger, "peace of mind");
3598   } else {
3599     assert(limit < _region_limit, "only way to get here");
3600     // This can happen under some pretty unusual circumstances.  An
3601     // evacuation pause empties the region underneath our feet (NTAMS
3602     // at bottom). We then do some allocation in the region (NTAMS
3603     // stays at bottom), followed by the region being used as a GC
3604     // alloc region (NTAMS will move to top() and the objects
3605     // originally below it will be grayed). All objects now marked in
3606     // the region are explicitly grayed, if below the global finger,
3607     // and we do not need in fact to scan anything else. So, we simply
3608     // set _finger to be limit to ensure that the bitmap iteration
3609     // doesn't do anything.
3610     _finger = limit;
3611   }
3612 
3613   _region_limit = limit;
3614 }
3615 
3616 void CMTask::giveup_current_region() {
3617   assert(_curr_region != NULL, "invariant");
3618   if (_cm->verbose_low()) {
3619     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3620                            _worker_id, p2i(_curr_region));
3621   }
3622   clear_region_fields();
3623 }
3624 
3625 void CMTask::clear_region_fields() {
3626   // Values for these three fields that indicate that we're not
3627   // holding on to a region.
3628   _curr_region   = NULL;
3629   _finger        = NULL;
3630   _region_limit  = NULL;
3631 }
3632 
3633 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3634   if (cm_oop_closure == NULL) {
3635     assert(_cm_oop_closure != NULL, "invariant");
3636   } else {
3637     assert(_cm_oop_closure == NULL, "invariant");
3638   }
3639   _cm_oop_closure = cm_oop_closure;
3640 }
3641 
3642 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3643   guarantee(nextMarkBitMap != NULL, "invariant");
3644 
3645   if (_cm->verbose_low()) {
3646     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3647   }
3648 
3649   _nextMarkBitMap                = nextMarkBitMap;
3650   clear_region_fields();
3651 
3652   _calls                         = 0;
3653   _elapsed_time_ms               = 0.0;
3654   _termination_time_ms           = 0.0;
3655   _termination_start_time_ms     = 0.0;
3656 
3657 #if _MARKING_STATS_
3658   _local_pushes                  = 0;
3659   _local_pops                    = 0;
3660   _local_max_size                = 0;
3661   _objs_scanned                  = 0;
3662   _global_pushes                 = 0;
3663   _global_pops                   = 0;
3664   _global_max_size               = 0;
3665   _global_transfers_to           = 0;
3666   _global_transfers_from         = 0;
3667   _regions_claimed               = 0;
3668   _objs_found_on_bitmap          = 0;
3669   _satb_buffers_processed        = 0;
3670   _steal_attempts                = 0;
3671   _steals                        = 0;
3672   _aborted                       = 0;
3673   _aborted_overflow              = 0;
3674   _aborted_cm_aborted            = 0;
3675   _aborted_yield                 = 0;
3676   _aborted_timed_out             = 0;
3677   _aborted_satb                  = 0;
3678   _aborted_termination           = 0;
3679 #endif // _MARKING_STATS_
3680 }
3681 
3682 bool CMTask::should_exit_termination() {
3683   regular_clock_call();
3684   // This is called when we are in the termination protocol. We should
3685   // quit if, for some reason, this task wants to abort or the global
3686   // stack is not empty (this means that we can get work from it).
3687   return !_cm->mark_stack_empty() || has_aborted();
3688 }
3689 
3690 void CMTask::reached_limit() {
3691   assert(_words_scanned >= _words_scanned_limit ||
3692          _refs_reached >= _refs_reached_limit ,
3693          "shouldn't have been called otherwise");
3694   regular_clock_call();
3695 }
3696 
3697 void CMTask::regular_clock_call() {
3698   if (has_aborted()) return;
3699 
3700   // First, we need to recalculate the words scanned and refs reached
3701   // limits for the next clock call.
3702   recalculate_limits();
3703 
3704   // During the regular clock call we do the following
3705 
3706   // (1) If an overflow has been flagged, then we abort.
3707   if (_cm->has_overflown()) {
3708     set_has_aborted();
3709     return;
3710   }
3711 
3712   // If we are not concurrent (i.e. we're doing remark) we don't need
3713   // to check anything else. The other steps are only needed during
3714   // the concurrent marking phase.
3715   if (!concurrent()) return;
3716 
3717   // (2) If marking has been aborted for Full GC, then we also abort.
3718   if (_cm->has_aborted()) {
3719     set_has_aborted();
3720     statsOnly( ++_aborted_cm_aborted );
3721     return;
3722   }
3723 
3724   double curr_time_ms = os::elapsedVTime() * 1000.0;
3725 
3726   // (3) If marking stats are enabled, then we update the step history.
3727 #if _MARKING_STATS_
3728   if (_words_scanned >= _words_scanned_limit) {
3729     ++_clock_due_to_scanning;
3730   }
3731   if (_refs_reached >= _refs_reached_limit) {
3732     ++_clock_due_to_marking;
3733   }
3734 
3735   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3736   _interval_start_time_ms = curr_time_ms;
3737   _all_clock_intervals_ms.add(last_interval_ms);
3738 
3739   if (_cm->verbose_medium()) {
3740       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3741                         "scanned = %d%s, refs reached = %d%s",
3742                         _worker_id, last_interval_ms,
3743                         _words_scanned,
3744                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3745                         _refs_reached,
3746                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3747   }
3748 #endif // _MARKING_STATS_
3749 
3750   // (4) We check whether we should yield. If we have to, then we abort.
3751   if (SuspendibleThreadSet::should_yield()) {
3752     // We should yield. To do this we abort the task. The caller is
3753     // responsible for yielding.
3754     set_has_aborted();
3755     statsOnly( ++_aborted_yield );
3756     return;
3757   }
3758 
3759   // (5) We check whether we've reached our time quota. If we have,
3760   // then we abort.
3761   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3762   if (elapsed_time_ms > _time_target_ms) {
3763     set_has_aborted();
3764     _has_timed_out = true;
3765     statsOnly( ++_aborted_timed_out );
3766     return;
3767   }
3768 
3769   // (6) Finally, we check whether there are enough completed STAB
3770   // buffers available for processing. If there are, we abort.
3771   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3772   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3773     if (_cm->verbose_low()) {
3774       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3775                              _worker_id);
3776     }
3777     // we do need to process SATB buffers, we'll abort and restart
3778     // the marking task to do so
3779     set_has_aborted();
3780     statsOnly( ++_aborted_satb );
3781     return;
3782   }
3783 }
3784 
3785 void CMTask::recalculate_limits() {
3786   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3787   _words_scanned_limit      = _real_words_scanned_limit;
3788 
3789   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3790   _refs_reached_limit       = _real_refs_reached_limit;
3791 }
3792 
3793 void CMTask::decrease_limits() {
3794   // This is called when we believe that we're going to do an infrequent
3795   // operation which will increase the per byte scanned cost (i.e. move
3796   // entries to/from the global stack). It basically tries to decrease the
3797   // scanning limit so that the clock is called earlier.
3798 
3799   if (_cm->verbose_medium()) {
3800     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3801   }
3802 
3803   _words_scanned_limit = _real_words_scanned_limit -
3804     3 * words_scanned_period / 4;
3805   _refs_reached_limit  = _real_refs_reached_limit -
3806     3 * refs_reached_period / 4;
3807 }
3808 
3809 void CMTask::move_entries_to_global_stack() {
3810   // local array where we'll store the entries that will be popped
3811   // from the local queue
3812   oop buffer[global_stack_transfer_size];
3813 
3814   int n = 0;
3815   oop obj;
3816   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3817     buffer[n] = obj;
3818     ++n;
3819   }
3820 
3821   if (n > 0) {
3822     // we popped at least one entry from the local queue
3823 
3824     statsOnly( ++_global_transfers_to; _local_pops += n );
3825 
3826     if (!_cm->mark_stack_push(buffer, n)) {
3827       if (_cm->verbose_low()) {
3828         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3829                                _worker_id);
3830       }
3831       set_has_aborted();
3832     } else {
3833       // the transfer was successful
3834 
3835       if (_cm->verbose_medium()) {
3836         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3837                                _worker_id, n);
3838       }
3839       statsOnly( int tmp_size = _cm->mark_stack_size();
3840                  if (tmp_size > _global_max_size) {
3841                    _global_max_size = tmp_size;
3842                  }
3843                  _global_pushes += n );
3844     }
3845   }
3846 
3847   // this operation was quite expensive, so decrease the limits
3848   decrease_limits();
3849 }
3850 
3851 void CMTask::get_entries_from_global_stack() {
3852   // local array where we'll store the entries that will be popped
3853   // from the global stack.
3854   oop buffer[global_stack_transfer_size];
3855   int n;
3856   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3857   assert(n <= global_stack_transfer_size,
3858          "we should not pop more than the given limit");
3859   if (n > 0) {
3860     // yes, we did actually pop at least one entry
3861 
3862     statsOnly( ++_global_transfers_from; _global_pops += n );
3863     if (_cm->verbose_medium()) {
3864       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3865                              _worker_id, n);
3866     }
3867     for (int i = 0; i < n; ++i) {
3868       bool success = _task_queue->push(buffer[i]);
3869       // We only call this when the local queue is empty or under a
3870       // given target limit. So, we do not expect this push to fail.
3871       assert(success, "invariant");
3872     }
3873 
3874     statsOnly( int tmp_size = _task_queue->size();
3875                if (tmp_size > _local_max_size) {
3876                  _local_max_size = tmp_size;
3877                }
3878                _local_pushes += n );
3879   }
3880 
3881   // this operation was quite expensive, so decrease the limits
3882   decrease_limits();
3883 }
3884 
3885 void CMTask::drain_local_queue(bool partially) {
3886   if (has_aborted()) return;
3887 
3888   // Decide what the target size is, depending whether we're going to
3889   // drain it partially (so that other tasks can steal if they run out
3890   // of things to do) or totally (at the very end).
3891   size_t target_size;
3892   if (partially) {
3893     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3894   } else {
3895     target_size = 0;
3896   }
3897 
3898   if (_task_queue->size() > target_size) {
3899     if (_cm->verbose_high()) {
3900       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3901                              _worker_id, target_size);
3902     }
3903 
3904     oop obj;
3905     bool ret = _task_queue->pop_local(obj);
3906     while (ret) {
3907       statsOnly( ++_local_pops );
3908 
3909       if (_cm->verbose_high()) {
3910         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3911                                p2i((void*) obj));
3912       }
3913 
3914       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3915       assert(!_g1h->is_on_master_free_list(
3916                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3917 
3918       scan_object(obj);
3919 
3920       if (_task_queue->size() <= target_size || has_aborted()) {
3921         ret = false;
3922       } else {
3923         ret = _task_queue->pop_local(obj);
3924       }
3925     }
3926 
3927     if (_cm->verbose_high()) {
3928       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3929                              _worker_id, _task_queue->size());
3930     }
3931   }
3932 }
3933 
3934 void CMTask::drain_global_stack(bool partially) {
3935   if (has_aborted()) return;
3936 
3937   // We have a policy to drain the local queue before we attempt to
3938   // drain the global stack.
3939   assert(partially || _task_queue->size() == 0, "invariant");
3940 
3941   // Decide what the target size is, depending whether we're going to
3942   // drain it partially (so that other tasks can steal if they run out
3943   // of things to do) or totally (at the very end).  Notice that,
3944   // because we move entries from the global stack in chunks or
3945   // because another task might be doing the same, we might in fact
3946   // drop below the target. But, this is not a problem.
3947   size_t target_size;
3948   if (partially) {
3949     target_size = _cm->partial_mark_stack_size_target();
3950   } else {
3951     target_size = 0;
3952   }
3953 
3954   if (_cm->mark_stack_size() > target_size) {
3955     if (_cm->verbose_low()) {
3956       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3957                              _worker_id, target_size);
3958     }
3959 
3960     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3961       get_entries_from_global_stack();
3962       drain_local_queue(partially);
3963     }
3964 
3965     if (_cm->verbose_low()) {
3966       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3967                              _worker_id, _cm->mark_stack_size());
3968     }
3969   }
3970 }
3971 
3972 // SATB Queue has several assumptions on whether to call the par or
3973 // non-par versions of the methods. this is why some of the code is
3974 // replicated. We should really get rid of the single-threaded version
3975 // of the code to simplify things.
3976 void CMTask::drain_satb_buffers() {
3977   if (has_aborted()) return;
3978 
3979   // We set this so that the regular clock knows that we're in the
3980   // middle of draining buffers and doesn't set the abort flag when it
3981   // notices that SATB buffers are available for draining. It'd be
3982   // very counter productive if it did that. :-)
3983   _draining_satb_buffers = true;
3984 
3985   CMObjectClosure oc(this);
3986   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3987   if (G1CollectedHeap::use_parallel_gc_threads()) {
3988     satb_mq_set.set_par_closure(_worker_id, &oc);
3989   } else {
3990     satb_mq_set.set_closure(&oc);
3991   }
3992 
3993   // This keeps claiming and applying the closure to completed buffers
3994   // until we run out of buffers or we need to abort.
3995   if (G1CollectedHeap::use_parallel_gc_threads()) {
3996     while (!has_aborted() &&
3997            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3998       if (_cm->verbose_medium()) {
3999         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4000       }
4001       statsOnly( ++_satb_buffers_processed );
4002       regular_clock_call();
4003     }
4004   } else {
4005     while (!has_aborted() &&
4006            satb_mq_set.apply_closure_to_completed_buffer()) {
4007       if (_cm->verbose_medium()) {
4008         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4009       }
4010       statsOnly( ++_satb_buffers_processed );
4011       regular_clock_call();
4012     }
4013   }
4014 
4015   _draining_satb_buffers = false;
4016 
4017   assert(has_aborted() ||
4018          concurrent() ||
4019          satb_mq_set.completed_buffers_num() == 0, "invariant");
4020 
4021   if (G1CollectedHeap::use_parallel_gc_threads()) {
4022     satb_mq_set.set_par_closure(_worker_id, NULL);
4023   } else {
4024     satb_mq_set.set_closure(NULL);
4025   }
4026 
4027   // again, this was a potentially expensive operation, decrease the
4028   // limits to get the regular clock call early
4029   decrease_limits();
4030 }
4031 
4032 void CMTask::print_stats() {
4033   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
4034                          _worker_id, _calls);
4035   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
4036                          _elapsed_time_ms, _termination_time_ms);
4037   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4038                          _step_times_ms.num(), _step_times_ms.avg(),
4039                          _step_times_ms.sd());
4040   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
4041                          _step_times_ms.maximum(), _step_times_ms.sum());
4042 
4043 #if _MARKING_STATS_
4044   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4045                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
4046                          _all_clock_intervals_ms.sd());
4047   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
4048                          _all_clock_intervals_ms.maximum(),
4049                          _all_clock_intervals_ms.sum());
4050   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
4051                          _clock_due_to_scanning, _clock_due_to_marking);
4052   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
4053                          _objs_scanned, _objs_found_on_bitmap);
4054   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
4055                          _local_pushes, _local_pops, _local_max_size);
4056   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
4057                          _global_pushes, _global_pops, _global_max_size);
4058   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
4059                          _global_transfers_to,_global_transfers_from);
4060   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4061   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
4062   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
4063                          _steal_attempts, _steals);
4064   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
4065   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
4066                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
4067   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
4068                          _aborted_timed_out, _aborted_satb, _aborted_termination);
4069 #endif // _MARKING_STATS_
4070 }
4071 
4072 /*****************************************************************************
4073 
4074     The do_marking_step(time_target_ms, ...) method is the building
4075     block of the parallel marking framework. It can be called in parallel
4076     with other invocations of do_marking_step() on different tasks
4077     (but only one per task, obviously) and concurrently with the
4078     mutator threads, or during remark, hence it eliminates the need
4079     for two versions of the code. When called during remark, it will
4080     pick up from where the task left off during the concurrent marking
4081     phase. Interestingly, tasks are also claimable during evacuation
4082     pauses too, since do_marking_step() ensures that it aborts before
4083     it needs to yield.
4084 
4085     The data structures that it uses to do marking work are the
4086     following:
4087 
4088       (1) Marking Bitmap. If there are gray objects that appear only
4089       on the bitmap (this happens either when dealing with an overflow
4090       or when the initial marking phase has simply marked the roots
4091       and didn't push them on the stack), then tasks claim heap
4092       regions whose bitmap they then scan to find gray objects. A
4093       global finger indicates where the end of the last claimed region
4094       is. A local finger indicates how far into the region a task has
4095       scanned. The two fingers are used to determine how to gray an
4096       object (i.e. whether simply marking it is OK, as it will be
4097       visited by a task in the future, or whether it needs to be also
4098       pushed on a stack).
4099 
4100       (2) Local Queue. The local queue of the task which is accessed
4101       reasonably efficiently by the task. Other tasks can steal from
4102       it when they run out of work. Throughout the marking phase, a
4103       task attempts to keep its local queue short but not totally
4104       empty, so that entries are available for stealing by other
4105       tasks. Only when there is no more work, a task will totally
4106       drain its local queue.
4107 
4108       (3) Global Mark Stack. This handles local queue overflow. During
4109       marking only sets of entries are moved between it and the local
4110       queues, as access to it requires a mutex and more fine-grain
4111       interaction with it which might cause contention. If it
4112       overflows, then the marking phase should restart and iterate
4113       over the bitmap to identify gray objects. Throughout the marking
4114       phase, tasks attempt to keep the global mark stack at a small
4115       length but not totally empty, so that entries are available for
4116       popping by other tasks. Only when there is no more work, tasks
4117       will totally drain the global mark stack.
4118 
4119       (4) SATB Buffer Queue. This is where completed SATB buffers are
4120       made available. Buffers are regularly removed from this queue
4121       and scanned for roots, so that the queue doesn't get too
4122       long. During remark, all completed buffers are processed, as
4123       well as the filled in parts of any uncompleted buffers.
4124 
4125     The do_marking_step() method tries to abort when the time target
4126     has been reached. There are a few other cases when the
4127     do_marking_step() method also aborts:
4128 
4129       (1) When the marking phase has been aborted (after a Full GC).
4130 
4131       (2) When a global overflow (on the global stack) has been
4132       triggered. Before the task aborts, it will actually sync up with
4133       the other tasks to ensure that all the marking data structures
4134       (local queues, stacks, fingers etc.)  are re-initialized so that
4135       when do_marking_step() completes, the marking phase can
4136       immediately restart.
4137 
4138       (3) When enough completed SATB buffers are available. The
4139       do_marking_step() method only tries to drain SATB buffers right
4140       at the beginning. So, if enough buffers are available, the
4141       marking step aborts and the SATB buffers are processed at
4142       the beginning of the next invocation.
4143 
4144       (4) To yield. when we have to yield then we abort and yield
4145       right at the end of do_marking_step(). This saves us from a lot
4146       of hassle as, by yielding we might allow a Full GC. If this
4147       happens then objects will be compacted underneath our feet, the
4148       heap might shrink, etc. We save checking for this by just
4149       aborting and doing the yield right at the end.
4150 
4151     From the above it follows that the do_marking_step() method should
4152     be called in a loop (or, otherwise, regularly) until it completes.
4153 
4154     If a marking step completes without its has_aborted() flag being
4155     true, it means it has completed the current marking phase (and
4156     also all other marking tasks have done so and have all synced up).
4157 
4158     A method called regular_clock_call() is invoked "regularly" (in
4159     sub ms intervals) throughout marking. It is this clock method that
4160     checks all the abort conditions which were mentioned above and
4161     decides when the task should abort. A work-based scheme is used to
4162     trigger this clock method: when the number of object words the
4163     marking phase has scanned or the number of references the marking
4164     phase has visited reach a given limit. Additional invocations to
4165     the method clock have been planted in a few other strategic places
4166     too. The initial reason for the clock method was to avoid calling
4167     vtime too regularly, as it is quite expensive. So, once it was in
4168     place, it was natural to piggy-back all the other conditions on it
4169     too and not constantly check them throughout the code.
4170 
4171     If do_termination is true then do_marking_step will enter its
4172     termination protocol.
4173 
4174     The value of is_serial must be true when do_marking_step is being
4175     called serially (i.e. by the VMThread) and do_marking_step should
4176     skip any synchronization in the termination and overflow code.
4177     Examples include the serial remark code and the serial reference
4178     processing closures.
4179 
4180     The value of is_serial must be false when do_marking_step is
4181     being called by any of the worker threads in a work gang.
4182     Examples include the concurrent marking code (CMMarkingTask),
4183     the MT remark code, and the MT reference processing closures.
4184 
4185  *****************************************************************************/
4186 
4187 void CMTask::do_marking_step(double time_target_ms,
4188                              bool do_termination,
4189                              bool is_serial) {
4190   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4191   assert(concurrent() == _cm->concurrent(), "they should be the same");
4192 
4193   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4194   assert(_task_queues != NULL, "invariant");
4195   assert(_task_queue != NULL, "invariant");
4196   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4197 
4198   assert(!_claimed,
4199          "only one thread should claim this task at any one time");
4200 
4201   // OK, this doesn't safeguard again all possible scenarios, as it is
4202   // possible for two threads to set the _claimed flag at the same
4203   // time. But it is only for debugging purposes anyway and it will
4204   // catch most problems.
4205   _claimed = true;
4206 
4207   _start_time_ms = os::elapsedVTime() * 1000.0;
4208   statsOnly( _interval_start_time_ms = _start_time_ms );
4209 
4210   // If do_stealing is true then do_marking_step will attempt to
4211   // steal work from the other CMTasks. It only makes sense to
4212   // enable stealing when the termination protocol is enabled
4213   // and do_marking_step() is not being called serially.
4214   bool do_stealing = do_termination && !is_serial;
4215 
4216   double diff_prediction_ms =
4217     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4218   _time_target_ms = time_target_ms - diff_prediction_ms;
4219 
4220   // set up the variables that are used in the work-based scheme to
4221   // call the regular clock method
4222   _words_scanned = 0;
4223   _refs_reached  = 0;
4224   recalculate_limits();
4225 
4226   // clear all flags
4227   clear_has_aborted();
4228   _has_timed_out = false;
4229   _draining_satb_buffers = false;
4230 
4231   ++_calls;
4232 
4233   if (_cm->verbose_low()) {
4234     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4235                            "target = %1.2lfms >>>>>>>>>>",
4236                            _worker_id, _calls, _time_target_ms);
4237   }
4238 
4239   // Set up the bitmap and oop closures. Anything that uses them is
4240   // eventually called from this method, so it is OK to allocate these
4241   // statically.
4242   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4243   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4244   set_cm_oop_closure(&cm_oop_closure);
4245 
4246   if (_cm->has_overflown()) {
4247     // This can happen if the mark stack overflows during a GC pause
4248     // and this task, after a yield point, restarts. We have to abort
4249     // as we need to get into the overflow protocol which happens
4250     // right at the end of this task.
4251     set_has_aborted();
4252   }
4253 
4254   // First drain any available SATB buffers. After this, we will not
4255   // look at SATB buffers before the next invocation of this method.
4256   // If enough completed SATB buffers are queued up, the regular clock
4257   // will abort this task so that it restarts.
4258   drain_satb_buffers();
4259   // ...then partially drain the local queue and the global stack
4260   drain_local_queue(true);
4261   drain_global_stack(true);
4262 
4263   do {
4264     if (!has_aborted() && _curr_region != NULL) {
4265       // This means that we're already holding on to a region.
4266       assert(_finger != NULL, "if region is not NULL, then the finger "
4267              "should not be NULL either");
4268 
4269       // We might have restarted this task after an evacuation pause
4270       // which might have evacuated the region we're holding on to
4271       // underneath our feet. Let's read its limit again to make sure
4272       // that we do not iterate over a region of the heap that
4273       // contains garbage (update_region_limit() will also move
4274       // _finger to the start of the region if it is found empty).
4275       update_region_limit();
4276       // We will start from _finger not from the start of the region,
4277       // as we might be restarting this task after aborting half-way
4278       // through scanning this region. In this case, _finger points to
4279       // the address where we last found a marked object. If this is a
4280       // fresh region, _finger points to start().
4281       MemRegion mr = MemRegion(_finger, _region_limit);
4282 
4283       if (_cm->verbose_low()) {
4284         gclog_or_tty->print_cr("[%u] we're scanning part "
4285                                "["PTR_FORMAT", "PTR_FORMAT") "
4286                                "of region "HR_FORMAT,
4287                                _worker_id, p2i(_finger), p2i(_region_limit),
4288                                HR_FORMAT_PARAMS(_curr_region));
4289       }
4290 
4291       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
4292              "humongous regions should go around loop once only");
4293 
4294       // Some special cases:
4295       // If the memory region is empty, we can just give up the region.
4296       // If the current region is humongous then we only need to check
4297       // the bitmap for the bit associated with the start of the object,
4298       // scan the object if it's live, and give up the region.
4299       // Otherwise, let's iterate over the bitmap of the part of the region
4300       // that is left.
4301       // If the iteration is successful, give up the region.
4302       if (mr.is_empty()) {
4303         giveup_current_region();
4304         regular_clock_call();
4305       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
4306         if (_nextMarkBitMap->isMarked(mr.start())) {
4307           // The object is marked - apply the closure
4308           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4309           bitmap_closure.do_bit(offset);
4310         }
4311         // Even if this task aborted while scanning the humongous object
4312         // we can (and should) give up the current region.
4313         giveup_current_region();
4314         regular_clock_call();
4315       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4316         giveup_current_region();
4317         regular_clock_call();
4318       } else {
4319         assert(has_aborted(), "currently the only way to do so");
4320         // The only way to abort the bitmap iteration is to return
4321         // false from the do_bit() method. However, inside the
4322         // do_bit() method we move the _finger to point to the
4323         // object currently being looked at. So, if we bail out, we
4324         // have definitely set _finger to something non-null.
4325         assert(_finger != NULL, "invariant");
4326 
4327         // Region iteration was actually aborted. So now _finger
4328         // points to the address of the object we last scanned. If we
4329         // leave it there, when we restart this task, we will rescan
4330         // the object. It is easy to avoid this. We move the finger by
4331         // enough to point to the next possible object header (the
4332         // bitmap knows by how much we need to move it as it knows its
4333         // granularity).
4334         assert(_finger < _region_limit, "invariant");
4335         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4336         // Check if bitmap iteration was aborted while scanning the last object
4337         if (new_finger >= _region_limit) {
4338           giveup_current_region();
4339         } else {
4340           move_finger_to(new_finger);
4341         }
4342       }
4343     }
4344     // At this point we have either completed iterating over the
4345     // region we were holding on to, or we have aborted.
4346 
4347     // We then partially drain the local queue and the global stack.
4348     // (Do we really need this?)
4349     drain_local_queue(true);
4350     drain_global_stack(true);
4351 
4352     // Read the note on the claim_region() method on why it might
4353     // return NULL with potentially more regions available for
4354     // claiming and why we have to check out_of_regions() to determine
4355     // whether we're done or not.
4356     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4357       // We are going to try to claim a new region. We should have
4358       // given up on the previous one.
4359       // Separated the asserts so that we know which one fires.
4360       assert(_curr_region  == NULL, "invariant");
4361       assert(_finger       == NULL, "invariant");
4362       assert(_region_limit == NULL, "invariant");
4363       if (_cm->verbose_low()) {
4364         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4365       }
4366       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4367       if (claimed_region != NULL) {
4368         // Yes, we managed to claim one
4369         statsOnly( ++_regions_claimed );
4370 
4371         if (_cm->verbose_low()) {
4372           gclog_or_tty->print_cr("[%u] we successfully claimed "
4373                                  "region "PTR_FORMAT,
4374                                  _worker_id, p2i(claimed_region));
4375         }
4376 
4377         setup_for_region(claimed_region);
4378         assert(_curr_region == claimed_region, "invariant");
4379       }
4380       // It is important to call the regular clock here. It might take
4381       // a while to claim a region if, for example, we hit a large
4382       // block of empty regions. So we need to call the regular clock
4383       // method once round the loop to make sure it's called
4384       // frequently enough.
4385       regular_clock_call();
4386     }
4387 
4388     if (!has_aborted() && _curr_region == NULL) {
4389       assert(_cm->out_of_regions(),
4390              "at this point we should be out of regions");
4391     }
4392   } while ( _curr_region != NULL && !has_aborted());
4393 
4394   if (!has_aborted()) {
4395     // We cannot check whether the global stack is empty, since other
4396     // tasks might be pushing objects to it concurrently.
4397     assert(_cm->out_of_regions(),
4398            "at this point we should be out of regions");
4399 
4400     if (_cm->verbose_low()) {
4401       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4402     }
4403 
4404     // Try to reduce the number of available SATB buffers so that
4405     // remark has less work to do.
4406     drain_satb_buffers();
4407   }
4408 
4409   // Since we've done everything else, we can now totally drain the
4410   // local queue and global stack.
4411   drain_local_queue(false);
4412   drain_global_stack(false);
4413 
4414   // Attempt at work stealing from other task's queues.
4415   if (do_stealing && !has_aborted()) {
4416     // We have not aborted. This means that we have finished all that
4417     // we could. Let's try to do some stealing...
4418 
4419     // We cannot check whether the global stack is empty, since other
4420     // tasks might be pushing objects to it concurrently.
4421     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4422            "only way to reach here");
4423 
4424     if (_cm->verbose_low()) {
4425       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4426     }
4427 
4428     while (!has_aborted()) {
4429       oop obj;
4430       statsOnly( ++_steal_attempts );
4431 
4432       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4433         if (_cm->verbose_medium()) {
4434           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4435                                  _worker_id, p2i((void*) obj));
4436         }
4437 
4438         statsOnly( ++_steals );
4439 
4440         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4441                "any stolen object should be marked");
4442         scan_object(obj);
4443 
4444         // And since we're towards the end, let's totally drain the
4445         // local queue and global stack.
4446         drain_local_queue(false);
4447         drain_global_stack(false);
4448       } else {
4449         break;
4450       }
4451     }
4452   }
4453 
4454   // If we are about to wrap up and go into termination, check if we
4455   // should raise the overflow flag.
4456   if (do_termination && !has_aborted()) {
4457     if (_cm->force_overflow()->should_force()) {
4458       _cm->set_has_overflown();
4459       regular_clock_call();
4460     }
4461   }
4462 
4463   // We still haven't aborted. Now, let's try to get into the
4464   // termination protocol.
4465   if (do_termination && !has_aborted()) {
4466     // We cannot check whether the global stack is empty, since other
4467     // tasks might be concurrently pushing objects on it.
4468     // Separated the asserts so that we know which one fires.
4469     assert(_cm->out_of_regions(), "only way to reach here");
4470     assert(_task_queue->size() == 0, "only way to reach here");
4471 
4472     if (_cm->verbose_low()) {
4473       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4474     }
4475 
4476     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4477 
4478     // The CMTask class also extends the TerminatorTerminator class,
4479     // hence its should_exit_termination() method will also decide
4480     // whether to exit the termination protocol or not.
4481     bool finished = (is_serial ||
4482                      _cm->terminator()->offer_termination(this));
4483     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4484     _termination_time_ms +=
4485       termination_end_time_ms - _termination_start_time_ms;
4486 
4487     if (finished) {
4488       // We're all done.
4489 
4490       if (_worker_id == 0) {
4491         // let's allow task 0 to do this
4492         if (concurrent()) {
4493           assert(_cm->concurrent_marking_in_progress(), "invariant");
4494           // we need to set this to false before the next
4495           // safepoint. This way we ensure that the marking phase
4496           // doesn't observe any more heap expansions.
4497           _cm->clear_concurrent_marking_in_progress();
4498         }
4499       }
4500 
4501       // We can now guarantee that the global stack is empty, since
4502       // all other tasks have finished. We separated the guarantees so
4503       // that, if a condition is false, we can immediately find out
4504       // which one.
4505       guarantee(_cm->out_of_regions(), "only way to reach here");
4506       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4507       guarantee(_task_queue->size() == 0, "only way to reach here");
4508       guarantee(!_cm->has_overflown(), "only way to reach here");
4509       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4510 
4511       if (_cm->verbose_low()) {
4512         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4513       }
4514     } else {
4515       // Apparently there's more work to do. Let's abort this task. It
4516       // will restart it and we can hopefully find more things to do.
4517 
4518       if (_cm->verbose_low()) {
4519         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4520                                _worker_id);
4521       }
4522 
4523       set_has_aborted();
4524       statsOnly( ++_aborted_termination );
4525     }
4526   }
4527 
4528   // Mainly for debugging purposes to make sure that a pointer to the
4529   // closure which was statically allocated in this frame doesn't
4530   // escape it by accident.
4531   set_cm_oop_closure(NULL);
4532   double end_time_ms = os::elapsedVTime() * 1000.0;
4533   double elapsed_time_ms = end_time_ms - _start_time_ms;
4534   // Update the step history.
4535   _step_times_ms.add(elapsed_time_ms);
4536 
4537   if (has_aborted()) {
4538     // The task was aborted for some reason.
4539 
4540     statsOnly( ++_aborted );
4541 
4542     if (_has_timed_out) {
4543       double diff_ms = elapsed_time_ms - _time_target_ms;
4544       // Keep statistics of how well we did with respect to hitting
4545       // our target only if we actually timed out (if we aborted for
4546       // other reasons, then the results might get skewed).
4547       _marking_step_diffs_ms.add(diff_ms);
4548     }
4549 
4550     if (_cm->has_overflown()) {
4551       // This is the interesting one. We aborted because a global
4552       // overflow was raised. This means we have to restart the
4553       // marking phase and start iterating over regions. However, in
4554       // order to do this we have to make sure that all tasks stop
4555       // what they are doing and re-initialize in a safe manner. We
4556       // will achieve this with the use of two barrier sync points.
4557 
4558       if (_cm->verbose_low()) {
4559         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4560       }
4561 
4562       if (!is_serial) {
4563         // We only need to enter the sync barrier if being called
4564         // from a parallel context
4565         _cm->enter_first_sync_barrier(_worker_id);
4566 
4567         // When we exit this sync barrier we know that all tasks have
4568         // stopped doing marking work. So, it's now safe to
4569         // re-initialize our data structures. At the end of this method,
4570         // task 0 will clear the global data structures.
4571       }
4572 
4573       statsOnly( ++_aborted_overflow );
4574 
4575       // We clear the local state of this task...
4576       clear_region_fields();
4577 
4578       if (!is_serial) {
4579         // ...and enter the second barrier.
4580         _cm->enter_second_sync_barrier(_worker_id);
4581       }
4582       // At this point, if we're during the concurrent phase of
4583       // marking, everything has been re-initialized and we're
4584       // ready to restart.
4585     }
4586 
4587     if (_cm->verbose_low()) {
4588       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4589                              "elapsed = %1.2lfms <<<<<<<<<<",
4590                              _worker_id, _time_target_ms, elapsed_time_ms);
4591       if (_cm->has_aborted()) {
4592         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4593                                _worker_id);
4594       }
4595     }
4596   } else {
4597     if (_cm->verbose_low()) {
4598       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4599                              "elapsed = %1.2lfms <<<<<<<<<<",
4600                              _worker_id, _time_target_ms, elapsed_time_ms);
4601     }
4602   }
4603 
4604   _claimed = false;
4605 }
4606 
4607 CMTask::CMTask(uint worker_id,
4608                ConcurrentMark* cm,
4609                size_t* marked_bytes,
4610                BitMap* card_bm,
4611                CMTaskQueue* task_queue,
4612                CMTaskQueueSet* task_queues)
4613   : _g1h(G1CollectedHeap::heap()),
4614     _worker_id(worker_id), _cm(cm),
4615     _claimed(false),
4616     _nextMarkBitMap(NULL), _hash_seed(17),
4617     _task_queue(task_queue),
4618     _task_queues(task_queues),
4619     _cm_oop_closure(NULL),
4620     _marked_bytes_array(marked_bytes),
4621     _card_bm(card_bm) {
4622   guarantee(task_queue != NULL, "invariant");
4623   guarantee(task_queues != NULL, "invariant");
4624 
4625   statsOnly( _clock_due_to_scanning = 0;
4626              _clock_due_to_marking  = 0 );
4627 
4628   _marking_step_diffs_ms.add(0.5);
4629 }
4630 
4631 // These are formatting macros that are used below to ensure
4632 // consistent formatting. The *_H_* versions are used to format the
4633 // header for a particular value and they should be kept consistent
4634 // with the corresponding macro. Also note that most of the macros add
4635 // the necessary white space (as a prefix) which makes them a bit
4636 // easier to compose.
4637 
4638 // All the output lines are prefixed with this string to be able to
4639 // identify them easily in a large log file.
4640 #define G1PPRL_LINE_PREFIX            "###"
4641 
4642 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4643 #ifdef _LP64
4644 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4645 #else // _LP64
4646 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4647 #endif // _LP64
4648 
4649 // For per-region info
4650 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4651 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4652 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4653 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4654 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4655 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4656 
4657 // For summary info
4658 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4659 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4660 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4661 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4662 
4663 G1PrintRegionLivenessInfoClosure::
4664 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4665   : _out(out),
4666     _total_used_bytes(0), _total_capacity_bytes(0),
4667     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4668     _hum_used_bytes(0), _hum_capacity_bytes(0),
4669     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4670     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4671   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4672   MemRegion g1_committed = g1h->g1_committed();
4673   MemRegion g1_reserved = g1h->g1_reserved();
4674   double now = os::elapsedTime();
4675 
4676   // Print the header of the output.
4677   _out->cr();
4678   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4679   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4680                  G1PPRL_SUM_ADDR_FORMAT("committed")
4681                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4682                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4683                  p2i(g1_committed.start()), p2i(g1_committed.end()),
4684                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4685                  HeapRegion::GrainBytes);
4686   _out->print_cr(G1PPRL_LINE_PREFIX);
4687   _out->print_cr(G1PPRL_LINE_PREFIX
4688                 G1PPRL_TYPE_H_FORMAT
4689                 G1PPRL_ADDR_BASE_H_FORMAT
4690                 G1PPRL_BYTE_H_FORMAT
4691                 G1PPRL_BYTE_H_FORMAT
4692                 G1PPRL_BYTE_H_FORMAT
4693                 G1PPRL_DOUBLE_H_FORMAT
4694                 G1PPRL_BYTE_H_FORMAT
4695                 G1PPRL_BYTE_H_FORMAT,
4696                 "type", "address-range",
4697                 "used", "prev-live", "next-live", "gc-eff",
4698                 "remset", "code-roots");
4699   _out->print_cr(G1PPRL_LINE_PREFIX
4700                 G1PPRL_TYPE_H_FORMAT
4701                 G1PPRL_ADDR_BASE_H_FORMAT
4702                 G1PPRL_BYTE_H_FORMAT
4703                 G1PPRL_BYTE_H_FORMAT
4704                 G1PPRL_BYTE_H_FORMAT
4705                 G1PPRL_DOUBLE_H_FORMAT
4706                 G1PPRL_BYTE_H_FORMAT
4707                 G1PPRL_BYTE_H_FORMAT,
4708                 "", "",
4709                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4710                 "(bytes)", "(bytes)");
4711 }
4712 
4713 // It takes as a parameter a reference to one of the _hum_* fields, it
4714 // deduces the corresponding value for a region in a humongous region
4715 // series (either the region size, or what's left if the _hum_* field
4716 // is < the region size), and updates the _hum_* field accordingly.
4717 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4718   size_t bytes = 0;
4719   // The > 0 check is to deal with the prev and next live bytes which
4720   // could be 0.
4721   if (*hum_bytes > 0) {
4722     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4723     *hum_bytes -= bytes;
4724   }
4725   return bytes;
4726 }
4727 
4728 // It deduces the values for a region in a humongous region series
4729 // from the _hum_* fields and updates those accordingly. It assumes
4730 // that that _hum_* fields have already been set up from the "starts
4731 // humongous" region and we visit the regions in address order.
4732 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4733                                                      size_t* capacity_bytes,
4734                                                      size_t* prev_live_bytes,
4735                                                      size_t* next_live_bytes) {
4736   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4737   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4738   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4739   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4740   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4741 }
4742 
4743 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4744   const char* type = "";
4745   HeapWord* bottom       = r->bottom();
4746   HeapWord* end          = r->end();
4747   size_t capacity_bytes  = r->capacity();
4748   size_t used_bytes      = r->used();
4749   size_t prev_live_bytes = r->live_bytes();
4750   size_t next_live_bytes = r->next_live_bytes();
4751   double gc_eff          = r->gc_efficiency();
4752   size_t remset_bytes    = r->rem_set()->mem_size();
4753   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4754 
4755   if (r->used() == 0) {
4756     type = "FREE";
4757   } else if (r->is_survivor()) {
4758     type = "SURV";
4759   } else if (r->is_young()) {
4760     type = "EDEN";
4761   } else if (r->startsHumongous()) {
4762     type = "HUMS";
4763 
4764     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4765            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4766            "they should have been zeroed after the last time we used them");
4767     // Set up the _hum_* fields.
4768     _hum_capacity_bytes  = capacity_bytes;
4769     _hum_used_bytes      = used_bytes;
4770     _hum_prev_live_bytes = prev_live_bytes;
4771     _hum_next_live_bytes = next_live_bytes;
4772     get_hum_bytes(&used_bytes, &capacity_bytes,
4773                   &prev_live_bytes, &next_live_bytes);
4774     end = bottom + HeapRegion::GrainWords;
4775   } else if (r->continuesHumongous()) {
4776     type = "HUMC";
4777     get_hum_bytes(&used_bytes, &capacity_bytes,
4778                   &prev_live_bytes, &next_live_bytes);
4779     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4780   } else {
4781     type = "OLD";
4782   }
4783 
4784   _total_used_bytes      += used_bytes;
4785   _total_capacity_bytes  += capacity_bytes;
4786   _total_prev_live_bytes += prev_live_bytes;
4787   _total_next_live_bytes += next_live_bytes;
4788   _total_remset_bytes    += remset_bytes;
4789   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4790 
4791   // Print a line for this particular region.
4792   _out->print_cr(G1PPRL_LINE_PREFIX
4793                  G1PPRL_TYPE_FORMAT
4794                  G1PPRL_ADDR_BASE_FORMAT
4795                  G1PPRL_BYTE_FORMAT
4796                  G1PPRL_BYTE_FORMAT
4797                  G1PPRL_BYTE_FORMAT
4798                  G1PPRL_DOUBLE_FORMAT
4799                  G1PPRL_BYTE_FORMAT
4800                  G1PPRL_BYTE_FORMAT,
4801                  type, p2i(bottom), p2i(end),
4802                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4803                  remset_bytes, strong_code_roots_bytes);
4804 
4805   return false;
4806 }
4807 
4808 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4809   // add static memory usages to remembered set sizes
4810   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4811   // Print the footer of the output.
4812   _out->print_cr(G1PPRL_LINE_PREFIX);
4813   _out->print_cr(G1PPRL_LINE_PREFIX
4814                  " SUMMARY"
4815                  G1PPRL_SUM_MB_FORMAT("capacity")
4816                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4817                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4818                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4819                  G1PPRL_SUM_MB_FORMAT("remset")
4820                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4821                  bytes_to_mb(_total_capacity_bytes),
4822                  bytes_to_mb(_total_used_bytes),
4823                  perc(_total_used_bytes, _total_capacity_bytes),
4824                  bytes_to_mb(_total_prev_live_bytes),
4825                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4826                  bytes_to_mb(_total_next_live_bytes),
4827                  perc(_total_next_live_bytes, _total_capacity_bytes),
4828                  bytes_to_mb(_total_remset_bytes),
4829                  bytes_to_mb(_total_strong_code_roots_bytes));
4830   _out->cr();
4831 }