1 
   2 /*
   3  * Copyright (c) 2002, 2014, Oracle and/or its affiliates. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
  30 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  35 #include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
  36 #include "gc_implementation/parallelScavenge/psTasks.hpp"
  37 #include "gc_implementation/shared/gcHeapSummary.hpp"
  38 #include "gc_implementation/shared/gcTimer.hpp"
  39 #include "gc_implementation/shared/gcTrace.hpp"
  40 #include "gc_implementation/shared/gcTraceTime.hpp"
  41 #include "gc_implementation/shared/isGCActiveMark.hpp"
  42 #include "gc_implementation/shared/spaceDecorator.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "gc_interface/gcCause.hpp"
  45 #include "memory/collectorPolicy.hpp"
  46 #include "memory/gcLocker.inline.hpp"
  47 #include "memory/referencePolicy.hpp"
  48 #include "memory/referenceProcessor.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oop.psgc.inline.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/fprofiler.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/threadCritical.hpp"
  56 #include "runtime/vmThread.hpp"
  57 #include "runtime/vm_operations.hpp"
  58 #include "services/memoryService.hpp"
  59 #include "utilities/stack.inline.hpp"
  60 
  61 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  62 
  63 HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
  64 int                        PSScavenge::_consecutive_skipped_scavenges = 0;
  65 ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
  66 CardTableExtension*        PSScavenge::_card_table = NULL;
  67 bool                       PSScavenge::_survivor_overflow = false;
  68 uint                       PSScavenge::_tenuring_threshold = 0;
  69 HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
  70 uintptr_t                  PSScavenge::_young_generation_boundary_compressed = 0;
  71 elapsedTimer               PSScavenge::_accumulated_time;
  72 STWGCTimer                 PSScavenge::_gc_timer;
  73 ParallelScavengeTracer     PSScavenge::_gc_tracer;
  74 Stack<markOop, mtGC>       PSScavenge::_preserved_mark_stack;
  75 Stack<oop, mtGC>           PSScavenge::_preserved_oop_stack;
  76 CollectorCounters*         PSScavenge::_counters = NULL;
  77 
  78 // Define before use
  79 class PSIsAliveClosure: public BoolObjectClosure {
  80 public:
  81   bool do_object_b(oop p) {
  82     return (!PSScavenge::is_obj_in_young(p)) || p->is_forwarded();
  83   }
  84 };
  85 
  86 PSIsAliveClosure PSScavenge::_is_alive_closure;
  87 
  88 class PSKeepAliveClosure: public OopClosure {
  89 protected:
  90   MutableSpace* _to_space;
  91   PSPromotionManager* _promotion_manager;
  92 
  93 public:
  94   PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
  95     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  96     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  97     _to_space = heap->young_gen()->to_space();
  98 
  99     assert(_promotion_manager != NULL, "Sanity");
 100   }
 101 
 102   template <class T> void do_oop_work(T* p) {
 103     assert (!oopDesc::is_null(*p), "expected non-null ref");
 104     assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
 105             "expected an oop while scanning weak refs");
 106 
 107     // Weak refs may be visited more than once.
 108     if (PSScavenge::should_scavenge(p, _to_space)) {
 109       PSScavenge::copy_and_push_safe_barrier<T, /*promote_immediately=*/false>(_promotion_manager, p);
 110     }
 111   }
 112   virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
 113   virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
 114 };
 115 
 116 class PSEvacuateFollowersClosure: public VoidClosure {
 117  private:
 118   PSPromotionManager* _promotion_manager;
 119  public:
 120   PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
 121 
 122   virtual void do_void() {
 123     assert(_promotion_manager != NULL, "Sanity");
 124     _promotion_manager->drain_stacks(true);
 125     guarantee(_promotion_manager->stacks_empty(),
 126               "stacks should be empty at this point");
 127   }
 128 };
 129 
 130 class PSPromotionFailedClosure : public ObjectClosure {
 131   virtual void do_object(oop obj) {
 132     if (obj->is_forwarded()) {
 133       obj->init_mark();
 134     }
 135   }
 136 };
 137 
 138 class PSRefProcTaskProxy: public GCTask {
 139   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 140   ProcessTask & _rp_task;
 141   uint          _work_id;
 142 public:
 143   PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
 144     : _rp_task(rp_task),
 145       _work_id(work_id)
 146   { }
 147 
 148 private:
 149   virtual char* name() { return (char *)"Process referents by policy in parallel"; }
 150   virtual void do_it(GCTaskManager* manager, uint which);
 151 };
 152 
 153 void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
 154 {
 155   PSPromotionManager* promotion_manager =
 156     PSPromotionManager::gc_thread_promotion_manager(which);
 157   assert(promotion_manager != NULL, "sanity check");
 158   PSKeepAliveClosure keep_alive(promotion_manager);
 159   PSEvacuateFollowersClosure evac_followers(promotion_manager);
 160   PSIsAliveClosure is_alive;
 161   _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
 162 }
 163 
 164 class PSRefEnqueueTaskProxy: public GCTask {
 165   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 166   EnqueueTask& _enq_task;
 167   uint         _work_id;
 168 
 169 public:
 170   PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
 171     : _enq_task(enq_task),
 172       _work_id(work_id)
 173   { }
 174 
 175   virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
 176   virtual void do_it(GCTaskManager* manager, uint which)
 177   {
 178     _enq_task.work(_work_id);
 179   }
 180 };
 181 
 182 class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 183   virtual void execute(ProcessTask& task);
 184   virtual void execute(EnqueueTask& task);
 185 };
 186 
 187 void PSRefProcTaskExecutor::execute(ProcessTask& task)
 188 {
 189   GCTaskQueue* q = GCTaskQueue::create();
 190   GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
 191   for(uint i=0; i < manager->active_workers(); i++) {
 192     q->enqueue(new PSRefProcTaskProxy(task, i));
 193   }
 194   ParallelTaskTerminator terminator(manager->active_workers(),
 195                  (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth());
 196   if (task.marks_oops_alive() && manager->active_workers() > 1) {
 197     for (uint j = 0; j < manager->active_workers(); j++) {
 198       q->enqueue(new StealTask(&terminator));
 199     }
 200   }
 201   manager->execute_and_wait(q);
 202 }
 203 
 204 
 205 void PSRefProcTaskExecutor::execute(EnqueueTask& task)
 206 {
 207   GCTaskQueue* q = GCTaskQueue::create();
 208   GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
 209   for(uint i=0; i < manager->active_workers(); i++) {
 210     q->enqueue(new PSRefEnqueueTaskProxy(task, i));
 211   }
 212   manager->execute_and_wait(q);
 213 }
 214 
 215 // This method contains all heap specific policy for invoking scavenge.
 216 // PSScavenge::invoke_no_policy() will do nothing but attempt to
 217 // scavenge. It will not clean up after failed promotions, bail out if
 218 // we've exceeded policy time limits, or any other special behavior.
 219 // All such policy should be placed here.
 220 //
 221 // Note that this method should only be called from the vm_thread while
 222 // at a safepoint!
 223 bool PSScavenge::invoke() {
 224   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 225   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 226   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 227 
 228   ParallelScavengeHeap* const heap = (ParallelScavengeHeap*)Universe::heap();
 229   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 230 
 231   PSAdaptiveSizePolicy* policy = heap->size_policy();
 232   IsGCActiveMark mark;
 233 
 234   const bool scavenge_done = PSScavenge::invoke_no_policy();
 235   const bool need_full_gc = !scavenge_done ||
 236     policy->should_full_GC(heap->old_gen()->free_in_bytes());
 237   bool full_gc_done = false;
 238 
 239   if (UsePerfData) {
 240     PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
 241     const int ffs_val = need_full_gc ? full_follows_scavenge : not_skipped;
 242     counters->update_full_follows_scavenge(ffs_val);
 243   }
 244 
 245   if (need_full_gc) {
 246     GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
 247     CollectorPolicy* cp = heap->collector_policy();
 248     const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
 249 
 250     if (UseParallelOldGC) {
 251       full_gc_done = PSParallelCompact::invoke_no_policy(clear_all_softrefs);
 252     } else {
 253       full_gc_done = PSMarkSweep::invoke_no_policy(clear_all_softrefs);
 254     }
 255   }
 256 
 257   return full_gc_done;
 258 }
 259 
 260 // This method contains no policy. You should probably
 261 // be calling invoke() instead.
 262 bool PSScavenge::invoke_no_policy() {
 263   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 264   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 265 
 266   assert(_preserved_mark_stack.is_empty(), "should be empty");
 267   assert(_preserved_oop_stack.is_empty(), "should be empty");
 268 
 269   _gc_timer.register_gc_start();
 270 
 271   TimeStamp scavenge_entry;
 272   TimeStamp scavenge_midpoint;
 273   TimeStamp scavenge_exit;
 274 
 275   scavenge_entry.update();
 276 
 277   if (GC_locker::check_active_before_gc()) {
 278     return false;
 279   }
 280 
 281   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 282   GCCause::Cause gc_cause = heap->gc_cause();
 283   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 284 
 285   // Check for potential problems.
 286   if (!should_attempt_scavenge()) {
 287     return false;
 288   }
 289 
 290   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
 291 
 292   bool promotion_failure_occurred = false;
 293 
 294   PSYoungGen* young_gen = heap->young_gen();
 295   PSOldGen* old_gen = heap->old_gen();
 296   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 297 
 298   heap->increment_total_collections();
 299 
 300   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 301 
 302   if ((gc_cause != GCCause::_java_lang_system_gc) ||
 303        UseAdaptiveSizePolicyWithSystemGC) {
 304     // Gather the feedback data for eden occupancy.
 305     young_gen->eden_space()->accumulate_statistics();
 306   }
 307 
 308   if (ZapUnusedHeapArea) {
 309     // Save information needed to minimize mangling
 310     heap->record_gen_tops_before_GC();
 311   }
 312 
 313   heap->print_heap_before_gc();
 314   heap->trace_heap_before_gc(&_gc_tracer);
 315 
 316   assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
 317   assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
 318 
 319   size_t prev_used = heap->used();
 320 
 321   // Fill in TLABs
 322   heap->accumulate_statistics_all_tlabs();
 323   heap->ensure_parsability(true);  // retire TLABs
 324 
 325   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 326     HandleMark hm;  // Discard invalid handles created during verification
 327     Universe::verify(" VerifyBeforeGC:");
 328   }
 329 
 330   {
 331     ResourceMark rm;
 332     HandleMark hm;
 333 
 334     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 335     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 336     GCTraceTime t1(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer.gc_id());
 337     TraceCollectorStats tcs(counters());
 338     TraceMemoryManagerStats tms(false /* not full GC */,gc_cause);
 339 
 340     if (TraceYoungGenTime) accumulated_time()->start();
 341 
 342     // Let the size policy know we're starting
 343     size_policy->minor_collection_begin();
 344 
 345     // Verify the object start arrays.
 346     if (VerifyObjectStartArray &&
 347         VerifyBeforeGC) {
 348       old_gen->verify_object_start_array();
 349     }
 350 
 351     // Verify no unmarked old->young roots
 352     if (VerifyRememberedSets) {
 353       CardTableExtension::verify_all_young_refs_imprecise();
 354     }
 355 
 356     if (!ScavengeWithObjectsInToSpace) {
 357       assert(young_gen->to_space()->is_empty(),
 358              "Attempt to scavenge with live objects in to_space");
 359       young_gen->to_space()->clear(SpaceDecorator::Mangle);
 360     } else if (ZapUnusedHeapArea) {
 361       young_gen->to_space()->mangle_unused_area();
 362     }
 363     save_to_space_top_before_gc();
 364 
 365     COMPILER2_PRESENT(DerivedPointerTable::clear());
 366 
 367     reference_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 368     reference_processor()->setup_policy(false);
 369 
 370     // We track how much was promoted to the next generation for
 371     // the AdaptiveSizePolicy.
 372     size_t old_gen_used_before = old_gen->used_in_bytes();
 373 
 374     // For PrintGCDetails
 375     size_t young_gen_used_before = young_gen->used_in_bytes();
 376 
 377     // Reset our survivor overflow.
 378     set_survivor_overflow(false);
 379 
 380     // We need to save the old top values before
 381     // creating the promotion_manager. We pass the top
 382     // values to the card_table, to prevent it from
 383     // straying into the promotion labs.
 384     HeapWord* old_top = old_gen->object_space()->top();
 385 
 386     // Release all previously held resources
 387     gc_task_manager()->release_all_resources();
 388 
 389     // Set the number of GC threads to be used in this collection
 390     gc_task_manager()->set_active_gang();
 391     gc_task_manager()->task_idle_workers();
 392     // Get the active number of workers here and use that value
 393     // throughout the methods.
 394     uint active_workers = gc_task_manager()->active_workers();
 395     heap->set_par_threads(active_workers);
 396 
 397     PSPromotionManager::pre_scavenge();
 398 
 399     // We'll use the promotion manager again later.
 400     PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
 401     {
 402       GCTraceTime tm("Scavenge", false, false, &_gc_timer, _gc_tracer.gc_id());
 403       ParallelScavengeHeap::ParStrongRootsScope psrs;
 404 
 405       GCTaskQueue* q = GCTaskQueue::create();
 406 
 407       if (!old_gen->object_space()->is_empty()) {
 408         // There are only old-to-young pointers if there are objects
 409         // in the old gen.
 410         uint stripe_total = active_workers;
 411         for(uint i=0; i < stripe_total; i++) {
 412           q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i, stripe_total));
 413         }
 414       }
 415 
 416       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
 417       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
 418       // We scan the thread roots in parallel
 419       Threads::create_thread_roots_tasks(q);
 420       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
 421       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
 422       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
 423       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
 424       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::class_loader_data));
 425       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
 426       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
 427 
 428       ParallelTaskTerminator terminator(
 429         active_workers,
 430                   (TaskQueueSetSuper*) promotion_manager->stack_array_depth());
 431       if (active_workers > 1) {
 432         for (uint j = 0; j < active_workers; j++) {
 433           q->enqueue(new StealTask(&terminator));
 434         }
 435       }
 436 
 437       gc_task_manager()->execute_and_wait(q);
 438     }
 439 
 440     scavenge_midpoint.update();
 441 
 442     // Process reference objects discovered during scavenge
 443     {
 444       GCTraceTime tm("References", false, false, &_gc_timer, _gc_tracer.gc_id());
 445 
 446       reference_processor()->setup_policy(false); // not always_clear
 447       reference_processor()->set_active_mt_degree(active_workers);
 448       PSKeepAliveClosure keep_alive(promotion_manager);
 449       PSEvacuateFollowersClosure evac_followers(promotion_manager);
 450       ReferenceProcessorStats stats;
 451       if (reference_processor()->processing_is_mt()) {
 452         PSRefProcTaskExecutor task_executor;
 453         stats = reference_processor()->process_discovered_references(
 454           &_is_alive_closure, &keep_alive, &evac_followers, &task_executor,
 455           &_gc_timer, _gc_tracer.gc_id());
 456       } else {
 457         stats = reference_processor()->process_discovered_references(
 458           &_is_alive_closure, &keep_alive, &evac_followers, NULL, &_gc_timer, _gc_tracer.gc_id());
 459       }
 460 
 461       _gc_tracer.report_gc_reference_stats(stats);
 462 
 463       // Enqueue reference objects discovered during scavenge.
 464       if (reference_processor()->processing_is_mt()) {
 465         PSRefProcTaskExecutor task_executor;
 466         reference_processor()->enqueue_discovered_references(&task_executor);
 467       } else {
 468         reference_processor()->enqueue_discovered_references(NULL);
 469       }
 470     }
 471 
 472     {
 473       GCTraceTime tm("StringTable", false, false, &_gc_timer, _gc_tracer.gc_id());
 474       // Unlink any dead interned Strings and process the remaining live ones.
 475       PSScavengeRootsClosure root_closure(promotion_manager);
 476       StringTable::unlink_or_oops_do(&_is_alive_closure, &root_closure);
 477     }
 478 
 479     // Finally, flush the promotion_manager's labs, and deallocate its stacks.
 480     promotion_failure_occurred = PSPromotionManager::post_scavenge(_gc_tracer);
 481     if (promotion_failure_occurred) {
 482       clean_up_failed_promotion();
 483       if (PrintGC) {
 484         gclog_or_tty->print("--");
 485       }
 486     }
 487 
 488     // Let the size policy know we're done.  Note that we count promotion
 489     // failure cleanup time as part of the collection (otherwise, we're
 490     // implicitly saying it's mutator time).
 491     size_policy->minor_collection_end(gc_cause);
 492 
 493     if (!promotion_failure_occurred) {
 494       // Swap the survivor spaces.
 495       young_gen->eden_space()->clear(SpaceDecorator::Mangle);
 496       young_gen->from_space()->clear(SpaceDecorator::Mangle);
 497       young_gen->swap_spaces();
 498 
 499       size_t survived = young_gen->from_space()->used_in_bytes();
 500       size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
 501       size_policy->update_averages(_survivor_overflow, survived, promoted);
 502 
 503       // A successful scavenge should restart the GC time limit count which is
 504       // for full GC's.
 505       size_policy->reset_gc_overhead_limit_count();
 506       if (UseAdaptiveSizePolicy) {
 507         // Calculate the new survivor size and tenuring threshold
 508 
 509         if (PrintAdaptiveSizePolicy) {
 510           gclog_or_tty->print("AdaptiveSizeStart: ");
 511           gclog_or_tty->stamp();
 512           gclog_or_tty->print_cr(" collection: %d ",
 513                          heap->total_collections());
 514 
 515           if (Verbose) {
 516             gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
 517               " young_gen_capacity: " SIZE_FORMAT,
 518               old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 519           }
 520         }
 521 
 522 
 523         if (UsePerfData) {
 524           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 525           counters->update_old_eden_size(
 526             size_policy->calculated_eden_size_in_bytes());
 527           counters->update_old_promo_size(
 528             size_policy->calculated_promo_size_in_bytes());
 529           counters->update_old_capacity(old_gen->capacity_in_bytes());
 530           counters->update_young_capacity(young_gen->capacity_in_bytes());
 531           counters->update_survived(survived);
 532           counters->update_promoted(promoted);
 533           counters->update_survivor_overflowed(_survivor_overflow);
 534         }
 535 
 536         size_t max_young_size = young_gen->max_size();
 537 
 538         // Deciding a free ratio in the young generation is tricky, so if
 539         // MinHeapFreeRatio or MaxHeapFreeRatio are in use (implicating
 540         // that the old generation size may have been limited because of them) we
 541         // should then limit our young generation size using NewRatio to have it
 542         // follow the old generation size.
 543         if (MinHeapFreeRatio != 0 || MaxHeapFreeRatio != 100) {
 544           max_young_size = MIN2(old_gen->capacity_in_bytes() / NewRatio, young_gen->max_size());
 545         }
 546 
 547         size_t survivor_limit =
 548           size_policy->max_survivor_size(max_young_size);
 549         _tenuring_threshold =
 550           size_policy->compute_survivor_space_size_and_threshold(
 551                                                            _survivor_overflow,
 552                                                            _tenuring_threshold,
 553                                                            survivor_limit);
 554 
 555        if (PrintTenuringDistribution) {
 556          gclog_or_tty->cr();
 557          gclog_or_tty->print_cr("Desired survivor size " SIZE_FORMAT " bytes, new threshold "
 558                                 UINTX_FORMAT " (max threshold " UINTX_FORMAT ")",
 559                                 size_policy->calculated_survivor_size_in_bytes(),
 560                                 _tenuring_threshold, MaxTenuringThreshold);
 561        }
 562 
 563         if (UsePerfData) {
 564           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 565           counters->update_tenuring_threshold(_tenuring_threshold);
 566           counters->update_survivor_size_counters();
 567         }
 568 
 569         // Do call at minor collections?
 570         // Don't check if the size_policy is ready at this
 571         // level.  Let the size_policy check that internally.
 572         if (UseAdaptiveGenerationSizePolicyAtMinorCollection &&
 573             ((gc_cause != GCCause::_java_lang_system_gc) ||
 574               UseAdaptiveSizePolicyWithSystemGC)) {
 575 
 576           // Calculate optimal free space amounts
 577           assert(young_gen->max_size() >
 578             young_gen->from_space()->capacity_in_bytes() +
 579             young_gen->to_space()->capacity_in_bytes(),
 580             "Sizes of space in young gen are out-of-bounds");
 581 
 582           size_t young_live = young_gen->used_in_bytes();
 583           size_t eden_live = young_gen->eden_space()->used_in_bytes();
 584           size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
 585           size_t max_old_gen_size = old_gen->max_gen_size();
 586           size_t max_eden_size = max_young_size -
 587             young_gen->from_space()->capacity_in_bytes() -
 588             young_gen->to_space()->capacity_in_bytes();
 589 
 590           // Used for diagnostics
 591           size_policy->clear_generation_free_space_flags();
 592 
 593           size_policy->compute_eden_space_size(young_live,
 594                                                eden_live,
 595                                                cur_eden,
 596                                                max_eden_size,
 597                                                false /* not full gc*/);
 598 
 599           size_policy->check_gc_overhead_limit(young_live,
 600                                                eden_live,
 601                                                max_old_gen_size,
 602                                                max_eden_size,
 603                                                false /* not full gc*/,
 604                                                gc_cause,
 605                                                heap->collector_policy());
 606 
 607           size_policy->decay_supplemental_growth(false /* not full gc*/);
 608         }
 609         // Resize the young generation at every collection
 610         // even if new sizes have not been calculated.  This is
 611         // to allow resizes that may have been inhibited by the
 612         // relative location of the "to" and "from" spaces.
 613 
 614         // Resizing the old gen at minor collects can cause increases
 615         // that don't feed back to the generation sizing policy until
 616         // a major collection.  Don't resize the old gen here.
 617 
 618         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 619                         size_policy->calculated_survivor_size_in_bytes());
 620 
 621         if (PrintAdaptiveSizePolicy) {
 622           gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 623                          heap->total_collections());
 624         }
 625       }
 626 
 627       // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
 628       // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
 629       // Also update() will case adaptive NUMA chunk resizing.
 630       assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
 631       young_gen->eden_space()->update();
 632 
 633       heap->gc_policy_counters()->update_counters();
 634 
 635       heap->resize_all_tlabs();
 636 
 637       assert(young_gen->to_space()->is_empty(), "to space should be empty now");
 638     }
 639 
 640     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 641 
 642     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
 643 
 644     {
 645       GCTraceTime tm("Prune Scavenge Root Methods", false, false, &_gc_timer, _gc_tracer.gc_id());
 646 
 647       CodeCache::prune_scavenge_root_nmethods();
 648     }
 649 
 650     // Re-verify object start arrays
 651     if (VerifyObjectStartArray &&
 652         VerifyAfterGC) {
 653       old_gen->verify_object_start_array();
 654     }
 655 
 656     // Verify all old -> young cards are now precise
 657     if (VerifyRememberedSets) {
 658       // Precise verification will give false positives. Until this is fixed,
 659       // use imprecise verification.
 660       // CardTableExtension::verify_all_young_refs_precise();
 661       CardTableExtension::verify_all_young_refs_imprecise();
 662     }
 663 
 664     if (TraceYoungGenTime) accumulated_time()->stop();
 665 
 666     if (PrintGC) {
 667       if (PrintGCDetails) {
 668         // Don't print a GC timestamp here.  This is after the GC so
 669         // would be confusing.
 670         young_gen->print_used_change(young_gen_used_before);
 671       }
 672       heap->print_heap_change(prev_used);
 673     }
 674 
 675     // Track memory usage and detect low memory
 676     MemoryService::track_memory_usage();
 677     heap->update_counters();
 678 
 679     gc_task_manager()->release_idle_workers();
 680   }
 681 
 682   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 683     HandleMark hm;  // Discard invalid handles created during verification
 684     Universe::verify(" VerifyAfterGC:");
 685   }
 686 
 687   heap->print_heap_after_gc();
 688   heap->trace_heap_after_gc(&_gc_tracer);
 689   _gc_tracer.report_tenuring_threshold(tenuring_threshold());
 690 
 691   if (ZapUnusedHeapArea) {
 692     young_gen->eden_space()->check_mangled_unused_area_complete();
 693     young_gen->from_space()->check_mangled_unused_area_complete();
 694     young_gen->to_space()->check_mangled_unused_area_complete();
 695   }
 696 
 697   scavenge_exit.update();
 698 
 699   if (PrintGCTaskTimeStamps) {
 700     tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
 701                   scavenge_entry.ticks(), scavenge_midpoint.ticks(),
 702                   scavenge_exit.ticks());
 703     gc_task_manager()->print_task_time_stamps();
 704   }
 705 
 706 #ifdef TRACESPINNING
 707   ParallelTaskTerminator::print_termination_counts();
 708 #endif
 709 
 710 
 711   _gc_timer.register_gc_end();
 712 
 713   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
 714 
 715   return !promotion_failure_occurred;
 716 }
 717 
 718 // This method iterates over all objects in the young generation,
 719 // unforwarding markOops. It then restores any preserved mark oops,
 720 // and clears the _preserved_mark_stack.
 721 void PSScavenge::clean_up_failed_promotion() {
 722   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 723   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 724 
 725   PSYoungGen* young_gen = heap->young_gen();
 726 
 727   {
 728     ResourceMark rm;
 729 
 730     // Unforward all pointers in the young gen.
 731     PSPromotionFailedClosure unforward_closure;
 732     young_gen->object_iterate(&unforward_closure);
 733 
 734     if (PrintGC && Verbose) {
 735       gclog_or_tty->print_cr("Restoring " SIZE_FORMAT " marks", _preserved_oop_stack.size());
 736     }
 737 
 738     // Restore any saved marks.
 739     while (!_preserved_oop_stack.is_empty()) {
 740       oop obj      = _preserved_oop_stack.pop();
 741       markOop mark = _preserved_mark_stack.pop();
 742       obj->set_mark(mark);
 743     }
 744 
 745     // Clear the preserved mark and oop stack caches.
 746     _preserved_mark_stack.clear(true);
 747     _preserved_oop_stack.clear(true);
 748   }
 749 
 750   // Reset the PromotionFailureALot counters.
 751   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 752 }
 753 
 754 // This method is called whenever an attempt to promote an object
 755 // fails. Some markOops will need preservation, some will not. Note
 756 // that the entire eden is traversed after a failed promotion, with
 757 // all forwarded headers replaced by the default markOop. This means
 758 // it is not necessary to preserve most markOops.
 759 void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
 760   if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
 761     // Should use per-worker private stacks here rather than
 762     // locking a common pair of stacks.
 763     ThreadCritical tc;
 764     _preserved_oop_stack.push(obj);
 765     _preserved_mark_stack.push(obj_mark);
 766   }
 767 }
 768 
 769 bool PSScavenge::should_attempt_scavenge() {
 770   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 771   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 772   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 773 
 774   if (UsePerfData) {
 775     counters->update_scavenge_skipped(not_skipped);
 776   }
 777 
 778   PSYoungGen* young_gen = heap->young_gen();
 779   PSOldGen* old_gen = heap->old_gen();
 780 
 781   if (!ScavengeWithObjectsInToSpace) {
 782     // Do not attempt to promote unless to_space is empty
 783     if (!young_gen->to_space()->is_empty()) {
 784       _consecutive_skipped_scavenges++;
 785       if (UsePerfData) {
 786         counters->update_scavenge_skipped(to_space_not_empty);
 787       }
 788       return false;
 789     }
 790   }
 791 
 792   // Test to see if the scavenge will likely fail.
 793   PSAdaptiveSizePolicy* policy = heap->size_policy();
 794 
 795   // A similar test is done in the policy's should_full_GC().  If this is
 796   // changed, decide if that test should also be changed.
 797   size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
 798   size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
 799   bool result = promotion_estimate < old_gen->free_in_bytes();
 800 
 801   if (PrintGCDetails && Verbose) {
 802     gclog_or_tty->print(result ? "  do scavenge: " : "  skip scavenge: ");
 803     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
 804       " padded_average_promoted " SIZE_FORMAT
 805       " free in old gen " SIZE_FORMAT,
 806       (size_t) policy->average_promoted_in_bytes(),
 807       (size_t) policy->padded_average_promoted_in_bytes(),
 808       old_gen->free_in_bytes());
 809     if (young_gen->used_in_bytes() <
 810         (size_t) policy->padded_average_promoted_in_bytes()) {
 811       gclog_or_tty->print_cr(" padded_promoted_average is greater"
 812         " than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
 813     }
 814   }
 815 
 816   if (result) {
 817     _consecutive_skipped_scavenges = 0;
 818   } else {
 819     _consecutive_skipped_scavenges++;
 820     if (UsePerfData) {
 821       counters->update_scavenge_skipped(promoted_too_large);
 822     }
 823   }
 824   return result;
 825 }
 826 
 827   // Used to add tasks
 828 GCTaskManager* const PSScavenge::gc_task_manager() {
 829   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
 830    "shouldn't return NULL");
 831   return ParallelScavengeHeap::gc_task_manager();
 832 }
 833 
 834 void PSScavenge::initialize() {
 835   // Arguments must have been parsed
 836 
 837   if (AlwaysTenure || NeverTenure) {
 838     assert(MaxTenuringThreshold == 0 || MaxTenuringThreshold == markOopDesc::max_age + 1,
 839         err_msg("MaxTenuringThreshold should be 0 or markOopDesc::max_age + 1, but is %d", (int) MaxTenuringThreshold));
 840     _tenuring_threshold = MaxTenuringThreshold;
 841   } else {
 842     // We want to smooth out our startup times for the AdaptiveSizePolicy
 843     _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
 844                                                     MaxTenuringThreshold;
 845   }
 846 
 847   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 848   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 849 
 850   PSYoungGen* young_gen = heap->young_gen();
 851   PSOldGen* old_gen = heap->old_gen();
 852 
 853   // Set boundary between young_gen and old_gen
 854   assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
 855          "old above young");
 856   set_young_generation_boundary(young_gen->eden_space()->bottom());
 857 
 858   // Initialize ref handling object for scavenging.
 859   MemRegion mr = young_gen->reserved();
 860 
 861   _ref_processor =
 862     new ReferenceProcessor(mr,                         // span
 863                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 864                            (int) ParallelGCThreads,    // mt processing degree
 865                            true,                       // mt discovery
 866                            (int) ParallelGCThreads,    // mt discovery degree
 867                            true,                       // atomic_discovery
 868                            NULL);                      // header provides liveness info
 869 
 870   // Cache the cardtable
 871   BarrierSet* bs = Universe::heap()->barrier_set();
 872   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
 873   _card_table = (CardTableExtension*)bs;
 874 
 875   _counters = new CollectorCounters("PSScavenge", 0);
 876 }