1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/collectorCounters.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/gcHeapSummary.hpp"
  29 #include "gc_implementation/shared/gcTimer.hpp"
  30 #include "gc_implementation/shared/gcTraceTime.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "gc_interface/collectedHeap.inline.hpp"
  34 #include "memory/defNewGeneration.inline.hpp"
  35 #include "memory/gcLocker.inline.hpp"
  36 #include "memory/genCollectedHeap.inline.hpp"
  37 #include "memory/genOopClosures.inline.hpp"
  38 #include "memory/genRemSet.hpp"
  39 #include "memory/generationSpec.hpp"
  40 #include "memory/iterator.hpp"
  41 #include "memory/referencePolicy.hpp"
  42 #include "memory/space.inline.hpp"
  43 #include "oops/instanceRefKlass.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/prefetch.inline.hpp"
  48 #include "runtime/thread.inline.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/globalDefinitions.hpp"
  51 #include "utilities/stack.inline.hpp"
  52 
  53 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  54 
  55 //
  56 // DefNewGeneration functions.
  57 
  58 // Methods of protected closure types.
  59 
  60 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  61   assert(g->level() == 0, "Optimized for youngest gen.");
  62 }
  63 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  64   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  65 }
  66 
  67 DefNewGeneration::KeepAliveClosure::
  68 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  69   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  70   _rs = (CardTableRS*)rs;
  71 }
  72 
  73 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  74 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  75 
  76 
  77 DefNewGeneration::FastKeepAliveClosure::
  78 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  79   DefNewGeneration::KeepAliveClosure(cl) {
  80   _boundary = g->reserved().end();
  81 }
  82 
  83 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  84 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  85 
  86 DefNewGeneration::EvacuateFollowersClosure::
  87 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  88                          ScanClosure* cur, ScanClosure* older) :
  89   _gch(gch), _level(level),
  90   _scan_cur_or_nonheap(cur), _scan_older(older)
  91 {}
  92 
  93 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  94   do {
  95     _gch->gch_oop_since_save_marks_iterate<true>(_level, _scan_cur_or_nonheap,
  96                                        _scan_older);
  97   } while (!_gch->no_allocs_since_save_marks(_level));
  98 }
  99 
 100 DefNewGeneration::FastEvacuateFollowersClosure::
 101 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
 102                              DefNewGeneration* gen,
 103                              FastScanClosure* cur, FastScanClosure* older) :
 104   _gch(gch), _level(level), _gen(gen),
 105   _scan_cur_or_nonheap(cur), _scan_older(older)
 106 {}
 107 
 108 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 109   do {
 110     _gch->gch_oop_since_save_marks_iterate<true>(_level, _scan_cur_or_nonheap,
 111                                        _scan_older);
 112   } while (!_gch->no_allocs_since_save_marks(_level));
 113   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 114 }
 115 
 116 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 117     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 118 {
 119   assert(_g->level() == 0, "Optimized for youngest generation");
 120   _boundary = _g->reserved().end();
 121 }
 122 
 123 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 124 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 125 
 126 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 127     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 128 {
 129   assert(_g->level() == 0, "Optimized for youngest generation");
 130   _boundary = _g->reserved().end();
 131 }
 132 
 133 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 134 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 135 
 136 void KlassScanClosure::do_klass(Klass* klass) {
 137 #ifndef PRODUCT
 138   if (TraceScavenge) {
 139     ResourceMark rm;
 140     gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 141                            klass,
 142                            klass->external_name(),
 143                            klass->has_modified_oops() ? "true" : "false");
 144   }
 145 #endif
 146 
 147   // If the klass has not been dirtied we know that there's
 148   // no references into  the young gen and we can skip it.
 149   if (klass->has_modified_oops()) {
 150     if (_accumulate_modified_oops) {
 151       klass->accumulate_modified_oops();
 152     }
 153 
 154     // Clear this state since we're going to scavenge all the metadata.
 155     klass->clear_modified_oops();
 156 
 157     // Tell the closure which Klass is being scanned so that it can be dirtied
 158     // if oops are left pointing into the young gen.
 159     _scavenge_closure->set_scanned_klass(klass);
 160 
 161     klass->oops_do(_scavenge_closure);
 162 
 163     _scavenge_closure->set_scanned_klass(NULL);
 164   }
 165 }
 166 
 167 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 168   _g(g)
 169 {
 170   assert(_g->level() == 0, "Optimized for youngest generation");
 171   _boundary = _g->reserved().end();
 172 }
 173 
 174 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 175 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 176 
 177 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 178 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 179 
 180 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 181                                    KlassRemSet* klass_rem_set)
 182     : _scavenge_closure(scavenge_closure),
 183       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 184 
 185 
 186 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 187                                    size_t initial_size,
 188                                    int level,
 189                                    const char* policy)
 190   : Generation(rs, initial_size, level, _dispatch_index_generation_def_new),
 191     _promo_failure_drain_in_progress(false),
 192     _should_allocate_from_space(false)
 193 {
 194   MemRegion cmr((HeapWord*)_virtual_space.low(),
 195                 (HeapWord*)_virtual_space.high());
 196   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 197 
 198   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
 199     _eden_space = new ConcEdenSpace(this);
 200   } else {
 201     _eden_space = new EdenSpace(this);
 202   }
 203   _from_space = new ContiguousSpace();
 204   _to_space   = new ContiguousSpace();
 205 
 206   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 207     vm_exit_during_initialization("Could not allocate a new gen space");
 208 
 209   // Compute the maximum eden and survivor space sizes. These sizes
 210   // are computed assuming the entire reserved space is committed.
 211   // These values are exported as performance counters.
 212   uintx alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 213   uintx size = _virtual_space.reserved_size();
 214   _max_survivor_size = compute_survivor_size(size, alignment);
 215   _max_eden_size = size - (2*_max_survivor_size);
 216 
 217   // allocate the performance counters
 218 
 219   // Generation counters -- generation 0, 3 subspaces
 220   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
 221   _gc_counters = new CollectorCounters(policy, 0);
 222 
 223   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 224                                       _gen_counters);
 225   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 226                                       _gen_counters);
 227   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 228                                     _gen_counters);
 229 
 230   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 231   update_counters();
 232   _next_gen = NULL;
 233   _tenuring_threshold = MaxTenuringThreshold;
 234   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 235 
 236   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 237 }
 238 
 239 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 240                                                 bool clear_space,
 241                                                 bool mangle_space) {
 242   uintx alignment =
 243     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 244 
 245   // If the spaces are being cleared (only done at heap initialization
 246   // currently), the survivor spaces need not be empty.
 247   // Otherwise, no care is taken for used areas in the survivor spaces
 248   // so check.
 249   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 250     "Initialization of the survivor spaces assumes these are empty");
 251 
 252   // Compute sizes
 253   uintx size = _virtual_space.committed_size();
 254   uintx survivor_size = compute_survivor_size(size, alignment);
 255   uintx eden_size = size - (2*survivor_size);
 256   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 257 
 258   if (eden_size < minimum_eden_size) {
 259     // May happen due to 64Kb rounding, if so adjust eden size back up
 260     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 261     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 262     uintx unaligned_survivor_size =
 263       align_size_down(maximum_survivor_size, alignment);
 264     survivor_size = MAX2(unaligned_survivor_size, alignment);
 265     eden_size = size - (2*survivor_size);
 266     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 267     assert(eden_size >= minimum_eden_size, "just checking");
 268   }
 269 
 270   char *eden_start = _virtual_space.low();
 271   char *from_start = eden_start + eden_size;
 272   char *to_start   = from_start + survivor_size;
 273   char *to_end     = to_start   + survivor_size;
 274 
 275   assert(to_end == _virtual_space.high(), "just checking");
 276   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 277   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 278   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 279 
 280   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 281   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 282   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 283 
 284   // A minimum eden size implies that there is a part of eden that
 285   // is being used and that affects the initialization of any
 286   // newly formed eden.
 287   bool live_in_eden = minimum_eden_size > 0;
 288 
 289   // If not clearing the spaces, do some checking to verify that
 290   // the space are already mangled.
 291   if (!clear_space) {
 292     // Must check mangling before the spaces are reshaped.  Otherwise,
 293     // the bottom or end of one space may have moved into another
 294     // a failure of the check may not correctly indicate which space
 295     // is not properly mangled.
 296     if (ZapUnusedHeapArea) {
 297       HeapWord* limit = (HeapWord*) _virtual_space.high();
 298       eden()->check_mangled_unused_area(limit);
 299       from()->check_mangled_unused_area(limit);
 300         to()->check_mangled_unused_area(limit);
 301     }
 302   }
 303 
 304   // Reset the spaces for their new regions.
 305   eden()->initialize(edenMR,
 306                      clear_space && !live_in_eden,
 307                      SpaceDecorator::Mangle);
 308   // If clear_space and live_in_eden, we will not have cleared any
 309   // portion of eden above its top. This can cause newly
 310   // expanded space not to be mangled if using ZapUnusedHeapArea.
 311   // We explicitly do such mangling here.
 312   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 313     eden()->mangle_unused_area();
 314   }
 315   from()->initialize(fromMR, clear_space, mangle_space);
 316   to()->initialize(toMR, clear_space, mangle_space);
 317 
 318   // Set next compaction spaces.
 319   eden()->set_next_compaction_space(from());
 320   // The to-space is normally empty before a compaction so need
 321   // not be considered.  The exception is during promotion
 322   // failure handling when to-space can contain live objects.
 323   from()->set_next_compaction_space(NULL);
 324 }
 325 
 326 void DefNewGeneration::swap_spaces() {
 327   ContiguousSpace* s = from();
 328   _from_space        = to();
 329   _to_space          = s;
 330   eden()->set_next_compaction_space(from());
 331   // The to-space is normally empty before a compaction so need
 332   // not be considered.  The exception is during promotion
 333   // failure handling when to-space can contain live objects.
 334   from()->set_next_compaction_space(NULL);
 335 
 336   if (UsePerfData) {
 337     CSpaceCounters* c = _from_counters;
 338     _from_counters = _to_counters;
 339     _to_counters = c;
 340   }
 341 }
 342 
 343 bool DefNewGeneration::expand(size_t bytes) {
 344   MutexLocker x(ExpandHeap_lock);
 345   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 346   bool success = _virtual_space.expand_by(bytes);
 347   if (success && ZapUnusedHeapArea) {
 348     // Mangle newly committed space immediately because it
 349     // can be done here more simply that after the new
 350     // spaces have been computed.
 351     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 352     MemRegion mangle_region(prev_high, new_high);
 353     SpaceMangler::mangle_region(mangle_region);
 354   }
 355 
 356   // Do not attempt an expand-to-the reserve size.  The
 357   // request should properly observe the maximum size of
 358   // the generation so an expand-to-reserve should be
 359   // unnecessary.  Also a second call to expand-to-reserve
 360   // value potentially can cause an undue expansion.
 361   // For example if the first expand fail for unknown reasons,
 362   // but the second succeeds and expands the heap to its maximum
 363   // value.
 364   if (GC_locker::is_active()) {
 365     if (PrintGC && Verbose) {
 366       gclog_or_tty->print_cr("Garbage collection disabled, "
 367         "expanded heap instead");
 368     }
 369   }
 370 
 371   return success;
 372 }
 373 
 374 
 375 void DefNewGeneration::compute_new_size() {
 376   // This is called after a gc that includes the following generation
 377   // (which is required to exist.)  So from-space will normally be empty.
 378   // Note that we check both spaces, since if scavenge failed they revert roles.
 379   // If not we bail out (otherwise we would have to relocate the objects)
 380   if (!from()->is_empty() || !to()->is_empty()) {
 381     return;
 382   }
 383 
 384   int next_level = level() + 1;
 385   GenCollectedHeap* gch = GenCollectedHeap::heap();
 386   assert(next_level < gch->_n_gens,
 387          "DefNewGeneration cannot be an oldest gen");
 388 
 389   Generation* next_gen = gch->_gens[next_level];
 390   size_t old_size = next_gen->capacity();
 391   size_t new_size_before = _virtual_space.committed_size();
 392   size_t min_new_size = spec()->init_size();
 393   size_t max_new_size = reserved().byte_size();
 394   assert(min_new_size <= new_size_before &&
 395          new_size_before <= max_new_size,
 396          "just checking");
 397   // All space sizes must be multiples of Generation::GenGrain.
 398   size_t alignment = Generation::GenGrain;
 399 
 400   // Compute desired new generation size based on NewRatio and
 401   // NewSizeThreadIncrease
 402   size_t desired_new_size = old_size/NewRatio;
 403   int threads_count = Threads::number_of_non_daemon_threads();
 404   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 405   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 406 
 407   // Adjust new generation size
 408   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 409   assert(desired_new_size <= max_new_size, "just checking");
 410 
 411   bool changed = false;
 412   if (desired_new_size > new_size_before) {
 413     size_t change = desired_new_size - new_size_before;
 414     assert(change % alignment == 0, "just checking");
 415     if (expand(change)) {
 416        changed = true;
 417     }
 418     // If the heap failed to expand to the desired size,
 419     // "changed" will be false.  If the expansion failed
 420     // (and at this point it was expected to succeed),
 421     // ignore the failure (leaving "changed" as false).
 422   }
 423   if (desired_new_size < new_size_before && eden()->is_empty()) {
 424     // bail out of shrinking if objects in eden
 425     size_t change = new_size_before - desired_new_size;
 426     assert(change % alignment == 0, "just checking");
 427     _virtual_space.shrink_by(change);
 428     changed = true;
 429   }
 430   if (changed) {
 431     // The spaces have already been mangled at this point but
 432     // may not have been cleared (set top = bottom) and should be.
 433     // Mangling was done when the heap was being expanded.
 434     compute_space_boundaries(eden()->used(),
 435                              SpaceDecorator::Clear,
 436                              SpaceDecorator::DontMangle);
 437     MemRegion cmr((HeapWord*)_virtual_space.low(),
 438                   (HeapWord*)_virtual_space.high());
 439     Universe::heap()->barrier_set()->resize_covered_region(cmr);
 440     if (Verbose && PrintGC) {
 441       size_t new_size_after  = _virtual_space.committed_size();
 442       size_t eden_size_after = eden()->capacity();
 443       size_t survivor_size_after = from()->capacity();
 444       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 445         SIZE_FORMAT "K [eden="
 446         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 447         new_size_before/K, new_size_after/K,
 448         eden_size_after/K, survivor_size_after/K);
 449       if (WizardMode) {
 450         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 451           thread_increase_size/K, threads_count);
 452       }
 453       gclog_or_tty->cr();
 454     }
 455   }
 456 }
 457 
 458 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
 459   assert(false, "NYI -- are you sure you want to call this?");
 460 }
 461 
 462 
 463 size_t DefNewGeneration::capacity() const {
 464   return eden()->capacity()
 465        + from()->capacity();  // to() is only used during scavenge
 466 }
 467 
 468 
 469 size_t DefNewGeneration::used() const {
 470   return eden()->used()
 471        + from()->used();      // to() is only used during scavenge
 472 }
 473 
 474 
 475 size_t DefNewGeneration::free() const {
 476   return eden()->free()
 477        + from()->free();      // to() is only used during scavenge
 478 }
 479 
 480 size_t DefNewGeneration::max_capacity() const {
 481   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 482   const size_t reserved_bytes = reserved().byte_size();
 483   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 484 }
 485 
 486 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 487   return eden()->free();
 488 }
 489 
 490 size_t DefNewGeneration::capacity_before_gc() const {
 491   return eden()->capacity();
 492 }
 493 
 494 size_t DefNewGeneration::contiguous_available() const {
 495   return eden()->free();
 496 }
 497 
 498 
 499 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 500 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 501 
 502 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 503   eden()->object_iterate(blk);
 504   from()->object_iterate(blk);
 505 }
 506 
 507 
 508 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 509                                      bool usedOnly) {
 510   blk->do_space(eden());
 511   blk->do_space(from());
 512   blk->do_space(to());
 513 }
 514 
 515 // The last collection bailed out, we are running out of heap space,
 516 // so we try to allocate the from-space, too.
 517 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 518   HeapWord* result = NULL;
 519   if (Verbose && PrintGCDetails) {
 520     gclog_or_tty->print("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):"
 521                         "  will_fail: %s"
 522                         "  heap_lock: %s"
 523                         "  free: " SIZE_FORMAT,
 524                         size,
 525                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 526                           "true" : "false",
 527                         Heap_lock->is_locked() ? "locked" : "unlocked",
 528                         from()->free());
 529   }
 530   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 531     if (Heap_lock->owned_by_self() ||
 532         (SafepointSynchronize::is_at_safepoint() &&
 533          Thread::current()->is_VM_thread())) {
 534       // If the Heap_lock is not locked by this thread, this will be called
 535       // again later with the Heap_lock held.
 536       result = from()->allocate(size);
 537     } else if (PrintGC && Verbose) {
 538       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 539     }
 540   } else if (PrintGC && Verbose) {
 541     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 542   }
 543   if (PrintGC && Verbose) {
 544     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 545   }
 546   return result;
 547 }
 548 
 549 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 550                                                 bool   is_tlab,
 551                                                 bool   parallel) {
 552   // We don't attempt to expand the young generation (but perhaps we should.)
 553   return allocate(size, is_tlab);
 554 }
 555 
 556 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 557   // Set the desired survivor size to half the real survivor space
 558   _tenuring_threshold =
 559     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 560 }
 561 
 562 void DefNewGeneration::collect(bool   full,
 563                                bool   clear_all_soft_refs,
 564                                size_t size,
 565                                bool   is_tlab) {
 566   assert(full || size > 0, "otherwise we don't want to collect");
 567 
 568   GenCollectedHeap* gch = GenCollectedHeap::heap();
 569 
 570   _gc_timer->register_gc_start();
 571   DefNewTracer gc_tracer;
 572   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 573 
 574   _next_gen = gch->next_gen(this);
 575 
 576   // If the next generation is too full to accommodate promotion
 577   // from this generation, pass on collection; let the next generation
 578   // do it.
 579   if (!collection_attempt_is_safe()) {
 580     if (Verbose && PrintGCDetails) {
 581       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 582     }
 583     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 584     return;
 585   }
 586   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 587 
 588   init_assuming_no_promotion_failure();
 589 
 590   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 591   // Capture heap used before collection (for printing).
 592   size_t gch_prev_used = gch->used();
 593 
 594   gch->trace_heap_before_gc(&gc_tracer);
 595 
 596   SpecializationStats::clear();
 597 
 598   // These can be shared for all code paths
 599   IsAliveClosure is_alive(this);
 600   ScanWeakRefClosure scan_weak_ref(this);
 601 
 602   age_table()->clear();
 603   to()->clear(SpaceDecorator::Mangle);
 604 
 605   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 606 
 607   assert(gch->no_allocs_since_save_marks(0),
 608          "save marks have not been newly set.");
 609 
 610   // Not very pretty.
 611   CollectorPolicy* cp = gch->collector_policy();
 612 
 613   FastScanClosure fsc_with_no_gc_barrier(this, false);
 614   FastScanClosure fsc_with_gc_barrier(this, true);
 615 
 616   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 617                                       gch->rem_set()->klass_rem_set());
 618   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 619                                            &fsc_with_no_gc_barrier,
 620                                            false);
 621 
 622   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 623   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 624                                                   &fsc_with_no_gc_barrier,
 625                                                   &fsc_with_gc_barrier);
 626 
 627   assert(gch->no_allocs_since_save_marks(0),
 628          "save marks have not been newly set.");
 629 
 630   gch->gen_process_roots(_level,
 631                          true,  // Process younger gens, if any,
 632                                 // as strong roots.
 633                          true,  // activate StrongRootsScope
 634                          SharedHeap::SO_ScavengeCodeCache,
 635                          GenCollectedHeap::StrongAndWeakRoots,
 636                          &fsc_with_no_gc_barrier,
 637                          &fsc_with_gc_barrier,
 638                          &cld_scan_closure);
 639 
 640   // "evacuate followers".
 641   evacuate_followers.do_void();
 642 
 643   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 644   ReferenceProcessor* rp = ref_processor();
 645   rp->setup_policy(clear_all_soft_refs);
 646   const ReferenceProcessorStats& stats =
 647   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 648                                     NULL, _gc_timer, gc_tracer.gc_id());
 649   gc_tracer.report_gc_reference_stats(stats);
 650 
 651   if (!_promotion_failed) {
 652     // Swap the survivor spaces.
 653     eden()->clear(SpaceDecorator::Mangle);
 654     from()->clear(SpaceDecorator::Mangle);
 655     if (ZapUnusedHeapArea) {
 656       // This is now done here because of the piece-meal mangling which
 657       // can check for valid mangling at intermediate points in the
 658       // collection(s).  When a minor collection fails to collect
 659       // sufficient space resizing of the young generation can occur
 660       // an redistribute the spaces in the young generation.  Mangle
 661       // here so that unzapped regions don't get distributed to
 662       // other spaces.
 663       to()->mangle_unused_area();
 664     }
 665     swap_spaces();
 666 
 667     assert(to()->is_empty(), "to space should be empty now");
 668 
 669     adjust_desired_tenuring_threshold();
 670 
 671     // A successful scavenge should restart the GC time limit count which is
 672     // for full GC's.
 673     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 674     size_policy->reset_gc_overhead_limit_count();
 675     assert(!gch->incremental_collection_failed(), "Should be clear");
 676   } else {
 677     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 678     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 679 
 680     remove_forwarding_pointers();
 681     if (PrintGCDetails) {
 682       gclog_or_tty->print(" (promotion failed) ");
 683     }
 684     // Add to-space to the list of space to compact
 685     // when a promotion failure has occurred.  In that
 686     // case there can be live objects in to-space
 687     // as a result of a partial evacuation of eden
 688     // and from-space.
 689     swap_spaces();   // For uniformity wrt ParNewGeneration.
 690     from()->set_next_compaction_space(to());
 691     gch->set_incremental_collection_failed();
 692 
 693     // Inform the next generation that a promotion failure occurred.
 694     _next_gen->promotion_failure_occurred();
 695     gc_tracer.report_promotion_failed(_promotion_failed_info);
 696 
 697     // Reset the PromotionFailureALot counters.
 698     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 699   }
 700   if (PrintGC && !PrintGCDetails) {
 701     gch->print_heap_change(gch_prev_used);
 702   }
 703   // set new iteration safe limit for the survivor spaces
 704   from()->set_concurrent_iteration_safe_limit(from()->top());
 705   to()->set_concurrent_iteration_safe_limit(to()->top());
 706   SpecializationStats::print();
 707 
 708   // We need to use a monotonically non-decreasing time in ms
 709   // or we will see time-warp warnings and os::javaTimeMillis()
 710   // does not guarantee monotonicity.
 711   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 712   update_time_of_last_gc(now);
 713 
 714   gch->trace_heap_after_gc(&gc_tracer);
 715   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 716 
 717   _gc_timer->register_gc_end();
 718 
 719   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 720 }
 721 
 722 class RemoveForwardPointerClosure: public ObjectClosure {
 723 public:
 724   void do_object(oop obj) {
 725     obj->init_mark();
 726   }
 727 };
 728 
 729 void DefNewGeneration::init_assuming_no_promotion_failure() {
 730   _promotion_failed = false;
 731   _promotion_failed_info.reset();
 732   from()->set_next_compaction_space(NULL);
 733 }
 734 
 735 void DefNewGeneration::remove_forwarding_pointers() {
 736   RemoveForwardPointerClosure rspc;
 737   eden()->object_iterate(&rspc);
 738   from()->object_iterate(&rspc);
 739 
 740   // Now restore saved marks, if any.
 741   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 742          "should be the same");
 743   while (!_objs_with_preserved_marks.is_empty()) {
 744     oop obj   = _objs_with_preserved_marks.pop();
 745     markOop m = _preserved_marks_of_objs.pop();
 746     obj->set_mark(m);
 747   }
 748   _objs_with_preserved_marks.clear(true);
 749   _preserved_marks_of_objs.clear(true);
 750 }
 751 
 752 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 753   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 754          "Oversaving!");
 755   _objs_with_preserved_marks.push(obj);
 756   _preserved_marks_of_objs.push(m);
 757 }
 758 
 759 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 760   if (m->must_be_preserved_for_promotion_failure(obj)) {
 761     preserve_mark(obj, m);
 762   }
 763 }
 764 
 765 void DefNewGeneration::handle_promotion_failure(oop old) {
 766   if (PrintPromotionFailure && !_promotion_failed) {
 767     gclog_or_tty->print(" (promotion failure size = %d) ",
 768                         old->size());
 769   }
 770   _promotion_failed = true;
 771   _promotion_failed_info.register_copy_failure(old->size());
 772   preserve_mark_if_necessary(old, old->mark());
 773   // forward to self
 774   old->forward_to(old);
 775 
 776   _promo_failure_scan_stack.push(old);
 777 
 778   if (!_promo_failure_drain_in_progress) {
 779     // prevent recursion in copy_to_survivor_space()
 780     _promo_failure_drain_in_progress = true;
 781     drain_promo_failure_scan_stack();
 782     _promo_failure_drain_in_progress = false;
 783   }
 784 }
 785 
 786 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 787   assert(is_in_reserved(old) && !old->is_forwarded(),
 788          "shouldn't be scavenging this oop");
 789   size_t s = old->size();
 790   oop obj = NULL;
 791 
 792   // Try allocating obj in to-space (unless too old)
 793   if (old->age() < tenuring_threshold()) {
 794     obj = (oop) to()->allocate_aligned(s);
 795   }
 796 
 797   // Otherwise try allocating obj tenured
 798   if (obj == NULL) {
 799     obj = _next_gen->promote(old, s);
 800     if (obj == NULL) {
 801       handle_promotion_failure(old);
 802       return old;
 803     }
 804   } else {
 805     // Prefetch beyond obj
 806     const intx interval = PrefetchCopyIntervalInBytes;
 807     Prefetch::write(obj, interval);
 808 
 809     // Copy obj
 810     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 811 
 812     // Increment age if obj still in new generation
 813     obj->incr_age();
 814     age_table()->add(obj, s);
 815   }
 816 
 817   // Done, insert forward pointer to obj in this header
 818   old->forward_to(obj);
 819 
 820   return obj;
 821 }
 822 
 823 void DefNewGeneration::drain_promo_failure_scan_stack() {
 824   while (!_promo_failure_scan_stack.is_empty()) {
 825      oop obj = _promo_failure_scan_stack.pop();
 826      obj->oop_iterate<false>(_promo_failure_scan_stack_closure);
 827   }
 828 }
 829 
 830 void DefNewGeneration::save_marks() {
 831   eden()->set_saved_mark();
 832   to()->set_saved_mark();
 833   from()->set_saved_mark();
 834 }
 835 
 836 
 837 void DefNewGeneration::reset_saved_marks() {
 838   eden()->reset_saved_mark();
 839   to()->reset_saved_mark();
 840   from()->reset_saved_mark();
 841 }
 842 
 843 
 844 bool DefNewGeneration::no_allocs_since_save_marks() {
 845   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 846   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 847   return to()->saved_mark_at_top();
 848 }
 849 
 850 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 851                                          size_t max_alloc_words) {
 852   if (requestor == this || _promotion_failed) return;
 853   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
 854 
 855   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 856   if (to_space->top() > to_space->bottom()) {
 857     trace("to_space not empty when contribute_scratch called");
 858   }
 859   */
 860 
 861   ContiguousSpace* to_space = to();
 862   assert(to_space->end() >= to_space->top(), "pointers out of order");
 863   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 864   if (free_words >= MinFreeScratchWords) {
 865     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 866     sb->num_words = free_words;
 867     sb->next = list;
 868     list = sb;
 869   }
 870 }
 871 
 872 void DefNewGeneration::reset_scratch() {
 873   // If contributing scratch in to_space, mangle all of
 874   // to_space if ZapUnusedHeapArea.  This is needed because
 875   // top is not maintained while using to-space as scratch.
 876   if (ZapUnusedHeapArea) {
 877     to()->mangle_unused_area_complete();
 878   }
 879 }
 880 
 881 bool DefNewGeneration::collection_attempt_is_safe() {
 882   if (!to()->is_empty()) {
 883     if (Verbose && PrintGCDetails) {
 884       gclog_or_tty->print(" :: to is not empty :: ");
 885     }
 886     return false;
 887   }
 888   if (_next_gen == NULL) {
 889     GenCollectedHeap* gch = GenCollectedHeap::heap();
 890     _next_gen = gch->next_gen(this);
 891   }
 892   return _next_gen->promotion_attempt_is_safe(used());
 893 }
 894 
 895 void DefNewGeneration::gc_epilogue(bool full) {
 896   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 897 
 898   assert(!GC_locker::is_active(), "We should not be executing here");
 899   // Check if the heap is approaching full after a collection has
 900   // been done.  Generally the young generation is empty at
 901   // a minimum at the end of a collection.  If it is not, then
 902   // the heap is approaching full.
 903   GenCollectedHeap* gch = GenCollectedHeap::heap();
 904   if (full) {
 905     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 906     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 907       if (Verbose && PrintGCDetails) {
 908         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 909                             GCCause::to_string(gch->gc_cause()));
 910       }
 911       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 912       set_should_allocate_from_space(); // we seem to be running out of space
 913     } else {
 914       if (Verbose && PrintGCDetails) {
 915         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 916                             GCCause::to_string(gch->gc_cause()));
 917       }
 918       gch->clear_incremental_collection_failed(); // We just did a full collection
 919       clear_should_allocate_from_space(); // if set
 920     }
 921   } else {
 922 #ifdef ASSERT
 923     // It is possible that incremental_collection_failed() == true
 924     // here, because an attempted scavenge did not succeed. The policy
 925     // is normally expected to cause a full collection which should
 926     // clear that condition, so we should not be here twice in a row
 927     // with incremental_collection_failed() == true without having done
 928     // a full collection in between.
 929     if (!seen_incremental_collection_failed &&
 930         gch->incremental_collection_failed()) {
 931       if (Verbose && PrintGCDetails) {
 932         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 933                             GCCause::to_string(gch->gc_cause()));
 934       }
 935       seen_incremental_collection_failed = true;
 936     } else if (seen_incremental_collection_failed) {
 937       if (Verbose && PrintGCDetails) {
 938         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 939                             GCCause::to_string(gch->gc_cause()));
 940       }
 941       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 942              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 943              !gch->incremental_collection_failed(),
 944              "Twice in a row");
 945       seen_incremental_collection_failed = false;
 946     }
 947 #endif // ASSERT
 948   }
 949 
 950   if (ZapUnusedHeapArea) {
 951     eden()->check_mangled_unused_area_complete();
 952     from()->check_mangled_unused_area_complete();
 953     to()->check_mangled_unused_area_complete();
 954   }
 955 
 956   if (!CleanChunkPoolAsync) {
 957     Chunk::clean_chunk_pool();
 958   }
 959 
 960   // update the generation and space performance counters
 961   update_counters();
 962   gch->collector_policy()->counters()->update_counters();
 963 }
 964 
 965 void DefNewGeneration::record_spaces_top() {
 966   assert(ZapUnusedHeapArea, "Not mangling unused space");
 967   eden()->set_top_for_allocations();
 968   to()->set_top_for_allocations();
 969   from()->set_top_for_allocations();
 970 }
 971 
 972 void DefNewGeneration::ref_processor_init() {
 973   Generation::ref_processor_init();
 974 }
 975 
 976 
 977 void DefNewGeneration::update_counters() {
 978   if (UsePerfData) {
 979     _eden_counters->update_all();
 980     _from_counters->update_all();
 981     _to_counters->update_all();
 982     _gen_counters->update_all();
 983   }
 984 }
 985 
 986 void DefNewGeneration::verify() {
 987   eden()->verify();
 988   from()->verify();
 989     to()->verify();
 990 }
 991 
 992 void DefNewGeneration::print_on(outputStream* st) const {
 993   Generation::print_on(st);
 994   st->print("  eden");
 995   eden()->print_on(st);
 996   st->print("  from");
 997   from()->print_on(st);
 998   st->print("  to  ");
 999   to()->print_on(st);
1000 }
1001 
1002 
1003 const char* DefNewGeneration::name() const {
1004   return "def new generation";
1005 }
1006 
1007 // Moved from inline file as they are not called inline
1008 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1009   return eden();
1010 }
1011 
1012 HeapWord* DefNewGeneration::allocate(size_t word_size,
1013                                      bool is_tlab) {
1014   // This is the slow-path allocation for the DefNewGeneration.
1015   // Most allocations are fast-path in compiled code.
1016   // We try to allocate from the eden.  If that works, we are happy.
1017   // Note that since DefNewGeneration supports lock-free allocation, we
1018   // have to use it here, as well.
1019   HeapWord* result = eden()->par_allocate(word_size);
1020   if (result != NULL) {
1021     if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1022       _next_gen->sample_eden_chunk();
1023     }
1024     return result;
1025   }
1026   do {
1027     HeapWord* old_limit = eden()->soft_end();
1028     if (old_limit < eden()->end()) {
1029       // Tell the next generation we reached a limit.
1030       HeapWord* new_limit =
1031         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
1032       if (new_limit != NULL) {
1033         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
1034       } else {
1035         assert(eden()->soft_end() == eden()->end(),
1036                "invalid state after allocation_limit_reached returned null");
1037       }
1038     } else {
1039       // The allocation failed and the soft limit is equal to the hard limit,
1040       // there are no reasons to do an attempt to allocate
1041       assert(old_limit == eden()->end(), "sanity check");
1042       break;
1043     }
1044     // Try to allocate until succeeded or the soft limit can't be adjusted
1045     result = eden()->par_allocate(word_size);
1046   } while (result == NULL);
1047 
1048   // If the eden is full and the last collection bailed out, we are running
1049   // out of heap space, and we try to allocate the from-space, too.
1050   // allocate_from_space can't be inlined because that would introduce a
1051   // circular dependency at compile time.
1052   if (result == NULL) {
1053     result = allocate_from_space(word_size);
1054   } else if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1055     _next_gen->sample_eden_chunk();
1056   }
1057   return result;
1058 }
1059 
1060 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1061                                          bool is_tlab) {
1062   HeapWord* res = eden()->par_allocate(word_size);
1063   if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1064     _next_gen->sample_eden_chunk();
1065   }
1066   return res;
1067 }
1068 
1069 void DefNewGeneration::gc_prologue(bool full) {
1070   // Ensure that _end and _soft_end are the same in eden space.
1071   eden()->set_soft_end(eden()->end());
1072 }
1073 
1074 size_t DefNewGeneration::tlab_capacity() const {
1075   return eden()->capacity();
1076 }
1077 
1078 size_t DefNewGeneration::tlab_used() const {
1079   return eden()->used();
1080 }
1081 
1082 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1083   return unsafe_max_alloc_nogc();
1084 }