1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_SPACE_HPP
  26 #define SHARE_VM_MEMORY_SPACE_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "memory/blockOffsetTable.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/iterator.hpp"
  32 #include "memory/memRegion.hpp"
  33 #include "memory/watermark.hpp"
  34 #include "oops/markOop.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "utilities/macros.hpp"
  37 #include "utilities/workgroup.hpp"
  38 
  39 // A space is an abstraction for the "storage units" backing
  40 // up the generation abstraction. It includes specific
  41 // implementations for keeping track of free and used space,
  42 // for iterating over objects and free blocks, etc.
  43 
  44 // Here's the Space hierarchy:
  45 //
  46 // - Space               -- an abstract base class describing a heap area
  47 //   - CompactibleSpace  -- a space supporting compaction
  48 //     - CompactibleFreeListSpace -- (used for CMS generation)
  49 //     - ContiguousSpace -- a compactible space in which all free space
  50 //                          is contiguous
  51 //       - EdenSpace     -- contiguous space used as nursery
  52 //         - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
  53 //       - OffsetTableContigSpace -- contiguous space with a block offset array
  54 //                          that allows "fast" block_start calls
  55 //         - TenuredSpace -- (used for TenuredGeneration)
  56 
  57 // Forward decls.
  58 class Space;
  59 class BlockOffsetArray;
  60 class BlockOffsetArrayContigSpace;
  61 class Generation;
  62 class CompactibleSpace;
  63 class BlockOffsetTable;
  64 class GenRemSet;
  65 class CardTableRS;
  66 class DirtyCardToOopClosure;
  67 
  68 // A Space describes a heap area. Class Space is an abstract
  69 // base class.
  70 //
  71 // Space supports allocation, size computation and GC support is provided.
  72 //
  73 // Invariant: bottom() and end() are on page_size boundaries and
  74 // bottom() <= top() <= end()
  75 // top() is inclusive and end() is exclusive.
  76 
  77 class Space: public CHeapObj<mtGC> {
  78   friend class VMStructs;
  79  protected:
  80   HeapWord* _bottom;
  81   HeapWord* _end;
  82 
  83   // Used in support of save_marks()
  84   HeapWord* _saved_mark_word;
  85 
  86   MemRegionClosure* _preconsumptionDirtyCardClosure;
  87 
  88   // A sequential tasks done structure. This supports
  89   // parallel GC, where we have threads dynamically
  90   // claiming sub-tasks from a larger parallel task.
  91   SequentialSubTasksDone _par_seq_tasks;
  92 
  93   Space():
  94     _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
  95 
  96  public:
  97   // Accessors
  98   HeapWord* bottom() const         { return _bottom; }
  99   HeapWord* end() const            { return _end;    }
 100   virtual void set_bottom(HeapWord* value) { _bottom = value; }
 101   virtual void set_end(HeapWord* value)    { _end = value; }
 102 
 103   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
 104 
 105   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
 106 
 107   // Returns true if this object has been allocated since a
 108   // generation's "save_marks" call.
 109   virtual bool obj_allocated_since_save_marks(const oop obj) const {
 110     return (HeapWord*)obj >= saved_mark_word();
 111   }
 112 
 113   MemRegionClosure* preconsumptionDirtyCardClosure() const {
 114     return _preconsumptionDirtyCardClosure;
 115   }
 116   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
 117     _preconsumptionDirtyCardClosure = cl;
 118   }
 119 
 120   // Returns a subregion of the space containing only the allocated objects in
 121   // the space.
 122   virtual MemRegion used_region() const = 0;
 123 
 124   // Returns a region that is guaranteed to contain (at least) all objects
 125   // allocated at the time of the last call to "save_marks".  If the space
 126   // initializes its DirtyCardToOopClosure's specifying the "contig" option
 127   // (that is, if the space is contiguous), then this region must contain only
 128   // such objects: the memregion will be from the bottom of the region to the
 129   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
 130   // the space must distinguish between objects in the region allocated before
 131   // and after the call to save marks.
 132   MemRegion used_region_at_save_marks() const {
 133     return MemRegion(bottom(), saved_mark_word());
 134   }
 135 
 136   // Initialization.
 137   // "initialize" should be called once on a space, before it is used for
 138   // any purpose.  The "mr" arguments gives the bounds of the space, and
 139   // the "clear_space" argument should be true unless the memory in "mr" is
 140   // known to be zeroed.
 141   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 142 
 143   // The "clear" method must be called on a region that may have
 144   // had allocation performed in it, but is now to be considered empty.
 145   virtual void clear(bool mangle_space);
 146 
 147   // For detecting GC bugs.  Should only be called at GC boundaries, since
 148   // some unused space may be used as scratch space during GC's.
 149   // Default implementation does nothing. We also call this when expanding
 150   // a space to satisfy an allocation request. See bug #4668531
 151   virtual void mangle_unused_area() {}
 152   virtual void mangle_unused_area_complete() {}
 153   virtual void mangle_region(MemRegion mr) {}
 154 
 155   // Testers
 156   bool is_empty() const              { return used() == 0; }
 157   bool not_empty() const             { return used() > 0; }
 158 
 159   // Returns true iff the given the space contains the
 160   // given address as part of an allocated object. For
 161   // certain kinds of spaces, this might be a potentially
 162   // expensive operation. To prevent performance problems
 163   // on account of its inadvertent use in product jvm's,
 164   // we restrict its use to assertion checks only.
 165   bool is_in(const void* p) const {
 166     return used_region().contains(p);
 167   }
 168 
 169   // Returns true iff the given reserved memory of the space contains the
 170   // given address.
 171   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
 172 
 173   // Returns true iff the given block is not allocated.
 174   virtual bool is_free_block(const HeapWord* p) const = 0;
 175 
 176   // Test whether p is double-aligned
 177   static bool is_aligned(void* p) {
 178     return ((intptr_t)p & (sizeof(double)-1)) == 0;
 179   }
 180 
 181   // Size computations.  Sizes are in bytes.
 182   size_t capacity()     const { return byte_size(bottom(), end()); }
 183   virtual size_t used() const = 0;
 184   virtual size_t free() const = 0;
 185 
 186   // Iterate over all the ref-containing fields of all objects in the
 187   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
 188   // applications of the closure are not included in the iteration.
 189   virtual void oop_iterate(ExtendedOopClosure* cl);
 190 
 191   // Iterate over all objects in the space, calling "cl.do_object" on
 192   // each.  Objects allocated by applications of the closure are not
 193   // included in the iteration.
 194   virtual void object_iterate(ObjectClosure* blk) = 0;
 195   // Similar to object_iterate() except only iterates over
 196   // objects whose internal references point to objects in the space.
 197   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
 198 
 199   // Create and return a new dirty card to oop closure. Can be
 200   // overridden to return the appropriate type of closure
 201   // depending on the type of space in which the closure will
 202   // operate. ResourceArea allocated.
 203   virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 204                                              CardTableModRefBS::PrecisionStyle precision,
 205                                              HeapWord* boundary = NULL);
 206 
 207   // If "p" is in the space, returns the address of the start of the
 208   // "block" that contains "p".  We say "block" instead of "object" since
 209   // some heaps may not pack objects densely; a chunk may either be an
 210   // object or a non-object.  If "p" is not in the space, return NULL.
 211   virtual HeapWord* block_start_const(const void* p) const = 0;
 212 
 213   // The non-const version may have benevolent side effects on the data
 214   // structure supporting these calls, possibly speeding up future calls.
 215   // The default implementation, however, is simply to call the const
 216   // version.
 217   inline virtual HeapWord* block_start(const void* p);
 218 
 219   // Requires "addr" to be the start of a chunk, and returns its size.
 220   // "addr + size" is required to be the start of a new chunk, or the end
 221   // of the active area of the heap.
 222   virtual size_t block_size(const HeapWord* addr) const = 0;
 223 
 224   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 225   // the block is an object.
 226   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 227 
 228   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 229   // the block is an object and the object is alive.
 230   virtual bool obj_is_alive(const HeapWord* addr) const;
 231 
 232   // Allocation (return NULL if full).  Assumes the caller has established
 233   // mutually exclusive access to the space.
 234   virtual HeapWord* allocate(size_t word_size) = 0;
 235 
 236   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 237   virtual HeapWord* par_allocate(size_t word_size) = 0;
 238 
 239   // Mark-sweep-compact support: all spaces can update pointers to objects
 240   // moving as a part of compaction.
 241   virtual void adjust_pointers();
 242 
 243   // PrintHeapAtGC support
 244   virtual void print() const;
 245   virtual void print_on(outputStream* st) const;
 246   virtual void print_short() const;
 247   virtual void print_short_on(outputStream* st) const;
 248 
 249 
 250   // Accessor for parallel sequential tasks.
 251   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
 252 
 253   // IF "this" is a ContiguousSpace, return it, else return NULL.
 254   virtual ContiguousSpace* toContiguousSpace() {
 255     return NULL;
 256   }
 257 
 258   // Debugging
 259   virtual void verify() const = 0;
 260 };
 261 
 262 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
 263 // OopClosure to (the addresses of) all the ref-containing fields that could
 264 // be modified by virtue of the given MemRegion being dirty. (Note that
 265 // because of the imprecise nature of the write barrier, this may iterate
 266 // over oops beyond the region.)
 267 // This base type for dirty card to oop closures handles memory regions
 268 // in non-contiguous spaces with no boundaries, and should be sub-classed
 269 // to support other space types. See ContiguousDCTOC for a sub-class
 270 // that works with ContiguousSpaces.
 271 
 272 class DirtyCardToOopClosure: public MemRegionClosureRO {
 273 protected:
 274   ExtendedOopClosure* _cl;
 275   Space* _sp;
 276   CardTableModRefBS::PrecisionStyle _precision;
 277   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
 278                                 // pointing below boundary.
 279   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
 280                                 // a downwards traversal; this is the
 281                                 // lowest location already done (or,
 282                                 // alternatively, the lowest address that
 283                                 // shouldn't be done again.  NULL means infinity.)
 284   NOT_PRODUCT(HeapWord* _last_bottom;)
 285   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
 286 
 287   // Get the actual top of the area on which the closure will
 288   // operate, given where the top is assumed to be (the end of the
 289   // memory region passed to do_MemRegion) and where the object
 290   // at the top is assumed to start. For example, an object may
 291   // start at the top but actually extend past the assumed top,
 292   // in which case the top becomes the end of the object.
 293   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 294 
 295   // Walk the given memory region from bottom to (actual) top
 296   // looking for objects and applying the oop closure (_cl) to
 297   // them. The base implementation of this treats the area as
 298   // blocks, where a block may or may not be an object. Sub-
 299   // classes should override this to provide more accurate
 300   // or possibly more efficient walking.
 301   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
 302 
 303 public:
 304   DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl,
 305                         CardTableModRefBS::PrecisionStyle precision,
 306                         HeapWord* boundary) :
 307     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
 308     _min_done(NULL) {
 309     NOT_PRODUCT(_last_bottom = NULL);
 310     NOT_PRODUCT(_last_explicit_min_done = NULL);
 311   }
 312 
 313   void do_MemRegion(MemRegion mr);
 314 
 315   void set_min_done(HeapWord* min_done) {
 316     _min_done = min_done;
 317     NOT_PRODUCT(_last_explicit_min_done = _min_done);
 318   }
 319 #ifndef PRODUCT
 320   void set_last_bottom(HeapWord* last_bottom) {
 321     _last_bottom = last_bottom;
 322   }
 323 #endif
 324 };
 325 
 326 // A structure to represent a point at which objects are being copied
 327 // during compaction.
 328 class CompactPoint : public StackObj {
 329 public:
 330   Generation* gen;
 331   CompactibleSpace* space;
 332   HeapWord* threshold;
 333 
 334   CompactPoint(Generation* _gen) :
 335     gen(_gen), space(NULL), threshold(0) {}
 336 };
 337 
 338 
 339 // A space that supports compaction operations.  This is usually, but not
 340 // necessarily, a space that is normally contiguous.  But, for example, a
 341 // free-list-based space whose normal collection is a mark-sweep without
 342 // compaction could still support compaction in full GC's.
 343 
 344 class CompactibleSpace: public Space {
 345   friend class VMStructs;
 346   friend class CompactibleFreeListSpace;
 347 private:
 348   HeapWord* _compaction_top;
 349   CompactibleSpace* _next_compaction_space;
 350 
 351 public:
 352   CompactibleSpace() :
 353    _compaction_top(NULL), _next_compaction_space(NULL) {}
 354 
 355   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 356   virtual void clear(bool mangle_space);
 357 
 358   // Used temporarily during a compaction phase to hold the value
 359   // top should have when compaction is complete.
 360   HeapWord* compaction_top() const { return _compaction_top;    }
 361 
 362   void set_compaction_top(HeapWord* value) {
 363     assert(value == NULL || (value >= bottom() && value <= end()),
 364       "should point inside space");
 365     _compaction_top = value;
 366   }
 367 
 368   // Perform operations on the space needed after a compaction
 369   // has been performed.
 370   virtual void reset_after_compaction() = 0;
 371 
 372   // Returns the next space (in the current generation) to be compacted in
 373   // the global compaction order.  Also is used to select the next
 374   // space into which to compact.
 375 
 376   virtual CompactibleSpace* next_compaction_space() const {
 377     return _next_compaction_space;
 378   }
 379 
 380   void set_next_compaction_space(CompactibleSpace* csp) {
 381     _next_compaction_space = csp;
 382   }
 383 
 384   // MarkSweep support phase2
 385 
 386   // Start the process of compaction of the current space: compute
 387   // post-compaction addresses, and insert forwarding pointers.  The fields
 388   // "cp->gen" and "cp->compaction_space" are the generation and space into
 389   // which we are currently compacting.  This call updates "cp" as necessary,
 390   // and leaves the "compaction_top" of the final value of
 391   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
 392   // this phase as if the final copy had occurred; if so, "cp->threshold"
 393   // indicates when the next such action should be taken.
 394   virtual void prepare_for_compaction(CompactPoint* cp);
 395   // MarkSweep support phase3
 396   virtual void adjust_pointers();
 397   // MarkSweep support phase4
 398   virtual void compact();
 399 
 400   // The maximum percentage of objects that can be dead in the compacted
 401   // live part of a compacted space ("deadwood" support.)
 402   virtual size_t allowed_dead_ratio() const { return 0; };
 403 
 404   // Some contiguous spaces may maintain some data structures that should
 405   // be updated whenever an allocation crosses a boundary.  This function
 406   // returns the first such boundary.
 407   // (The default implementation returns the end of the space, so the
 408   // boundary is never crossed.)
 409   virtual HeapWord* initialize_threshold() { return end(); }
 410 
 411   // "q" is an object of the given "size" that should be forwarded;
 412   // "cp" names the generation ("gen") and containing "this" (which must
 413   // also equal "cp->space").  "compact_top" is where in "this" the
 414   // next object should be forwarded to.  If there is room in "this" for
 415   // the object, insert an appropriate forwarding pointer in "q".
 416   // If not, go to the next compaction space (there must
 417   // be one, since compaction must succeed -- we go to the first space of
 418   // the previous generation if necessary, updating "cp"), reset compact_top
 419   // and then forward.  In either case, returns the new value of "compact_top".
 420   // If the forwarding crosses "cp->threshold", invokes the "cross_threshold"
 421   // function of the then-current compaction space, and updates "cp->threshold
 422   // accordingly".
 423   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
 424                     HeapWord* compact_top);
 425 
 426   // Return a size with adjustments as required of the space.
 427   virtual size_t adjust_object_size_v(size_t size) const { return size; }
 428 
 429 protected:
 430   // Used during compaction.
 431   HeapWord* _first_dead;
 432   HeapWord* _end_of_live;
 433 
 434   // Minimum size of a free block.
 435   virtual size_t minimum_free_block_size() const { return 0; }
 436 
 437   // This the function is invoked when an allocation of an object covering
 438   // "start" to "end occurs crosses the threshold; returns the next
 439   // threshold.  (The default implementation does nothing.)
 440   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
 441     return end();
 442   }
 443 
 444   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
 445   // free block of the given "word_len", and that "q", were it an object,
 446   // would not move if forwarded.  If the size allows, fill the free
 447   // block with an object, to prevent excessive compaction.  Returns "true"
 448   // iff the free region was made deadspace, and modifies
 449   // "allowed_deadspace_words" to reflect the number of available deadspace
 450   // words remaining after this operation.
 451   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
 452                         size_t word_len);
 453 };
 454 
 455 class GenSpaceMangler;
 456 
 457 // A space in which the free area is contiguous.  It therefore supports
 458 // faster allocation, and compaction.
 459 class ContiguousSpace: public CompactibleSpace {
 460   friend class OneContigSpaceCardGeneration;
 461   friend class VMStructs;
 462  protected:
 463   HeapWord* _top;
 464   HeapWord* _concurrent_iteration_safe_limit;
 465   // A helper for mangling the unused area of the space in debug builds.
 466   GenSpaceMangler* _mangler;
 467 
 468   GenSpaceMangler* mangler() { return _mangler; }
 469 
 470   // Allocation helpers (return NULL if full).
 471   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
 472   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
 473 
 474  public:
 475   ContiguousSpace();
 476   ~ContiguousSpace();
 477 
 478   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 479   virtual void clear(bool mangle_space);
 480 
 481   // Accessors
 482   HeapWord* top() const            { return _top;    }
 483   void set_top(HeapWord* value)    { _top = value; }
 484 
 485   void set_saved_mark()            { _saved_mark_word = top();    }
 486   void reset_saved_mark()          { _saved_mark_word = bottom(); }
 487 
 488   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
 489   WaterMark top_mark()        { return WaterMark(this, top()); }
 490   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
 491   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
 492 
 493   // In debug mode mangle (write it with a particular bit
 494   // pattern) the unused part of a space.
 495 
 496   // Used to save the an address in a space for later use during mangling.
 497   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
 498   // Used to save the space's current top for later use during mangling.
 499   void set_top_for_allocations() PRODUCT_RETURN;
 500 
 501   // Mangle regions in the space from the current top up to the
 502   // previously mangled part of the space.
 503   void mangle_unused_area() PRODUCT_RETURN;
 504   // Mangle [top, end)
 505   void mangle_unused_area_complete() PRODUCT_RETURN;
 506   // Mangle the given MemRegion.
 507   void mangle_region(MemRegion mr) PRODUCT_RETURN;
 508 
 509   // Do some sparse checking on the area that should have been mangled.
 510   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
 511   // Check the complete area that should have been mangled.
 512   // This code may be NULL depending on the macro DEBUG_MANGLING.
 513   void check_mangled_unused_area_complete() PRODUCT_RETURN;
 514 
 515   // Size computations: sizes in bytes.
 516   size_t capacity() const        { return byte_size(bottom(), end()); }
 517   size_t used() const            { return byte_size(bottom(), top()); }
 518   size_t free() const            { return byte_size(top(),    end()); }
 519 
 520   virtual bool is_free_block(const HeapWord* p) const;
 521 
 522   // In a contiguous space we have a more obvious bound on what parts
 523   // contain objects.
 524   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 525 
 526   // Allocation (return NULL if full)
 527   virtual HeapWord* allocate(size_t word_size);
 528   virtual HeapWord* par_allocate(size_t word_size);
 529   HeapWord* allocate_aligned(size_t word_size);
 530 
 531   // Iteration
 532   void oop_iterate(ExtendedOopClosure* cl);
 533   void object_iterate(ObjectClosure* blk);
 534   // For contiguous spaces this method will iterate safely over objects
 535   // in the space (i.e., between bottom and top) when at a safepoint.
 536   void safe_object_iterate(ObjectClosure* blk);
 537 
 538   // Iterate over as many initialized objects in the space as possible,
 539   // calling "cl.do_object_careful" on each. Return NULL if all objects
 540   // in the space (at the start of the iteration) were iterated over.
 541   // Return an address indicating the extent of the iteration in the
 542   // event that the iteration had to return because of finding an
 543   // uninitialized object in the space, or if the closure "cl"
 544   // signaled early termination.
 545   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
 546   HeapWord* concurrent_iteration_safe_limit() {
 547     assert(_concurrent_iteration_safe_limit <= top(),
 548            "_concurrent_iteration_safe_limit update missed");
 549     return _concurrent_iteration_safe_limit;
 550   }
 551   // changes the safe limit, all objects from bottom() to the new
 552   // limit should be properly initialized
 553   void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
 554     assert(new_limit <= top(), "uninitialized objects in the safe range");
 555     _concurrent_iteration_safe_limit = new_limit;
 556   }
 557 
 558 
 559 #if INCLUDE_ALL_GCS
 560   // In support of parallel oop_iterate.
 561   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
 562     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
 563 
 564     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
 565   #undef ContigSpace_PAR_OOP_ITERATE_DECL
 566 #endif // INCLUDE_ALL_GCS
 567 
 568   // Compaction support
 569   virtual void reset_after_compaction() {
 570     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
 571     set_top(compaction_top());
 572     // set new iteration safe limit
 573     set_concurrent_iteration_safe_limit(compaction_top());
 574   }
 575 
 576   // Override.
 577   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 578                                      CardTableModRefBS::PrecisionStyle precision,
 579                                      HeapWord* boundary = NULL);
 580 
 581   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 582   // starting with the _saved_mark_word, which was noted during a generation's
 583   // save_marks and is required to denote the head of an object.
 584   // Fields in objects allocated by applications of the closure
 585   // *are* included in the iteration.
 586   // Updates _saved_mark_word to point to just after the last object
 587   // iterated over.
 588 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 589   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
 590 
 591   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
 592 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
 593 
 594   // Same as object_iterate, but starting from "mark", which is required
 595   // to denote the start of an object.  Objects allocated by
 596   // applications of the closure *are* included in the iteration.
 597   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
 598 
 599   // Very inefficient implementation.
 600   virtual HeapWord* block_start_const(const void* p) const;
 601   size_t block_size(const HeapWord* p) const;
 602   // If a block is in the allocated area, it is an object.
 603   bool block_is_obj(const HeapWord* p) const { return p < top(); }
 604 
 605   // Addresses for inlined allocation
 606   HeapWord** top_addr() { return &_top; }
 607   HeapWord** end_addr() { return &_end; }
 608 
 609   // Overrides for more efficient compaction support.
 610   void prepare_for_compaction(CompactPoint* cp);
 611 
 612   // PrintHeapAtGC support.
 613   virtual void print_on(outputStream* st) const;
 614 
 615   // Checked dynamic downcasts.
 616   virtual ContiguousSpace* toContiguousSpace() {
 617     return this;
 618   }
 619 
 620   // Debugging
 621   virtual void verify() const;
 622 
 623   // Used to increase collection frequency.  "factor" of 0 means entire
 624   // space.
 625   void allocate_temporary_filler(int factor);
 626 
 627 };
 628 
 629 
 630 // A dirty card to oop closure that does filtering.
 631 // It knows how to filter out objects that are outside of the _boundary.
 632 class Filtering_DCTOC : public DirtyCardToOopClosure {
 633 protected:
 634   // Override.
 635   void walk_mem_region(MemRegion mr,
 636                        HeapWord* bottom, HeapWord* top);
 637 
 638   // Walk the given memory region, from bottom to top, applying
 639   // the given oop closure to (possibly) all objects found. The
 640   // given oop closure may or may not be the same as the oop
 641   // closure with which this closure was created, as it may
 642   // be a filtering closure which makes use of the _boundary.
 643   // We offer two signatures, so the FilteringClosure static type is
 644   // apparent.
 645   virtual void walk_mem_region_with_cl(MemRegion mr,
 646                                        HeapWord* bottom, HeapWord* top,
 647                                        ExtendedOopClosure* cl) = 0;
 648   virtual void walk_mem_region_with_cl(MemRegion mr,
 649                                        HeapWord* bottom, HeapWord* top,
 650                                        FilteringClosure* cl) = 0;
 651 
 652 public:
 653   Filtering_DCTOC(Space* sp, ExtendedOopClosure* cl,
 654                   CardTableModRefBS::PrecisionStyle precision,
 655                   HeapWord* boundary) :
 656     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
 657 };
 658 
 659 // A dirty card to oop closure for contiguous spaces
 660 // (ContiguousSpace and sub-classes).
 661 // It is a FilteringClosure, as defined above, and it knows:
 662 //
 663 // 1. That the actual top of any area in a memory region
 664 //    contained by the space is bounded by the end of the contiguous
 665 //    region of the space.
 666 // 2. That the space is really made up of objects and not just
 667 //    blocks.
 668 
 669 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
 670 protected:
 671   // Overrides.
 672   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 673 
 674   virtual void walk_mem_region_with_cl(MemRegion mr,
 675                                        HeapWord* bottom, HeapWord* top,
 676                                        ExtendedOopClosure* cl);
 677   virtual void walk_mem_region_with_cl(MemRegion mr,
 678                                        HeapWord* bottom, HeapWord* top,
 679                                        FilteringClosure* cl);
 680 
 681 public:
 682   ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl,
 683                        CardTableModRefBS::PrecisionStyle precision,
 684                        HeapWord* boundary) :
 685     Filtering_DCTOC(sp, cl, precision, boundary)
 686   {}
 687 };
 688 
 689 
 690 // Class EdenSpace describes eden-space in new generation.
 691 
 692 class DefNewGeneration;
 693 
 694 class EdenSpace : public ContiguousSpace {
 695   friend class VMStructs;
 696  private:
 697   DefNewGeneration* _gen;
 698 
 699   // _soft_end is used as a soft limit on allocation.  As soft limits are
 700   // reached, the slow-path allocation code can invoke other actions and then
 701   // adjust _soft_end up to a new soft limit or to end().
 702   HeapWord* _soft_end;
 703 
 704  public:
 705   EdenSpace(DefNewGeneration* gen) :
 706    _gen(gen), _soft_end(NULL) {}
 707 
 708   // Get/set just the 'soft' limit.
 709   HeapWord* soft_end()               { return _soft_end; }
 710   HeapWord** soft_end_addr()         { return &_soft_end; }
 711   void set_soft_end(HeapWord* value) { _soft_end = value; }
 712 
 713   // Override.
 714   void clear(bool mangle_space);
 715 
 716   // Set both the 'hard' and 'soft' limits (_end and _soft_end).
 717   void set_end(HeapWord* value) {
 718     set_soft_end(value);
 719     ContiguousSpace::set_end(value);
 720   }
 721 
 722   // Allocation (return NULL if full)
 723   HeapWord* allocate(size_t word_size);
 724   HeapWord* par_allocate(size_t word_size);
 725 };
 726 
 727 // Class ConcEdenSpace extends EdenSpace for the sake of safe
 728 // allocation while soft-end is being modified concurrently
 729 
 730 class ConcEdenSpace : public EdenSpace {
 731  public:
 732   ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
 733 
 734   // Allocation (return NULL if full)
 735   HeapWord* par_allocate(size_t word_size);
 736 };
 737 
 738 
 739 // A ContigSpace that Supports an efficient "block_start" operation via
 740 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
 741 // other spaces.)  This is the abstract base class for old generation
 742 // (tenured) spaces.
 743 
 744 class OffsetTableContigSpace: public ContiguousSpace {
 745   friend class VMStructs;
 746  protected:
 747   BlockOffsetArrayContigSpace _offsets;
 748   Mutex _par_alloc_lock;
 749 
 750  public:
 751   // Constructor
 752   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 753                          MemRegion mr);
 754 
 755   void set_bottom(HeapWord* value);
 756   void set_end(HeapWord* value);
 757 
 758   void clear(bool mangle_space);
 759 
 760   inline HeapWord* block_start_const(const void* p) const;
 761 
 762   // Add offset table update.
 763   virtual inline HeapWord* allocate(size_t word_size);
 764   inline HeapWord* par_allocate(size_t word_size);
 765 
 766   // MarkSweep support phase3
 767   virtual HeapWord* initialize_threshold();
 768   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 769 
 770   virtual void print_on(outputStream* st) const;
 771 
 772   // Debugging
 773   void verify() const;
 774 };
 775 
 776 
 777 // Class TenuredSpace is used by TenuredGeneration
 778 
 779 class TenuredSpace: public OffsetTableContigSpace {
 780   friend class VMStructs;
 781  protected:
 782   // Mark sweep support
 783   size_t allowed_dead_ratio() const;
 784  public:
 785   // Constructor
 786   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
 787                MemRegion mr) :
 788     OffsetTableContigSpace(sharedOffsetArray, mr) {}
 789 };
 790 #endif // SHARE_VM_MEMORY_SPACE_HPP