1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/divnode.hpp"
  46 #include "opto/escape.hpp"
  47 #include "opto/idealGraphPrinter.hpp"
  48 #include "opto/loopnode.hpp"
  49 #include "opto/machnode.hpp"
  50 #include "opto/macro.hpp"
  51 #include "opto/matcher.hpp"
  52 #include "opto/mathexactnode.hpp"
  53 #include "opto/memnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/node.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/output.hpp"
  59 #include "opto/parse.hpp"
  60 #include "opto/phaseX.hpp"
  61 #include "opto/rootnode.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/stringopts.hpp"
  64 #include "opto/type.hpp"
  65 #include "opto/vectornode.hpp"
  66 #include "runtime/arguments.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/signature.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/timer.hpp"
  71 #include "trace/tracing.hpp"
  72 #include "utilities/copy.hpp"
  73 
  74 
  75 // -------------------- Compile::mach_constant_base_node -----------------------
  76 // Constant table base node singleton.
  77 MachConstantBaseNode* Compile::mach_constant_base_node() {
  78   if (_mach_constant_base_node == NULL) {
  79     _mach_constant_base_node = new MachConstantBaseNode();
  80     _mach_constant_base_node->add_req(C->root());
  81   }
  82   return _mach_constant_base_node;
  83 }
  84 
  85 
  86 /// Support for intrinsics.
  87 
  88 // Return the index at which m must be inserted (or already exists).
  89 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  90 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  91 #ifdef ASSERT
  92   for (int i = 1; i < _intrinsics->length(); i++) {
  93     CallGenerator* cg1 = _intrinsics->at(i-1);
  94     CallGenerator* cg2 = _intrinsics->at(i);
  95     assert(cg1->method() != cg2->method()
  96            ? cg1->method()     < cg2->method()
  97            : cg1->is_virtual() < cg2->is_virtual(),
  98            "compiler intrinsics list must stay sorted");
  99   }
 100 #endif
 101   // Binary search sorted list, in decreasing intervals [lo, hi].
 102   int lo = 0, hi = _intrinsics->length()-1;
 103   while (lo <= hi) {
 104     int mid = (uint)(hi + lo) / 2;
 105     ciMethod* mid_m = _intrinsics->at(mid)->method();
 106     if (m < mid_m) {
 107       hi = mid-1;
 108     } else if (m > mid_m) {
 109       lo = mid+1;
 110     } else {
 111       // look at minor sort key
 112       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 113       if (is_virtual < mid_virt) {
 114         hi = mid-1;
 115       } else if (is_virtual > mid_virt) {
 116         lo = mid+1;
 117       } else {
 118         return mid;  // exact match
 119       }
 120     }
 121   }
 122   return lo;  // inexact match
 123 }
 124 
 125 void Compile::register_intrinsic(CallGenerator* cg) {
 126   if (_intrinsics == NULL) {
 127     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 128   }
 129   // This code is stolen from ciObjectFactory::insert.
 130   // Really, GrowableArray should have methods for
 131   // insert_at, remove_at, and binary_search.
 132   int len = _intrinsics->length();
 133   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 134   if (index == len) {
 135     _intrinsics->append(cg);
 136   } else {
 137 #ifdef ASSERT
 138     CallGenerator* oldcg = _intrinsics->at(index);
 139     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 140 #endif
 141     _intrinsics->append(_intrinsics->at(len-1));
 142     int pos;
 143     for (pos = len-2; pos >= index; pos--) {
 144       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 145     }
 146     _intrinsics->at_put(index, cg);
 147   }
 148   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 149 }
 150 
 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 152   assert(m->is_loaded(), "don't try this on unloaded methods");
 153   if (_intrinsics != NULL) {
 154     int index = intrinsic_insertion_index(m, is_virtual);
 155     if (index < _intrinsics->length()
 156         && _intrinsics->at(index)->method() == m
 157         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 158       return _intrinsics->at(index);
 159     }
 160   }
 161   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 162   if (m->intrinsic_id() != vmIntrinsics::_none &&
 163       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 164     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 165     if (cg != NULL) {
 166       // Save it for next time:
 167       register_intrinsic(cg);
 168       return cg;
 169     } else {
 170       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 171     }
 172   }
 173   return NULL;
 174 }
 175 
 176 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 177 // in library_call.cpp.
 178 
 179 
 180 #ifndef PRODUCT
 181 // statistics gathering...
 182 
 183 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 184 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 185 
 186 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 187   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 188   int oflags = _intrinsic_hist_flags[id];
 189   assert(flags != 0, "what happened?");
 190   if (is_virtual) {
 191     flags |= _intrinsic_virtual;
 192   }
 193   bool changed = (flags != oflags);
 194   if ((flags & _intrinsic_worked) != 0) {
 195     juint count = (_intrinsic_hist_count[id] += 1);
 196     if (count == 1) {
 197       changed = true;           // first time
 198     }
 199     // increment the overall count also:
 200     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 201   }
 202   if (changed) {
 203     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 204       // Something changed about the intrinsic's virtuality.
 205       if ((flags & _intrinsic_virtual) != 0) {
 206         // This is the first use of this intrinsic as a virtual call.
 207         if (oflags != 0) {
 208           // We already saw it as a non-virtual, so note both cases.
 209           flags |= _intrinsic_both;
 210         }
 211       } else if ((oflags & _intrinsic_both) == 0) {
 212         // This is the first use of this intrinsic as a non-virtual
 213         flags |= _intrinsic_both;
 214       }
 215     }
 216     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 217   }
 218   // update the overall flags also:
 219   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 220   return changed;
 221 }
 222 
 223 static char* format_flags(int flags, char* buf) {
 224   buf[0] = 0;
 225   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 226   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 227   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 228   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 229   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 230   if (buf[0] == 0)  strcat(buf, ",");
 231   assert(buf[0] == ',', "must be");
 232   return &buf[1];
 233 }
 234 
 235 void Compile::print_intrinsic_statistics() {
 236   char flagsbuf[100];
 237   ttyLocker ttyl;
 238   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 239   tty->print_cr("Compiler intrinsic usage:");
 240   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 241   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 242   #define PRINT_STAT_LINE(name, c, f) \
 243     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 244   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 245     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 246     int   flags = _intrinsic_hist_flags[id];
 247     juint count = _intrinsic_hist_count[id];
 248     if ((flags | count) != 0) {
 249       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 250     }
 251   }
 252   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 253   if (xtty != NULL)  xtty->tail("statistics");
 254 }
 255 
 256 void Compile::print_statistics() {
 257   { ttyLocker ttyl;
 258     if (xtty != NULL)  xtty->head("statistics type='opto'");
 259     Parse::print_statistics();
 260     PhaseCCP::print_statistics();
 261     PhaseRegAlloc::print_statistics();
 262     Scheduling::print_statistics();
 263     PhasePeephole::print_statistics();
 264     PhaseIdealLoop::print_statistics();
 265     if (xtty != NULL)  xtty->tail("statistics");
 266   }
 267   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 268     // put this under its own <statistics> element.
 269     print_intrinsic_statistics();
 270   }
 271 }
 272 #endif //PRODUCT
 273 
 274 // Support for bundling info
 275 Bundle* Compile::node_bundling(const Node *n) {
 276   assert(valid_bundle_info(n), "oob");
 277   return &_node_bundling_base[n->_idx];
 278 }
 279 
 280 bool Compile::valid_bundle_info(const Node *n) {
 281   return (_node_bundling_limit > n->_idx);
 282 }
 283 
 284 
 285 void Compile::gvn_replace_by(Node* n, Node* nn) {
 286   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 287     Node* use = n->last_out(i);
 288     bool is_in_table = initial_gvn()->hash_delete(use);
 289     uint uses_found = 0;
 290     for (uint j = 0; j < use->len(); j++) {
 291       if (use->in(j) == n) {
 292         if (j < use->req())
 293           use->set_req(j, nn);
 294         else
 295           use->set_prec(j, nn);
 296         uses_found++;
 297       }
 298     }
 299     if (is_in_table) {
 300       // reinsert into table
 301       initial_gvn()->hash_find_insert(use);
 302     }
 303     record_for_igvn(use);
 304     i -= uses_found;    // we deleted 1 or more copies of this edge
 305   }
 306 }
 307 
 308 
 309 static inline bool not_a_node(const Node* n) {
 310   if (n == NULL)                   return true;
 311   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 312   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 313   return false;
 314 }
 315 
 316 // Identify all nodes that are reachable from below, useful.
 317 // Use breadth-first pass that records state in a Unique_Node_List,
 318 // recursive traversal is slower.
 319 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 320   int estimated_worklist_size = unique();
 321   useful.map( estimated_worklist_size, NULL );  // preallocate space
 322 
 323   // Initialize worklist
 324   if (root() != NULL)     { useful.push(root()); }
 325   // If 'top' is cached, declare it useful to preserve cached node
 326   if( cached_top_node() ) { useful.push(cached_top_node()); }
 327 
 328   // Push all useful nodes onto the list, breadthfirst
 329   for( uint next = 0; next < useful.size(); ++next ) {
 330     assert( next < unique(), "Unique useful nodes < total nodes");
 331     Node *n  = useful.at(next);
 332     uint max = n->len();
 333     for( uint i = 0; i < max; ++i ) {
 334       Node *m = n->in(i);
 335       if (not_a_node(m))  continue;
 336       useful.push(m);
 337     }
 338   }
 339 }
 340 
 341 // Update dead_node_list with any missing dead nodes using useful
 342 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 343 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 344   uint max_idx = unique();
 345   VectorSet& useful_node_set = useful.member_set();
 346 
 347   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 348     // If node with index node_idx is not in useful set,
 349     // mark it as dead in dead node list.
 350     if (! useful_node_set.test(node_idx) ) {
 351       record_dead_node(node_idx);
 352     }
 353   }
 354 }
 355 
 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 357   int shift = 0;
 358   for (int i = 0; i < inlines->length(); i++) {
 359     CallGenerator* cg = inlines->at(i);
 360     CallNode* call = cg->call_node();
 361     if (shift > 0) {
 362       inlines->at_put(i-shift, cg);
 363     }
 364     if (!useful.member(call)) {
 365       shift++;
 366     }
 367   }
 368   inlines->trunc_to(inlines->length()-shift);
 369 }
 370 
 371 // Disconnect all useless nodes by disconnecting those at the boundary.
 372 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 373   uint next = 0;
 374   while (next < useful.size()) {
 375     Node *n = useful.at(next++);
 376     if (n->is_SafePoint()) {
 377       // We're done with a parsing phase. Replaced nodes are not valid
 378       // beyond that point.
 379       n->as_SafePoint()->delete_replaced_nodes();
 380     }
 381     // Use raw traversal of out edges since this code removes out edges
 382     int max = n->outcnt();
 383     for (int j = 0; j < max; ++j) {
 384       Node* child = n->raw_out(j);
 385       if (! useful.member(child)) {
 386         assert(!child->is_top() || child != top(),
 387                "If top is cached in Compile object it is in useful list");
 388         // Only need to remove this out-edge to the useless node
 389         n->raw_del_out(j);
 390         --j;
 391         --max;
 392       }
 393     }
 394     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 395       record_for_igvn(n->unique_out());
 396     }
 397   }
 398   // Remove useless macro and predicate opaq nodes
 399   for (int i = C->macro_count()-1; i >= 0; i--) {
 400     Node* n = C->macro_node(i);
 401     if (!useful.member(n)) {
 402       remove_macro_node(n);
 403     }
 404   }
 405   // Remove useless expensive node
 406   for (int i = C->expensive_count()-1; i >= 0; i--) {
 407     Node* n = C->expensive_node(i);
 408     if (!useful.member(n)) {
 409       remove_expensive_node(n);
 410     }
 411   }
 412   // clean up the late inline lists
 413   remove_useless_late_inlines(&_string_late_inlines, useful);
 414   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 415   remove_useless_late_inlines(&_late_inlines, useful);
 416   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 417 }
 418 
 419 //------------------------------frame_size_in_words-----------------------------
 420 // frame_slots in units of words
 421 int Compile::frame_size_in_words() const {
 422   // shift is 0 in LP32 and 1 in LP64
 423   const int shift = (LogBytesPerWord - LogBytesPerInt);
 424   int words = _frame_slots >> shift;
 425   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 426   return words;
 427 }
 428 
 429 // To bang the stack of this compiled method we use the stack size
 430 // that the interpreter would need in case of a deoptimization. This
 431 // removes the need to bang the stack in the deoptimization blob which
 432 // in turn simplifies stack overflow handling.
 433 int Compile::bang_size_in_bytes() const {
 434   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 435 }
 436 
 437 // ============================================================================
 438 //------------------------------CompileWrapper---------------------------------
 439 class CompileWrapper : public StackObj {
 440   Compile *const _compile;
 441  public:
 442   CompileWrapper(Compile* compile);
 443 
 444   ~CompileWrapper();
 445 };
 446 
 447 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 448   // the Compile* pointer is stored in the current ciEnv:
 449   ciEnv* env = compile->env();
 450   assert(env == ciEnv::current(), "must already be a ciEnv active");
 451   assert(env->compiler_data() == NULL, "compile already active?");
 452   env->set_compiler_data(compile);
 453   assert(compile == Compile::current(), "sanity");
 454 
 455   compile->set_type_dict(NULL);
 456   compile->set_type_hwm(NULL);
 457   compile->set_type_last_size(0);
 458   compile->set_last_tf(NULL, NULL);
 459   compile->set_indexSet_arena(NULL);
 460   compile->set_indexSet_free_block_list(NULL);
 461   compile->init_type_arena();
 462   Type::Initialize(compile);
 463   _compile->set_scratch_buffer_blob(NULL);
 464   _compile->begin_method();
 465 }
 466 CompileWrapper::~CompileWrapper() {
 467   _compile->end_method();
 468   if (_compile->scratch_buffer_blob() != NULL)
 469     BufferBlob::free(_compile->scratch_buffer_blob());
 470   _compile->env()->set_compiler_data(NULL);
 471 }
 472 
 473 
 474 //----------------------------print_compile_messages---------------------------
 475 void Compile::print_compile_messages() {
 476 #ifndef PRODUCT
 477   // Check if recompiling
 478   if (_subsume_loads == false && PrintOpto) {
 479     // Recompiling without allowing machine instructions to subsume loads
 480     tty->print_cr("*********************************************************");
 481     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 482     tty->print_cr("*********************************************************");
 483   }
 484   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 485     // Recompiling without escape analysis
 486     tty->print_cr("*********************************************************");
 487     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 488     tty->print_cr("*********************************************************");
 489   }
 490   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 491     // Recompiling without boxing elimination
 492     tty->print_cr("*********************************************************");
 493     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 494     tty->print_cr("*********************************************************");
 495   }
 496   if (env()->break_at_compile()) {
 497     // Open the debugger when compiling this method.
 498     tty->print("### Breaking when compiling: ");
 499     method()->print_short_name();
 500     tty->cr();
 501     BREAKPOINT;
 502   }
 503 
 504   if( PrintOpto ) {
 505     if (is_osr_compilation()) {
 506       tty->print("[OSR]%3d", _compile_id);
 507     } else {
 508       tty->print("%3d", _compile_id);
 509     }
 510   }
 511 #endif
 512 }
 513 
 514 
 515 //-----------------------init_scratch_buffer_blob------------------------------
 516 // Construct a temporary BufferBlob and cache it for this compile.
 517 void Compile::init_scratch_buffer_blob(int const_size) {
 518   // If there is already a scratch buffer blob allocated and the
 519   // constant section is big enough, use it.  Otherwise free the
 520   // current and allocate a new one.
 521   BufferBlob* blob = scratch_buffer_blob();
 522   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 523     // Use the current blob.
 524   } else {
 525     if (blob != NULL) {
 526       BufferBlob::free(blob);
 527     }
 528 
 529     ResourceMark rm;
 530     _scratch_const_size = const_size;
 531     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 532     blob = BufferBlob::create("Compile::scratch_buffer", size);
 533     // Record the buffer blob for next time.
 534     set_scratch_buffer_blob(blob);
 535     // Have we run out of code space?
 536     if (scratch_buffer_blob() == NULL) {
 537       // Let CompilerBroker disable further compilations.
 538       record_failure("Not enough space for scratch buffer in CodeCache");
 539       CompileBroker::handle_full_code_cache();
 540       return;
 541     }
 542   }
 543 
 544   // Initialize the relocation buffers
 545   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 546   set_scratch_locs_memory(locs_buf);
 547 }
 548 
 549 
 550 //-----------------------scratch_emit_size-------------------------------------
 551 // Helper function that computes size by emitting code
 552 uint Compile::scratch_emit_size(const Node* n) {
 553   // Start scratch_emit_size section.
 554   set_in_scratch_emit_size(true);
 555 
 556   // Emit into a trash buffer and count bytes emitted.
 557   // This is a pretty expensive way to compute a size,
 558   // but it works well enough if seldom used.
 559   // All common fixed-size instructions are given a size
 560   // method by the AD file.
 561   // Note that the scratch buffer blob and locs memory are
 562   // allocated at the beginning of the compile task, and
 563   // may be shared by several calls to scratch_emit_size.
 564   // The allocation of the scratch buffer blob is particularly
 565   // expensive, since it has to grab the code cache lock.
 566   BufferBlob* blob = this->scratch_buffer_blob();
 567   assert(blob != NULL, "Initialize BufferBlob at start");
 568   assert(blob->size() > MAX_inst_size, "sanity");
 569   relocInfo* locs_buf = scratch_locs_memory();
 570   address blob_begin = blob->content_begin();
 571   address blob_end   = (address)locs_buf;
 572   assert(blob->content_contains(blob_end), "sanity");
 573   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 574   buf.initialize_consts_size(_scratch_const_size);
 575   buf.initialize_stubs_size(MAX_stubs_size);
 576   assert(locs_buf != NULL, "sanity");
 577   int lsize = MAX_locs_size / 3;
 578   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 579   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 580   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 581 
 582   // Do the emission.
 583 
 584   Label fakeL; // Fake label for branch instructions.
 585   Label*   saveL = NULL;
 586   uint save_bnum = 0;
 587   bool is_branch = n->is_MachBranch();
 588   if (is_branch) {
 589     MacroAssembler masm(&buf);
 590     masm.bind(fakeL);
 591     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 592     n->as_MachBranch()->label_set(&fakeL, 0);
 593   }
 594   n->emit(buf, this->regalloc());
 595   if (is_branch) // Restore label.
 596     n->as_MachBranch()->label_set(saveL, save_bnum);
 597 
 598   // End scratch_emit_size section.
 599   set_in_scratch_emit_size(false);
 600 
 601   return buf.insts_size();
 602 }
 603 
 604 
 605 // ============================================================================
 606 //------------------------------Compile standard-------------------------------
 607 debug_only( int Compile::_debug_idx = 100000; )
 608 
 609 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 610 // the continuation bci for on stack replacement.
 611 
 612 
 613 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 614                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 615                 : Phase(Compiler),
 616                   _env(ci_env),
 617                   _log(ci_env->log()),
 618                   _compile_id(ci_env->compile_id()),
 619                   _save_argument_registers(false),
 620                   _stub_name(NULL),
 621                   _stub_function(NULL),
 622                   _stub_entry_point(NULL),
 623                   _method(target),
 624                   _entry_bci(osr_bci),
 625                   _initial_gvn(NULL),
 626                   _for_igvn(NULL),
 627                   _warm_calls(NULL),
 628                   _subsume_loads(subsume_loads),
 629                   _do_escape_analysis(do_escape_analysis),
 630                   _eliminate_boxing(eliminate_boxing),
 631                   _failure_reason(NULL),
 632                   _code_buffer("Compile::Fill_buffer"),
 633                   _orig_pc_slot(0),
 634                   _orig_pc_slot_offset_in_bytes(0),
 635                   _has_method_handle_invokes(false),
 636                   _mach_constant_base_node(NULL),
 637                   _node_bundling_limit(0),
 638                   _node_bundling_base(NULL),
 639                   _java_calls(0),
 640                   _inner_loops(0),
 641                   _scratch_const_size(-1),
 642                   _in_scratch_emit_size(false),
 643                   _dead_node_list(comp_arena()),
 644                   _dead_node_count(0),
 645 #ifndef PRODUCT
 646                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 647                   _in_dump_cnt(0),
 648                   _printer(IdealGraphPrinter::printer()),
 649 #endif
 650                   _congraph(NULL),
 651                   _replay_inline_data(NULL),
 652                   _late_inlines(comp_arena(), 2, 0, NULL),
 653                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 654                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 655                   _late_inlines_pos(0),
 656                   _number_of_mh_late_inlines(0),
 657                   _inlining_progress(false),
 658                   _inlining_incrementally(false),
 659                   _print_inlining_list(NULL),
 660                   _print_inlining_stream(NULL),
 661                   _print_inlining_idx(0),
 662                   _print_inlining_output(NULL),
 663                   _interpreter_frame_size(0) {
 664   C = this;
 665 
 666   CompileWrapper cw(this);
 667 #ifndef PRODUCT
 668   if (TimeCompiler2) {
 669     tty->print(" ");
 670     target->holder()->name()->print();
 671     tty->print(".");
 672     target->print_short_name();
 673     tty->print("  ");
 674   }
 675   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 676   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 677   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 678   if (!print_opto_assembly) {
 679     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 680     if (print_assembly && !Disassembler::can_decode()) {
 681       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 682       print_opto_assembly = true;
 683     }
 684   }
 685   set_print_assembly(print_opto_assembly);
 686   set_parsed_irreducible_loop(false);
 687 
 688   if (method()->has_option("ReplayInline")) {
 689     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 690   }
 691 #endif
 692   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 693   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 694   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 695 
 696   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 697     // Make sure the method being compiled gets its own MDO,
 698     // so we can at least track the decompile_count().
 699     // Need MDO to record RTM code generation state.
 700     method()->ensure_method_data();
 701   }
 702 
 703   Init(::AliasLevel);
 704 
 705 
 706   print_compile_messages();
 707 
 708   _ilt = InlineTree::build_inline_tree_root();
 709 
 710   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 711   assert(num_alias_types() >= AliasIdxRaw, "");
 712 
 713 #define MINIMUM_NODE_HASH  1023
 714   // Node list that Iterative GVN will start with
 715   Unique_Node_List for_igvn(comp_arena());
 716   set_for_igvn(&for_igvn);
 717 
 718   // GVN that will be run immediately on new nodes
 719   uint estimated_size = method()->code_size()*4+64;
 720   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 721   PhaseGVN gvn(node_arena(), estimated_size);
 722   set_initial_gvn(&gvn);
 723 
 724   print_inlining_init();
 725   { // Scope for timing the parser
 726     TracePhase t3("parse", &_t_parser, true);
 727 
 728     // Put top into the hash table ASAP.
 729     initial_gvn()->transform_no_reclaim(top());
 730 
 731     // Set up tf(), start(), and find a CallGenerator.
 732     CallGenerator* cg = NULL;
 733     if (is_osr_compilation()) {
 734       const TypeTuple *domain = StartOSRNode::osr_domain();
 735       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 736       init_tf(TypeFunc::make(domain, range));
 737       StartNode* s = new StartOSRNode(root(), domain);
 738       initial_gvn()->set_type_bottom(s);
 739       init_start(s);
 740       cg = CallGenerator::for_osr(method(), entry_bci());
 741     } else {
 742       // Normal case.
 743       init_tf(TypeFunc::make(method()));
 744       StartNode* s = new StartNode(root(), tf()->domain());
 745       initial_gvn()->set_type_bottom(s);
 746       init_start(s);
 747       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 748         // With java.lang.ref.reference.get() we must go through the
 749         // intrinsic when G1 is enabled - even when get() is the root
 750         // method of the compile - so that, if necessary, the value in
 751         // the referent field of the reference object gets recorded by
 752         // the pre-barrier code.
 753         // Specifically, if G1 is enabled, the value in the referent
 754         // field is recorded by the G1 SATB pre barrier. This will
 755         // result in the referent being marked live and the reference
 756         // object removed from the list of discovered references during
 757         // reference processing.
 758         cg = find_intrinsic(method(), false);
 759       }
 760       if (cg == NULL) {
 761         float past_uses = method()->interpreter_invocation_count();
 762         float expected_uses = past_uses;
 763         cg = CallGenerator::for_inline(method(), expected_uses);
 764       }
 765     }
 766     if (failing())  return;
 767     if (cg == NULL) {
 768       record_method_not_compilable_all_tiers("cannot parse method");
 769       return;
 770     }
 771     JVMState* jvms = build_start_state(start(), tf());
 772     if ((jvms = cg->generate(jvms)) == NULL) {
 773       record_method_not_compilable("method parse failed");
 774       return;
 775     }
 776     GraphKit kit(jvms);
 777 
 778     if (!kit.stopped()) {
 779       // Accept return values, and transfer control we know not where.
 780       // This is done by a special, unique ReturnNode bound to root.
 781       return_values(kit.jvms());
 782     }
 783 
 784     if (kit.has_exceptions()) {
 785       // Any exceptions that escape from this call must be rethrown
 786       // to whatever caller is dynamically above us on the stack.
 787       // This is done by a special, unique RethrowNode bound to root.
 788       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 789     }
 790 
 791     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 792 
 793     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 794       inline_string_calls(true);
 795     }
 796 
 797     if (failing())  return;
 798 
 799     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 800 
 801     // Remove clutter produced by parsing.
 802     if (!failing()) {
 803       ResourceMark rm;
 804       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 805     }
 806   }
 807 
 808   // Note:  Large methods are capped off in do_one_bytecode().
 809   if (failing())  return;
 810 
 811   // After parsing, node notes are no longer automagic.
 812   // They must be propagated by register_new_node_with_optimizer(),
 813   // clone(), or the like.
 814   set_default_node_notes(NULL);
 815 
 816   for (;;) {
 817     int successes = Inline_Warm();
 818     if (failing())  return;
 819     if (successes == 0)  break;
 820   }
 821 
 822   // Drain the list.
 823   Finish_Warm();
 824 #ifndef PRODUCT
 825   if (_printer) {
 826     _printer->print_inlining(this);
 827   }
 828 #endif
 829 
 830   if (failing())  return;
 831   NOT_PRODUCT( verify_graph_edges(); )
 832 
 833   // Now optimize
 834   Optimize();
 835   if (failing())  return;
 836   NOT_PRODUCT( verify_graph_edges(); )
 837 
 838 #ifndef PRODUCT
 839   if (PrintIdeal) {
 840     ttyLocker ttyl;  // keep the following output all in one block
 841     // This output goes directly to the tty, not the compiler log.
 842     // To enable tools to match it up with the compilation activity,
 843     // be sure to tag this tty output with the compile ID.
 844     if (xtty != NULL) {
 845       xtty->head("ideal compile_id='%d'%s", compile_id(),
 846                  is_osr_compilation()    ? " compile_kind='osr'" :
 847                  "");
 848     }
 849     root()->dump(9999);
 850     if (xtty != NULL) {
 851       xtty->tail("ideal");
 852     }
 853   }
 854 #endif
 855 
 856   NOT_PRODUCT( verify_barriers(); )
 857 
 858   // Dump compilation data to replay it.
 859   if (method()->has_option("DumpReplay")) {
 860     env()->dump_replay_data(_compile_id);
 861   }
 862   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 863     env()->dump_inline_data(_compile_id);
 864   }
 865 
 866   // Now that we know the size of all the monitors we can add a fixed slot
 867   // for the original deopt pc.
 868 
 869   _orig_pc_slot =  fixed_slots();
 870   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 871   set_fixed_slots(next_slot);
 872 
 873   // Compute when to use implicit null checks. Used by matching trap based
 874   // nodes and NullCheck optimization.
 875   set_allowed_deopt_reasons();
 876 
 877   // Now generate code
 878   Code_Gen();
 879   if (failing())  return;
 880 
 881   // Check if we want to skip execution of all compiled code.
 882   {
 883 #ifndef PRODUCT
 884     if (OptoNoExecute) {
 885       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 886       return;
 887     }
 888     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 889 #endif
 890 
 891     if (is_osr_compilation()) {
 892       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 893       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 894     } else {
 895       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 896       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 897     }
 898 
 899     env()->register_method(_method, _entry_bci,
 900                            &_code_offsets,
 901                            _orig_pc_slot_offset_in_bytes,
 902                            code_buffer(),
 903                            frame_size_in_words(), _oop_map_set,
 904                            &_handler_table, &_inc_table,
 905                            compiler,
 906                            env()->comp_level(),
 907                            has_unsafe_access(),
 908                            SharedRuntime::is_wide_vector(max_vector_size()),
 909                            rtm_state()
 910                            );
 911 
 912     if (log() != NULL) // Print code cache state into compiler log
 913       log()->code_cache_state();
 914   }
 915 }
 916 
 917 //------------------------------Compile----------------------------------------
 918 // Compile a runtime stub
 919 Compile::Compile( ciEnv* ci_env,
 920                   TypeFunc_generator generator,
 921                   address stub_function,
 922                   const char *stub_name,
 923                   int is_fancy_jump,
 924                   bool pass_tls,
 925                   bool save_arg_registers,
 926                   bool return_pc )
 927   : Phase(Compiler),
 928     _env(ci_env),
 929     _log(ci_env->log()),
 930     _compile_id(0),
 931     _save_argument_registers(save_arg_registers),
 932     _method(NULL),
 933     _stub_name(stub_name),
 934     _stub_function(stub_function),
 935     _stub_entry_point(NULL),
 936     _entry_bci(InvocationEntryBci),
 937     _initial_gvn(NULL),
 938     _for_igvn(NULL),
 939     _warm_calls(NULL),
 940     _orig_pc_slot(0),
 941     _orig_pc_slot_offset_in_bytes(0),
 942     _subsume_loads(true),
 943     _do_escape_analysis(false),
 944     _eliminate_boxing(false),
 945     _failure_reason(NULL),
 946     _code_buffer("Compile::Fill_buffer"),
 947     _has_method_handle_invokes(false),
 948     _mach_constant_base_node(NULL),
 949     _node_bundling_limit(0),
 950     _node_bundling_base(NULL),
 951     _java_calls(0),
 952     _inner_loops(0),
 953 #ifndef PRODUCT
 954     _trace_opto_output(TraceOptoOutput),
 955     _in_dump_cnt(0),
 956     _printer(NULL),
 957 #endif
 958     _dead_node_list(comp_arena()),
 959     _dead_node_count(0),
 960     _congraph(NULL),
 961     _replay_inline_data(NULL),
 962     _number_of_mh_late_inlines(0),
 963     _inlining_progress(false),
 964     _inlining_incrementally(false),
 965     _print_inlining_list(NULL),
 966     _print_inlining_stream(NULL),
 967     _print_inlining_idx(0),
 968     _print_inlining_output(NULL),
 969     _allowed_reasons(0),
 970     _interpreter_frame_size(0) {
 971   C = this;
 972 
 973 #ifndef PRODUCT
 974   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 975   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 976   set_print_assembly(PrintFrameConverterAssembly);
 977   set_parsed_irreducible_loop(false);
 978 #endif
 979   set_has_irreducible_loop(false); // no loops
 980 
 981   CompileWrapper cw(this);
 982   Init(/*AliasLevel=*/ 0);
 983   init_tf((*generator)());
 984 
 985   {
 986     // The following is a dummy for the sake of GraphKit::gen_stub
 987     Unique_Node_List for_igvn(comp_arena());
 988     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 989     PhaseGVN gvn(Thread::current()->resource_area(),255);
 990     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 991     gvn.transform_no_reclaim(top());
 992 
 993     GraphKit kit;
 994     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 995   }
 996 
 997   NOT_PRODUCT( verify_graph_edges(); )
 998   Code_Gen();
 999   if (failing())  return;
1000 
1001 
1002   // Entry point will be accessed using compile->stub_entry_point();
1003   if (code_buffer() == NULL) {
1004     Matcher::soft_match_failure();
1005   } else {
1006     if (PrintAssembly && (WizardMode || Verbose))
1007       tty->print_cr("### Stub::%s", stub_name);
1008 
1009     if (!failing()) {
1010       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1011 
1012       // Make the NMethod
1013       // For now we mark the frame as never safe for profile stackwalking
1014       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1015                                                       code_buffer(),
1016                                                       CodeOffsets::frame_never_safe,
1017                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1018                                                       frame_size_in_words(),
1019                                                       _oop_map_set,
1020                                                       save_arg_registers);
1021       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1022 
1023       _stub_entry_point = rs->entry_point();
1024     }
1025   }
1026 }
1027 
1028 //------------------------------Init-------------------------------------------
1029 // Prepare for a single compilation
1030 void Compile::Init(int aliaslevel) {
1031   _unique  = 0;
1032   _regalloc = NULL;
1033 
1034   _tf      = NULL;  // filled in later
1035   _top     = NULL;  // cached later
1036   _matcher = NULL;  // filled in later
1037   _cfg     = NULL;  // filled in later
1038 
1039   set_24_bit_selection_and_mode(Use24BitFP, false);
1040 
1041   _node_note_array = NULL;
1042   _default_node_notes = NULL;
1043 
1044   _immutable_memory = NULL; // filled in at first inquiry
1045 
1046   // Globally visible Nodes
1047   // First set TOP to NULL to give safe behavior during creation of RootNode
1048   set_cached_top_node(NULL);
1049   set_root(new RootNode());
1050   // Now that you have a Root to point to, create the real TOP
1051   set_cached_top_node( new ConNode(Type::TOP) );
1052   set_recent_alloc(NULL, NULL);
1053 
1054   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1055   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1056   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1057   env()->set_dependencies(new Dependencies(env()));
1058 
1059   _fixed_slots = 0;
1060   set_has_split_ifs(false);
1061   set_has_loops(has_method() && method()->has_loops()); // first approximation
1062   set_has_stringbuilder(false);
1063   set_has_boxed_value(false);
1064   _trap_can_recompile = false;  // no traps emitted yet
1065   _major_progress = true; // start out assuming good things will happen
1066   set_has_unsafe_access(false);
1067   set_max_vector_size(0);
1068   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1069   set_decompile_count(0);
1070 
1071   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1072   set_num_loop_opts(LoopOptsCount);
1073   set_do_inlining(Inline);
1074   set_max_inline_size(MaxInlineSize);
1075   set_freq_inline_size(FreqInlineSize);
1076   set_do_scheduling(OptoScheduling);
1077   set_do_count_invocations(false);
1078   set_do_method_data_update(false);
1079   set_age_code(has_method() && method()->profile_aging());
1080   set_rtm_state(NoRTM); // No RTM lock eliding by default
1081 #if INCLUDE_RTM_OPT
1082   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1083     int rtm_state = method()->method_data()->rtm_state();
1084     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1085       // Don't generate RTM lock eliding code.
1086       set_rtm_state(NoRTM);
1087     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1088       // Generate RTM lock eliding code without abort ratio calculation code.
1089       set_rtm_state(UseRTM);
1090     } else if (UseRTMDeopt) {
1091       // Generate RTM lock eliding code and include abort ratio calculation
1092       // code if UseRTMDeopt is on.
1093       set_rtm_state(ProfileRTM);
1094     }
1095   }
1096 #endif
1097   if (debug_info()->recording_non_safepoints()) {
1098     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1099                         (comp_arena(), 8, 0, NULL));
1100     set_default_node_notes(Node_Notes::make(this));
1101   }
1102 
1103   // // -- Initialize types before each compile --
1104   // // Update cached type information
1105   // if( _method && _method->constants() )
1106   //   Type::update_loaded_types(_method, _method->constants());
1107 
1108   // Init alias_type map.
1109   if (!_do_escape_analysis && aliaslevel == 3)
1110     aliaslevel = 2;  // No unique types without escape analysis
1111   _AliasLevel = aliaslevel;
1112   const int grow_ats = 16;
1113   _max_alias_types = grow_ats;
1114   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1115   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1116   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1117   {
1118     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1119   }
1120   // Initialize the first few types.
1121   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1122   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1123   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1124   _num_alias_types = AliasIdxRaw+1;
1125   // Zero out the alias type cache.
1126   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1127   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1128   probe_alias_cache(NULL)->_index = AliasIdxTop;
1129 
1130   _intrinsics = NULL;
1131   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1132   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1133   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1134   register_library_intrinsics();
1135 }
1136 
1137 //---------------------------init_start----------------------------------------
1138 // Install the StartNode on this compile object.
1139 void Compile::init_start(StartNode* s) {
1140   if (failing())
1141     return; // already failing
1142   assert(s == start(), "");
1143 }
1144 
1145 StartNode* Compile::start() const {
1146   assert(!failing(), "");
1147   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1148     Node* start = root()->fast_out(i);
1149     if( start->is_Start() )
1150       return start->as_Start();
1151   }
1152   fatal("Did not find Start node!");
1153   return NULL;
1154 }
1155 
1156 //-------------------------------immutable_memory-------------------------------------
1157 // Access immutable memory
1158 Node* Compile::immutable_memory() {
1159   if (_immutable_memory != NULL) {
1160     return _immutable_memory;
1161   }
1162   StartNode* s = start();
1163   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1164     Node *p = s->fast_out(i);
1165     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1166       _immutable_memory = p;
1167       return _immutable_memory;
1168     }
1169   }
1170   ShouldNotReachHere();
1171   return NULL;
1172 }
1173 
1174 //----------------------set_cached_top_node------------------------------------
1175 // Install the cached top node, and make sure Node::is_top works correctly.
1176 void Compile::set_cached_top_node(Node* tn) {
1177   if (tn != NULL)  verify_top(tn);
1178   Node* old_top = _top;
1179   _top = tn;
1180   // Calling Node::setup_is_top allows the nodes the chance to adjust
1181   // their _out arrays.
1182   if (_top != NULL)     _top->setup_is_top();
1183   if (old_top != NULL)  old_top->setup_is_top();
1184   assert(_top == NULL || top()->is_top(), "");
1185 }
1186 
1187 #ifdef ASSERT
1188 uint Compile::count_live_nodes_by_graph_walk() {
1189   Unique_Node_List useful(comp_arena());
1190   // Get useful node list by walking the graph.
1191   identify_useful_nodes(useful);
1192   return useful.size();
1193 }
1194 
1195 void Compile::print_missing_nodes() {
1196 
1197   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1198   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1199     return;
1200   }
1201 
1202   // This is an expensive function. It is executed only when the user
1203   // specifies VerifyIdealNodeCount option or otherwise knows the
1204   // additional work that needs to be done to identify reachable nodes
1205   // by walking the flow graph and find the missing ones using
1206   // _dead_node_list.
1207 
1208   Unique_Node_List useful(comp_arena());
1209   // Get useful node list by walking the graph.
1210   identify_useful_nodes(useful);
1211 
1212   uint l_nodes = C->live_nodes();
1213   uint l_nodes_by_walk = useful.size();
1214 
1215   if (l_nodes != l_nodes_by_walk) {
1216     if (_log != NULL) {
1217       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1218       _log->stamp();
1219       _log->end_head();
1220     }
1221     VectorSet& useful_member_set = useful.member_set();
1222     int last_idx = l_nodes_by_walk;
1223     for (int i = 0; i < last_idx; i++) {
1224       if (useful_member_set.test(i)) {
1225         if (_dead_node_list.test(i)) {
1226           if (_log != NULL) {
1227             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1228           }
1229           if (PrintIdealNodeCount) {
1230             // Print the log message to tty
1231               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1232               useful.at(i)->dump();
1233           }
1234         }
1235       }
1236       else if (! _dead_node_list.test(i)) {
1237         if (_log != NULL) {
1238           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1239         }
1240         if (PrintIdealNodeCount) {
1241           // Print the log message to tty
1242           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1243         }
1244       }
1245     }
1246     if (_log != NULL) {
1247       _log->tail("mismatched_nodes");
1248     }
1249   }
1250 }
1251 #endif
1252 
1253 #ifndef PRODUCT
1254 void Compile::verify_top(Node* tn) const {
1255   if (tn != NULL) {
1256     assert(tn->is_Con(), "top node must be a constant");
1257     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1258     assert(tn->in(0) != NULL, "must have live top node");
1259   }
1260 }
1261 #endif
1262 
1263 
1264 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1265 
1266 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1267   guarantee(arr != NULL, "");
1268   int num_blocks = arr->length();
1269   if (grow_by < num_blocks)  grow_by = num_blocks;
1270   int num_notes = grow_by * _node_notes_block_size;
1271   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1272   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1273   while (num_notes > 0) {
1274     arr->append(notes);
1275     notes     += _node_notes_block_size;
1276     num_notes -= _node_notes_block_size;
1277   }
1278   assert(num_notes == 0, "exact multiple, please");
1279 }
1280 
1281 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1282   if (source == NULL || dest == NULL)  return false;
1283 
1284   if (dest->is_Con())
1285     return false;               // Do not push debug info onto constants.
1286 
1287 #ifdef ASSERT
1288   // Leave a bread crumb trail pointing to the original node:
1289   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1290     dest->set_debug_orig(source);
1291   }
1292 #endif
1293 
1294   if (node_note_array() == NULL)
1295     return false;               // Not collecting any notes now.
1296 
1297   // This is a copy onto a pre-existing node, which may already have notes.
1298   // If both nodes have notes, do not overwrite any pre-existing notes.
1299   Node_Notes* source_notes = node_notes_at(source->_idx);
1300   if (source_notes == NULL || source_notes->is_clear())  return false;
1301   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1302   if (dest_notes == NULL || dest_notes->is_clear()) {
1303     return set_node_notes_at(dest->_idx, source_notes);
1304   }
1305 
1306   Node_Notes merged_notes = (*source_notes);
1307   // The order of operations here ensures that dest notes will win...
1308   merged_notes.update_from(dest_notes);
1309   return set_node_notes_at(dest->_idx, &merged_notes);
1310 }
1311 
1312 
1313 //--------------------------allow_range_check_smearing-------------------------
1314 // Gating condition for coalescing similar range checks.
1315 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1316 // single covering check that is at least as strong as any of them.
1317 // If the optimization succeeds, the simplified (strengthened) range check
1318 // will always succeed.  If it fails, we will deopt, and then give up
1319 // on the optimization.
1320 bool Compile::allow_range_check_smearing() const {
1321   // If this method has already thrown a range-check,
1322   // assume it was because we already tried range smearing
1323   // and it failed.
1324   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1325   return !already_trapped;
1326 }
1327 
1328 
1329 //------------------------------flatten_alias_type-----------------------------
1330 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1331   int offset = tj->offset();
1332   TypePtr::PTR ptr = tj->ptr();
1333 
1334   // Known instance (scalarizable allocation) alias only with itself.
1335   bool is_known_inst = tj->isa_oopptr() != NULL &&
1336                        tj->is_oopptr()->is_known_instance();
1337 
1338   // Process weird unsafe references.
1339   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1340     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1341     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1342     tj = TypeOopPtr::BOTTOM;
1343     ptr = tj->ptr();
1344     offset = tj->offset();
1345   }
1346 
1347   // Array pointers need some flattening
1348   const TypeAryPtr *ta = tj->isa_aryptr();
1349   if (ta && ta->is_stable()) {
1350     // Erase stability property for alias analysis.
1351     tj = ta = ta->cast_to_stable(false);
1352   }
1353   if( ta && is_known_inst ) {
1354     if ( offset != Type::OffsetBot &&
1355          offset > arrayOopDesc::length_offset_in_bytes() ) {
1356       offset = Type::OffsetBot; // Flatten constant access into array body only
1357       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1358     }
1359   } else if( ta && _AliasLevel >= 2 ) {
1360     // For arrays indexed by constant indices, we flatten the alias
1361     // space to include all of the array body.  Only the header, klass
1362     // and array length can be accessed un-aliased.
1363     if( offset != Type::OffsetBot ) {
1364       if( ta->const_oop() ) { // MethodData* or Method*
1365         offset = Type::OffsetBot;   // Flatten constant access into array body
1366         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1367       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1368         // range is OK as-is.
1369         tj = ta = TypeAryPtr::RANGE;
1370       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1371         tj = TypeInstPtr::KLASS; // all klass loads look alike
1372         ta = TypeAryPtr::RANGE; // generic ignored junk
1373         ptr = TypePtr::BotPTR;
1374       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1375         tj = TypeInstPtr::MARK;
1376         ta = TypeAryPtr::RANGE; // generic ignored junk
1377         ptr = TypePtr::BotPTR;
1378       } else {                  // Random constant offset into array body
1379         offset = Type::OffsetBot;   // Flatten constant access into array body
1380         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1381       }
1382     }
1383     // Arrays of fixed size alias with arrays of unknown size.
1384     if (ta->size() != TypeInt::POS) {
1385       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1386       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1387     }
1388     // Arrays of known objects become arrays of unknown objects.
1389     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1390       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1391       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1392     }
1393     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1394       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1395       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1396     }
1397     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1398     // cannot be distinguished by bytecode alone.
1399     if (ta->elem() == TypeInt::BOOL) {
1400       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1401       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1402       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1403     }
1404     // During the 2nd round of IterGVN, NotNull castings are removed.
1405     // Make sure the Bottom and NotNull variants alias the same.
1406     // Also, make sure exact and non-exact variants alias the same.
1407     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1408       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1409     }
1410   }
1411 
1412   // Oop pointers need some flattening
1413   const TypeInstPtr *to = tj->isa_instptr();
1414   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1415     ciInstanceKlass *k = to->klass()->as_instance_klass();
1416     if( ptr == TypePtr::Constant ) {
1417       if (to->klass() != ciEnv::current()->Class_klass() ||
1418           offset < k->size_helper() * wordSize) {
1419         // No constant oop pointers (such as Strings); they alias with
1420         // unknown strings.
1421         assert(!is_known_inst, "not scalarizable allocation");
1422         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1423       }
1424     } else if( is_known_inst ) {
1425       tj = to; // Keep NotNull and klass_is_exact for instance type
1426     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1427       // During the 2nd round of IterGVN, NotNull castings are removed.
1428       // Make sure the Bottom and NotNull variants alias the same.
1429       // Also, make sure exact and non-exact variants alias the same.
1430       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1431     }
1432     if (to->speculative() != NULL) {
1433       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1434     }
1435     // Canonicalize the holder of this field
1436     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1437       // First handle header references such as a LoadKlassNode, even if the
1438       // object's klass is unloaded at compile time (4965979).
1439       if (!is_known_inst) { // Do it only for non-instance types
1440         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1441       }
1442     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1443       // Static fields are in the space above the normal instance
1444       // fields in the java.lang.Class instance.
1445       if (to->klass() != ciEnv::current()->Class_klass()) {
1446         to = NULL;
1447         tj = TypeOopPtr::BOTTOM;
1448         offset = tj->offset();
1449       }
1450     } else {
1451       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1452       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1453         if( is_known_inst ) {
1454           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1455         } else {
1456           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1457         }
1458       }
1459     }
1460   }
1461 
1462   // Klass pointers to object array klasses need some flattening
1463   const TypeKlassPtr *tk = tj->isa_klassptr();
1464   if( tk ) {
1465     // If we are referencing a field within a Klass, we need
1466     // to assume the worst case of an Object.  Both exact and
1467     // inexact types must flatten to the same alias class so
1468     // use NotNull as the PTR.
1469     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1470 
1471       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1472                                    TypeKlassPtr::OBJECT->klass(),
1473                                    offset);
1474     }
1475 
1476     ciKlass* klass = tk->klass();
1477     if( klass->is_obj_array_klass() ) {
1478       ciKlass* k = TypeAryPtr::OOPS->klass();
1479       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1480         k = TypeInstPtr::BOTTOM->klass();
1481       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1482     }
1483 
1484     // Check for precise loads from the primary supertype array and force them
1485     // to the supertype cache alias index.  Check for generic array loads from
1486     // the primary supertype array and also force them to the supertype cache
1487     // alias index.  Since the same load can reach both, we need to merge
1488     // these 2 disparate memories into the same alias class.  Since the
1489     // primary supertype array is read-only, there's no chance of confusion
1490     // where we bypass an array load and an array store.
1491     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1492     if (offset == Type::OffsetBot ||
1493         (offset >= primary_supers_offset &&
1494          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1495         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1496       offset = in_bytes(Klass::secondary_super_cache_offset());
1497       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1498     }
1499   }
1500 
1501   // Flatten all Raw pointers together.
1502   if (tj->base() == Type::RawPtr)
1503     tj = TypeRawPtr::BOTTOM;
1504 
1505   if (tj->base() == Type::AnyPtr)
1506     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1507 
1508   // Flatten all to bottom for now
1509   switch( _AliasLevel ) {
1510   case 0:
1511     tj = TypePtr::BOTTOM;
1512     break;
1513   case 1:                       // Flatten to: oop, static, field or array
1514     switch (tj->base()) {
1515     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1516     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1517     case Type::AryPtr:   // do not distinguish arrays at all
1518     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1519     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1520     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1521     default: ShouldNotReachHere();
1522     }
1523     break;
1524   case 2:                       // No collapsing at level 2; keep all splits
1525   case 3:                       // No collapsing at level 3; keep all splits
1526     break;
1527   default:
1528     Unimplemented();
1529   }
1530 
1531   offset = tj->offset();
1532   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1533 
1534   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1535           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1536           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1537           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1538           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1539           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1540           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1541           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1542   assert( tj->ptr() != TypePtr::TopPTR &&
1543           tj->ptr() != TypePtr::AnyNull &&
1544           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1545 //    assert( tj->ptr() != TypePtr::Constant ||
1546 //            tj->base() == Type::RawPtr ||
1547 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1548 
1549   return tj;
1550 }
1551 
1552 void Compile::AliasType::Init(int i, const TypePtr* at) {
1553   _index = i;
1554   _adr_type = at;
1555   _field = NULL;
1556   _element = NULL;
1557   _is_rewritable = true; // default
1558   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1559   if (atoop != NULL && atoop->is_known_instance()) {
1560     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1561     _general_index = Compile::current()->get_alias_index(gt);
1562   } else {
1563     _general_index = 0;
1564   }
1565 }
1566 
1567 //---------------------------------print_on------------------------------------
1568 #ifndef PRODUCT
1569 void Compile::AliasType::print_on(outputStream* st) {
1570   if (index() < 10)
1571         st->print("@ <%d> ", index());
1572   else  st->print("@ <%d>",  index());
1573   st->print(is_rewritable() ? "   " : " RO");
1574   int offset = adr_type()->offset();
1575   if (offset == Type::OffsetBot)
1576         st->print(" +any");
1577   else  st->print(" +%-3d", offset);
1578   st->print(" in ");
1579   adr_type()->dump_on(st);
1580   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1581   if (field() != NULL && tjp) {
1582     if (tjp->klass()  != field()->holder() ||
1583         tjp->offset() != field()->offset_in_bytes()) {
1584       st->print(" != ");
1585       field()->print();
1586       st->print(" ***");
1587     }
1588   }
1589 }
1590 
1591 void print_alias_types() {
1592   Compile* C = Compile::current();
1593   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1594   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1595     C->alias_type(idx)->print_on(tty);
1596     tty->cr();
1597   }
1598 }
1599 #endif
1600 
1601 
1602 //----------------------------probe_alias_cache--------------------------------
1603 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1604   intptr_t key = (intptr_t) adr_type;
1605   key ^= key >> logAliasCacheSize;
1606   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1607 }
1608 
1609 
1610 //-----------------------------grow_alias_types--------------------------------
1611 void Compile::grow_alias_types() {
1612   const int old_ats  = _max_alias_types; // how many before?
1613   const int new_ats  = old_ats;          // how many more?
1614   const int grow_ats = old_ats+new_ats;  // how many now?
1615   _max_alias_types = grow_ats;
1616   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1617   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1618   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1619   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1620 }
1621 
1622 
1623 //--------------------------------find_alias_type------------------------------
1624 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1625   if (_AliasLevel == 0)
1626     return alias_type(AliasIdxBot);
1627 
1628   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1629   if (ace->_adr_type == adr_type) {
1630     return alias_type(ace->_index);
1631   }
1632 
1633   // Handle special cases.
1634   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1635   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1636 
1637   // Do it the slow way.
1638   const TypePtr* flat = flatten_alias_type(adr_type);
1639 
1640 #ifdef ASSERT
1641   assert(flat == flatten_alias_type(flat), "idempotent");
1642   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1643   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1644     const TypeOopPtr* foop = flat->is_oopptr();
1645     // Scalarizable allocations have exact klass always.
1646     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1647     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1648     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1649   }
1650   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1651 #endif
1652 
1653   int idx = AliasIdxTop;
1654   for (int i = 0; i < num_alias_types(); i++) {
1655     if (alias_type(i)->adr_type() == flat) {
1656       idx = i;
1657       break;
1658     }
1659   }
1660 
1661   if (idx == AliasIdxTop) {
1662     if (no_create)  return NULL;
1663     // Grow the array if necessary.
1664     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1665     // Add a new alias type.
1666     idx = _num_alias_types++;
1667     _alias_types[idx]->Init(idx, flat);
1668     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1669     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1670     if (flat->isa_instptr()) {
1671       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1672           && flat->is_instptr()->klass() == env()->Class_klass())
1673         alias_type(idx)->set_rewritable(false);
1674     }
1675     if (flat->isa_aryptr()) {
1676 #ifdef ASSERT
1677       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1678       // (T_BYTE has the weakest alignment and size restrictions...)
1679       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1680 #endif
1681       if (flat->offset() == TypePtr::OffsetBot) {
1682         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1683       }
1684     }
1685     if (flat->isa_klassptr()) {
1686       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1687         alias_type(idx)->set_rewritable(false);
1688       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1689         alias_type(idx)->set_rewritable(false);
1690       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1691         alias_type(idx)->set_rewritable(false);
1692       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1693         alias_type(idx)->set_rewritable(false);
1694     }
1695     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1696     // but the base pointer type is not distinctive enough to identify
1697     // references into JavaThread.)
1698 
1699     // Check for final fields.
1700     const TypeInstPtr* tinst = flat->isa_instptr();
1701     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1702       ciField* field;
1703       if (tinst->const_oop() != NULL &&
1704           tinst->klass() == ciEnv::current()->Class_klass() &&
1705           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1706         // static field
1707         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1708         field = k->get_field_by_offset(tinst->offset(), true);
1709       } else {
1710         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1711         field = k->get_field_by_offset(tinst->offset(), false);
1712       }
1713       assert(field == NULL ||
1714              original_field == NULL ||
1715              (field->holder() == original_field->holder() &&
1716               field->offset() == original_field->offset() &&
1717               field->is_static() == original_field->is_static()), "wrong field?");
1718       // Set field() and is_rewritable() attributes.
1719       if (field != NULL)  alias_type(idx)->set_field(field);
1720     }
1721   }
1722 
1723   // Fill the cache for next time.
1724   ace->_adr_type = adr_type;
1725   ace->_index    = idx;
1726   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1727 
1728   // Might as well try to fill the cache for the flattened version, too.
1729   AliasCacheEntry* face = probe_alias_cache(flat);
1730   if (face->_adr_type == NULL) {
1731     face->_adr_type = flat;
1732     face->_index    = idx;
1733     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1734   }
1735 
1736   return alias_type(idx);
1737 }
1738 
1739 
1740 Compile::AliasType* Compile::alias_type(ciField* field) {
1741   const TypeOopPtr* t;
1742   if (field->is_static())
1743     t = TypeInstPtr::make(field->holder()->java_mirror());
1744   else
1745     t = TypeOopPtr::make_from_klass_raw(field->holder());
1746   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1747   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1748   return atp;
1749 }
1750 
1751 
1752 //------------------------------have_alias_type--------------------------------
1753 bool Compile::have_alias_type(const TypePtr* adr_type) {
1754   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1755   if (ace->_adr_type == adr_type) {
1756     return true;
1757   }
1758 
1759   // Handle special cases.
1760   if (adr_type == NULL)             return true;
1761   if (adr_type == TypePtr::BOTTOM)  return true;
1762 
1763   return find_alias_type(adr_type, true, NULL) != NULL;
1764 }
1765 
1766 //-----------------------------must_alias--------------------------------------
1767 // True if all values of the given address type are in the given alias category.
1768 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1769   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1770   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1771   if (alias_idx == AliasIdxTop)         return false; // the empty category
1772   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1773 
1774   // the only remaining possible overlap is identity
1775   int adr_idx = get_alias_index(adr_type);
1776   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1777   assert(adr_idx == alias_idx ||
1778          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1779           && adr_type                       != TypeOopPtr::BOTTOM),
1780          "should not be testing for overlap with an unsafe pointer");
1781   return adr_idx == alias_idx;
1782 }
1783 
1784 //------------------------------can_alias--------------------------------------
1785 // True if any values of the given address type are in the given alias category.
1786 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1787   if (alias_idx == AliasIdxTop)         return false; // the empty category
1788   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1789   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1790   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1791 
1792   // the only remaining possible overlap is identity
1793   int adr_idx = get_alias_index(adr_type);
1794   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1795   return adr_idx == alias_idx;
1796 }
1797 
1798 
1799 
1800 //---------------------------pop_warm_call-------------------------------------
1801 WarmCallInfo* Compile::pop_warm_call() {
1802   WarmCallInfo* wci = _warm_calls;
1803   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1804   return wci;
1805 }
1806 
1807 //----------------------------Inline_Warm--------------------------------------
1808 int Compile::Inline_Warm() {
1809   // If there is room, try to inline some more warm call sites.
1810   // %%% Do a graph index compaction pass when we think we're out of space?
1811   if (!InlineWarmCalls)  return 0;
1812 
1813   int calls_made_hot = 0;
1814   int room_to_grow   = NodeCountInliningCutoff - unique();
1815   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1816   int amount_grown   = 0;
1817   WarmCallInfo* call;
1818   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1819     int est_size = (int)call->size();
1820     if (est_size > (room_to_grow - amount_grown)) {
1821       // This one won't fit anyway.  Get rid of it.
1822       call->make_cold();
1823       continue;
1824     }
1825     call->make_hot();
1826     calls_made_hot++;
1827     amount_grown   += est_size;
1828     amount_to_grow -= est_size;
1829   }
1830 
1831   if (calls_made_hot > 0)  set_major_progress();
1832   return calls_made_hot;
1833 }
1834 
1835 
1836 //----------------------------Finish_Warm--------------------------------------
1837 void Compile::Finish_Warm() {
1838   if (!InlineWarmCalls)  return;
1839   if (failing())  return;
1840   if (warm_calls() == NULL)  return;
1841 
1842   // Clean up loose ends, if we are out of space for inlining.
1843   WarmCallInfo* call;
1844   while ((call = pop_warm_call()) != NULL) {
1845     call->make_cold();
1846   }
1847 }
1848 
1849 //---------------------cleanup_loop_predicates-----------------------
1850 // Remove the opaque nodes that protect the predicates so that all unused
1851 // checks and uncommon_traps will be eliminated from the ideal graph
1852 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1853   if (predicate_count()==0) return;
1854   for (int i = predicate_count(); i > 0; i--) {
1855     Node * n = predicate_opaque1_node(i-1);
1856     assert(n->Opcode() == Op_Opaque1, "must be");
1857     igvn.replace_node(n, n->in(1));
1858   }
1859   assert(predicate_count()==0, "should be clean!");
1860 }
1861 
1862 // StringOpts and late inlining of string methods
1863 void Compile::inline_string_calls(bool parse_time) {
1864   {
1865     // remove useless nodes to make the usage analysis simpler
1866     ResourceMark rm;
1867     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1868   }
1869 
1870   {
1871     ResourceMark rm;
1872     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1873     PhaseStringOpts pso(initial_gvn(), for_igvn());
1874     print_method(PHASE_AFTER_STRINGOPTS, 3);
1875   }
1876 
1877   // now inline anything that we skipped the first time around
1878   if (!parse_time) {
1879     _late_inlines_pos = _late_inlines.length();
1880   }
1881 
1882   while (_string_late_inlines.length() > 0) {
1883     CallGenerator* cg = _string_late_inlines.pop();
1884     cg->do_late_inline();
1885     if (failing())  return;
1886   }
1887   _string_late_inlines.trunc_to(0);
1888 }
1889 
1890 // Late inlining of boxing methods
1891 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1892   if (_boxing_late_inlines.length() > 0) {
1893     assert(has_boxed_value(), "inconsistent");
1894 
1895     PhaseGVN* gvn = initial_gvn();
1896     set_inlining_incrementally(true);
1897 
1898     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1899     for_igvn()->clear();
1900     gvn->replace_with(&igvn);
1901 
1902     _late_inlines_pos = _late_inlines.length();
1903 
1904     while (_boxing_late_inlines.length() > 0) {
1905       CallGenerator* cg = _boxing_late_inlines.pop();
1906       cg->do_late_inline();
1907       if (failing())  return;
1908     }
1909     _boxing_late_inlines.trunc_to(0);
1910 
1911     {
1912       ResourceMark rm;
1913       PhaseRemoveUseless pru(gvn, for_igvn());
1914     }
1915 
1916     igvn = PhaseIterGVN(gvn);
1917     igvn.optimize();
1918 
1919     set_inlining_progress(false);
1920     set_inlining_incrementally(false);
1921   }
1922 }
1923 
1924 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1925   assert(IncrementalInline, "incremental inlining should be on");
1926   PhaseGVN* gvn = initial_gvn();
1927 
1928   set_inlining_progress(false);
1929   for_igvn()->clear();
1930   gvn->replace_with(&igvn);
1931 
1932   int i = 0;
1933 
1934   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1935     CallGenerator* cg = _late_inlines.at(i);
1936     _late_inlines_pos = i+1;
1937     cg->do_late_inline();
1938     if (failing())  return;
1939   }
1940   int j = 0;
1941   for (; i < _late_inlines.length(); i++, j++) {
1942     _late_inlines.at_put(j, _late_inlines.at(i));
1943   }
1944   _late_inlines.trunc_to(j);
1945 
1946   {
1947     ResourceMark rm;
1948     PhaseRemoveUseless pru(gvn, for_igvn());
1949   }
1950 
1951   igvn = PhaseIterGVN(gvn);
1952 }
1953 
1954 // Perform incremental inlining until bound on number of live nodes is reached
1955 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1956   PhaseGVN* gvn = initial_gvn();
1957 
1958   set_inlining_incrementally(true);
1959   set_inlining_progress(true);
1960   uint low_live_nodes = 0;
1961 
1962   while(inlining_progress() && _late_inlines.length() > 0) {
1963 
1964     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1965       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1966         // PhaseIdealLoop is expensive so we only try it once we are
1967         // out of live nodes and we only try it again if the previous
1968         // helped got the number of nodes down significantly
1969         PhaseIdealLoop ideal_loop( igvn, false, true );
1970         if (failing())  return;
1971         low_live_nodes = live_nodes();
1972         _major_progress = true;
1973       }
1974 
1975       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1976         break;
1977       }
1978     }
1979 
1980     inline_incrementally_one(igvn);
1981 
1982     if (failing())  return;
1983 
1984     igvn.optimize();
1985 
1986     if (failing())  return;
1987   }
1988 
1989   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1990 
1991   if (_string_late_inlines.length() > 0) {
1992     assert(has_stringbuilder(), "inconsistent");
1993     for_igvn()->clear();
1994     initial_gvn()->replace_with(&igvn);
1995 
1996     inline_string_calls(false);
1997 
1998     if (failing())  return;
1999 
2000     {
2001       ResourceMark rm;
2002       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2003     }
2004 
2005     igvn = PhaseIterGVN(gvn);
2006 
2007     igvn.optimize();
2008   }
2009 
2010   set_inlining_incrementally(false);
2011 }
2012 
2013 
2014 //------------------------------Optimize---------------------------------------
2015 // Given a graph, optimize it.
2016 void Compile::Optimize() {
2017   TracePhase t1("optimizer", &_t_optimizer, true);
2018 
2019 #ifndef PRODUCT
2020   if (env()->break_at_compile()) {
2021     BREAKPOINT;
2022   }
2023 
2024 #endif
2025 
2026   ResourceMark rm;
2027   int          loop_opts_cnt;
2028 
2029   print_inlining_reinit();
2030 
2031   NOT_PRODUCT( verify_graph_edges(); )
2032 
2033   print_method(PHASE_AFTER_PARSING);
2034 
2035  {
2036   // Iterative Global Value Numbering, including ideal transforms
2037   // Initialize IterGVN with types and values from parse-time GVN
2038   PhaseIterGVN igvn(initial_gvn());
2039   {
2040     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2041     igvn.optimize();
2042   }
2043 
2044   print_method(PHASE_ITER_GVN1, 2);
2045 
2046   if (failing())  return;
2047 
2048   {
2049     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2050     inline_incrementally(igvn);
2051   }
2052 
2053   print_method(PHASE_INCREMENTAL_INLINE, 2);
2054 
2055   if (failing())  return;
2056 
2057   if (eliminate_boxing()) {
2058     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2059     // Inline valueOf() methods now.
2060     inline_boxing_calls(igvn);
2061 
2062     if (AlwaysIncrementalInline) {
2063       inline_incrementally(igvn);
2064     }
2065 
2066     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2067 
2068     if (failing())  return;
2069   }
2070 
2071   // Remove the speculative part of types and clean up the graph from
2072   // the extra CastPP nodes whose only purpose is to carry them. Do
2073   // that early so that optimizations are not disrupted by the extra
2074   // CastPP nodes.
2075   remove_speculative_types(igvn);
2076 
2077   // No more new expensive nodes will be added to the list from here
2078   // so keep only the actual candidates for optimizations.
2079   cleanup_expensive_nodes(igvn);
2080 
2081   // Perform escape analysis
2082   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2083     if (has_loops()) {
2084       // Cleanup graph (remove dead nodes).
2085       TracePhase t2("idealLoop", &_t_idealLoop, true);
2086       PhaseIdealLoop ideal_loop( igvn, false, true );
2087       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2088       if (failing())  return;
2089     }
2090     ConnectionGraph::do_analysis(this, &igvn);
2091 
2092     if (failing())  return;
2093 
2094     // Optimize out fields loads from scalar replaceable allocations.
2095     igvn.optimize();
2096     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2097 
2098     if (failing())  return;
2099 
2100     if (congraph() != NULL && macro_count() > 0) {
2101       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2102       PhaseMacroExpand mexp(igvn);
2103       mexp.eliminate_macro_nodes();
2104       igvn.set_delay_transform(false);
2105 
2106       igvn.optimize();
2107       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2108 
2109       if (failing())  return;
2110     }
2111   }
2112 
2113   // Loop transforms on the ideal graph.  Range Check Elimination,
2114   // peeling, unrolling, etc.
2115 
2116   // Set loop opts counter
2117   loop_opts_cnt = num_loop_opts();
2118   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2119     {
2120       TracePhase t2("idealLoop", &_t_idealLoop, true);
2121       PhaseIdealLoop ideal_loop( igvn, true );
2122       loop_opts_cnt--;
2123       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2124       if (failing())  return;
2125     }
2126     // Loop opts pass if partial peeling occurred in previous pass
2127     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2128       TracePhase t3("idealLoop", &_t_idealLoop, true);
2129       PhaseIdealLoop ideal_loop( igvn, false );
2130       loop_opts_cnt--;
2131       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2132       if (failing())  return;
2133     }
2134     // Loop opts pass for loop-unrolling before CCP
2135     if(major_progress() && (loop_opts_cnt > 0)) {
2136       TracePhase t4("idealLoop", &_t_idealLoop, true);
2137       PhaseIdealLoop ideal_loop( igvn, false );
2138       loop_opts_cnt--;
2139       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2140     }
2141     if (!failing()) {
2142       // Verify that last round of loop opts produced a valid graph
2143       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2144       PhaseIdealLoop::verify(igvn);
2145     }
2146   }
2147   if (failing())  return;
2148 
2149   // Conditional Constant Propagation;
2150   PhaseCCP ccp( &igvn );
2151   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2152   {
2153     TracePhase t2("ccp", &_t_ccp, true);
2154     ccp.do_transform();
2155   }
2156   print_method(PHASE_CPP1, 2);
2157 
2158   assert( true, "Break here to ccp.dump_old2new_map()");
2159 
2160   // Iterative Global Value Numbering, including ideal transforms
2161   {
2162     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2163     igvn = ccp;
2164     igvn.optimize();
2165   }
2166 
2167   print_method(PHASE_ITER_GVN2, 2);
2168 
2169   if (failing())  return;
2170 
2171   // Loop transforms on the ideal graph.  Range Check Elimination,
2172   // peeling, unrolling, etc.
2173   if(loop_opts_cnt > 0) {
2174     debug_only( int cnt = 0; );
2175     while(major_progress() && (loop_opts_cnt > 0)) {
2176       TracePhase t2("idealLoop", &_t_idealLoop, true);
2177       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2178       PhaseIdealLoop ideal_loop( igvn, true);
2179       loop_opts_cnt--;
2180       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2181       if (failing())  return;
2182     }
2183   }
2184 
2185   {
2186     // Verify that all previous optimizations produced a valid graph
2187     // at least to this point, even if no loop optimizations were done.
2188     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2189     PhaseIdealLoop::verify(igvn);
2190   }
2191 
2192   {
2193     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2194     PhaseMacroExpand  mex(igvn);
2195     if (mex.expand_macro_nodes()) {
2196       assert(failing(), "must bail out w/ explicit message");
2197       return;
2198     }
2199   }
2200 
2201  } // (End scope of igvn; run destructor if necessary for asserts.)
2202 
2203   process_print_inlining();
2204   // A method with only infinite loops has no edges entering loops from root
2205   {
2206     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2207     if (final_graph_reshaping()) {
2208       assert(failing(), "must bail out w/ explicit message");
2209       return;
2210     }
2211   }
2212 
2213   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2214 }
2215 
2216 
2217 //------------------------------Code_Gen---------------------------------------
2218 // Given a graph, generate code for it
2219 void Compile::Code_Gen() {
2220   if (failing()) {
2221     return;
2222   }
2223 
2224   // Perform instruction selection.  You might think we could reclaim Matcher
2225   // memory PDQ, but actually the Matcher is used in generating spill code.
2226   // Internals of the Matcher (including some VectorSets) must remain live
2227   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2228   // set a bit in reclaimed memory.
2229 
2230   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2231   // nodes.  Mapping is only valid at the root of each matched subtree.
2232   NOT_PRODUCT( verify_graph_edges(); )
2233 
2234   Matcher matcher;
2235   _matcher = &matcher;
2236   {
2237     TracePhase t2("matcher", &_t_matcher, true);
2238     matcher.match();
2239   }
2240   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2241   // nodes.  Mapping is only valid at the root of each matched subtree.
2242   NOT_PRODUCT( verify_graph_edges(); )
2243 
2244   // If you have too many nodes, or if matching has failed, bail out
2245   check_node_count(0, "out of nodes matching instructions");
2246   if (failing()) {
2247     return;
2248   }
2249 
2250   // Build a proper-looking CFG
2251   PhaseCFG cfg(node_arena(), root(), matcher);
2252   _cfg = &cfg;
2253   {
2254     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2255     bool success = cfg.do_global_code_motion();
2256     if (!success) {
2257       return;
2258     }
2259 
2260     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2261     NOT_PRODUCT( verify_graph_edges(); )
2262     debug_only( cfg.verify(); )
2263   }
2264 
2265   PhaseChaitin regalloc(unique(), cfg, matcher);
2266   _regalloc = &regalloc;
2267   {
2268     TracePhase t2("regalloc", &_t_registerAllocation, true);
2269     // Perform register allocation.  After Chaitin, use-def chains are
2270     // no longer accurate (at spill code) and so must be ignored.
2271     // Node->LRG->reg mappings are still accurate.
2272     _regalloc->Register_Allocate();
2273 
2274     // Bail out if the allocator builds too many nodes
2275     if (failing()) {
2276       return;
2277     }
2278   }
2279 
2280   // Prior to register allocation we kept empty basic blocks in case the
2281   // the allocator needed a place to spill.  After register allocation we
2282   // are not adding any new instructions.  If any basic block is empty, we
2283   // can now safely remove it.
2284   {
2285     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2286     cfg.remove_empty_blocks();
2287     if (do_freq_based_layout()) {
2288       PhaseBlockLayout layout(cfg);
2289     } else {
2290       cfg.set_loop_alignment();
2291     }
2292     cfg.fixup_flow();
2293   }
2294 
2295   // Apply peephole optimizations
2296   if( OptoPeephole ) {
2297     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2298     PhasePeephole peep( _regalloc, cfg);
2299     peep.do_transform();
2300   }
2301 
2302   // Do late expand if CPU requires this.
2303   if (Matcher::require_postalloc_expand) {
2304     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2305     cfg.postalloc_expand(_regalloc);
2306   }
2307 
2308   // Convert Nodes to instruction bits in a buffer
2309   {
2310     // %%%% workspace merge brought two timers together for one job
2311     TracePhase t2a("output", &_t_output, true);
2312     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2313     Output();
2314   }
2315 
2316   print_method(PHASE_FINAL_CODE);
2317 
2318   // He's dead, Jim.
2319   _cfg     = (PhaseCFG*)0xdeadbeef;
2320   _regalloc = (PhaseChaitin*)0xdeadbeef;
2321 }
2322 
2323 
2324 //------------------------------dump_asm---------------------------------------
2325 // Dump formatted assembly
2326 #ifndef PRODUCT
2327 void Compile::dump_asm(int *pcs, uint pc_limit) {
2328   bool cut_short = false;
2329   tty->print_cr("#");
2330   tty->print("#  ");  _tf->dump();  tty->cr();
2331   tty->print_cr("#");
2332 
2333   // For all blocks
2334   int pc = 0x0;                 // Program counter
2335   char starts_bundle = ' ';
2336   _regalloc->dump_frame();
2337 
2338   Node *n = NULL;
2339   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2340     if (VMThread::should_terminate()) {
2341       cut_short = true;
2342       break;
2343     }
2344     Block* block = _cfg->get_block(i);
2345     if (block->is_connector() && !Verbose) {
2346       continue;
2347     }
2348     n = block->head();
2349     if (pcs && n->_idx < pc_limit) {
2350       tty->print("%3.3x   ", pcs[n->_idx]);
2351     } else {
2352       tty->print("      ");
2353     }
2354     block->dump_head(_cfg);
2355     if (block->is_connector()) {
2356       tty->print_cr("        # Empty connector block");
2357     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2358       tty->print_cr("        # Block is sole successor of call");
2359     }
2360 
2361     // For all instructions
2362     Node *delay = NULL;
2363     for (uint j = 0; j < block->number_of_nodes(); j++) {
2364       if (VMThread::should_terminate()) {
2365         cut_short = true;
2366         break;
2367       }
2368       n = block->get_node(j);
2369       if (valid_bundle_info(n)) {
2370         Bundle* bundle = node_bundling(n);
2371         if (bundle->used_in_unconditional_delay()) {
2372           delay = n;
2373           continue;
2374         }
2375         if (bundle->starts_bundle()) {
2376           starts_bundle = '+';
2377         }
2378       }
2379 
2380       if (WizardMode) {
2381         n->dump();
2382       }
2383 
2384       if( !n->is_Region() &&    // Dont print in the Assembly
2385           !n->is_Phi() &&       // a few noisely useless nodes
2386           !n->is_Proj() &&
2387           !n->is_MachTemp() &&
2388           !n->is_SafePointScalarObject() &&
2389           !n->is_Catch() &&     // Would be nice to print exception table targets
2390           !n->is_MergeMem() &&  // Not very interesting
2391           !n->is_top() &&       // Debug info table constants
2392           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2393           ) {
2394         if (pcs && n->_idx < pc_limit)
2395           tty->print("%3.3x", pcs[n->_idx]);
2396         else
2397           tty->print("   ");
2398         tty->print(" %c ", starts_bundle);
2399         starts_bundle = ' ';
2400         tty->print("\t");
2401         n->format(_regalloc, tty);
2402         tty->cr();
2403       }
2404 
2405       // If we have an instruction with a delay slot, and have seen a delay,
2406       // then back up and print it
2407       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2408         assert(delay != NULL, "no unconditional delay instruction");
2409         if (WizardMode) delay->dump();
2410 
2411         if (node_bundling(delay)->starts_bundle())
2412           starts_bundle = '+';
2413         if (pcs && n->_idx < pc_limit)
2414           tty->print("%3.3x", pcs[n->_idx]);
2415         else
2416           tty->print("   ");
2417         tty->print(" %c ", starts_bundle);
2418         starts_bundle = ' ';
2419         tty->print("\t");
2420         delay->format(_regalloc, tty);
2421         tty->cr();
2422         delay = NULL;
2423       }
2424 
2425       // Dump the exception table as well
2426       if( n->is_Catch() && (Verbose || WizardMode) ) {
2427         // Print the exception table for this offset
2428         _handler_table.print_subtable_for(pc);
2429       }
2430     }
2431 
2432     if (pcs && n->_idx < pc_limit)
2433       tty->print_cr("%3.3x", pcs[n->_idx]);
2434     else
2435       tty->cr();
2436 
2437     assert(cut_short || delay == NULL, "no unconditional delay branch");
2438 
2439   } // End of per-block dump
2440   tty->cr();
2441 
2442   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2443 }
2444 #endif
2445 
2446 //------------------------------Final_Reshape_Counts---------------------------
2447 // This class defines counters to help identify when a method
2448 // may/must be executed using hardware with only 24-bit precision.
2449 struct Final_Reshape_Counts : public StackObj {
2450   int  _call_count;             // count non-inlined 'common' calls
2451   int  _float_count;            // count float ops requiring 24-bit precision
2452   int  _double_count;           // count double ops requiring more precision
2453   int  _java_call_count;        // count non-inlined 'java' calls
2454   int  _inner_loop_count;       // count loops which need alignment
2455   VectorSet _visited;           // Visitation flags
2456   Node_List _tests;             // Set of IfNodes & PCTableNodes
2457 
2458   Final_Reshape_Counts() :
2459     _call_count(0), _float_count(0), _double_count(0),
2460     _java_call_count(0), _inner_loop_count(0),
2461     _visited( Thread::current()->resource_area() ) { }
2462 
2463   void inc_call_count  () { _call_count  ++; }
2464   void inc_float_count () { _float_count ++; }
2465   void inc_double_count() { _double_count++; }
2466   void inc_java_call_count() { _java_call_count++; }
2467   void inc_inner_loop_count() { _inner_loop_count++; }
2468 
2469   int  get_call_count  () const { return _call_count  ; }
2470   int  get_float_count () const { return _float_count ; }
2471   int  get_double_count() const { return _double_count; }
2472   int  get_java_call_count() const { return _java_call_count; }
2473   int  get_inner_loop_count() const { return _inner_loop_count; }
2474 };
2475 
2476 #ifdef ASSERT
2477 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2478   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2479   // Make sure the offset goes inside the instance layout.
2480   return k->contains_field_offset(tp->offset());
2481   // Note that OffsetBot and OffsetTop are very negative.
2482 }
2483 #endif
2484 
2485 // Eliminate trivially redundant StoreCMs and accumulate their
2486 // precedence edges.
2487 void Compile::eliminate_redundant_card_marks(Node* n) {
2488   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2489   if (n->in(MemNode::Address)->outcnt() > 1) {
2490     // There are multiple users of the same address so it might be
2491     // possible to eliminate some of the StoreCMs
2492     Node* mem = n->in(MemNode::Memory);
2493     Node* adr = n->in(MemNode::Address);
2494     Node* val = n->in(MemNode::ValueIn);
2495     Node* prev = n;
2496     bool done = false;
2497     // Walk the chain of StoreCMs eliminating ones that match.  As
2498     // long as it's a chain of single users then the optimization is
2499     // safe.  Eliminating partially redundant StoreCMs would require
2500     // cloning copies down the other paths.
2501     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2502       if (adr == mem->in(MemNode::Address) &&
2503           val == mem->in(MemNode::ValueIn)) {
2504         // redundant StoreCM
2505         if (mem->req() > MemNode::OopStore) {
2506           // Hasn't been processed by this code yet.
2507           n->add_prec(mem->in(MemNode::OopStore));
2508         } else {
2509           // Already converted to precedence edge
2510           for (uint i = mem->req(); i < mem->len(); i++) {
2511             // Accumulate any precedence edges
2512             if (mem->in(i) != NULL) {
2513               n->add_prec(mem->in(i));
2514             }
2515           }
2516           // Everything above this point has been processed.
2517           done = true;
2518         }
2519         // Eliminate the previous StoreCM
2520         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2521         assert(mem->outcnt() == 0, "should be dead");
2522         mem->disconnect_inputs(NULL, this);
2523       } else {
2524         prev = mem;
2525       }
2526       mem = prev->in(MemNode::Memory);
2527     }
2528   }
2529 }
2530 
2531 //------------------------------final_graph_reshaping_impl----------------------
2532 // Implement items 1-5 from final_graph_reshaping below.
2533 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2534 
2535   if ( n->outcnt() == 0 ) return; // dead node
2536   uint nop = n->Opcode();
2537 
2538   // Check for 2-input instruction with "last use" on right input.
2539   // Swap to left input.  Implements item (2).
2540   if( n->req() == 3 &&          // two-input instruction
2541       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2542       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2543       n->in(2)->outcnt() == 1 &&// right use IS a last use
2544       !n->in(2)->is_Con() ) {   // right use is not a constant
2545     // Check for commutative opcode
2546     switch( nop ) {
2547     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2548     case Op_MaxI:  case Op_MinI:
2549     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2550     case Op_AndL:  case Op_XorL:  case Op_OrL:
2551     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2552       // Move "last use" input to left by swapping inputs
2553       n->swap_edges(1, 2);
2554       break;
2555     }
2556     default:
2557       break;
2558     }
2559   }
2560 
2561 #ifdef ASSERT
2562   if( n->is_Mem() ) {
2563     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2564     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2565             // oop will be recorded in oop map if load crosses safepoint
2566             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2567                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2568             "raw memory operations should have control edge");
2569   }
2570 #endif
2571   // Count FPU ops and common calls, implements item (3)
2572   switch( nop ) {
2573   // Count all float operations that may use FPU
2574   case Op_AddF:
2575   case Op_SubF:
2576   case Op_MulF:
2577   case Op_DivF:
2578   case Op_NegF:
2579   case Op_ModF:
2580   case Op_ConvI2F:
2581   case Op_ConF:
2582   case Op_CmpF:
2583   case Op_CmpF3:
2584   // case Op_ConvL2F: // longs are split into 32-bit halves
2585     frc.inc_float_count();
2586     break;
2587 
2588   case Op_ConvF2D:
2589   case Op_ConvD2F:
2590     frc.inc_float_count();
2591     frc.inc_double_count();
2592     break;
2593 
2594   // Count all double operations that may use FPU
2595   case Op_AddD:
2596   case Op_SubD:
2597   case Op_MulD:
2598   case Op_DivD:
2599   case Op_NegD:
2600   case Op_ModD:
2601   case Op_ConvI2D:
2602   case Op_ConvD2I:
2603   // case Op_ConvL2D: // handled by leaf call
2604   // case Op_ConvD2L: // handled by leaf call
2605   case Op_ConD:
2606   case Op_CmpD:
2607   case Op_CmpD3:
2608     frc.inc_double_count();
2609     break;
2610   case Op_Opaque1:              // Remove Opaque Nodes before matching
2611   case Op_Opaque2:              // Remove Opaque Nodes before matching
2612   case Op_Opaque3:
2613     n->subsume_by(n->in(1), this);
2614     break;
2615   case Op_CallStaticJava:
2616   case Op_CallJava:
2617   case Op_CallDynamicJava:
2618     frc.inc_java_call_count(); // Count java call site;
2619   case Op_CallRuntime:
2620   case Op_CallLeaf:
2621   case Op_CallLeafNoFP: {
2622     assert( n->is_Call(), "" );
2623     CallNode *call = n->as_Call();
2624     // Count call sites where the FP mode bit would have to be flipped.
2625     // Do not count uncommon runtime calls:
2626     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2627     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2628     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2629       frc.inc_call_count();   // Count the call site
2630     } else {                  // See if uncommon argument is shared
2631       Node *n = call->in(TypeFunc::Parms);
2632       int nop = n->Opcode();
2633       // Clone shared simple arguments to uncommon calls, item (1).
2634       if( n->outcnt() > 1 &&
2635           !n->is_Proj() &&
2636           nop != Op_CreateEx &&
2637           nop != Op_CheckCastPP &&
2638           nop != Op_DecodeN &&
2639           nop != Op_DecodeNKlass &&
2640           !n->is_Mem() ) {
2641         Node *x = n->clone();
2642         call->set_req( TypeFunc::Parms, x );
2643       }
2644     }
2645     break;
2646   }
2647 
2648   case Op_StoreD:
2649   case Op_LoadD:
2650   case Op_LoadD_unaligned:
2651     frc.inc_double_count();
2652     goto handle_mem;
2653   case Op_StoreF:
2654   case Op_LoadF:
2655     frc.inc_float_count();
2656     goto handle_mem;
2657 
2658   case Op_StoreCM:
2659     {
2660       // Convert OopStore dependence into precedence edge
2661       Node* prec = n->in(MemNode::OopStore);
2662       n->del_req(MemNode::OopStore);
2663       n->add_prec(prec);
2664       eliminate_redundant_card_marks(n);
2665     }
2666 
2667     // fall through
2668 
2669   case Op_StoreB:
2670   case Op_StoreC:
2671   case Op_StorePConditional:
2672   case Op_StoreI:
2673   case Op_StoreL:
2674   case Op_StoreIConditional:
2675   case Op_StoreLConditional:
2676   case Op_CompareAndSwapI:
2677   case Op_CompareAndSwapL:
2678   case Op_CompareAndSwapP:
2679   case Op_CompareAndSwapN:
2680   case Op_GetAndAddI:
2681   case Op_GetAndAddL:
2682   case Op_GetAndSetI:
2683   case Op_GetAndSetL:
2684   case Op_GetAndSetP:
2685   case Op_GetAndSetN:
2686   case Op_StoreP:
2687   case Op_StoreN:
2688   case Op_StoreNKlass:
2689   case Op_LoadB:
2690   case Op_LoadUB:
2691   case Op_LoadUS:
2692   case Op_LoadI:
2693   case Op_LoadKlass:
2694   case Op_LoadNKlass:
2695   case Op_LoadL:
2696   case Op_LoadL_unaligned:
2697   case Op_LoadPLocked:
2698   case Op_LoadP:
2699   case Op_LoadN:
2700   case Op_LoadRange:
2701   case Op_LoadS: {
2702   handle_mem:
2703 #ifdef ASSERT
2704     if( VerifyOptoOopOffsets ) {
2705       assert( n->is_Mem(), "" );
2706       MemNode *mem  = (MemNode*)n;
2707       // Check to see if address types have grounded out somehow.
2708       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2709       assert( !tp || oop_offset_is_sane(tp), "" );
2710     }
2711 #endif
2712     break;
2713   }
2714 
2715   case Op_AddP: {               // Assert sane base pointers
2716     Node *addp = n->in(AddPNode::Address);
2717     assert( !addp->is_AddP() ||
2718             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2719             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2720             "Base pointers must match" );
2721 #ifdef _LP64
2722     if ((UseCompressedOops || UseCompressedClassPointers) &&
2723         addp->Opcode() == Op_ConP &&
2724         addp == n->in(AddPNode::Base) &&
2725         n->in(AddPNode::Offset)->is_Con()) {
2726       // Use addressing with narrow klass to load with offset on x86.
2727       // On sparc loading 32-bits constant and decoding it have less
2728       // instructions (4) then load 64-bits constant (7).
2729       // Do this transformation here since IGVN will convert ConN back to ConP.
2730       const Type* t = addp->bottom_type();
2731       if (t->isa_oopptr() || t->isa_klassptr()) {
2732         Node* nn = NULL;
2733 
2734         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2735 
2736         // Look for existing ConN node of the same exact type.
2737         Node* r  = root();
2738         uint cnt = r->outcnt();
2739         for (uint i = 0; i < cnt; i++) {
2740           Node* m = r->raw_out(i);
2741           if (m!= NULL && m->Opcode() == op &&
2742               m->bottom_type()->make_ptr() == t) {
2743             nn = m;
2744             break;
2745           }
2746         }
2747         if (nn != NULL) {
2748           // Decode a narrow oop to match address
2749           // [R12 + narrow_oop_reg<<3 + offset]
2750           if (t->isa_oopptr()) {
2751             nn = new DecodeNNode(nn, t);
2752           } else {
2753             nn = new DecodeNKlassNode(nn, t);
2754           }
2755           n->set_req(AddPNode::Base, nn);
2756           n->set_req(AddPNode::Address, nn);
2757           if (addp->outcnt() == 0) {
2758             addp->disconnect_inputs(NULL, this);
2759           }
2760         }
2761       }
2762     }
2763 #endif
2764     break;
2765   }
2766 
2767 #ifdef _LP64
2768   case Op_CastPP:
2769     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2770       Node* in1 = n->in(1);
2771       const Type* t = n->bottom_type();
2772       Node* new_in1 = in1->clone();
2773       new_in1->as_DecodeN()->set_type(t);
2774 
2775       if (!Matcher::narrow_oop_use_complex_address()) {
2776         //
2777         // x86, ARM and friends can handle 2 adds in addressing mode
2778         // and Matcher can fold a DecodeN node into address by using
2779         // a narrow oop directly and do implicit NULL check in address:
2780         //
2781         // [R12 + narrow_oop_reg<<3 + offset]
2782         // NullCheck narrow_oop_reg
2783         //
2784         // On other platforms (Sparc) we have to keep new DecodeN node and
2785         // use it to do implicit NULL check in address:
2786         //
2787         // decode_not_null narrow_oop_reg, base_reg
2788         // [base_reg + offset]
2789         // NullCheck base_reg
2790         //
2791         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2792         // to keep the information to which NULL check the new DecodeN node
2793         // corresponds to use it as value in implicit_null_check().
2794         //
2795         new_in1->set_req(0, n->in(0));
2796       }
2797 
2798       n->subsume_by(new_in1, this);
2799       if (in1->outcnt() == 0) {
2800         in1->disconnect_inputs(NULL, this);
2801       }
2802     }
2803     break;
2804 
2805   case Op_CmpP:
2806     // Do this transformation here to preserve CmpPNode::sub() and
2807     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2808     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2809       Node* in1 = n->in(1);
2810       Node* in2 = n->in(2);
2811       if (!in1->is_DecodeNarrowPtr()) {
2812         in2 = in1;
2813         in1 = n->in(2);
2814       }
2815       assert(in1->is_DecodeNarrowPtr(), "sanity");
2816 
2817       Node* new_in2 = NULL;
2818       if (in2->is_DecodeNarrowPtr()) {
2819         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2820         new_in2 = in2->in(1);
2821       } else if (in2->Opcode() == Op_ConP) {
2822         const Type* t = in2->bottom_type();
2823         if (t == TypePtr::NULL_PTR) {
2824           assert(in1->is_DecodeN(), "compare klass to null?");
2825           // Don't convert CmpP null check into CmpN if compressed
2826           // oops implicit null check is not generated.
2827           // This will allow to generate normal oop implicit null check.
2828           if (Matcher::gen_narrow_oop_implicit_null_checks())
2829             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2830           //
2831           // This transformation together with CastPP transformation above
2832           // will generated code for implicit NULL checks for compressed oops.
2833           //
2834           // The original code after Optimize()
2835           //
2836           //    LoadN memory, narrow_oop_reg
2837           //    decode narrow_oop_reg, base_reg
2838           //    CmpP base_reg, NULL
2839           //    CastPP base_reg // NotNull
2840           //    Load [base_reg + offset], val_reg
2841           //
2842           // after these transformations will be
2843           //
2844           //    LoadN memory, narrow_oop_reg
2845           //    CmpN narrow_oop_reg, NULL
2846           //    decode_not_null narrow_oop_reg, base_reg
2847           //    Load [base_reg + offset], val_reg
2848           //
2849           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2850           // since narrow oops can be used in debug info now (see the code in
2851           // final_graph_reshaping_walk()).
2852           //
2853           // At the end the code will be matched to
2854           // on x86:
2855           //
2856           //    Load_narrow_oop memory, narrow_oop_reg
2857           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2858           //    NullCheck narrow_oop_reg
2859           //
2860           // and on sparc:
2861           //
2862           //    Load_narrow_oop memory, narrow_oop_reg
2863           //    decode_not_null narrow_oop_reg, base_reg
2864           //    Load [base_reg + offset], val_reg
2865           //    NullCheck base_reg
2866           //
2867         } else if (t->isa_oopptr()) {
2868           new_in2 = ConNode::make(this, t->make_narrowoop());
2869         } else if (t->isa_klassptr()) {
2870           new_in2 = ConNode::make(this, t->make_narrowklass());
2871         }
2872       }
2873       if (new_in2 != NULL) {
2874         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2875         n->subsume_by(cmpN, this);
2876         if (in1->outcnt() == 0) {
2877           in1->disconnect_inputs(NULL, this);
2878         }
2879         if (in2->outcnt() == 0) {
2880           in2->disconnect_inputs(NULL, this);
2881         }
2882       }
2883     }
2884     break;
2885 
2886   case Op_DecodeN:
2887   case Op_DecodeNKlass:
2888     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2889     // DecodeN could be pinned when it can't be fold into
2890     // an address expression, see the code for Op_CastPP above.
2891     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2892     break;
2893 
2894   case Op_EncodeP:
2895   case Op_EncodePKlass: {
2896     Node* in1 = n->in(1);
2897     if (in1->is_DecodeNarrowPtr()) {
2898       n->subsume_by(in1->in(1), this);
2899     } else if (in1->Opcode() == Op_ConP) {
2900       const Type* t = in1->bottom_type();
2901       if (t == TypePtr::NULL_PTR) {
2902         assert(t->isa_oopptr(), "null klass?");
2903         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2904       } else if (t->isa_oopptr()) {
2905         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2906       } else if (t->isa_klassptr()) {
2907         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2908       }
2909     }
2910     if (in1->outcnt() == 0) {
2911       in1->disconnect_inputs(NULL, this);
2912     }
2913     break;
2914   }
2915 
2916   case Op_Proj: {
2917     if (OptimizeStringConcat) {
2918       ProjNode* p = n->as_Proj();
2919       if (p->_is_io_use) {
2920         // Separate projections were used for the exception path which
2921         // are normally removed by a late inline.  If it wasn't inlined
2922         // then they will hang around and should just be replaced with
2923         // the original one.
2924         Node* proj = NULL;
2925         // Replace with just one
2926         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2927           Node *use = i.get();
2928           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2929             proj = use;
2930             break;
2931           }
2932         }
2933         assert(proj != NULL, "must be found");
2934         p->subsume_by(proj, this);
2935       }
2936     }
2937     break;
2938   }
2939 
2940   case Op_Phi:
2941     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2942       // The EncodeP optimization may create Phi with the same edges
2943       // for all paths. It is not handled well by Register Allocator.
2944       Node* unique_in = n->in(1);
2945       assert(unique_in != NULL, "");
2946       uint cnt = n->req();
2947       for (uint i = 2; i < cnt; i++) {
2948         Node* m = n->in(i);
2949         assert(m != NULL, "");
2950         if (unique_in != m)
2951           unique_in = NULL;
2952       }
2953       if (unique_in != NULL) {
2954         n->subsume_by(unique_in, this);
2955       }
2956     }
2957     break;
2958 
2959 #endif
2960 
2961   case Op_ModI:
2962     if (UseDivMod) {
2963       // Check if a%b and a/b both exist
2964       Node* d = n->find_similar(Op_DivI);
2965       if (d) {
2966         // Replace them with a fused divmod if supported
2967         if (Matcher::has_match_rule(Op_DivModI)) {
2968           DivModINode* divmod = DivModINode::make(this, n);
2969           d->subsume_by(divmod->div_proj(), this);
2970           n->subsume_by(divmod->mod_proj(), this);
2971         } else {
2972           // replace a%b with a-((a/b)*b)
2973           Node* mult = new MulINode(d, d->in(2));
2974           Node* sub  = new SubINode(d->in(1), mult);
2975           n->subsume_by(sub, this);
2976         }
2977       }
2978     }
2979     break;
2980 
2981   case Op_ModL:
2982     if (UseDivMod) {
2983       // Check if a%b and a/b both exist
2984       Node* d = n->find_similar(Op_DivL);
2985       if (d) {
2986         // Replace them with a fused divmod if supported
2987         if (Matcher::has_match_rule(Op_DivModL)) {
2988           DivModLNode* divmod = DivModLNode::make(this, n);
2989           d->subsume_by(divmod->div_proj(), this);
2990           n->subsume_by(divmod->mod_proj(), this);
2991         } else {
2992           // replace a%b with a-((a/b)*b)
2993           Node* mult = new MulLNode(d, d->in(2));
2994           Node* sub  = new SubLNode(d->in(1), mult);
2995           n->subsume_by(sub, this);
2996         }
2997       }
2998     }
2999     break;
3000 
3001   case Op_LoadVector:
3002   case Op_StoreVector:
3003     break;
3004 
3005   case Op_PackB:
3006   case Op_PackS:
3007   case Op_PackI:
3008   case Op_PackF:
3009   case Op_PackL:
3010   case Op_PackD:
3011     if (n->req()-1 > 2) {
3012       // Replace many operand PackNodes with a binary tree for matching
3013       PackNode* p = (PackNode*) n;
3014       Node* btp = p->binary_tree_pack(this, 1, n->req());
3015       n->subsume_by(btp, this);
3016     }
3017     break;
3018   case Op_Loop:
3019   case Op_CountedLoop:
3020     if (n->as_Loop()->is_inner_loop()) {
3021       frc.inc_inner_loop_count();
3022     }
3023     break;
3024   case Op_LShiftI:
3025   case Op_RShiftI:
3026   case Op_URShiftI:
3027   case Op_LShiftL:
3028   case Op_RShiftL:
3029   case Op_URShiftL:
3030     if (Matcher::need_masked_shift_count) {
3031       // The cpu's shift instructions don't restrict the count to the
3032       // lower 5/6 bits. We need to do the masking ourselves.
3033       Node* in2 = n->in(2);
3034       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3035       const TypeInt* t = in2->find_int_type();
3036       if (t != NULL && t->is_con()) {
3037         juint shift = t->get_con();
3038         if (shift > mask) { // Unsigned cmp
3039           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3040         }
3041       } else {
3042         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3043           Node* shift = new AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3044           n->set_req(2, shift);
3045         }
3046       }
3047       if (in2->outcnt() == 0) { // Remove dead node
3048         in2->disconnect_inputs(NULL, this);
3049       }
3050     }
3051     break;
3052   case Op_MemBarStoreStore:
3053   case Op_MemBarRelease:
3054     // Break the link with AllocateNode: it is no longer useful and
3055     // confuses register allocation.
3056     if (n->req() > MemBarNode::Precedent) {
3057       n->set_req(MemBarNode::Precedent, top());
3058     }
3059     break;
3060   default:
3061     assert( !n->is_Call(), "" );
3062     assert( !n->is_Mem(), "" );
3063     break;
3064   }
3065 
3066   // Collect CFG split points
3067   if (n->is_MultiBranch())
3068     frc._tests.push(n);
3069 }
3070 
3071 //------------------------------final_graph_reshaping_walk---------------------
3072 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3073 // requires that the walk visits a node's inputs before visiting the node.
3074 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3075   ResourceArea *area = Thread::current()->resource_area();
3076   Unique_Node_List sfpt(area);
3077 
3078   frc._visited.set(root->_idx); // first, mark node as visited
3079   uint cnt = root->req();
3080   Node *n = root;
3081   uint  i = 0;
3082   while (true) {
3083     if (i < cnt) {
3084       // Place all non-visited non-null inputs onto stack
3085       Node* m = n->in(i);
3086       ++i;
3087       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3088         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3089           // compute worst case interpreter size in case of a deoptimization
3090           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3091 
3092           sfpt.push(m);
3093         }
3094         cnt = m->req();
3095         nstack.push(n, i); // put on stack parent and next input's index
3096         n = m;
3097         i = 0;
3098       }
3099     } else {
3100       // Now do post-visit work
3101       final_graph_reshaping_impl( n, frc );
3102       if (nstack.is_empty())
3103         break;             // finished
3104       n = nstack.node();   // Get node from stack
3105       cnt = n->req();
3106       i = nstack.index();
3107       nstack.pop();        // Shift to the next node on stack
3108     }
3109   }
3110 
3111   // Skip next transformation if compressed oops are not used.
3112   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3113       (!UseCompressedOops && !UseCompressedClassPointers))
3114     return;
3115 
3116   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3117   // It could be done for an uncommon traps or any safepoints/calls
3118   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3119   while (sfpt.size() > 0) {
3120     n = sfpt.pop();
3121     JVMState *jvms = n->as_SafePoint()->jvms();
3122     assert(jvms != NULL, "sanity");
3123     int start = jvms->debug_start();
3124     int end   = n->req();
3125     bool is_uncommon = (n->is_CallStaticJava() &&
3126                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3127     for (int j = start; j < end; j++) {
3128       Node* in = n->in(j);
3129       if (in->is_DecodeNarrowPtr()) {
3130         bool safe_to_skip = true;
3131         if (!is_uncommon ) {
3132           // Is it safe to skip?
3133           for (uint i = 0; i < in->outcnt(); i++) {
3134             Node* u = in->raw_out(i);
3135             if (!u->is_SafePoint() ||
3136                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3137               safe_to_skip = false;
3138             }
3139           }
3140         }
3141         if (safe_to_skip) {
3142           n->set_req(j, in->in(1));
3143         }
3144         if (in->outcnt() == 0) {
3145           in->disconnect_inputs(NULL, this);
3146         }
3147       }
3148     }
3149   }
3150 }
3151 
3152 //------------------------------final_graph_reshaping--------------------------
3153 // Final Graph Reshaping.
3154 //
3155 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3156 //     and not commoned up and forced early.  Must come after regular
3157 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3158 //     inputs to Loop Phis; these will be split by the allocator anyways.
3159 //     Remove Opaque nodes.
3160 // (2) Move last-uses by commutative operations to the left input to encourage
3161 //     Intel update-in-place two-address operations and better register usage
3162 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3163 //     calls canonicalizing them back.
3164 // (3) Count the number of double-precision FP ops, single-precision FP ops
3165 //     and call sites.  On Intel, we can get correct rounding either by
3166 //     forcing singles to memory (requires extra stores and loads after each
3167 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3168 //     clearing the mode bit around call sites).  The mode bit is only used
3169 //     if the relative frequency of single FP ops to calls is low enough.
3170 //     This is a key transform for SPEC mpeg_audio.
3171 // (4) Detect infinite loops; blobs of code reachable from above but not
3172 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3173 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3174 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3175 //     Detection is by looking for IfNodes where only 1 projection is
3176 //     reachable from below or CatchNodes missing some targets.
3177 // (5) Assert for insane oop offsets in debug mode.
3178 
3179 bool Compile::final_graph_reshaping() {
3180   // an infinite loop may have been eliminated by the optimizer,
3181   // in which case the graph will be empty.
3182   if (root()->req() == 1) {
3183     record_method_not_compilable("trivial infinite loop");
3184     return true;
3185   }
3186 
3187   // Expensive nodes have their control input set to prevent the GVN
3188   // from freely commoning them. There's no GVN beyond this point so
3189   // no need to keep the control input. We want the expensive nodes to
3190   // be freely moved to the least frequent code path by gcm.
3191   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3192   for (int i = 0; i < expensive_count(); i++) {
3193     _expensive_nodes->at(i)->set_req(0, NULL);
3194   }
3195 
3196   Final_Reshape_Counts frc;
3197 
3198   // Visit everybody reachable!
3199   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3200   Node_Stack nstack(unique() >> 1);
3201   final_graph_reshaping_walk(nstack, root(), frc);
3202 
3203   // Check for unreachable (from below) code (i.e., infinite loops).
3204   for( uint i = 0; i < frc._tests.size(); i++ ) {
3205     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3206     // Get number of CFG targets.
3207     // Note that PCTables include exception targets after calls.
3208     uint required_outcnt = n->required_outcnt();
3209     if (n->outcnt() != required_outcnt) {
3210       // Check for a few special cases.  Rethrow Nodes never take the
3211       // 'fall-thru' path, so expected kids is 1 less.
3212       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3213         if (n->in(0)->in(0)->is_Call()) {
3214           CallNode *call = n->in(0)->in(0)->as_Call();
3215           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3216             required_outcnt--;      // Rethrow always has 1 less kid
3217           } else if (call->req() > TypeFunc::Parms &&
3218                      call->is_CallDynamicJava()) {
3219             // Check for null receiver. In such case, the optimizer has
3220             // detected that the virtual call will always result in a null
3221             // pointer exception. The fall-through projection of this CatchNode
3222             // will not be populated.
3223             Node *arg0 = call->in(TypeFunc::Parms);
3224             if (arg0->is_Type() &&
3225                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3226               required_outcnt--;
3227             }
3228           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3229                      call->req() > TypeFunc::Parms+1 &&
3230                      call->is_CallStaticJava()) {
3231             // Check for negative array length. In such case, the optimizer has
3232             // detected that the allocation attempt will always result in an
3233             // exception. There is no fall-through projection of this CatchNode .
3234             Node *arg1 = call->in(TypeFunc::Parms+1);
3235             if (arg1->is_Type() &&
3236                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3237               required_outcnt--;
3238             }
3239           }
3240         }
3241       }
3242       // Recheck with a better notion of 'required_outcnt'
3243       if (n->outcnt() != required_outcnt) {
3244         record_method_not_compilable("malformed control flow");
3245         return true;            // Not all targets reachable!
3246       }
3247     }
3248     // Check that I actually visited all kids.  Unreached kids
3249     // must be infinite loops.
3250     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3251       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3252         record_method_not_compilable("infinite loop");
3253         return true;            // Found unvisited kid; must be unreach
3254       }
3255   }
3256 
3257   // If original bytecodes contained a mixture of floats and doubles
3258   // check if the optimizer has made it homogenous, item (3).
3259   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3260       frc.get_float_count() > 32 &&
3261       frc.get_double_count() == 0 &&
3262       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3263     set_24_bit_selection_and_mode( false,  true );
3264   }
3265 
3266   set_java_calls(frc.get_java_call_count());
3267   set_inner_loops(frc.get_inner_loop_count());
3268 
3269   // No infinite loops, no reason to bail out.
3270   return false;
3271 }
3272 
3273 //-----------------------------too_many_traps----------------------------------
3274 // Report if there are too many traps at the current method and bci.
3275 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3276 bool Compile::too_many_traps(ciMethod* method,
3277                              int bci,
3278                              Deoptimization::DeoptReason reason) {
3279   ciMethodData* md = method->method_data();
3280   if (md->is_empty()) {
3281     // Assume the trap has not occurred, or that it occurred only
3282     // because of a transient condition during start-up in the interpreter.
3283     return false;
3284   }
3285   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3286   if (md->has_trap_at(bci, m, reason) != 0) {
3287     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3288     // Also, if there are multiple reasons, or if there is no per-BCI record,
3289     // assume the worst.
3290     if (log())
3291       log()->elem("observe trap='%s' count='%d'",
3292                   Deoptimization::trap_reason_name(reason),
3293                   md->trap_count(reason));
3294     return true;
3295   } else {
3296     // Ignore method/bci and see if there have been too many globally.
3297     return too_many_traps(reason, md);
3298   }
3299 }
3300 
3301 // Less-accurate variant which does not require a method and bci.
3302 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3303                              ciMethodData* logmd) {
3304   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3305     // Too many traps globally.
3306     // Note that we use cumulative trap_count, not just md->trap_count.
3307     if (log()) {
3308       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3309       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3310                   Deoptimization::trap_reason_name(reason),
3311                   mcount, trap_count(reason));
3312     }
3313     return true;
3314   } else {
3315     // The coast is clear.
3316     return false;
3317   }
3318 }
3319 
3320 //--------------------------too_many_recompiles--------------------------------
3321 // Report if there are too many recompiles at the current method and bci.
3322 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3323 // Is not eager to return true, since this will cause the compiler to use
3324 // Action_none for a trap point, to avoid too many recompilations.
3325 bool Compile::too_many_recompiles(ciMethod* method,
3326                                   int bci,
3327                                   Deoptimization::DeoptReason reason) {
3328   ciMethodData* md = method->method_data();
3329   if (md->is_empty()) {
3330     // Assume the trap has not occurred, or that it occurred only
3331     // because of a transient condition during start-up in the interpreter.
3332     return false;
3333   }
3334   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3335   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3336   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3337   Deoptimization::DeoptReason per_bc_reason
3338     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3339   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3340   if ((per_bc_reason == Deoptimization::Reason_none
3341        || md->has_trap_at(bci, m, reason) != 0)
3342       // The trap frequency measure we care about is the recompile count:
3343       && md->trap_recompiled_at(bci, m)
3344       && md->overflow_recompile_count() >= bc_cutoff) {
3345     // Do not emit a trap here if it has already caused recompilations.
3346     // Also, if there are multiple reasons, or if there is no per-BCI record,
3347     // assume the worst.
3348     if (log())
3349       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3350                   Deoptimization::trap_reason_name(reason),
3351                   md->trap_count(reason),
3352                   md->overflow_recompile_count());
3353     return true;
3354   } else if (trap_count(reason) != 0
3355              && decompile_count() >= m_cutoff) {
3356     // Too many recompiles globally, and we have seen this sort of trap.
3357     // Use cumulative decompile_count, not just md->decompile_count.
3358     if (log())
3359       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3360                   Deoptimization::trap_reason_name(reason),
3361                   md->trap_count(reason), trap_count(reason),
3362                   md->decompile_count(), decompile_count());
3363     return true;
3364   } else {
3365     // The coast is clear.
3366     return false;
3367   }
3368 }
3369 
3370 // Compute when not to trap. Used by matching trap based nodes and
3371 // NullCheck optimization.
3372 void Compile::set_allowed_deopt_reasons() {
3373   _allowed_reasons = 0;
3374   if (is_method_compilation()) {
3375     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3376       assert(rs < BitsPerInt, "recode bit map");
3377       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3378         _allowed_reasons |= nth_bit(rs);
3379       }
3380     }
3381   }
3382 }
3383 
3384 #ifndef PRODUCT
3385 //------------------------------verify_graph_edges---------------------------
3386 // Walk the Graph and verify that there is a one-to-one correspondence
3387 // between Use-Def edges and Def-Use edges in the graph.
3388 void Compile::verify_graph_edges(bool no_dead_code) {
3389   if (VerifyGraphEdges) {
3390     ResourceArea *area = Thread::current()->resource_area();
3391     Unique_Node_List visited(area);
3392     // Call recursive graph walk to check edges
3393     _root->verify_edges(visited);
3394     if (no_dead_code) {
3395       // Now make sure that no visited node is used by an unvisited node.
3396       bool dead_nodes = false;
3397       Unique_Node_List checked(area);
3398       while (visited.size() > 0) {
3399         Node* n = visited.pop();
3400         checked.push(n);
3401         for (uint i = 0; i < n->outcnt(); i++) {
3402           Node* use = n->raw_out(i);
3403           if (checked.member(use))  continue;  // already checked
3404           if (visited.member(use))  continue;  // already in the graph
3405           if (use->is_Con())        continue;  // a dead ConNode is OK
3406           // At this point, we have found a dead node which is DU-reachable.
3407           if (!dead_nodes) {
3408             tty->print_cr("*** Dead nodes reachable via DU edges:");
3409             dead_nodes = true;
3410           }
3411           use->dump(2);
3412           tty->print_cr("---");
3413           checked.push(use);  // No repeats; pretend it is now checked.
3414         }
3415       }
3416       assert(!dead_nodes, "using nodes must be reachable from root");
3417     }
3418   }
3419 }
3420 
3421 // Verify GC barriers consistency
3422 // Currently supported:
3423 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3424 void Compile::verify_barriers() {
3425   if (UseG1GC) {
3426     // Verify G1 pre-barriers
3427     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3428 
3429     ResourceArea *area = Thread::current()->resource_area();
3430     Unique_Node_List visited(area);
3431     Node_List worklist(area);
3432     // We're going to walk control flow backwards starting from the Root
3433     worklist.push(_root);
3434     while (worklist.size() > 0) {
3435       Node* x = worklist.pop();
3436       if (x == NULL || x == top()) continue;
3437       if (visited.member(x)) {
3438         continue;
3439       } else {
3440         visited.push(x);
3441       }
3442 
3443       if (x->is_Region()) {
3444         for (uint i = 1; i < x->req(); i++) {
3445           worklist.push(x->in(i));
3446         }
3447       } else {
3448         worklist.push(x->in(0));
3449         // We are looking for the pattern:
3450         //                            /->ThreadLocal
3451         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3452         //              \->ConI(0)
3453         // We want to verify that the If and the LoadB have the same control
3454         // See GraphKit::g1_write_barrier_pre()
3455         if (x->is_If()) {
3456           IfNode *iff = x->as_If();
3457           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3458             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3459             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3460                 && cmp->in(1)->is_Load()) {
3461               LoadNode* load = cmp->in(1)->as_Load();
3462               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3463                   && load->in(2)->in(3)->is_Con()
3464                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3465 
3466                 Node* if_ctrl = iff->in(0);
3467                 Node* load_ctrl = load->in(0);
3468 
3469                 if (if_ctrl != load_ctrl) {
3470                   // Skip possible CProj->NeverBranch in infinite loops
3471                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3472                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3473                     if_ctrl = if_ctrl->in(0)->in(0);
3474                   }
3475                 }
3476                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3477               }
3478             }
3479           }
3480         }
3481       }
3482     }
3483   }
3484 }
3485 
3486 #endif
3487 
3488 // The Compile object keeps track of failure reasons separately from the ciEnv.
3489 // This is required because there is not quite a 1-1 relation between the
3490 // ciEnv and its compilation task and the Compile object.  Note that one
3491 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3492 // to backtrack and retry without subsuming loads.  Other than this backtracking
3493 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3494 // by the logic in C2Compiler.
3495 void Compile::record_failure(const char* reason) {
3496   if (log() != NULL) {
3497     log()->elem("failure reason='%s' phase='compile'", reason);
3498   }
3499   if (_failure_reason == NULL) {
3500     // Record the first failure reason.
3501     _failure_reason = reason;
3502   }
3503 
3504   EventCompilerFailure event;
3505   if (event.should_commit()) {
3506     event.set_compileID(Compile::compile_id());
3507     event.set_failure(reason);
3508     event.commit();
3509   }
3510 
3511   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3512     C->print_method(PHASE_FAILURE);
3513   }
3514   _root = NULL;  // flush the graph, too
3515 }
3516 
3517 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3518   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3519     _phase_name(name), _dolog(dolog)
3520 {
3521   if (dolog) {
3522     C = Compile::current();
3523     _log = C->log();
3524   } else {
3525     C = NULL;
3526     _log = NULL;
3527   }
3528   if (_log != NULL) {
3529     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3530     _log->stamp();
3531     _log->end_head();
3532   }
3533 }
3534 
3535 Compile::TracePhase::~TracePhase() {
3536 
3537   C = Compile::current();
3538   if (_dolog) {
3539     _log = C->log();
3540   } else {
3541     _log = NULL;
3542   }
3543 
3544 #ifdef ASSERT
3545   if (PrintIdealNodeCount) {
3546     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3547                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3548   }
3549 
3550   if (VerifyIdealNodeCount) {
3551     Compile::current()->print_missing_nodes();
3552   }
3553 #endif
3554 
3555   if (_log != NULL) {
3556     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3557   }
3558 }
3559 
3560 //=============================================================================
3561 // Two Constant's are equal when the type and the value are equal.
3562 bool Compile::Constant::operator==(const Constant& other) {
3563   if (type()          != other.type()         )  return false;
3564   if (can_be_reused() != other.can_be_reused())  return false;
3565   // For floating point values we compare the bit pattern.
3566   switch (type()) {
3567   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3568   case T_LONG:
3569   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3570   case T_OBJECT:
3571   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3572   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3573   case T_METADATA: return (_v._metadata == other._v._metadata);
3574   default: ShouldNotReachHere();
3575   }
3576   return false;
3577 }
3578 
3579 static int type_to_size_in_bytes(BasicType t) {
3580   switch (t) {
3581   case T_LONG:    return sizeof(jlong  );
3582   case T_FLOAT:   return sizeof(jfloat );
3583   case T_DOUBLE:  return sizeof(jdouble);
3584   case T_METADATA: return sizeof(Metadata*);
3585     // We use T_VOID as marker for jump-table entries (labels) which
3586     // need an internal word relocation.
3587   case T_VOID:
3588   case T_ADDRESS:
3589   case T_OBJECT:  return sizeof(jobject);
3590   }
3591 
3592   ShouldNotReachHere();
3593   return -1;
3594 }
3595 
3596 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3597   // sort descending
3598   if (a->freq() > b->freq())  return -1;
3599   if (a->freq() < b->freq())  return  1;
3600   return 0;
3601 }
3602 
3603 void Compile::ConstantTable::calculate_offsets_and_size() {
3604   // First, sort the array by frequencies.
3605   _constants.sort(qsort_comparator);
3606 
3607 #ifdef ASSERT
3608   // Make sure all jump-table entries were sorted to the end of the
3609   // array (they have a negative frequency).
3610   bool found_void = false;
3611   for (int i = 0; i < _constants.length(); i++) {
3612     Constant con = _constants.at(i);
3613     if (con.type() == T_VOID)
3614       found_void = true;  // jump-tables
3615     else
3616       assert(!found_void, "wrong sorting");
3617   }
3618 #endif
3619 
3620   int offset = 0;
3621   for (int i = 0; i < _constants.length(); i++) {
3622     Constant* con = _constants.adr_at(i);
3623 
3624     // Align offset for type.
3625     int typesize = type_to_size_in_bytes(con->type());
3626     offset = align_size_up(offset, typesize);
3627     con->set_offset(offset);   // set constant's offset
3628 
3629     if (con->type() == T_VOID) {
3630       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3631       offset = offset + typesize * n->outcnt();  // expand jump-table
3632     } else {
3633       offset = offset + typesize;
3634     }
3635   }
3636 
3637   // Align size up to the next section start (which is insts; see
3638   // CodeBuffer::align_at_start).
3639   assert(_size == -1, "already set?");
3640   _size = align_size_up(offset, CodeEntryAlignment);
3641 }
3642 
3643 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3644   MacroAssembler _masm(&cb);
3645   for (int i = 0; i < _constants.length(); i++) {
3646     Constant con = _constants.at(i);
3647     address constant_addr;
3648     switch (con.type()) {
3649     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3650     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3651     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3652     case T_OBJECT: {
3653       jobject obj = con.get_jobject();
3654       int oop_index = _masm.oop_recorder()->find_index(obj);
3655       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3656       break;
3657     }
3658     case T_ADDRESS: {
3659       address addr = (address) con.get_jobject();
3660       constant_addr = _masm.address_constant(addr);
3661       break;
3662     }
3663     // We use T_VOID as marker for jump-table entries (labels) which
3664     // need an internal word relocation.
3665     case T_VOID: {
3666       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3667       // Fill the jump-table with a dummy word.  The real value is
3668       // filled in later in fill_jump_table.
3669       address dummy = (address) n;
3670       constant_addr = _masm.address_constant(dummy);
3671       // Expand jump-table
3672       for (uint i = 1; i < n->outcnt(); i++) {
3673         address temp_addr = _masm.address_constant(dummy + i);
3674         assert(temp_addr, "consts section too small");
3675       }
3676       break;
3677     }
3678     case T_METADATA: {
3679       Metadata* obj = con.get_metadata();
3680       int metadata_index = _masm.oop_recorder()->find_index(obj);
3681       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3682       break;
3683     }
3684     default: ShouldNotReachHere();
3685     }
3686     assert(constant_addr, "consts section too small");
3687     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3688             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3689   }
3690 }
3691 
3692 int Compile::ConstantTable::find_offset(Constant& con) const {
3693   int idx = _constants.find(con);
3694   assert(idx != -1, "constant must be in constant table");
3695   int offset = _constants.at(idx).offset();
3696   assert(offset != -1, "constant table not emitted yet?");
3697   return offset;
3698 }
3699 
3700 void Compile::ConstantTable::add(Constant& con) {
3701   if (con.can_be_reused()) {
3702     int idx = _constants.find(con);
3703     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3704       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3705       return;
3706     }
3707   }
3708   (void) _constants.append(con);
3709 }
3710 
3711 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3712   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3713   Constant con(type, value, b->_freq);
3714   add(con);
3715   return con;
3716 }
3717 
3718 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3719   Constant con(metadata);
3720   add(con);
3721   return con;
3722 }
3723 
3724 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3725   jvalue value;
3726   BasicType type = oper->type()->basic_type();
3727   switch (type) {
3728   case T_LONG:    value.j = oper->constantL(); break;
3729   case T_FLOAT:   value.f = oper->constantF(); break;
3730   case T_DOUBLE:  value.d = oper->constantD(); break;
3731   case T_OBJECT:
3732   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3733   case T_METADATA: return add((Metadata*)oper->constant()); break;
3734   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3735   }
3736   return add(n, type, value);
3737 }
3738 
3739 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3740   jvalue value;
3741   // We can use the node pointer here to identify the right jump-table
3742   // as this method is called from Compile::Fill_buffer right before
3743   // the MachNodes are emitted and the jump-table is filled (means the
3744   // MachNode pointers do not change anymore).
3745   value.l = (jobject) n;
3746   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3747   add(con);
3748   return con;
3749 }
3750 
3751 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3752   // If called from Compile::scratch_emit_size do nothing.
3753   if (Compile::current()->in_scratch_emit_size())  return;
3754 
3755   assert(labels.is_nonempty(), "must be");
3756   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3757 
3758   // Since MachConstantNode::constant_offset() also contains
3759   // table_base_offset() we need to subtract the table_base_offset()
3760   // to get the plain offset into the constant table.
3761   int offset = n->constant_offset() - table_base_offset();
3762 
3763   MacroAssembler _masm(&cb);
3764   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3765 
3766   for (uint i = 0; i < n->outcnt(); i++) {
3767     address* constant_addr = &jump_table_base[i];
3768     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3769     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3770     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3771   }
3772 }
3773 
3774 // The message about the current inlining is accumulated in
3775 // _print_inlining_stream and transfered into the _print_inlining_list
3776 // once we know whether inlining succeeds or not. For regular
3777 // inlining, messages are appended to the buffer pointed by
3778 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3779 // a new buffer is added after _print_inlining_idx in the list. This
3780 // way we can update the inlining message for late inlining call site
3781 // when the inlining is attempted again.
3782 void Compile::print_inlining_init() {
3783   if (print_inlining() || print_intrinsics()) {
3784     _print_inlining_stream = new stringStream();
3785     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3786   }
3787 }
3788 
3789 void Compile::print_inlining_reinit() {
3790   if (print_inlining() || print_intrinsics()) {
3791     // Re allocate buffer when we change ResourceMark
3792     _print_inlining_stream = new stringStream();
3793   }
3794 }
3795 
3796 void Compile::print_inlining_reset() {
3797   _print_inlining_stream->reset();
3798 }
3799 
3800 void Compile::print_inlining_commit() {
3801   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3802   // Transfer the message from _print_inlining_stream to the current
3803   // _print_inlining_list buffer and clear _print_inlining_stream.
3804   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3805   print_inlining_reset();
3806 }
3807 
3808 void Compile::print_inlining_push() {
3809   // Add new buffer to the _print_inlining_list at current position
3810   _print_inlining_idx++;
3811   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3812 }
3813 
3814 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3815   return _print_inlining_list->at(_print_inlining_idx);
3816 }
3817 
3818 void Compile::print_inlining_update(CallGenerator* cg) {
3819   if (print_inlining() || print_intrinsics()) {
3820     if (!cg->is_late_inline()) {
3821       if (print_inlining_current().cg() != NULL) {
3822         print_inlining_push();
3823       }
3824       print_inlining_commit();
3825     } else {
3826       if (print_inlining_current().cg() != cg &&
3827           (print_inlining_current().cg() != NULL ||
3828            print_inlining_current().ss()->size() != 0)) {
3829         print_inlining_push();
3830       }
3831       print_inlining_commit();
3832       print_inlining_current().set_cg(cg);
3833     }
3834   }
3835 }
3836 
3837 void Compile::print_inlining_move_to(CallGenerator* cg) {
3838   // We resume inlining at a late inlining call site. Locate the
3839   // corresponding inlining buffer so that we can update it.
3840   if (print_inlining()) {
3841     for (int i = 0; i < _print_inlining_list->length(); i++) {
3842       if (_print_inlining_list->adr_at(i)->cg() == cg) {
3843         _print_inlining_idx = i;
3844         return;
3845       }
3846     }
3847     ShouldNotReachHere();
3848   }
3849 }
3850 
3851 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3852   if (print_inlining()) {
3853     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3854     assert(print_inlining_current().cg() == cg, "wrong entry");
3855     // replace message with new message
3856     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3857     print_inlining_commit();
3858     print_inlining_current().set_cg(cg);
3859   }
3860 }
3861 
3862 void Compile::print_inlining_assert_ready() {
3863   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3864 }
3865 
3866 void Compile::process_print_inlining() {
3867   bool do_print_inlining = print_inlining() || print_intrinsics();
3868   if (do_print_inlining || log() != NULL) {
3869     // Print inlining message for candidates that we couldn't inline
3870     // for lack of space
3871     for (int i = 0; i < _late_inlines.length(); i++) {
3872       CallGenerator* cg = _late_inlines.at(i);
3873       if (!cg->is_mh_late_inline()) {
3874         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3875         if (do_print_inlining) {
3876           cg->print_inlining_late(msg);
3877         }
3878         log_late_inline_failure(cg, msg);
3879       }
3880     }
3881   }
3882   if (do_print_inlining) {
3883     ResourceMark rm;
3884     stringStream ss;
3885     for (int i = 0; i < _print_inlining_list->length(); i++) {
3886       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3887     }
3888     size_t end = ss.size();
3889     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
3890     strncpy(_print_inlining_output, ss.base(), end+1);
3891     _print_inlining_output[end] = 0;
3892   }
3893 }
3894 
3895 void Compile::dump_print_inlining() {
3896   if (_print_inlining_output != NULL) {
3897     tty->print_raw(_print_inlining_output);
3898   }
3899 }
3900 
3901 void Compile::log_late_inline(CallGenerator* cg) {
3902   if (log() != NULL) {
3903     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3904                 cg->unique_id());
3905     JVMState* p = cg->call_node()->jvms();
3906     while (p != NULL) {
3907       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
3908       p = p->caller();
3909     }
3910     log()->tail("late_inline");
3911   }
3912 }
3913 
3914 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
3915   log_late_inline(cg);
3916   if (log() != NULL) {
3917     log()->inline_fail(msg);
3918   }
3919 }
3920 
3921 void Compile::log_inline_id(CallGenerator* cg) {
3922   if (log() != NULL) {
3923     // The LogCompilation tool needs a unique way to identify late
3924     // inline call sites. This id must be unique for this call site in
3925     // this compilation. Try to have it unique across compilations as
3926     // well because it can be convenient when grepping through the log
3927     // file.
3928     // Distinguish OSR compilations from others in case CICountOSR is
3929     // on.
3930     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
3931     cg->set_unique_id(id);
3932     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
3933   }
3934 }
3935 
3936 void Compile::log_inline_failure(const char* msg) {
3937   if (C->log() != NULL) {
3938     C->log()->inline_fail(msg);
3939   }
3940 }
3941 
3942 
3943 // Dump inlining replay data to the stream.
3944 // Don't change thread state and acquire any locks.
3945 void Compile::dump_inline_data(outputStream* out) {
3946   InlineTree* inl_tree = ilt();
3947   if (inl_tree != NULL) {
3948     out->print(" inline %d", inl_tree->count());
3949     inl_tree->dump_replay_data(out);
3950   }
3951 }
3952 
3953 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3954   if (n1->Opcode() < n2->Opcode())      return -1;
3955   else if (n1->Opcode() > n2->Opcode()) return 1;
3956 
3957   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3958   for (uint i = 1; i < n1->req(); i++) {
3959     if (n1->in(i) < n2->in(i))      return -1;
3960     else if (n1->in(i) > n2->in(i)) return 1;
3961   }
3962 
3963   return 0;
3964 }
3965 
3966 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3967   Node* n1 = *n1p;
3968   Node* n2 = *n2p;
3969 
3970   return cmp_expensive_nodes(n1, n2);
3971 }
3972 
3973 void Compile::sort_expensive_nodes() {
3974   if (!expensive_nodes_sorted()) {
3975     _expensive_nodes->sort(cmp_expensive_nodes);
3976   }
3977 }
3978 
3979 bool Compile::expensive_nodes_sorted() const {
3980   for (int i = 1; i < _expensive_nodes->length(); i++) {
3981     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3982       return false;
3983     }
3984   }
3985   return true;
3986 }
3987 
3988 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3989   if (_expensive_nodes->length() == 0) {
3990     return false;
3991   }
3992 
3993   assert(OptimizeExpensiveOps, "optimization off?");
3994 
3995   // Take this opportunity to remove dead nodes from the list
3996   int j = 0;
3997   for (int i = 0; i < _expensive_nodes->length(); i++) {
3998     Node* n = _expensive_nodes->at(i);
3999     if (!n->is_unreachable(igvn)) {
4000       assert(n->is_expensive(), "should be expensive");
4001       _expensive_nodes->at_put(j, n);
4002       j++;
4003     }
4004   }
4005   _expensive_nodes->trunc_to(j);
4006 
4007   // Then sort the list so that similar nodes are next to each other
4008   // and check for at least two nodes of identical kind with same data
4009   // inputs.
4010   sort_expensive_nodes();
4011 
4012   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4013     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4014       return true;
4015     }
4016   }
4017 
4018   return false;
4019 }
4020 
4021 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4022   if (_expensive_nodes->length() == 0) {
4023     return;
4024   }
4025 
4026   assert(OptimizeExpensiveOps, "optimization off?");
4027 
4028   // Sort to bring similar nodes next to each other and clear the
4029   // control input of nodes for which there's only a single copy.
4030   sort_expensive_nodes();
4031 
4032   int j = 0;
4033   int identical = 0;
4034   int i = 0;
4035   for (; i < _expensive_nodes->length()-1; i++) {
4036     assert(j <= i, "can't write beyond current index");
4037     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4038       identical++;
4039       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4040       continue;
4041     }
4042     if (identical > 0) {
4043       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4044       identical = 0;
4045     } else {
4046       Node* n = _expensive_nodes->at(i);
4047       igvn.hash_delete(n);
4048       n->set_req(0, NULL);
4049       igvn.hash_insert(n);
4050     }
4051   }
4052   if (identical > 0) {
4053     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4054   } else if (_expensive_nodes->length() >= 1) {
4055     Node* n = _expensive_nodes->at(i);
4056     igvn.hash_delete(n);
4057     n->set_req(0, NULL);
4058     igvn.hash_insert(n);
4059   }
4060   _expensive_nodes->trunc_to(j);
4061 }
4062 
4063 void Compile::add_expensive_node(Node * n) {
4064   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4065   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4066   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4067   if (OptimizeExpensiveOps) {
4068     _expensive_nodes->append(n);
4069   } else {
4070     // Clear control input and let IGVN optimize expensive nodes if
4071     // OptimizeExpensiveOps is off.
4072     n->set_req(0, NULL);
4073   }
4074 }
4075 
4076 /**
4077  * Remove the speculative part of types and clean up the graph
4078  */
4079 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4080   if (UseTypeSpeculation) {
4081     Unique_Node_List worklist;
4082     worklist.push(root());
4083     int modified = 0;
4084     // Go over all type nodes that carry a speculative type, drop the
4085     // speculative part of the type and enqueue the node for an igvn
4086     // which may optimize it out.
4087     for (uint next = 0; next < worklist.size(); ++next) {
4088       Node *n  = worklist.at(next);
4089       if (n->is_Type()) {
4090         TypeNode* tn = n->as_Type();
4091         const Type* t = tn->type();
4092         const Type* t_no_spec = t->remove_speculative();
4093         if (t_no_spec != t) {
4094           bool in_hash = igvn.hash_delete(n);
4095           assert(in_hash, "node should be in igvn hash table");
4096           tn->set_type(t_no_spec);
4097           igvn.hash_insert(n);
4098           igvn._worklist.push(n); // give it a chance to go away
4099           modified++;
4100         }
4101       }
4102       uint max = n->len();
4103       for( uint i = 0; i < max; ++i ) {
4104         Node *m = n->in(i);
4105         if (not_a_node(m))  continue;
4106         worklist.push(m);
4107       }
4108     }
4109     // Drop the speculative part of all types in the igvn's type table
4110     igvn.remove_speculative_types();
4111     if (modified > 0) {
4112       igvn.optimize();
4113     }
4114 #ifdef ASSERT
4115     // Verify that after the IGVN is over no speculative type has resurfaced
4116     worklist.clear();
4117     worklist.push(root());
4118     for (uint next = 0; next < worklist.size(); ++next) {
4119       Node *n  = worklist.at(next);
4120       const Type* t = igvn.type_or_null(n);
4121       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4122       if (n->is_Type()) {
4123         t = n->as_Type()->type();
4124         assert(t == t->remove_speculative(), "no more speculative types");
4125       }
4126       uint max = n->len();
4127       for( uint i = 0; i < max; ++i ) {
4128         Node *m = n->in(i);
4129         if (not_a_node(m))  continue;
4130         worklist.push(m);
4131       }
4132     }
4133     igvn.check_no_speculative_types();
4134 #endif
4135   }
4136 }
4137 
4138 // Auxiliary method to support randomized stressing/fuzzing.
4139 //
4140 // This method can be called the arbitrary number of times, with current count
4141 // as the argument. The logic allows selecting a single candidate from the
4142 // running list of candidates as follows:
4143 //    int count = 0;
4144 //    Cand* selected = null;
4145 //    while(cand = cand->next()) {
4146 //      if (randomized_select(++count)) {
4147 //        selected = cand;
4148 //      }
4149 //    }
4150 //
4151 // Including count equalizes the chances any candidate is "selected".
4152 // This is useful when we don't have the complete list of candidates to choose
4153 // from uniformly. In this case, we need to adjust the randomicity of the
4154 // selection, or else we will end up biasing the selection towards the latter
4155 // candidates.
4156 //
4157 // Quick back-envelope calculation shows that for the list of n candidates
4158 // the equal probability for the candidate to persist as "best" can be
4159 // achieved by replacing it with "next" k-th candidate with the probability
4160 // of 1/k. It can be easily shown that by the end of the run, the
4161 // probability for any candidate is converged to 1/n, thus giving the
4162 // uniform distribution among all the candidates.
4163 //
4164 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4165 #define RANDOMIZED_DOMAIN_POW 29
4166 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4167 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4168 bool Compile::randomized_select(int count) {
4169   assert(count > 0, "only positive");
4170   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4171 }