1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/ad.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/movenode.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/regmask.hpp"
  36 #include "opto/rootnode.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/type.hpp"
  39 #include "opto/vectornode.hpp"
  40 #include "runtime/os.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 OptoReg::Name OptoReg::c_frame_pointer;
  44 
  45 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  46 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  47 RegMask Matcher::STACK_ONLY_mask;
  48 RegMask Matcher::c_frame_ptr_mask;
  49 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  50 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  51 
  52 //---------------------------Matcher-------------------------------------------
  53 Matcher::Matcher()
  54 : PhaseTransform( Phase::Ins_Select ),
  55 #ifdef ASSERT
  56   _old2new_map(C->comp_arena()),
  57   _new2old_map(C->comp_arena()),
  58 #endif
  59   _shared_nodes(C->comp_arena()),
  60   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  61   _swallowed(swallowed),
  62   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  63   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  64   _must_clone(must_clone),
  65   _register_save_policy(register_save_policy),
  66   _c_reg_save_policy(c_reg_save_policy),
  67   _register_save_type(register_save_type),
  68   _ruleName(ruleName),
  69   _allocation_started(false),
  70   _states_arena(Chunk::medium_size),
  71   _visited(&_states_arena),
  72   _shared(&_states_arena),
  73   _dontcare(&_states_arena) {
  74   C->set_matcher(this);
  75 
  76   idealreg2spillmask  [Op_RegI] = NULL;
  77   idealreg2spillmask  [Op_RegN] = NULL;
  78   idealreg2spillmask  [Op_RegL] = NULL;
  79   idealreg2spillmask  [Op_RegF] = NULL;
  80   idealreg2spillmask  [Op_RegD] = NULL;
  81   idealreg2spillmask  [Op_RegP] = NULL;
  82   idealreg2spillmask  [Op_VecS] = NULL;
  83   idealreg2spillmask  [Op_VecD] = NULL;
  84   idealreg2spillmask  [Op_VecX] = NULL;
  85   idealreg2spillmask  [Op_VecY] = NULL;
  86 
  87   idealreg2debugmask  [Op_RegI] = NULL;
  88   idealreg2debugmask  [Op_RegN] = NULL;
  89   idealreg2debugmask  [Op_RegL] = NULL;
  90   idealreg2debugmask  [Op_RegF] = NULL;
  91   idealreg2debugmask  [Op_RegD] = NULL;
  92   idealreg2debugmask  [Op_RegP] = NULL;
  93   idealreg2debugmask  [Op_VecS] = NULL;
  94   idealreg2debugmask  [Op_VecD] = NULL;
  95   idealreg2debugmask  [Op_VecX] = NULL;
  96   idealreg2debugmask  [Op_VecY] = NULL;
  97 
  98   idealreg2mhdebugmask[Op_RegI] = NULL;
  99   idealreg2mhdebugmask[Op_RegN] = NULL;
 100   idealreg2mhdebugmask[Op_RegL] = NULL;
 101   idealreg2mhdebugmask[Op_RegF] = NULL;
 102   idealreg2mhdebugmask[Op_RegD] = NULL;
 103   idealreg2mhdebugmask[Op_RegP] = NULL;
 104   idealreg2mhdebugmask[Op_VecS] = NULL;
 105   idealreg2mhdebugmask[Op_VecD] = NULL;
 106   idealreg2mhdebugmask[Op_VecX] = NULL;
 107   idealreg2mhdebugmask[Op_VecY] = NULL;
 108 
 109   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 110 }
 111 
 112 //------------------------------warp_incoming_stk_arg------------------------
 113 // This warps a VMReg into an OptoReg::Name
 114 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 115   OptoReg::Name warped;
 116   if( reg->is_stack() ) {  // Stack slot argument?
 117     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 118     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 119     if( warped >= _in_arg_limit )
 120       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 121     if (!RegMask::can_represent_arg(warped)) {
 122       // the compiler cannot represent this method's calling sequence
 123       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 124       return OptoReg::Bad;
 125     }
 126     return warped;
 127   }
 128   return OptoReg::as_OptoReg(reg);
 129 }
 130 
 131 //---------------------------compute_old_SP------------------------------------
 132 OptoReg::Name Compile::compute_old_SP() {
 133   int fixed    = fixed_slots();
 134   int preserve = in_preserve_stack_slots();
 135   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 136 }
 137 
 138 
 139 
 140 #ifdef ASSERT
 141 void Matcher::verify_new_nodes_only(Node* xroot) {
 142   // Make sure that the new graph only references new nodes
 143   ResourceMark rm;
 144   Unique_Node_List worklist;
 145   VectorSet visited(Thread::current()->resource_area());
 146   worklist.push(xroot);
 147   while (worklist.size() > 0) {
 148     Node* n = worklist.pop();
 149     visited <<= n->_idx;
 150     assert(C->node_arena()->contains(n), "dead node");
 151     for (uint j = 0; j < n->req(); j++) {
 152       Node* in = n->in(j);
 153       if (in != NULL) {
 154         assert(C->node_arena()->contains(in), "dead node");
 155         if (!visited.test(in->_idx)) {
 156           worklist.push(in);
 157         }
 158       }
 159     }
 160   }
 161 }
 162 #endif
 163 
 164 
 165 //---------------------------match---------------------------------------------
 166 void Matcher::match( ) {
 167   if( MaxLabelRootDepth < 100 ) { // Too small?
 168     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 169     MaxLabelRootDepth = 100;
 170   }
 171   // One-time initialization of some register masks.
 172   init_spill_mask( C->root()->in(1) );
 173   _return_addr_mask = return_addr();
 174 #ifdef _LP64
 175   // Pointers take 2 slots in 64-bit land
 176   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 177 #endif
 178 
 179   // Map a Java-signature return type into return register-value
 180   // machine registers for 0, 1 and 2 returned values.
 181   const TypeTuple *range = C->tf()->range();
 182   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 183     // Get ideal-register return type
 184     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 185     // Get machine return register
 186     uint sop = C->start()->Opcode();
 187     OptoRegPair regs = return_value(ireg, false);
 188 
 189     // And mask for same
 190     _return_value_mask = RegMask(regs.first());
 191     if( OptoReg::is_valid(regs.second()) )
 192       _return_value_mask.Insert(regs.second());
 193   }
 194 
 195   // ---------------
 196   // Frame Layout
 197 
 198   // Need the method signature to determine the incoming argument types,
 199   // because the types determine which registers the incoming arguments are
 200   // in, and this affects the matched code.
 201   const TypeTuple *domain = C->tf()->domain();
 202   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 203   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 204   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 205   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 206   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 207   uint i;
 208   for( i = 0; i<argcnt; i++ ) {
 209     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 210   }
 211 
 212   // Pass array of ideal registers and length to USER code (from the AD file)
 213   // that will convert this to an array of register numbers.
 214   const StartNode *start = C->start();
 215   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 216 #ifdef ASSERT
 217   // Sanity check users' calling convention.  Real handy while trying to
 218   // get the initial port correct.
 219   { for (uint i = 0; i<argcnt; i++) {
 220       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 221         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 222         _parm_regs[i].set_bad();
 223         continue;
 224       }
 225       VMReg parm_reg = vm_parm_regs[i].first();
 226       assert(parm_reg->is_valid(), "invalid arg?");
 227       if (parm_reg->is_reg()) {
 228         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 229         assert(can_be_java_arg(opto_parm_reg) ||
 230                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 231                opto_parm_reg == inline_cache_reg(),
 232                "parameters in register must be preserved by runtime stubs");
 233       }
 234       for (uint j = 0; j < i; j++) {
 235         assert(parm_reg != vm_parm_regs[j].first(),
 236                "calling conv. must produce distinct regs");
 237       }
 238     }
 239   }
 240 #endif
 241 
 242   // Do some initial frame layout.
 243 
 244   // Compute the old incoming SP (may be called FP) as
 245   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 246   _old_SP = C->compute_old_SP();
 247   assert( is_even(_old_SP), "must be even" );
 248 
 249   // Compute highest incoming stack argument as
 250   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 251   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 252   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 253   for( i = 0; i < argcnt; i++ ) {
 254     // Permit args to have no register
 255     _calling_convention_mask[i].Clear();
 256     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 257       continue;
 258     }
 259     // calling_convention returns stack arguments as a count of
 260     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 261     // the allocators point of view, taking into account all the
 262     // preserve area, locks & pad2.
 263 
 264     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 265     if( OptoReg::is_valid(reg1))
 266       _calling_convention_mask[i].Insert(reg1);
 267 
 268     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 269     if( OptoReg::is_valid(reg2))
 270       _calling_convention_mask[i].Insert(reg2);
 271 
 272     // Saved biased stack-slot register number
 273     _parm_regs[i].set_pair(reg2, reg1);
 274   }
 275 
 276   // Finally, make sure the incoming arguments take up an even number of
 277   // words, in case the arguments or locals need to contain doubleword stack
 278   // slots.  The rest of the system assumes that stack slot pairs (in
 279   // particular, in the spill area) which look aligned will in fact be
 280   // aligned relative to the stack pointer in the target machine.  Double
 281   // stack slots will always be allocated aligned.
 282   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 283 
 284   // Compute highest outgoing stack argument as
 285   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 286   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 287   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 288 
 289   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 290     // the compiler cannot represent this method's calling sequence
 291     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 292   }
 293 
 294   if (C->failing())  return;  // bailed out on incoming arg failure
 295 
 296   // ---------------
 297   // Collect roots of matcher trees.  Every node for which
 298   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 299   // can be a valid interior of some tree.
 300   find_shared( C->root() );
 301   find_shared( C->top() );
 302 
 303   C->print_method(PHASE_BEFORE_MATCHING);
 304 
 305   // Create new ideal node ConP #NULL even if it does exist in old space
 306   // to avoid false sharing if the corresponding mach node is not used.
 307   // The corresponding mach node is only used in rare cases for derived
 308   // pointers.
 309   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 310 
 311   // Swap out to old-space; emptying new-space
 312   Arena *old = C->node_arena()->move_contents(C->old_arena());
 313 
 314   // Save debug and profile information for nodes in old space:
 315   _old_node_note_array = C->node_note_array();
 316   if (_old_node_note_array != NULL) {
 317     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 318                            (C->comp_arena(), _old_node_note_array->length(),
 319                             0, NULL));
 320   }
 321 
 322   // Pre-size the new_node table to avoid the need for range checks.
 323   grow_new_node_array(C->unique());
 324 
 325   // Reset node counter so MachNodes start with _idx at 0
 326   int nodes = C->unique(); // save value
 327   C->set_unique(0);
 328   C->reset_dead_node_list();
 329 
 330   // Recursively match trees from old space into new space.
 331   // Correct leaves of new-space Nodes; they point to old-space.
 332   _visited.Clear();             // Clear visit bits for xform call
 333   C->set_cached_top_node(xform( C->top(), nodes ));
 334   if (!C->failing()) {
 335     Node* xroot =        xform( C->root(), 1 );
 336     if (xroot == NULL) {
 337       Matcher::soft_match_failure();  // recursive matching process failed
 338       C->record_method_not_compilable("instruction match failed");
 339     } else {
 340       // During matching shared constants were attached to C->root()
 341       // because xroot wasn't available yet, so transfer the uses to
 342       // the xroot.
 343       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 344         Node* n = C->root()->fast_out(j);
 345         if (C->node_arena()->contains(n)) {
 346           assert(n->in(0) == C->root(), "should be control user");
 347           n->set_req(0, xroot);
 348           --j;
 349           --jmax;
 350         }
 351       }
 352 
 353       // Generate new mach node for ConP #NULL
 354       assert(new_ideal_null != NULL, "sanity");
 355       _mach_null = match_tree(new_ideal_null);
 356       // Don't set control, it will confuse GCM since there are no uses.
 357       // The control will be set when this node is used first time
 358       // in find_base_for_derived().
 359       assert(_mach_null != NULL, "");
 360 
 361       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 362 
 363 #ifdef ASSERT
 364       verify_new_nodes_only(xroot);
 365 #endif
 366     }
 367   }
 368   if (C->top() == NULL || C->root() == NULL) {
 369     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 370   }
 371   if (C->failing()) {
 372     // delete old;
 373     old->destruct_contents();
 374     return;
 375   }
 376   assert( C->top(), "" );
 377   assert( C->root(), "" );
 378   validate_null_checks();
 379 
 380   // Now smoke old-space
 381   NOT_DEBUG( old->destruct_contents() );
 382 
 383   // ------------------------
 384   // Set up save-on-entry registers
 385   Fixup_Save_On_Entry( );
 386 }
 387 
 388 
 389 //------------------------------Fixup_Save_On_Entry----------------------------
 390 // The stated purpose of this routine is to take care of save-on-entry
 391 // registers.  However, the overall goal of the Match phase is to convert into
 392 // machine-specific instructions which have RegMasks to guide allocation.
 393 // So what this procedure really does is put a valid RegMask on each input
 394 // to the machine-specific variations of all Return, TailCall and Halt
 395 // instructions.  It also adds edgs to define the save-on-entry values (and of
 396 // course gives them a mask).
 397 
 398 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 399   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 400   // Do all the pre-defined register masks
 401   rms[TypeFunc::Control  ] = RegMask::Empty;
 402   rms[TypeFunc::I_O      ] = RegMask::Empty;
 403   rms[TypeFunc::Memory   ] = RegMask::Empty;
 404   rms[TypeFunc::ReturnAdr] = ret_adr;
 405   rms[TypeFunc::FramePtr ] = fp;
 406   return rms;
 407 }
 408 
 409 //---------------------------init_first_stack_mask-----------------------------
 410 // Create the initial stack mask used by values spilling to the stack.
 411 // Disallow any debug info in outgoing argument areas by setting the
 412 // initial mask accordingly.
 413 void Matcher::init_first_stack_mask() {
 414 
 415   // Allocate storage for spill masks as masks for the appropriate load type.
 416   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
 417 
 418   idealreg2spillmask  [Op_RegN] = &rms[0];
 419   idealreg2spillmask  [Op_RegI] = &rms[1];
 420   idealreg2spillmask  [Op_RegL] = &rms[2];
 421   idealreg2spillmask  [Op_RegF] = &rms[3];
 422   idealreg2spillmask  [Op_RegD] = &rms[4];
 423   idealreg2spillmask  [Op_RegP] = &rms[5];
 424 
 425   idealreg2debugmask  [Op_RegN] = &rms[6];
 426   idealreg2debugmask  [Op_RegI] = &rms[7];
 427   idealreg2debugmask  [Op_RegL] = &rms[8];
 428   idealreg2debugmask  [Op_RegF] = &rms[9];
 429   idealreg2debugmask  [Op_RegD] = &rms[10];
 430   idealreg2debugmask  [Op_RegP] = &rms[11];
 431 
 432   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 433   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 434   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 435   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 436   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 437   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 438 
 439   idealreg2spillmask  [Op_VecS] = &rms[18];
 440   idealreg2spillmask  [Op_VecD] = &rms[19];
 441   idealreg2spillmask  [Op_VecX] = &rms[20];
 442   idealreg2spillmask  [Op_VecY] = &rms[21];
 443 
 444   OptoReg::Name i;
 445 
 446   // At first, start with the empty mask
 447   C->FIRST_STACK_mask().Clear();
 448 
 449   // Add in the incoming argument area
 450   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 451   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 452     C->FIRST_STACK_mask().Insert(i);
 453   }
 454   // Add in all bits past the outgoing argument area
 455   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 456             "must be able to represent all call arguments in reg mask");
 457   OptoReg::Name init = _out_arg_limit;
 458   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 459     C->FIRST_STACK_mask().Insert(i);
 460   }
 461   // Finally, set the "infinite stack" bit.
 462   C->FIRST_STACK_mask().set_AllStack();
 463 
 464   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 465   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 466   // Keep spill masks aligned.
 467   aligned_stack_mask.clear_to_pairs();
 468   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 469 
 470   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 471 #ifdef _LP64
 472   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 473    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 474    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 475 #else
 476    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 477 #endif
 478   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 479    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 480   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 481    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 482   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 483    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 484   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 485    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 486 
 487   if (Matcher::vector_size_supported(T_BYTE,4)) {
 488     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 489      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 490   }
 491   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 492     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 493     // RA guarantees such alignment since it is needed for Double and Long values.
 494     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 495      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 496   }
 497   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 498     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 499     //
 500     // RA can use input arguments stack slots for spills but until RA
 501     // we don't know frame size and offset of input arg stack slots.
 502     //
 503     // Exclude last input arg stack slots to avoid spilling vectors there
 504     // otherwise vector spills could stomp over stack slots in caller frame.
 505     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 506     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 507       aligned_stack_mask.Remove(in);
 508       in = OptoReg::add(in, -1);
 509     }
 510      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 511      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 512     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 513      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 514   }
 515   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 516     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 517     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 518     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 519       aligned_stack_mask.Remove(in);
 520       in = OptoReg::add(in, -1);
 521     }
 522      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 523      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 524     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 525      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 526   }
 527    if (UseFPUForSpilling) {
 528      // This mask logic assumes that the spill operations are
 529      // symmetric and that the registers involved are the same size.
 530      // On sparc for instance we may have to use 64 bit moves will
 531      // kill 2 registers when used with F0-F31.
 532      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 533      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 534 #ifdef _LP64
 535      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 536      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 537      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 538      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 539 #else
 540      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 541 #ifdef ARM
 542      // ARM has support for moving 64bit values between a pair of
 543      // integer registers and a double register
 544      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 545      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 546 #endif
 547 #endif
 548    }
 549 
 550   // Make up debug masks.  Any spill slot plus callee-save registers.
 551   // Caller-save registers are assumed to be trashable by the various
 552   // inline-cache fixup routines.
 553   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 554   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 555   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 556   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 557   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 558   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 559 
 560   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 561   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 562   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 563   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 564   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 565   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 566 
 567   // Prevent stub compilations from attempting to reference
 568   // callee-saved registers from debug info
 569   bool exclude_soe = !Compile::current()->is_method_compilation();
 570 
 571   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 572     // registers the caller has to save do not work
 573     if( _register_save_policy[i] == 'C' ||
 574         _register_save_policy[i] == 'A' ||
 575         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 576       idealreg2debugmask  [Op_RegN]->Remove(i);
 577       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 578       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 579       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 580       idealreg2debugmask  [Op_RegD]->Remove(i);
 581       idealreg2debugmask  [Op_RegP]->Remove(i);
 582 
 583       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 584       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 585       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 586       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 587       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 588       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 589     }
 590   }
 591 
 592   // Subtract the register we use to save the SP for MethodHandle
 593   // invokes to from the debug mask.
 594   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 595   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 596   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 597   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 598   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 599   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 600   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 601 }
 602 
 603 //---------------------------is_save_on_entry----------------------------------
 604 bool Matcher::is_save_on_entry( int reg ) {
 605   return
 606     _register_save_policy[reg] == 'E' ||
 607     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 608     // Also save argument registers in the trampolining stubs
 609     (C->save_argument_registers() && is_spillable_arg(reg));
 610 }
 611 
 612 //---------------------------Fixup_Save_On_Entry-------------------------------
 613 void Matcher::Fixup_Save_On_Entry( ) {
 614   init_first_stack_mask();
 615 
 616   Node *root = C->root();       // Short name for root
 617   // Count number of save-on-entry registers.
 618   uint soe_cnt = number_of_saved_registers();
 619   uint i;
 620 
 621   // Find the procedure Start Node
 622   StartNode *start = C->start();
 623   assert( start, "Expect a start node" );
 624 
 625   // Save argument registers in the trampolining stubs
 626   if( C->save_argument_registers() )
 627     for( i = 0; i < _last_Mach_Reg; i++ )
 628       if( is_spillable_arg(i) )
 629         soe_cnt++;
 630 
 631   // Input RegMask array shared by all Returns.
 632   // The type for doubles and longs has a count of 2, but
 633   // there is only 1 returned value
 634   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 635   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 636   // Returns have 0 or 1 returned values depending on call signature.
 637   // Return register is specified by return_value in the AD file.
 638   if (ret_edge_cnt > TypeFunc::Parms)
 639     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 640 
 641   // Input RegMask array shared by all Rethrows.
 642   uint reth_edge_cnt = TypeFunc::Parms+1;
 643   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 644   // Rethrow takes exception oop only, but in the argument 0 slot.
 645   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 646 #ifdef _LP64
 647   // Need two slots for ptrs in 64-bit land
 648   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 649 #endif
 650 
 651   // Input RegMask array shared by all TailCalls
 652   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 653   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 654 
 655   // Input RegMask array shared by all TailJumps
 656   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 657   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 658 
 659   // TailCalls have 2 returned values (target & moop), whose masks come
 660   // from the usual MachNode/MachOper mechanism.  Find a sample
 661   // TailCall to extract these masks and put the correct masks into
 662   // the tail_call_rms array.
 663   for( i=1; i < root->req(); i++ ) {
 664     MachReturnNode *m = root->in(i)->as_MachReturn();
 665     if( m->ideal_Opcode() == Op_TailCall ) {
 666       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 667       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 668       break;
 669     }
 670   }
 671 
 672   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 673   // from the usual MachNode/MachOper mechanism.  Find a sample
 674   // TailJump to extract these masks and put the correct masks into
 675   // the tail_jump_rms array.
 676   for( i=1; i < root->req(); i++ ) {
 677     MachReturnNode *m = root->in(i)->as_MachReturn();
 678     if( m->ideal_Opcode() == Op_TailJump ) {
 679       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 680       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 681       break;
 682     }
 683   }
 684 
 685   // Input RegMask array shared by all Halts
 686   uint halt_edge_cnt = TypeFunc::Parms;
 687   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 688 
 689   // Capture the return input masks into each exit flavor
 690   for( i=1; i < root->req(); i++ ) {
 691     MachReturnNode *exit = root->in(i)->as_MachReturn();
 692     switch( exit->ideal_Opcode() ) {
 693       case Op_Return   : exit->_in_rms = ret_rms;  break;
 694       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 695       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 696       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 697       case Op_Halt     : exit->_in_rms = halt_rms; break;
 698       default          : ShouldNotReachHere();
 699     }
 700   }
 701 
 702   // Next unused projection number from Start.
 703   int proj_cnt = C->tf()->domain()->cnt();
 704 
 705   // Do all the save-on-entry registers.  Make projections from Start for
 706   // them, and give them a use at the exit points.  To the allocator, they
 707   // look like incoming register arguments.
 708   for( i = 0; i < _last_Mach_Reg; i++ ) {
 709     if( is_save_on_entry(i) ) {
 710 
 711       // Add the save-on-entry to the mask array
 712       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 713       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 714       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 715       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 716       // Halts need the SOE registers, but only in the stack as debug info.
 717       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 718       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 719 
 720       Node *mproj;
 721 
 722       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 723       // into a single RegD.
 724       if( (i&1) == 0 &&
 725           _register_save_type[i  ] == Op_RegF &&
 726           _register_save_type[i+1] == Op_RegF &&
 727           is_save_on_entry(i+1) ) {
 728         // Add other bit for double
 729         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 730         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 731         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 732         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 733         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 734         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 735         proj_cnt += 2;          // Skip 2 for doubles
 736       }
 737       else if( (i&1) == 1 &&    // Else check for high half of double
 738                _register_save_type[i-1] == Op_RegF &&
 739                _register_save_type[i  ] == Op_RegF &&
 740                is_save_on_entry(i-1) ) {
 741         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 742         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 743         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 744         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 745         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 746         mproj = C->top();
 747       }
 748       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 749       // into a single RegL.
 750       else if( (i&1) == 0 &&
 751           _register_save_type[i  ] == Op_RegI &&
 752           _register_save_type[i+1] == Op_RegI &&
 753         is_save_on_entry(i+1) ) {
 754         // Add other bit for long
 755         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 756         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 757         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 758         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 759         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 760         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 761         proj_cnt += 2;          // Skip 2 for longs
 762       }
 763       else if( (i&1) == 1 &&    // Else check for high half of long
 764                _register_save_type[i-1] == Op_RegI &&
 765                _register_save_type[i  ] == Op_RegI &&
 766                is_save_on_entry(i-1) ) {
 767         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 768         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 769         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 770         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 771         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 772         mproj = C->top();
 773       } else {
 774         // Make a projection for it off the Start
 775         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 776       }
 777 
 778       ret_edge_cnt ++;
 779       reth_edge_cnt ++;
 780       tail_call_edge_cnt ++;
 781       tail_jump_edge_cnt ++;
 782       halt_edge_cnt ++;
 783 
 784       // Add a use of the SOE register to all exit paths
 785       for( uint j=1; j < root->req(); j++ )
 786         root->in(j)->add_req(mproj);
 787     } // End of if a save-on-entry register
 788   } // End of for all machine registers
 789 }
 790 
 791 //------------------------------init_spill_mask--------------------------------
 792 void Matcher::init_spill_mask( Node *ret ) {
 793   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 794 
 795   OptoReg::c_frame_pointer = c_frame_pointer();
 796   c_frame_ptr_mask = c_frame_pointer();
 797 #ifdef _LP64
 798   // pointers are twice as big
 799   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 800 #endif
 801 
 802   // Start at OptoReg::stack0()
 803   STACK_ONLY_mask.Clear();
 804   OptoReg::Name init = OptoReg::stack2reg(0);
 805   // STACK_ONLY_mask is all stack bits
 806   OptoReg::Name i;
 807   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 808     STACK_ONLY_mask.Insert(i);
 809   // Also set the "infinite stack" bit.
 810   STACK_ONLY_mask.set_AllStack();
 811 
 812   // Copy the register names over into the shared world
 813   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 814     // SharedInfo::regName[i] = regName[i];
 815     // Handy RegMasks per machine register
 816     mreg2regmask[i].Insert(i);
 817   }
 818 
 819   // Grab the Frame Pointer
 820   Node *fp  = ret->in(TypeFunc::FramePtr);
 821   Node *mem = ret->in(TypeFunc::Memory);
 822   const TypePtr* atp = TypePtr::BOTTOM;
 823   // Share frame pointer while making spill ops
 824   set_shared(fp);
 825 
 826   // Compute generic short-offset Loads
 827 #ifdef _LP64
 828   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 829 #endif
 830   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 831   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered,false));
 832   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 833   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 834   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 835   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 836          spillD != NULL && spillP != NULL, "");
 837   // Get the ADLC notion of the right regmask, for each basic type.
 838 #ifdef _LP64
 839   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 840 #endif
 841   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 842   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 843   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 844   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 845   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 846 
 847   // Vector regmasks.
 848   if (Matcher::vector_size_supported(T_BYTE,4)) {
 849     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 850     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 851     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 852   }
 853   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 854     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 855     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 856   }
 857   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 858     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 859     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 860   }
 861   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 862     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 863     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 864   }
 865 }
 866 
 867 #ifdef ASSERT
 868 static void match_alias_type(Compile* C, Node* n, Node* m) {
 869   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 870   const TypePtr* nat = n->adr_type();
 871   const TypePtr* mat = m->adr_type();
 872   int nidx = C->get_alias_index(nat);
 873   int midx = C->get_alias_index(mat);
 874   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 875   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 876     for (uint i = 1; i < n->req(); i++) {
 877       Node* n1 = n->in(i);
 878       const TypePtr* n1at = n1->adr_type();
 879       if (n1at != NULL) {
 880         nat = n1at;
 881         nidx = C->get_alias_index(n1at);
 882       }
 883     }
 884   }
 885   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 886   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 887     switch (n->Opcode()) {
 888     case Op_PrefetchRead:
 889     case Op_PrefetchWrite:
 890     case Op_PrefetchAllocation:
 891       nidx = Compile::AliasIdxRaw;
 892       nat = TypeRawPtr::BOTTOM;
 893       break;
 894     }
 895   }
 896   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 897     switch (n->Opcode()) {
 898     case Op_ClearArray:
 899       midx = Compile::AliasIdxRaw;
 900       mat = TypeRawPtr::BOTTOM;
 901       break;
 902     }
 903   }
 904   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 905     switch (n->Opcode()) {
 906     case Op_Return:
 907     case Op_Rethrow:
 908     case Op_Halt:
 909     case Op_TailCall:
 910     case Op_TailJump:
 911       nidx = Compile::AliasIdxBot;
 912       nat = TypePtr::BOTTOM;
 913       break;
 914     }
 915   }
 916   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 917     switch (n->Opcode()) {
 918     case Op_StrComp:
 919     case Op_StrEquals:
 920     case Op_StrIndexOf:
 921     case Op_AryEq:
 922     case Op_MemBarVolatile:
 923     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 924     case Op_EncodeISOArray:
 925       nidx = Compile::AliasIdxTop;
 926       nat = NULL;
 927       break;
 928     }
 929   }
 930   if (nidx != midx) {
 931     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 932       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 933       n->dump();
 934       m->dump();
 935     }
 936     assert(C->subsume_loads() && C->must_alias(nat, midx),
 937            "must not lose alias info when matching");
 938   }
 939 }
 940 #endif
 941 
 942 
 943 //------------------------------MStack-----------------------------------------
 944 // State and MStack class used in xform() and find_shared() iterative methods.
 945 enum Node_State { Pre_Visit,  // node has to be pre-visited
 946                       Visit,  // visit node
 947                  Post_Visit,  // post-visit node
 948              Alt_Post_Visit   // alternative post-visit path
 949                 };
 950 
 951 class MStack: public Node_Stack {
 952   public:
 953     MStack(int size) : Node_Stack(size) { }
 954 
 955     void push(Node *n, Node_State ns) {
 956       Node_Stack::push(n, (uint)ns);
 957     }
 958     void push(Node *n, Node_State ns, Node *parent, int indx) {
 959       ++_inode_top;
 960       if ((_inode_top + 1) >= _inode_max) grow();
 961       _inode_top->node = parent;
 962       _inode_top->indx = (uint)indx;
 963       ++_inode_top;
 964       _inode_top->node = n;
 965       _inode_top->indx = (uint)ns;
 966     }
 967     Node *parent() {
 968       pop();
 969       return node();
 970     }
 971     Node_State state() const {
 972       return (Node_State)index();
 973     }
 974     void set_state(Node_State ns) {
 975       set_index((uint)ns);
 976     }
 977 };
 978 
 979 
 980 //------------------------------xform------------------------------------------
 981 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 982 // Node in new-space.  Given a new-space Node, recursively walk his children.
 983 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 984 Node *Matcher::xform( Node *n, int max_stack ) {
 985   // Use one stack to keep both: child's node/state and parent's node/index
 986   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 987   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 988 
 989   while (mstack.is_nonempty()) {
 990     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
 991     if (C->failing()) return NULL;
 992     n = mstack.node();          // Leave node on stack
 993     Node_State nstate = mstack.state();
 994     if (nstate == Visit) {
 995       mstack.set_state(Post_Visit);
 996       Node *oldn = n;
 997       // Old-space or new-space check
 998       if (!C->node_arena()->contains(n)) {
 999         // Old space!
1000         Node* m;
1001         if (has_new_node(n)) {  // Not yet Label/Reduced
1002           m = new_node(n);
1003         } else {
1004           if (!is_dontcare(n)) { // Matcher can match this guy
1005             // Calls match special.  They match alone with no children.
1006             // Their children, the incoming arguments, match normally.
1007             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1008             if (C->failing())  return NULL;
1009             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1010           } else {                  // Nothing the matcher cares about
1011             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1012               // Convert to machine-dependent projection
1013               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1014 #ifdef ASSERT
1015               _new2old_map.map(m->_idx, n);
1016 #endif
1017               if (m->in(0) != NULL) // m might be top
1018                 collect_null_checks(m, n);
1019             } else {                // Else just a regular 'ol guy
1020               m = n->clone();       // So just clone into new-space
1021 #ifdef ASSERT
1022               _new2old_map.map(m->_idx, n);
1023 #endif
1024               // Def-Use edges will be added incrementally as Uses
1025               // of this node are matched.
1026               assert(m->outcnt() == 0, "no Uses of this clone yet");
1027             }
1028           }
1029 
1030           set_new_node(n, m);       // Map old to new
1031           if (_old_node_note_array != NULL) {
1032             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1033                                                   n->_idx);
1034             C->set_node_notes_at(m->_idx, nn);
1035           }
1036           debug_only(match_alias_type(C, n, m));
1037         }
1038         n = m;    // n is now a new-space node
1039         mstack.set_node(n);
1040       }
1041 
1042       // New space!
1043       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1044 
1045       int i;
1046       // Put precedence edges on stack first (match them last).
1047       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1048         Node *m = oldn->in(i);
1049         if (m == NULL) break;
1050         // set -1 to call add_prec() instead of set_req() during Step1
1051         mstack.push(m, Visit, n, -1);
1052       }
1053 
1054       // For constant debug info, I'd rather have unmatched constants.
1055       int cnt = n->req();
1056       JVMState* jvms = n->jvms();
1057       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1058 
1059       // Now do only debug info.  Clone constants rather than matching.
1060       // Constants are represented directly in the debug info without
1061       // the need for executable machine instructions.
1062       // Monitor boxes are also represented directly.
1063       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1064         Node *m = n->in(i);          // Get input
1065         int op = m->Opcode();
1066         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1067         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1068             op == Op_ConF || op == Op_ConD || op == Op_ConL
1069             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1070             ) {
1071           m = m->clone();
1072 #ifdef ASSERT
1073           _new2old_map.map(m->_idx, n);
1074 #endif
1075           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1076           mstack.push(m->in(0), Visit, m, 0);
1077         } else {
1078           mstack.push(m, Visit, n, i);
1079         }
1080       }
1081 
1082       // And now walk his children, and convert his inputs to new-space.
1083       for( ; i >= 0; --i ) { // For all normal inputs do
1084         Node *m = n->in(i);  // Get input
1085         if(m != NULL)
1086           mstack.push(m, Visit, n, i);
1087       }
1088 
1089     }
1090     else if (nstate == Post_Visit) {
1091       // Set xformed input
1092       Node *p = mstack.parent();
1093       if (p != NULL) { // root doesn't have parent
1094         int i = (int)mstack.index();
1095         if (i >= 0)
1096           p->set_req(i, n); // required input
1097         else if (i == -1)
1098           p->add_prec(n);   // precedence input
1099         else
1100           ShouldNotReachHere();
1101       }
1102       mstack.pop(); // remove processed node from stack
1103     }
1104     else {
1105       ShouldNotReachHere();
1106     }
1107   } // while (mstack.is_nonempty())
1108   return n; // Return new-space Node
1109 }
1110 
1111 //------------------------------warp_outgoing_stk_arg------------------------
1112 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1113   // Convert outgoing argument location to a pre-biased stack offset
1114   if (reg->is_stack()) {
1115     OptoReg::Name warped = reg->reg2stack();
1116     // Adjust the stack slot offset to be the register number used
1117     // by the allocator.
1118     warped = OptoReg::add(begin_out_arg_area, warped);
1119     // Keep track of the largest numbered stack slot used for an arg.
1120     // Largest used slot per call-site indicates the amount of stack
1121     // that is killed by the call.
1122     if( warped >= out_arg_limit_per_call )
1123       out_arg_limit_per_call = OptoReg::add(warped,1);
1124     if (!RegMask::can_represent_arg(warped)) {
1125       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1126       return OptoReg::Bad;
1127     }
1128     return warped;
1129   }
1130   return OptoReg::as_OptoReg(reg);
1131 }
1132 
1133 
1134 //------------------------------match_sfpt-------------------------------------
1135 // Helper function to match call instructions.  Calls match special.
1136 // They match alone with no children.  Their children, the incoming
1137 // arguments, match normally.
1138 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1139   MachSafePointNode *msfpt = NULL;
1140   MachCallNode      *mcall = NULL;
1141   uint               cnt;
1142   // Split out case for SafePoint vs Call
1143   CallNode *call;
1144   const TypeTuple *domain;
1145   ciMethod*        method = NULL;
1146   bool             is_method_handle_invoke = false;  // for special kill effects
1147   if( sfpt->is_Call() ) {
1148     call = sfpt->as_Call();
1149     domain = call->tf()->domain();
1150     cnt = domain->cnt();
1151 
1152     // Match just the call, nothing else
1153     MachNode *m = match_tree(call);
1154     if (C->failing())  return NULL;
1155     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1156 
1157     // Copy data from the Ideal SafePoint to the machine version
1158     mcall = m->as_MachCall();
1159 
1160     mcall->set_tf(         call->tf());
1161     mcall->set_entry_point(call->entry_point());
1162     mcall->set_cnt(        call->cnt());
1163 
1164     if( mcall->is_MachCallJava() ) {
1165       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1166       const CallJavaNode *call_java =  call->as_CallJava();
1167       method = call_java->method();
1168       mcall_java->_method = method;
1169       mcall_java->_bci = call_java->_bci;
1170       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1171       is_method_handle_invoke = call_java->is_method_handle_invoke();
1172       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1173       if (is_method_handle_invoke) {
1174         C->set_has_method_handle_invokes(true);
1175       }
1176       if( mcall_java->is_MachCallStaticJava() )
1177         mcall_java->as_MachCallStaticJava()->_name =
1178          call_java->as_CallStaticJava()->_name;
1179       if( mcall_java->is_MachCallDynamicJava() )
1180         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1181          call_java->as_CallDynamicJava()->_vtable_index;
1182     }
1183     else if( mcall->is_MachCallRuntime() ) {
1184       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1185     }
1186     msfpt = mcall;
1187   }
1188   // This is a non-call safepoint
1189   else {
1190     call = NULL;
1191     domain = NULL;
1192     MachNode *mn = match_tree(sfpt);
1193     if (C->failing())  return NULL;
1194     msfpt = mn->as_MachSafePoint();
1195     cnt = TypeFunc::Parms;
1196   }
1197 
1198   // Advertise the correct memory effects (for anti-dependence computation).
1199   msfpt->set_adr_type(sfpt->adr_type());
1200 
1201   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1202   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1203   // Empty them all.
1204   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1205 
1206   // Do all the pre-defined non-Empty register masks
1207   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1208   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1209 
1210   // Place first outgoing argument can possibly be put.
1211   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1212   assert( is_even(begin_out_arg_area), "" );
1213   // Compute max outgoing register number per call site.
1214   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1215   // Calls to C may hammer extra stack slots above and beyond any arguments.
1216   // These are usually backing store for register arguments for varargs.
1217   if( call != NULL && call->is_CallRuntime() )
1218     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1219 
1220 
1221   // Do the normal argument list (parameters) register masks
1222   int argcnt = cnt - TypeFunc::Parms;
1223   if( argcnt > 0 ) {          // Skip it all if we have no args
1224     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1225     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1226     int i;
1227     for( i = 0; i < argcnt; i++ ) {
1228       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1229     }
1230     // V-call to pick proper calling convention
1231     call->calling_convention( sig_bt, parm_regs, argcnt );
1232 
1233 #ifdef ASSERT
1234     // Sanity check users' calling convention.  Really handy during
1235     // the initial porting effort.  Fairly expensive otherwise.
1236     { for (int i = 0; i<argcnt; i++) {
1237       if( !parm_regs[i].first()->is_valid() &&
1238           !parm_regs[i].second()->is_valid() ) continue;
1239       VMReg reg1 = parm_regs[i].first();
1240       VMReg reg2 = parm_regs[i].second();
1241       for (int j = 0; j < i; j++) {
1242         if( !parm_regs[j].first()->is_valid() &&
1243             !parm_regs[j].second()->is_valid() ) continue;
1244         VMReg reg3 = parm_regs[j].first();
1245         VMReg reg4 = parm_regs[j].second();
1246         if( !reg1->is_valid() ) {
1247           assert( !reg2->is_valid(), "valid halvsies" );
1248         } else if( !reg3->is_valid() ) {
1249           assert( !reg4->is_valid(), "valid halvsies" );
1250         } else {
1251           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1252           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1253           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1254           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1255           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1256           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1257         }
1258       }
1259     }
1260     }
1261 #endif
1262 
1263     // Visit each argument.  Compute its outgoing register mask.
1264     // Return results now can have 2 bits returned.
1265     // Compute max over all outgoing arguments both per call-site
1266     // and over the entire method.
1267     for( i = 0; i < argcnt; i++ ) {
1268       // Address of incoming argument mask to fill in
1269       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1270       if( !parm_regs[i].first()->is_valid() &&
1271           !parm_regs[i].second()->is_valid() ) {
1272         continue;               // Avoid Halves
1273       }
1274       // Grab first register, adjust stack slots and insert in mask.
1275       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1276       if (OptoReg::is_valid(reg1))
1277         rm->Insert( reg1 );
1278       // Grab second register (if any), adjust stack slots and insert in mask.
1279       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1280       if (OptoReg::is_valid(reg2))
1281         rm->Insert( reg2 );
1282     } // End of for all arguments
1283 
1284     // Compute number of stack slots needed to restore stack in case of
1285     // Pascal-style argument popping.
1286     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1287   }
1288 
1289   // Compute the max stack slot killed by any call.  These will not be
1290   // available for debug info, and will be used to adjust FIRST_STACK_mask
1291   // after all call sites have been visited.
1292   if( _out_arg_limit < out_arg_limit_per_call)
1293     _out_arg_limit = out_arg_limit_per_call;
1294 
1295   if (mcall) {
1296     // Kill the outgoing argument area, including any non-argument holes and
1297     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1298     // Since the max-per-method covers the max-per-call-site and debug info
1299     // is excluded on the max-per-method basis, debug info cannot land in
1300     // this killed area.
1301     uint r_cnt = mcall->tf()->range()->cnt();
1302     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1303     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1304       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1305     } else {
1306       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1307         proj->_rout.Insert(OptoReg::Name(i));
1308     }
1309     if (proj->_rout.is_NotEmpty()) {
1310       push_projection(proj);
1311     }
1312   }
1313   // Transfer the safepoint information from the call to the mcall
1314   // Move the JVMState list
1315   msfpt->set_jvms(sfpt->jvms());
1316   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1317     jvms->set_map(sfpt);
1318   }
1319 
1320   // Debug inputs begin just after the last incoming parameter
1321   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1322          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1323 
1324   // Move the OopMap
1325   msfpt->_oop_map = sfpt->_oop_map;
1326 
1327   // Add additional edges.
1328   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1329     // For these calls we can not add MachConstantBase in expand(), as the
1330     // ins are not complete then.
1331     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1332     if (msfpt->jvms() &&
1333         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1334       // We added an edge before jvms, so we must adapt the position of the ins.
1335       msfpt->jvms()->adapt_position(+1);
1336     }
1337   }
1338 
1339   // Registers killed by the call are set in the local scheduling pass
1340   // of Global Code Motion.
1341   return msfpt;
1342 }
1343 
1344 //---------------------------match_tree----------------------------------------
1345 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1346 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1347 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1348 // a Load's result RegMask for memoization in idealreg2regmask[]
1349 MachNode *Matcher::match_tree( const Node *n ) {
1350   assert( n->Opcode() != Op_Phi, "cannot match" );
1351   assert( !n->is_block_start(), "cannot match" );
1352   // Set the mark for all locally allocated State objects.
1353   // When this call returns, the _states_arena arena will be reset
1354   // freeing all State objects.
1355   ResourceMark rm( &_states_arena );
1356 
1357   LabelRootDepth = 0;
1358 
1359   // StoreNodes require their Memory input to match any LoadNodes
1360   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1361 #ifdef ASSERT
1362   Node* save_mem_node = _mem_node;
1363   _mem_node = n->is_Store() ? (Node*)n : NULL;
1364 #endif
1365   // State object for root node of match tree
1366   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1367   State *s = new (&_states_arena) State;
1368   s->_kids[0] = NULL;
1369   s->_kids[1] = NULL;
1370   s->_leaf = (Node*)n;
1371   // Label the input tree, allocating labels from top-level arena
1372   Label_Root( n, s, n->in(0), mem );
1373   if (C->failing())  return NULL;
1374 
1375   // The minimum cost match for the whole tree is found at the root State
1376   uint mincost = max_juint;
1377   uint cost = max_juint;
1378   uint i;
1379   for( i = 0; i < NUM_OPERANDS; i++ ) {
1380     if( s->valid(i) &&                // valid entry and
1381         s->_cost[i] < cost &&         // low cost and
1382         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1383       cost = s->_cost[mincost=i];
1384   }
1385   if (mincost == max_juint) {
1386 #ifndef PRODUCT
1387     tty->print("No matching rule for:");
1388     s->dump();
1389 #endif
1390     Matcher::soft_match_failure();
1391     return NULL;
1392   }
1393   // Reduce input tree based upon the state labels to machine Nodes
1394   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1395 #ifdef ASSERT
1396   _old2new_map.map(n->_idx, m);
1397   _new2old_map.map(m->_idx, (Node*)n);
1398 #endif
1399 
1400   // Add any Matcher-ignored edges
1401   uint cnt = n->req();
1402   uint start = 1;
1403   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1404   if( n->is_AddP() ) {
1405     assert( mem == (Node*)1, "" );
1406     start = AddPNode::Base+1;
1407   }
1408   for( i = start; i < cnt; i++ ) {
1409     if( !n->match_edge(i) ) {
1410       if( i < m->req() )
1411         m->ins_req( i, n->in(i) );
1412       else
1413         m->add_req( n->in(i) );
1414     }
1415   }
1416 
1417   debug_only( _mem_node = save_mem_node; )
1418   return m;
1419 }
1420 
1421 
1422 //------------------------------match_into_reg---------------------------------
1423 // Choose to either match this Node in a register or part of the current
1424 // match tree.  Return true for requiring a register and false for matching
1425 // as part of the current match tree.
1426 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1427 
1428   const Type *t = m->bottom_type();
1429 
1430   if (t->singleton()) {
1431     // Never force constants into registers.  Allow them to match as
1432     // constants or registers.  Copies of the same value will share
1433     // the same register.  See find_shared_node.
1434     return false;
1435   } else {                      // Not a constant
1436     // Stop recursion if they have different Controls.
1437     Node* m_control = m->in(0);
1438     // Control of load's memory can post-dominates load's control.
1439     // So use it since load can't float above its memory.
1440     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1441     if (control && m_control && control != m_control && control != mem_control) {
1442 
1443       // Actually, we can live with the most conservative control we
1444       // find, if it post-dominates the others.  This allows us to
1445       // pick up load/op/store trees where the load can float a little
1446       // above the store.
1447       Node *x = control;
1448       const uint max_scan = 6;  // Arbitrary scan cutoff
1449       uint j;
1450       for (j=0; j<max_scan; j++) {
1451         if (x->is_Region())     // Bail out at merge points
1452           return true;
1453         x = x->in(0);
1454         if (x == m_control)     // Does 'control' post-dominate
1455           break;                // m->in(0)?  If so, we can use it
1456         if (x == mem_control)   // Does 'control' post-dominate
1457           break;                // mem_control?  If so, we can use it
1458       }
1459       if (j == max_scan)        // No post-domination before scan end?
1460         return true;            // Then break the match tree up
1461     }
1462     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1463         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1464       // These are commonly used in address expressions and can
1465       // efficiently fold into them on X64 in some cases.
1466       return false;
1467     }
1468   }
1469 
1470   // Not forceable cloning.  If shared, put it into a register.
1471   return shared;
1472 }
1473 
1474 
1475 //------------------------------Instruction Selection--------------------------
1476 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1477 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1478 // things the Matcher does not match (e.g., Memory), and things with different
1479 // Controls (hence forced into different blocks).  We pass in the Control
1480 // selected for this entire State tree.
1481 
1482 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1483 // Store and the Load must have identical Memories (as well as identical
1484 // pointers).  Since the Matcher does not have anything for Memory (and
1485 // does not handle DAGs), I have to match the Memory input myself.  If the
1486 // Tree root is a Store, I require all Loads to have the identical memory.
1487 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1488   // Since Label_Root is a recursive function, its possible that we might run
1489   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1490   LabelRootDepth++;
1491   if (LabelRootDepth > MaxLabelRootDepth) {
1492     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1493     return NULL;
1494   }
1495   uint care = 0;                // Edges matcher cares about
1496   uint cnt = n->req();
1497   uint i = 0;
1498 
1499   // Examine children for memory state
1500   // Can only subsume a child into your match-tree if that child's memory state
1501   // is not modified along the path to another input.
1502   // It is unsafe even if the other inputs are separate roots.
1503   Node *input_mem = NULL;
1504   for( i = 1; i < cnt; i++ ) {
1505     if( !n->match_edge(i) ) continue;
1506     Node *m = n->in(i);         // Get ith input
1507     assert( m, "expect non-null children" );
1508     if( m->is_Load() ) {
1509       if( input_mem == NULL ) {
1510         input_mem = m->in(MemNode::Memory);
1511       } else if( input_mem != m->in(MemNode::Memory) ) {
1512         input_mem = NodeSentinel;
1513       }
1514     }
1515   }
1516 
1517   for( i = 1; i < cnt; i++ ){// For my children
1518     if( !n->match_edge(i) ) continue;
1519     Node *m = n->in(i);         // Get ith input
1520     // Allocate states out of a private arena
1521     State *s = new (&_states_arena) State;
1522     svec->_kids[care++] = s;
1523     assert( care <= 2, "binary only for now" );
1524 
1525     // Recursively label the State tree.
1526     s->_kids[0] = NULL;
1527     s->_kids[1] = NULL;
1528     s->_leaf = m;
1529 
1530     // Check for leaves of the State Tree; things that cannot be a part of
1531     // the current tree.  If it finds any, that value is matched as a
1532     // register operand.  If not, then the normal matching is used.
1533     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1534         //
1535         // Stop recursion if this is LoadNode and the root of this tree is a
1536         // StoreNode and the load & store have different memories.
1537         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1538         // Can NOT include the match of a subtree when its memory state
1539         // is used by any of the other subtrees
1540         (input_mem == NodeSentinel) ) {
1541 #ifndef PRODUCT
1542       // Print when we exclude matching due to different memory states at input-loads
1543       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1544         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1545         tty->print_cr("invalid input_mem");
1546       }
1547 #endif
1548       // Switch to a register-only opcode; this value must be in a register
1549       // and cannot be subsumed as part of a larger instruction.
1550       s->DFA( m->ideal_reg(), m );
1551 
1552     } else {
1553       // If match tree has no control and we do, adopt it for entire tree
1554       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1555         control = m->in(0);         // Pick up control
1556       // Else match as a normal part of the match tree.
1557       control = Label_Root(m,s,control,mem);
1558       if (C->failing()) return NULL;
1559     }
1560   }
1561 
1562 
1563   // Call DFA to match this node, and return
1564   svec->DFA( n->Opcode(), n );
1565 
1566 #ifdef ASSERT
1567   uint x;
1568   for( x = 0; x < _LAST_MACH_OPER; x++ )
1569     if( svec->valid(x) )
1570       break;
1571 
1572   if (x >= _LAST_MACH_OPER) {
1573     n->dump();
1574     svec->dump();
1575     assert( false, "bad AD file" );
1576   }
1577 #endif
1578   return control;
1579 }
1580 
1581 
1582 // Con nodes reduced using the same rule can share their MachNode
1583 // which reduces the number of copies of a constant in the final
1584 // program.  The register allocator is free to split uses later to
1585 // split live ranges.
1586 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1587   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1588 
1589   // See if this Con has already been reduced using this rule.
1590   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1591   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1592   if (last != NULL && rule == last->rule()) {
1593     // Don't expect control change for DecodeN
1594     if (leaf->is_DecodeNarrowPtr())
1595       return last;
1596     // Get the new space root.
1597     Node* xroot = new_node(C->root());
1598     if (xroot == NULL) {
1599       // This shouldn't happen give the order of matching.
1600       return NULL;
1601     }
1602 
1603     // Shared constants need to have their control be root so they
1604     // can be scheduled properly.
1605     Node* control = last->in(0);
1606     if (control != xroot) {
1607       if (control == NULL || control == C->root()) {
1608         last->set_req(0, xroot);
1609       } else {
1610         assert(false, "unexpected control");
1611         return NULL;
1612       }
1613     }
1614     return last;
1615   }
1616   return NULL;
1617 }
1618 
1619 
1620 //------------------------------ReduceInst-------------------------------------
1621 // Reduce a State tree (with given Control) into a tree of MachNodes.
1622 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1623 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1624 // Each MachNode has a number of complicated MachOper operands; each
1625 // MachOper also covers a further tree of Ideal Nodes.
1626 
1627 // The root of the Ideal match tree is always an instruction, so we enter
1628 // the recursion here.  After building the MachNode, we need to recurse
1629 // the tree checking for these cases:
1630 // (1) Child is an instruction -
1631 //     Build the instruction (recursively), add it as an edge.
1632 //     Build a simple operand (register) to hold the result of the instruction.
1633 // (2) Child is an interior part of an instruction -
1634 //     Skip over it (do nothing)
1635 // (3) Child is the start of a operand -
1636 //     Build the operand, place it inside the instruction
1637 //     Call ReduceOper.
1638 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1639   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1640 
1641   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1642   if (shared_node != NULL) {
1643     return shared_node;
1644   }
1645 
1646   // Build the object to represent this state & prepare for recursive calls
1647   MachNode *mach = s->MachNodeGenerator( rule, C );
1648   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1649   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1650   Node *leaf = s->_leaf;
1651   // Check for instruction or instruction chain rule
1652   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1653     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1654            "duplicating node that's already been matched");
1655     // Instruction
1656     mach->add_req( leaf->in(0) ); // Set initial control
1657     // Reduce interior of complex instruction
1658     ReduceInst_Interior( s, rule, mem, mach, 1 );
1659   } else {
1660     // Instruction chain rules are data-dependent on their inputs
1661     mach->add_req(0);             // Set initial control to none
1662     ReduceInst_Chain_Rule( s, rule, mem, mach );
1663   }
1664 
1665   // If a Memory was used, insert a Memory edge
1666   if( mem != (Node*)1 ) {
1667     mach->ins_req(MemNode::Memory,mem);
1668 #ifdef ASSERT
1669     // Verify adr type after matching memory operation
1670     const MachOper* oper = mach->memory_operand();
1671     if (oper != NULL && oper != (MachOper*)-1) {
1672       // It has a unique memory operand.  Find corresponding ideal mem node.
1673       Node* m = NULL;
1674       if (leaf->is_Mem()) {
1675         m = leaf;
1676       } else {
1677         m = _mem_node;
1678         assert(m != NULL && m->is_Mem(), "expecting memory node");
1679       }
1680       const Type* mach_at = mach->adr_type();
1681       // DecodeN node consumed by an address may have different type
1682       // then its input. Don't compare types for such case.
1683       if (m->adr_type() != mach_at &&
1684           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1685            m->in(MemNode::Address)->is_AddP() &&
1686            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1687            m->in(MemNode::Address)->is_AddP() &&
1688            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1689            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1690         mach_at = m->adr_type();
1691       }
1692       if (m->adr_type() != mach_at) {
1693         m->dump();
1694         tty->print_cr("mach:");
1695         mach->dump(1);
1696       }
1697       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1698     }
1699 #endif
1700   }
1701 
1702   // If the _leaf is an AddP, insert the base edge
1703   if (leaf->is_AddP()) {
1704     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1705   }
1706 
1707   uint number_of_projections_prior = number_of_projections();
1708 
1709   // Perform any 1-to-many expansions required
1710   MachNode *ex = mach->Expand(s, _projection_list, mem);
1711   if (ex != mach) {
1712     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1713     if( ex->in(1)->is_Con() )
1714       ex->in(1)->set_req(0, C->root());
1715     // Remove old node from the graph
1716     for( uint i=0; i<mach->req(); i++ ) {
1717       mach->set_req(i,NULL);
1718     }
1719 #ifdef ASSERT
1720     _new2old_map.map(ex->_idx, s->_leaf);
1721 #endif
1722   }
1723 
1724   // PhaseChaitin::fixup_spills will sometimes generate spill code
1725   // via the matcher.  By the time, nodes have been wired into the CFG,
1726   // and any further nodes generated by expand rules will be left hanging
1727   // in space, and will not get emitted as output code.  Catch this.
1728   // Also, catch any new register allocation constraints ("projections")
1729   // generated belatedly during spill code generation.
1730   if (_allocation_started) {
1731     guarantee(ex == mach, "no expand rules during spill generation");
1732     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1733   }
1734 
1735   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1736     // Record the con for sharing
1737     _shared_nodes.map(leaf->_idx, ex);
1738   }
1739 
1740   return ex;
1741 }
1742 
1743 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1744   // 'op' is what I am expecting to receive
1745   int op = _leftOp[rule];
1746   // Operand type to catch childs result
1747   // This is what my child will give me.
1748   int opnd_class_instance = s->_rule[op];
1749   // Choose between operand class or not.
1750   // This is what I will receive.
1751   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1752   // New rule for child.  Chase operand classes to get the actual rule.
1753   int newrule = s->_rule[catch_op];
1754 
1755   if( newrule < NUM_OPERANDS ) {
1756     // Chain from operand or operand class, may be output of shared node
1757     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1758             "Bad AD file: Instruction chain rule must chain from operand");
1759     // Insert operand into array of operands for this instruction
1760     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1761 
1762     ReduceOper( s, newrule, mem, mach );
1763   } else {
1764     // Chain from the result of an instruction
1765     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1766     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1767     Node *mem1 = (Node*)1;
1768     debug_only(Node *save_mem_node = _mem_node;)
1769     mach->add_req( ReduceInst(s, newrule, mem1) );
1770     debug_only(_mem_node = save_mem_node;)
1771   }
1772   return;
1773 }
1774 
1775 
1776 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1777   if( s->_leaf->is_Load() ) {
1778     Node *mem2 = s->_leaf->in(MemNode::Memory);
1779     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1780     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1781     mem = mem2;
1782   }
1783   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1784     if( mach->in(0) == NULL )
1785       mach->set_req(0, s->_leaf->in(0));
1786   }
1787 
1788   // Now recursively walk the state tree & add operand list.
1789   for( uint i=0; i<2; i++ ) {   // binary tree
1790     State *newstate = s->_kids[i];
1791     if( newstate == NULL ) break;      // Might only have 1 child
1792     // 'op' is what I am expecting to receive
1793     int op;
1794     if( i == 0 ) {
1795       op = _leftOp[rule];
1796     } else {
1797       op = _rightOp[rule];
1798     }
1799     // Operand type to catch childs result
1800     // This is what my child will give me.
1801     int opnd_class_instance = newstate->_rule[op];
1802     // Choose between operand class or not.
1803     // This is what I will receive.
1804     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1805     // New rule for child.  Chase operand classes to get the actual rule.
1806     int newrule = newstate->_rule[catch_op];
1807 
1808     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1809       // Operand/operandClass
1810       // Insert operand into array of operands for this instruction
1811       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1812       ReduceOper( newstate, newrule, mem, mach );
1813 
1814     } else {                    // Child is internal operand or new instruction
1815       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1816         // internal operand --> call ReduceInst_Interior
1817         // Interior of complex instruction.  Do nothing but recurse.
1818         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1819       } else {
1820         // instruction --> call build operand(  ) to catch result
1821         //             --> ReduceInst( newrule )
1822         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1823         Node *mem1 = (Node*)1;
1824         debug_only(Node *save_mem_node = _mem_node;)
1825         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1826         debug_only(_mem_node = save_mem_node;)
1827       }
1828     }
1829     assert( mach->_opnds[num_opnds-1], "" );
1830   }
1831   return num_opnds;
1832 }
1833 
1834 // This routine walks the interior of possible complex operands.
1835 // At each point we check our children in the match tree:
1836 // (1) No children -
1837 //     We are a leaf; add _leaf field as an input to the MachNode
1838 // (2) Child is an internal operand -
1839 //     Skip over it ( do nothing )
1840 // (3) Child is an instruction -
1841 //     Call ReduceInst recursively and
1842 //     and instruction as an input to the MachNode
1843 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1844   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1845   State *kid = s->_kids[0];
1846   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1847 
1848   // Leaf?  And not subsumed?
1849   if( kid == NULL && !_swallowed[rule] ) {
1850     mach->add_req( s->_leaf );  // Add leaf pointer
1851     return;                     // Bail out
1852   }
1853 
1854   if( s->_leaf->is_Load() ) {
1855     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1856     mem = s->_leaf->in(MemNode::Memory);
1857     debug_only(_mem_node = s->_leaf;)
1858   }
1859   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1860     if( !mach->in(0) )
1861       mach->set_req(0,s->_leaf->in(0));
1862     else {
1863       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1864     }
1865   }
1866 
1867   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1868     int newrule;
1869     if( i == 0)
1870       newrule = kid->_rule[_leftOp[rule]];
1871     else
1872       newrule = kid->_rule[_rightOp[rule]];
1873 
1874     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1875       // Internal operand; recurse but do nothing else
1876       ReduceOper( kid, newrule, mem, mach );
1877 
1878     } else {                    // Child is a new instruction
1879       // Reduce the instruction, and add a direct pointer from this
1880       // machine instruction to the newly reduced one.
1881       Node *mem1 = (Node*)1;
1882       debug_only(Node *save_mem_node = _mem_node;)
1883       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1884       debug_only(_mem_node = save_mem_node;)
1885     }
1886   }
1887 }
1888 
1889 
1890 // -------------------------------------------------------------------------
1891 // Java-Java calling convention
1892 // (what you use when Java calls Java)
1893 
1894 //------------------------------find_receiver----------------------------------
1895 // For a given signature, return the OptoReg for parameter 0.
1896 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1897   VMRegPair regs;
1898   BasicType sig_bt = T_OBJECT;
1899   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1900   // Return argument 0 register.  In the LP64 build pointers
1901   // take 2 registers, but the VM wants only the 'main' name.
1902   return OptoReg::as_OptoReg(regs.first());
1903 }
1904 
1905 // This function identifies sub-graphs in which a 'load' node is
1906 // input to two different nodes, and such that it can be matched
1907 // with BMI instructions like blsi, blsr, etc.
1908 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1909 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1910 // refers to the same node.
1911 #ifdef X86
1912 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1913 // This is a temporary solution until we make DAGs expressible in ADL.
1914 template<typename ConType>
1915 class FusedPatternMatcher {
1916   Node* _op1_node;
1917   Node* _mop_node;
1918   int _con_op;
1919 
1920   static int match_next(Node* n, int next_op, int next_op_idx) {
1921     if (n->in(1) == NULL || n->in(2) == NULL) {
1922       return -1;
1923     }
1924 
1925     if (next_op_idx == -1) { // n is commutative, try rotations
1926       if (n->in(1)->Opcode() == next_op) {
1927         return 1;
1928       } else if (n->in(2)->Opcode() == next_op) {
1929         return 2;
1930       }
1931     } else {
1932       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1933       if (n->in(next_op_idx)->Opcode() == next_op) {
1934         return next_op_idx;
1935       }
1936     }
1937     return -1;
1938   }
1939 public:
1940   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1941     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1942 
1943   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1944              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1945              typename ConType::NativeType con_value) {
1946     if (_op1_node->Opcode() != op1) {
1947       return false;
1948     }
1949     if (_mop_node->outcnt() > 2) {
1950       return false;
1951     }
1952     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1953     if (op1_op2_idx == -1) {
1954       return false;
1955     }
1956     // Memory operation must be the other edge
1957     int op1_mop_idx = (op1_op2_idx & 1) + 1;
1958 
1959     // Check that the mop node is really what we want
1960     if (_op1_node->in(op1_mop_idx) == _mop_node) {
1961       Node *op2_node = _op1_node->in(op1_op2_idx);
1962       if (op2_node->outcnt() > 1) {
1963         return false;
1964       }
1965       assert(op2_node->Opcode() == op2, "Should be");
1966       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
1967       if (op2_con_idx == -1) {
1968         return false;
1969       }
1970       // Memory operation must be the other edge
1971       int op2_mop_idx = (op2_con_idx & 1) + 1;
1972       // Check that the memory operation is the same node
1973       if (op2_node->in(op2_mop_idx) == _mop_node) {
1974         // Now check the constant
1975         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
1976         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
1977           return true;
1978         }
1979       }
1980     }
1981     return false;
1982   }
1983 };
1984 
1985 
1986 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
1987   if (n != NULL && m != NULL) {
1988     if (m->Opcode() == Op_LoadI) {
1989       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
1990       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
1991              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
1992              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
1993     } else if (m->Opcode() == Op_LoadL) {
1994       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
1995       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
1996              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
1997              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
1998     }
1999   }
2000   return false;
2001 }
2002 #endif // X86
2003 
2004 // A method-klass-holder may be passed in the inline_cache_reg
2005 // and then expanded into the inline_cache_reg and a method_oop register
2006 //   defined in ad_<arch>.cpp
2007 
2008 
2009 //------------------------------find_shared------------------------------------
2010 // Set bits if Node is shared or otherwise a root
2011 void Matcher::find_shared( Node *n ) {
2012   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
2013   MStack mstack(C->unique() * 2);
2014   // Mark nodes as address_visited if they are inputs to an address expression
2015   VectorSet address_visited(Thread::current()->resource_area());
2016   mstack.push(n, Visit);     // Don't need to pre-visit root node
2017   while (mstack.is_nonempty()) {
2018     n = mstack.node();       // Leave node on stack
2019     Node_State nstate = mstack.state();
2020     uint nop = n->Opcode();
2021     if (nstate == Pre_Visit) {
2022       if (address_visited.test(n->_idx)) { // Visited in address already?
2023         // Flag as visited and shared now.
2024         set_visited(n);
2025       }
2026       if (is_visited(n)) {   // Visited already?
2027         // Node is shared and has no reason to clone.  Flag it as shared.
2028         // This causes it to match into a register for the sharing.
2029         set_shared(n);       // Flag as shared and
2030         mstack.pop();        // remove node from stack
2031         continue;
2032       }
2033       nstate = Visit; // Not already visited; so visit now
2034     }
2035     if (nstate == Visit) {
2036       mstack.set_state(Post_Visit);
2037       set_visited(n);   // Flag as visited now
2038       bool mem_op = false;
2039 
2040       switch( nop ) {  // Handle some opcodes special
2041       case Op_Phi:             // Treat Phis as shared roots
2042       case Op_Parm:
2043       case Op_Proj:            // All handled specially during matching
2044       case Op_SafePointScalarObject:
2045         set_shared(n);
2046         set_dontcare(n);
2047         break;
2048       case Op_If:
2049       case Op_CountedLoopEnd:
2050         mstack.set_state(Alt_Post_Visit); // Alternative way
2051         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2052         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2053         // Bool and CmpX side-by-side, because it can only get at constants
2054         // that are at the leaves of Match trees, and the Bool's condition acts
2055         // as a constant here.
2056         mstack.push(n->in(1), Visit);         // Clone the Bool
2057         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2058         continue; // while (mstack.is_nonempty())
2059       case Op_ConvI2D:         // These forms efficiently match with a prior
2060       case Op_ConvI2F:         //   Load but not a following Store
2061         if( n->in(1)->is_Load() &&        // Prior load
2062             n->outcnt() == 1 &&           // Not already shared
2063             n->unique_out()->is_Store() ) // Following store
2064           set_shared(n);       // Force it to be a root
2065         break;
2066       case Op_ReverseBytesI:
2067       case Op_ReverseBytesL:
2068         if( n->in(1)->is_Load() &&        // Prior load
2069             n->outcnt() == 1 )            // Not already shared
2070           set_shared(n);                  // Force it to be a root
2071         break;
2072       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2073       case Op_IfFalse:
2074       case Op_IfTrue:
2075       case Op_MachProj:
2076       case Op_MergeMem:
2077       case Op_Catch:
2078       case Op_CatchProj:
2079       case Op_CProj:
2080       case Op_JumpProj:
2081       case Op_JProj:
2082       case Op_NeverBranch:
2083         set_dontcare(n);
2084         break;
2085       case Op_Jump:
2086         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2087         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2088         continue;                             // while (mstack.is_nonempty())
2089       case Op_StrComp:
2090       case Op_StrEquals:
2091       case Op_StrIndexOf:
2092       case Op_AryEq:
2093       case Op_EncodeISOArray:
2094         set_shared(n); // Force result into register (it will be anyways)
2095         break;
2096       case Op_ConP: {  // Convert pointers above the centerline to NUL
2097         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2098         const TypePtr* tp = tn->type()->is_ptr();
2099         if (tp->_ptr == TypePtr::AnyNull) {
2100           tn->set_type(TypePtr::NULL_PTR);
2101         }
2102         break;
2103       }
2104       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2105         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2106         const TypePtr* tp = tn->type()->make_ptr();
2107         if (tp && tp->_ptr == TypePtr::AnyNull) {
2108           tn->set_type(TypeNarrowOop::NULL_PTR);
2109         }
2110         break;
2111       }
2112       case Op_Binary:         // These are introduced in the Post_Visit state.
2113         ShouldNotReachHere();
2114         break;
2115       case Op_ClearArray:
2116       case Op_SafePoint:
2117         mem_op = true;
2118         break;
2119       default:
2120         if( n->is_Store() ) {
2121           // Do match stores, despite no ideal reg
2122           mem_op = true;
2123           break;
2124         }
2125         if( n->is_Mem() ) { // Loads and LoadStores
2126           mem_op = true;
2127           // Loads must be root of match tree due to prior load conflict
2128           if( C->subsume_loads() == false )
2129             set_shared(n);
2130         }
2131         // Fall into default case
2132         if( !n->ideal_reg() )
2133           set_dontcare(n);  // Unmatchable Nodes
2134       } // end_switch
2135 
2136       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2137         Node *m = n->in(i); // Get ith input
2138         if (m == NULL) continue;  // Ignore NULLs
2139         uint mop = m->Opcode();
2140 
2141         // Must clone all producers of flags, or we will not match correctly.
2142         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2143         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2144         // are also there, so we may match a float-branch to int-flags and
2145         // expect the allocator to haul the flags from the int-side to the
2146         // fp-side.  No can do.
2147         if( _must_clone[mop] ) {
2148           mstack.push(m, Visit);
2149           continue; // for(int i = ...)
2150         }
2151 
2152         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2153           // Bases used in addresses must be shared but since
2154           // they are shared through a DecodeN they may appear
2155           // to have a single use so force sharing here.
2156           set_shared(m->in(AddPNode::Base)->in(1));
2157         }
2158 
2159         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2160 #ifdef X86
2161         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2162           mstack.push(m, Visit);
2163           continue;
2164         }
2165 #endif
2166 
2167         // Clone addressing expressions as they are "free" in memory access instructions
2168         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
2169           // Some inputs for address expression are not put on stack
2170           // to avoid marking them as shared and forcing them into register
2171           // if they are used only in address expressions.
2172           // But they should be marked as shared if there are other uses
2173           // besides address expressions.
2174 
2175           Node *off = m->in(AddPNode::Offset);
2176           if( off->is_Con() &&
2177               // When there are other uses besides address expressions
2178               // put it on stack and mark as shared.
2179               !is_visited(m) ) {
2180             address_visited.test_set(m->_idx); // Flag as address_visited
2181             Node *adr = m->in(AddPNode::Address);
2182 
2183             // Intel, ARM and friends can handle 2 adds in addressing mode
2184             if( clone_shift_expressions && adr->is_AddP() &&
2185                 // AtomicAdd is not an addressing expression.
2186                 // Cheap to find it by looking for screwy base.
2187                 !adr->in(AddPNode::Base)->is_top() &&
2188                 // Are there other uses besides address expressions?
2189                 !is_visited(adr) ) {
2190               address_visited.set(adr->_idx); // Flag as address_visited
2191               Node *shift = adr->in(AddPNode::Offset);
2192               // Check for shift by small constant as well
2193               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2194                   shift->in(2)->get_int() <= 3 &&
2195                   // Are there other uses besides address expressions?
2196                   !is_visited(shift) ) {
2197                 address_visited.set(shift->_idx); // Flag as address_visited
2198                 mstack.push(shift->in(2), Visit);
2199                 Node *conv = shift->in(1);
2200 #ifdef _LP64
2201                 // Allow Matcher to match the rule which bypass
2202                 // ConvI2L operation for an array index on LP64
2203                 // if the index value is positive.
2204                 if( conv->Opcode() == Op_ConvI2L &&
2205                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
2206                     // Are there other uses besides address expressions?
2207                     !is_visited(conv) ) {
2208                   address_visited.set(conv->_idx); // Flag as address_visited
2209                   mstack.push(conv->in(1), Pre_Visit);
2210                 } else
2211 #endif
2212                 mstack.push(conv, Pre_Visit);
2213               } else {
2214                 mstack.push(shift, Pre_Visit);
2215               }
2216               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2217               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2218             } else {  // Sparc, Alpha, PPC and friends
2219               mstack.push(adr, Pre_Visit);
2220             }
2221 
2222             // Clone X+offset as it also folds into most addressing expressions
2223             mstack.push(off, Visit);
2224             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2225             continue; // for(int i = ...)
2226           } // if( off->is_Con() )
2227         }   // if( mem_op &&
2228         mstack.push(m, Pre_Visit);
2229       }     // for(int i = ...)
2230     }
2231     else if (nstate == Alt_Post_Visit) {
2232       mstack.pop(); // Remove node from stack
2233       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2234       // shared and all users of the Bool need to move the Cmp in parallel.
2235       // This leaves both the Bool and the If pointing at the Cmp.  To
2236       // prevent the Matcher from trying to Match the Cmp along both paths
2237       // BoolNode::match_edge always returns a zero.
2238 
2239       // We reorder the Op_If in a pre-order manner, so we can visit without
2240       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2241       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2242     }
2243     else if (nstate == Post_Visit) {
2244       mstack.pop(); // Remove node from stack
2245 
2246       // Now hack a few special opcodes
2247       switch( n->Opcode() ) {       // Handle some opcodes special
2248       case Op_StorePConditional:
2249       case Op_StoreIConditional:
2250       case Op_StoreLConditional:
2251       case Op_CompareAndSwapI:
2252       case Op_CompareAndSwapL:
2253       case Op_CompareAndSwapP:
2254       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2255         Node *newval = n->in(MemNode::ValueIn );
2256         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2257         Node *pair = new BinaryNode( oldval, newval );
2258         n->set_req(MemNode::ValueIn,pair);
2259         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2260         break;
2261       }
2262       case Op_CMoveD:              // Convert trinary to binary-tree
2263       case Op_CMoveF:
2264       case Op_CMoveI:
2265       case Op_CMoveL:
2266       case Op_CMoveN:
2267       case Op_CMoveP: {
2268         // Restructure into a binary tree for Matching.  It's possible that
2269         // we could move this code up next to the graph reshaping for IfNodes
2270         // or vice-versa, but I do not want to debug this for Ladybird.
2271         // 10/2/2000 CNC.
2272         Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2273         n->set_req(1,pair1);
2274         Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2275         n->set_req(2,pair2);
2276         n->del_req(3);
2277         break;
2278       }
2279       case Op_LoopLimit: {
2280         Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2281         n->set_req(1,pair1);
2282         n->set_req(2,n->in(3));
2283         n->del_req(3);
2284         break;
2285       }
2286       case Op_StrEquals: {
2287         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2288         n->set_req(2,pair1);
2289         n->set_req(3,n->in(4));
2290         n->del_req(4);
2291         break;
2292       }
2293       case Op_StrComp:
2294       case Op_StrIndexOf: {
2295         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2296         n->set_req(2,pair1);
2297         Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2298         n->set_req(3,pair2);
2299         n->del_req(5);
2300         n->del_req(4);
2301         break;
2302       }
2303       case Op_EncodeISOArray: {
2304         // Restructure into a binary tree for Matching.
2305         Node* pair = new BinaryNode(n->in(3), n->in(4));
2306         n->set_req(3, pair);
2307         n->del_req(4);
2308         break;
2309       }
2310       default:
2311         break;
2312       }
2313     }
2314     else {
2315       ShouldNotReachHere();
2316     }
2317   } // end of while (mstack.is_nonempty())
2318 }
2319 
2320 #ifdef ASSERT
2321 // machine-independent root to machine-dependent root
2322 void Matcher::dump_old2new_map() {
2323   _old2new_map.dump();
2324 }
2325 #endif
2326 
2327 //---------------------------collect_null_checks-------------------------------
2328 // Find null checks in the ideal graph; write a machine-specific node for
2329 // it.  Used by later implicit-null-check handling.  Actually collects
2330 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2331 // value being tested.
2332 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2333   Node *iff = proj->in(0);
2334   if( iff->Opcode() == Op_If ) {
2335     // During matching If's have Bool & Cmp side-by-side
2336     BoolNode *b = iff->in(1)->as_Bool();
2337     Node *cmp = iff->in(2);
2338     int opc = cmp->Opcode();
2339     if (opc != Op_CmpP && opc != Op_CmpN) return;
2340 
2341     const Type* ct = cmp->in(2)->bottom_type();
2342     if (ct == TypePtr::NULL_PTR ||
2343         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2344 
2345       bool push_it = false;
2346       if( proj->Opcode() == Op_IfTrue ) {
2347         extern int all_null_checks_found;
2348         all_null_checks_found++;
2349         if( b->_test._test == BoolTest::ne ) {
2350           push_it = true;
2351         }
2352       } else {
2353         assert( proj->Opcode() == Op_IfFalse, "" );
2354         if( b->_test._test == BoolTest::eq ) {
2355           push_it = true;
2356         }
2357       }
2358       if( push_it ) {
2359         _null_check_tests.push(proj);
2360         Node* val = cmp->in(1);
2361 #ifdef _LP64
2362         if (val->bottom_type()->isa_narrowoop() &&
2363             !Matcher::narrow_oop_use_complex_address()) {
2364           //
2365           // Look for DecodeN node which should be pinned to orig_proj.
2366           // On platforms (Sparc) which can not handle 2 adds
2367           // in addressing mode we have to keep a DecodeN node and
2368           // use it to do implicit NULL check in address.
2369           //
2370           // DecodeN node was pinned to non-null path (orig_proj) during
2371           // CastPP transformation in final_graph_reshaping_impl().
2372           //
2373           uint cnt = orig_proj->outcnt();
2374           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2375             Node* d = orig_proj->raw_out(i);
2376             if (d->is_DecodeN() && d->in(1) == val) {
2377               val = d;
2378               val->set_req(0, NULL); // Unpin now.
2379               // Mark this as special case to distinguish from
2380               // a regular case: CmpP(DecodeN, NULL).
2381               val = (Node*)(((intptr_t)val) | 1);
2382               break;
2383             }
2384           }
2385         }
2386 #endif
2387         _null_check_tests.push(val);
2388       }
2389     }
2390   }
2391 }
2392 
2393 //---------------------------validate_null_checks------------------------------
2394 // Its possible that the value being NULL checked is not the root of a match
2395 // tree.  If so, I cannot use the value in an implicit null check.
2396 void Matcher::validate_null_checks( ) {
2397   uint cnt = _null_check_tests.size();
2398   for( uint i=0; i < cnt; i+=2 ) {
2399     Node *test = _null_check_tests[i];
2400     Node *val = _null_check_tests[i+1];
2401     bool is_decoden = ((intptr_t)val) & 1;
2402     val = (Node*)(((intptr_t)val) & ~1);
2403     if (has_new_node(val)) {
2404       Node* new_val = new_node(val);
2405       if (is_decoden) {
2406         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2407         // Note: new_val may have a control edge if
2408         // the original ideal node DecodeN was matched before
2409         // it was unpinned in Matcher::collect_null_checks().
2410         // Unpin the mach node and mark it.
2411         new_val->set_req(0, NULL);
2412         new_val = (Node*)(((intptr_t)new_val) | 1);
2413       }
2414       // Is a match-tree root, so replace with the matched value
2415       _null_check_tests.map(i+1, new_val);
2416     } else {
2417       // Yank from candidate list
2418       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2419       _null_check_tests.map(i,_null_check_tests[--cnt]);
2420       _null_check_tests.pop();
2421       _null_check_tests.pop();
2422       i-=2;
2423     }
2424   }
2425 }
2426 
2427 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2428 // atomic instruction acting as a store_load barrier without any
2429 // intervening volatile load, and thus we don't need a barrier here.
2430 // We retain the Node to act as a compiler ordering barrier.
2431 bool Matcher::post_store_load_barrier(const Node* vmb) {
2432   Compile* C = Compile::current();
2433   assert(vmb->is_MemBar(), "");
2434   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2435   const MemBarNode* membar = vmb->as_MemBar();
2436 
2437   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2438   Node* ctrl = NULL;
2439   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2440     Node* p = membar->fast_out(i);
2441     assert(p->is_Proj(), "only projections here");
2442     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2443         !C->node_arena()->contains(p)) { // Unmatched old-space only
2444       ctrl = p;
2445       break;
2446     }
2447   }
2448   assert((ctrl != NULL), "missing control projection");
2449 
2450   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2451     Node *x = ctrl->fast_out(j);
2452     int xop = x->Opcode();
2453 
2454     // We don't need current barrier if we see another or a lock
2455     // before seeing volatile load.
2456     //
2457     // Op_Fastunlock previously appeared in the Op_* list below.
2458     // With the advent of 1-0 lock operations we're no longer guaranteed
2459     // that a monitor exit operation contains a serializing instruction.
2460 
2461     if (xop == Op_MemBarVolatile ||
2462         xop == Op_CompareAndSwapL ||
2463         xop == Op_CompareAndSwapP ||
2464         xop == Op_CompareAndSwapN ||
2465         xop == Op_CompareAndSwapI) {
2466       return true;
2467     }
2468 
2469     // Op_FastLock previously appeared in the Op_* list above.
2470     // With biased locking we're no longer guaranteed that a monitor
2471     // enter operation contains a serializing instruction.
2472     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2473       return true;
2474     }
2475 
2476     if (x->is_MemBar()) {
2477       // We must retain this membar if there is an upcoming volatile
2478       // load, which will be followed by acquire membar.
2479       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2480         return false;
2481       } else {
2482         // For other kinds of barriers, check by pretending we
2483         // are them, and seeing if we can be removed.
2484         return post_store_load_barrier(x->as_MemBar());
2485       }
2486     }
2487 
2488     // probably not necessary to check for these
2489     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2490       return false;
2491     }
2492   }
2493   return false;
2494 }
2495 
2496 // Check whether node n is a branch to an uncommon trap that we could
2497 // optimize as test with very high branch costs in case of going to
2498 // the uncommon trap. The code must be able to be recompiled to use
2499 // a cheaper test.
2500 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2501   // Don't do it for natives, adapters, or runtime stubs
2502   Compile *C = Compile::current();
2503   if (!C->is_method_compilation()) return false;
2504 
2505   assert(n->is_If(), "You should only call this on if nodes.");
2506   IfNode *ifn = n->as_If();
2507 
2508   Node *ifFalse = NULL;
2509   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2510     if (ifn->fast_out(i)->is_IfFalse()) {
2511       ifFalse = ifn->fast_out(i);
2512       break;
2513     }
2514   }
2515   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2516 
2517   Node *reg = ifFalse;
2518   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2519                // Alternatively use visited set?  Seems too expensive.
2520   while (reg != NULL && cnt > 0) {
2521     CallNode *call = NULL;
2522     RegionNode *nxt_reg = NULL;
2523     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2524       Node *o = reg->fast_out(i);
2525       if (o->is_Call()) {
2526         call = o->as_Call();
2527       }
2528       if (o->is_Region()) {
2529         nxt_reg = o->as_Region();
2530       }
2531     }
2532 
2533     if (call &&
2534         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2535       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2536       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2537         jint tr_con = trtype->is_int()->get_con();
2538         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2539         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2540         assert((int)reason < (int)BitsPerInt, "recode bit map");
2541 
2542         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2543             && action != Deoptimization::Action_none) {
2544           // This uncommon trap is sure to recompile, eventually.
2545           // When that happens, C->too_many_traps will prevent
2546           // this transformation from happening again.
2547           return true;
2548         }
2549       }
2550     }
2551 
2552     reg = nxt_reg;
2553     cnt--;
2554   }
2555 
2556   return false;
2557 }
2558 
2559 //=============================================================================
2560 //---------------------------State---------------------------------------------
2561 State::State(void) {
2562 #ifdef ASSERT
2563   _id = 0;
2564   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2565   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2566   //memset(_cost, -1, sizeof(_cost));
2567   //memset(_rule, -1, sizeof(_rule));
2568 #endif
2569   memset(_valid, 0, sizeof(_valid));
2570 }
2571 
2572 #ifdef ASSERT
2573 State::~State() {
2574   _id = 99;
2575   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2576   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2577   memset(_cost, -3, sizeof(_cost));
2578   memset(_rule, -3, sizeof(_rule));
2579 }
2580 #endif
2581 
2582 #ifndef PRODUCT
2583 //---------------------------dump----------------------------------------------
2584 void State::dump() {
2585   tty->print("\n");
2586   dump(0);
2587 }
2588 
2589 void State::dump(int depth) {
2590   for( int j = 0; j < depth; j++ )
2591     tty->print("   ");
2592   tty->print("--N: ");
2593   _leaf->dump();
2594   uint i;
2595   for( i = 0; i < _LAST_MACH_OPER; i++ )
2596     // Check for valid entry
2597     if( valid(i) ) {
2598       for( int j = 0; j < depth; j++ )
2599         tty->print("   ");
2600         assert(_cost[i] != max_juint, "cost must be a valid value");
2601         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2602         tty->print_cr("%s  %d  %s",
2603                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2604       }
2605   tty->cr();
2606 
2607   for( i=0; i<2; i++ )
2608     if( _kids[i] )
2609       _kids[i]->dump(depth+1);
2610 }
2611 #endif