1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_CMS_CONCURRENTMARKSWEEPGENERATION_HPP
  26 #define SHARE_VM_GC_CMS_CONCURRENTMARKSWEEPGENERATION_HPP
  27 
  28 #include "gc/cms/cmsOopClosures.hpp"
  29 #include "gc/cms/gSpaceCounters.hpp"
  30 #include "gc/cms/yieldingWorkgroup.hpp"
  31 #include "gc/shared/cardGeneration.hpp"
  32 #include "gc/shared/gcHeapSummary.hpp"
  33 #include "gc/shared/gcStats.hpp"
  34 #include "gc/shared/gcWhen.hpp"
  35 #include "gc/shared/generationCounters.hpp"
  36 #include "gc/shared/space.hpp"
  37 #include "gc/shared/taskqueue.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/virtualspace.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "services/memoryService.hpp"
  43 #include "utilities/bitMap.hpp"
  44 #include "utilities/stack.hpp"
  45 
  46 // ConcurrentMarkSweepGeneration is in support of a concurrent
  47 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
  48 // style. We assume, for now, that this generation is always the
  49 // seniormost generation and for simplicity
  50 // in the first implementation, that this generation is a single compactible
  51 // space. Neither of these restrictions appears essential, and will be
  52 // relaxed in the future when more time is available to implement the
  53 // greater generality (and there's a need for it).
  54 //
  55 // Concurrent mode failures are currently handled by
  56 // means of a sliding mark-compact.
  57 
  58 class AdaptiveSizePolicy;
  59 class CMSCollector;
  60 class CMSConcMarkingTask;
  61 class CMSGCAdaptivePolicyCounters;
  62 class CMSTracer;
  63 class ConcurrentGCTimer;
  64 class ConcurrentMarkSweepGeneration;
  65 class ConcurrentMarkSweepThread;
  66 class CompactibleFreeListSpace;
  67 class FreeChunk;
  68 class ParNewGeneration;
  69 class PromotionInfo;
  70 class ScanMarkedObjectsAgainCarefullyClosure;
  71 class TenuredGeneration;
  72 class SerialOldTracer;
  73 
  74 // A generic CMS bit map. It's the basis for both the CMS marking bit map
  75 // as well as for the mod union table (in each case only a subset of the
  76 // methods are used). This is essentially a wrapper around the BitMap class,
  77 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
  78 // we have _shifter == 0. and for the mod union table we have
  79 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
  80 // XXX 64-bit issues in BitMap?
  81 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
  82   friend class VMStructs;
  83 
  84   HeapWord*    _bmStartWord;   // base address of range covered by map
  85   size_t       _bmWordSize;    // map size (in #HeapWords covered)
  86   const int    _shifter;       // shifts to convert HeapWord to bit position
  87   VirtualSpace _virtual_space; // underlying the bit map
  88   BitMapView   _bm;            // the bit map itself
  89   Mutex* const _lock;          // mutex protecting _bm;
  90 
  91  public:
  92   // constructor
  93   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
  94 
  95   // allocates the actual storage for the map
  96   bool allocate(MemRegion mr);
  97   // field getter
  98   Mutex* lock() const { return _lock; }
  99   // locking verifier convenience function
 100   void assert_locked() const PRODUCT_RETURN;
 101 
 102   // inquiries
 103   HeapWord* startWord()   const { return _bmStartWord; }
 104   size_t    sizeInWords() const { return _bmWordSize;  }
 105   size_t    sizeInBits()  const { return _bm.size();   }
 106   // the following is one past the last word in space
 107   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
 108 
 109   // reading marks
 110   bool isMarked(HeapWord* addr) const;
 111   bool par_isMarked(HeapWord* addr) const; // do not lock checks
 112   bool isUnmarked(HeapWord* addr) const;
 113   bool isAllClear() const;
 114 
 115   // writing marks
 116   void mark(HeapWord* addr);
 117   // For marking by parallel GC threads;
 118   // returns true if we did, false if another thread did
 119   bool par_mark(HeapWord* addr);
 120 
 121   void mark_range(MemRegion mr);
 122   void par_mark_range(MemRegion mr);
 123   void mark_large_range(MemRegion mr);
 124   void par_mark_large_range(MemRegion mr);
 125   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
 126   void clear_range(MemRegion mr);
 127   void par_clear_range(MemRegion mr);
 128   void clear_large_range(MemRegion mr);
 129   void par_clear_large_range(MemRegion mr);
 130   void clear_all();
 131   void clear_all_incrementally();  // Not yet implemented!!
 132 
 133   NOT_PRODUCT(
 134     // checks the memory region for validity
 135     void region_invariant(MemRegion mr);
 136   )
 137 
 138   // iteration
 139   void iterate(BitMapClosure* cl) {
 140     _bm.iterate(cl);
 141   }
 142   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
 143   void dirty_range_iterate_clear(MemRegionClosure* cl);
 144   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
 145 
 146   // auxiliary support for iteration
 147   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
 148   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
 149                                             HeapWord* end_addr) const;
 150   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
 151   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
 152                                               HeapWord* end_addr) const;
 153   MemRegion getAndClearMarkedRegion(HeapWord* addr);
 154   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
 155                                            HeapWord* end_addr);
 156 
 157   // conversion utilities
 158   HeapWord* offsetToHeapWord(size_t offset) const;
 159   size_t    heapWordToOffset(HeapWord* addr) const;
 160   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
 161 
 162   void print_on_error(outputStream* st, const char* prefix) const;
 163 
 164   // debugging
 165   // is this address range covered by the bit-map?
 166   NOT_PRODUCT(
 167     bool covers(MemRegion mr) const;
 168     bool covers(HeapWord* start, size_t size = 0) const;
 169   )
 170   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
 171 };
 172 
 173 // Represents a marking stack used by the CMS collector.
 174 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 175 class CMSMarkStack: public CHeapObj<mtGC>  {
 176   friend class CMSCollector;   // To get at expansion stats further below.
 177 
 178   VirtualSpace _virtual_space;  // Space for the stack
 179   oop*   _base;      // Bottom of stack
 180   size_t _index;     // One more than last occupied index
 181   size_t _capacity;  // Max #elements
 182   Mutex  _par_lock;  // An advisory lock used in case of parallel access
 183   NOT_PRODUCT(size_t _max_depth;)  // Max depth plumbed during run
 184 
 185  protected:
 186   size_t _hit_limit;      // We hit max stack size limit
 187   size_t _failed_double;  // We failed expansion before hitting limit
 188 
 189  public:
 190   CMSMarkStack():
 191     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true,
 192               Monitor::_safepoint_check_never),
 193     _hit_limit(0),
 194     _failed_double(0) {}
 195 
 196   bool allocate(size_t size);
 197 
 198   size_t capacity() const { return _capacity; }
 199 
 200   oop pop() {
 201     if (!isEmpty()) {
 202       return _base[--_index] ;
 203     }
 204     return NULL;
 205   }
 206 
 207   bool push(oop ptr) {
 208     if (isFull()) {
 209       return false;
 210     } else {
 211       _base[_index++] = ptr;
 212       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 213       return true;
 214     }
 215   }
 216 
 217   bool isEmpty() const { return _index == 0; }
 218   bool isFull()  const {
 219     assert(_index <= _capacity, "buffer overflow");
 220     return _index == _capacity;
 221   }
 222 
 223   size_t length() { return _index; }
 224 
 225   // "Parallel versions" of some of the above
 226   oop par_pop() {
 227     // lock and pop
 228     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 229     return pop();
 230   }
 231 
 232   bool par_push(oop ptr) {
 233     // lock and push
 234     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 235     return push(ptr);
 236   }
 237 
 238   // Forcibly reset the stack, losing all of its contents.
 239   void reset() {
 240     _index = 0;
 241   }
 242 
 243   // Expand the stack, typically in response to an overflow condition.
 244   void expand();
 245 
 246   // Compute the least valued stack element.
 247   oop least_value(HeapWord* low) {
 248     HeapWord* least = low;
 249     for (size_t i = 0; i < _index; i++) {
 250       least = MIN2(least, (HeapWord*)_base[i]);
 251     }
 252     return (oop)least;
 253   }
 254 
 255   // Exposed here to allow stack expansion in || case.
 256   Mutex* par_lock() { return &_par_lock; }
 257 };
 258 
 259 class CardTableRS;
 260 class CMSParGCThreadState;
 261 
 262 class ModUnionClosure: public MemRegionClosure {
 263  protected:
 264   CMSBitMap* _t;
 265  public:
 266   ModUnionClosure(CMSBitMap* t): _t(t) { }
 267   void do_MemRegion(MemRegion mr);
 268 };
 269 
 270 class ModUnionClosurePar: public ModUnionClosure {
 271  public:
 272   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
 273   void do_MemRegion(MemRegion mr);
 274 };
 275 
 276 // Survivor Chunk Array in support of parallelization of
 277 // Survivor Space rescan.
 278 class ChunkArray: public CHeapObj<mtGC> {
 279   size_t _index;
 280   size_t _capacity;
 281   size_t _overflows;
 282   HeapWord** _array;   // storage for array
 283 
 284  public:
 285   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
 286   ChunkArray(HeapWord** a, size_t c):
 287     _index(0), _capacity(c), _overflows(0), _array(a) {}
 288 
 289   HeapWord** array() { return _array; }
 290   void set_array(HeapWord** a) { _array = a; }
 291 
 292   size_t capacity() { return _capacity; }
 293   void set_capacity(size_t c) { _capacity = c; }
 294 
 295   size_t end() {
 296     assert(_index <= capacity(),
 297            "_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
 298            _index, _capacity);
 299     return _index;
 300   }  // exclusive
 301 
 302   HeapWord* nth(size_t n) {
 303     assert(n < end(), "Out of bounds access");
 304     return _array[n];
 305   }
 306 
 307   void reset() {
 308     _index = 0;
 309     if (_overflows > 0) {
 310       log_trace(gc)("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times", _capacity, _overflows);
 311     }
 312     _overflows = 0;
 313   }
 314 
 315   void record_sample(HeapWord* p, size_t sz) {
 316     // For now we do not do anything with the size
 317     if (_index < _capacity) {
 318       _array[_index++] = p;
 319     } else {
 320       ++_overflows;
 321       assert(_index == _capacity,
 322              "_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
 323              "): out of bounds at overflow#" SIZE_FORMAT,
 324              _index, _capacity, _overflows);
 325     }
 326   }
 327 };
 328 
 329 //
 330 // Timing, allocation and promotion statistics for gc scheduling and incremental
 331 // mode pacing.  Most statistics are exponential averages.
 332 //
 333 class CMSStats VALUE_OBJ_CLASS_SPEC {
 334  private:
 335   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
 336 
 337   // The following are exponential averages with factor alpha:
 338   //   avg = (100 - alpha) * avg + alpha * cur_sample
 339   //
 340   //   The durations measure:  end_time[n] - start_time[n]
 341   //   The periods measure:    start_time[n] - start_time[n-1]
 342   //
 343   // The cms period and duration include only concurrent collections; time spent
 344   // in foreground cms collections due to System.gc() or because of a failure to
 345   // keep up are not included.
 346   //
 347   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
 348   // real value, but is used only after the first period.  A value of 100 is
 349   // used for the first sample so it gets the entire weight.
 350   unsigned int _saved_alpha; // 0-100
 351   unsigned int _gc0_alpha;
 352   unsigned int _cms_alpha;
 353 
 354   double _gc0_duration;
 355   double _gc0_period;
 356   size_t _gc0_promoted;         // bytes promoted per gc0
 357   double _cms_duration;
 358   double _cms_duration_pre_sweep; // time from initiation to start of sweep
 359   double _cms_period;
 360   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
 361 
 362   // Timers.
 363   elapsedTimer _cms_timer;
 364   TimeStamp    _gc0_begin_time;
 365   TimeStamp    _cms_begin_time;
 366   TimeStamp    _cms_end_time;
 367 
 368   // Snapshots of the amount used in the CMS generation.
 369   size_t _cms_used_at_gc0_begin;
 370   size_t _cms_used_at_gc0_end;
 371   size_t _cms_used_at_cms_begin;
 372 
 373   // Used to prevent the duty cycle from being reduced in the middle of a cms
 374   // cycle.
 375   bool _allow_duty_cycle_reduction;
 376 
 377   enum {
 378     _GC0_VALID = 0x1,
 379     _CMS_VALID = 0x2,
 380     _ALL_VALID = _GC0_VALID | _CMS_VALID
 381   };
 382 
 383   unsigned int _valid_bits;
 384 
 385  protected:
 386   // In support of adjusting of cms trigger ratios based on history
 387   // of concurrent mode failure.
 388   double cms_free_adjustment_factor(size_t free) const;
 389   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
 390 
 391  public:
 392   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
 393            unsigned int alpha = CMSExpAvgFactor);
 394 
 395   // Whether or not the statistics contain valid data; higher level statistics
 396   // cannot be called until this returns true (they require at least one young
 397   // gen and one cms cycle to have completed).
 398   bool valid() const;
 399 
 400   // Record statistics.
 401   void record_gc0_begin();
 402   void record_gc0_end(size_t cms_gen_bytes_used);
 403   void record_cms_begin();
 404   void record_cms_end();
 405 
 406   // Allow management of the cms timer, which must be stopped/started around
 407   // yield points.
 408   elapsedTimer& cms_timer()     { return _cms_timer; }
 409   void start_cms_timer()        { _cms_timer.start(); }
 410   void stop_cms_timer()         { _cms_timer.stop(); }
 411 
 412   // Basic statistics; units are seconds or bytes.
 413   double gc0_period() const     { return _gc0_period; }
 414   double gc0_duration() const   { return _gc0_duration; }
 415   size_t gc0_promoted() const   { return _gc0_promoted; }
 416   double cms_period() const          { return _cms_period; }
 417   double cms_duration() const        { return _cms_duration; }
 418   size_t cms_allocated() const       { return _cms_allocated; }
 419 
 420   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
 421 
 422   // Seconds since the last background cms cycle began or ended.
 423   double cms_time_since_begin() const;
 424   double cms_time_since_end() const;
 425 
 426   // Higher level statistics--caller must check that valid() returns true before
 427   // calling.
 428 
 429   // Returns bytes promoted per second of wall clock time.
 430   double promotion_rate() const;
 431 
 432   // Returns bytes directly allocated per second of wall clock time.
 433   double cms_allocation_rate() const;
 434 
 435   // Rate at which space in the cms generation is being consumed (sum of the
 436   // above two).
 437   double cms_consumption_rate() const;
 438 
 439   // Returns an estimate of the number of seconds until the cms generation will
 440   // fill up, assuming no collection work is done.
 441   double time_until_cms_gen_full() const;
 442 
 443   // Returns an estimate of the number of seconds remaining until
 444   // the cms generation collection should start.
 445   double time_until_cms_start() const;
 446 
 447   // End of higher level statistics.
 448 
 449   // Debugging.
 450   void print_on(outputStream* st) const PRODUCT_RETURN;
 451   void print() const { print_on(tty); }
 452 };
 453 
 454 // A closure related to weak references processing which
 455 // we embed in the CMSCollector, since we need to pass
 456 // it to the reference processor for secondary filtering
 457 // of references based on reachability of referent;
 458 // see role of _is_alive_non_header closure in the
 459 // ReferenceProcessor class.
 460 // For objects in the CMS generation, this closure checks
 461 // if the object is "live" (reachable). Used in weak
 462 // reference processing.
 463 class CMSIsAliveClosure: public BoolObjectClosure {
 464   const MemRegion  _span;
 465   const CMSBitMap* _bit_map;
 466 
 467   friend class CMSCollector;
 468  public:
 469   CMSIsAliveClosure(MemRegion span,
 470                     CMSBitMap* bit_map):
 471     _span(span),
 472     _bit_map(bit_map) {
 473     assert(!span.is_empty(), "Empty span could spell trouble");
 474   }
 475 
 476   bool do_object_b(oop obj);
 477 };
 478 
 479 
 480 // Implements AbstractRefProcTaskExecutor for CMS.
 481 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 482 public:
 483 
 484   CMSRefProcTaskExecutor(CMSCollector& collector)
 485     : _collector(collector)
 486   { }
 487 
 488   // Executes a task using worker threads.
 489   virtual void execute(ProcessTask& task);
 490   virtual void execute(EnqueueTask& task);
 491 private:
 492   CMSCollector& _collector;
 493 };
 494 
 495 
 496 class CMSCollector: public CHeapObj<mtGC> {
 497   friend class VMStructs;
 498   friend class ConcurrentMarkSweepThread;
 499   friend class ConcurrentMarkSweepGeneration;
 500   friend class CompactibleFreeListSpace;
 501   friend class CMSParMarkTask;
 502   friend class CMSParInitialMarkTask;
 503   friend class CMSParRemarkTask;
 504   friend class CMSConcMarkingTask;
 505   friend class CMSRefProcTaskProxy;
 506   friend class CMSRefProcTaskExecutor;
 507   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
 508   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
 509   friend class PushOrMarkClosure;             // to access _restart_addr
 510   friend class ParPushOrMarkClosure;          // to access _restart_addr
 511   friend class MarkFromRootsClosure;          //  -- ditto --
 512                                               // ... and for clearing cards
 513   friend class ParMarkFromRootsClosure;       //  to access _restart_addr
 514                                               // ... and for clearing cards
 515   friend class ParConcMarkingClosure;         //  to access _restart_addr etc.
 516   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
 517   friend class PushAndMarkVerifyClosure;      //  -- ditto --
 518   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
 519   friend class PushAndMarkClosure;            //  -- ditto --
 520   friend class ParPushAndMarkClosure;         //  -- ditto --
 521   friend class CMSKeepAliveClosure;           //  -- ditto --
 522   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
 523   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
 524   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
 525   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
 526   friend class VM_CMS_Operation;
 527   friend class VM_CMS_Initial_Mark;
 528   friend class VM_CMS_Final_Remark;
 529   friend class TraceCMSMemoryManagerStats;
 530 
 531  private:
 532   jlong _time_of_last_gc;
 533   void update_time_of_last_gc(jlong now) {
 534     _time_of_last_gc = now;
 535   }
 536 
 537   OopTaskQueueSet* _task_queues;
 538 
 539   // Overflow list of grey objects, threaded through mark-word
 540   // Manipulated with CAS in the parallel/multi-threaded case.
 541   oopDesc* volatile _overflow_list;
 542   // The following array-pair keeps track of mark words
 543   // displaced for accommodating overflow list above.
 544   // This code will likely be revisited under RFE#4922830.
 545   Stack<oop, mtGC>     _preserved_oop_stack;
 546   Stack<markOop, mtGC> _preserved_mark_stack;
 547 
 548   int*             _hash_seed;
 549 
 550   // In support of multi-threaded concurrent phases
 551   YieldingFlexibleWorkGang* _conc_workers;
 552 
 553   // Performance Counters
 554   CollectorCounters* _gc_counters;
 555 
 556   // Initialization Errors
 557   bool _completed_initialization;
 558 
 559   // In support of ExplicitGCInvokesConcurrent
 560   static bool _full_gc_requested;
 561   static GCCause::Cause _full_gc_cause;
 562   unsigned int _collection_count_start;
 563 
 564   // Should we unload classes this concurrent cycle?
 565   bool _should_unload_classes;
 566   unsigned int  _concurrent_cycles_since_last_unload;
 567   unsigned int concurrent_cycles_since_last_unload() const {
 568     return _concurrent_cycles_since_last_unload;
 569   }
 570   // Did we (allow) unload classes in the previous concurrent cycle?
 571   bool unloaded_classes_last_cycle() const {
 572     return concurrent_cycles_since_last_unload() == 0;
 573   }
 574   // Root scanning options for perm gen
 575   int _roots_scanning_options;
 576   int roots_scanning_options() const      { return _roots_scanning_options; }
 577   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
 578   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
 579 
 580   // Verification support
 581   CMSBitMap     _verification_mark_bm;
 582   void verify_after_remark_work_1();
 583   void verify_after_remark_work_2();
 584 
 585   // True if any verification flag is on.
 586   bool _verifying;
 587   bool verifying() const { return _verifying; }
 588   void set_verifying(bool v) { _verifying = v; }
 589 
 590   void set_did_compact(bool v);
 591 
 592   // XXX Move these to CMSStats ??? FIX ME !!!
 593   elapsedTimer _inter_sweep_timer;   // Time between sweeps
 594   elapsedTimer _intra_sweep_timer;   // Time _in_ sweeps
 595   // Padded decaying average estimates of the above
 596   AdaptivePaddedAverage _inter_sweep_estimate;
 597   AdaptivePaddedAverage _intra_sweep_estimate;
 598 
 599   CMSTracer* _gc_tracer_cm;
 600   ConcurrentGCTimer* _gc_timer_cm;
 601 
 602   bool _cms_start_registered;
 603 
 604   GCHeapSummary _last_heap_summary;
 605   MetaspaceSummary _last_metaspace_summary;
 606 
 607   void register_gc_start(GCCause::Cause cause);
 608   void register_gc_end();
 609   void save_heap_summary();
 610   void report_heap_summary(GCWhen::Type when);
 611 
 612  protected:
 613   ConcurrentMarkSweepGeneration* _cmsGen;  // Old gen (CMS)
 614   MemRegion                      _span;    // Span covering above two
 615   CardTableRS*                   _ct;      // Card table
 616 
 617   // CMS marking support structures
 618   CMSBitMap     _markBitMap;
 619   CMSBitMap     _modUnionTable;
 620   CMSMarkStack  _markStack;
 621 
 622   HeapWord*     _restart_addr; // In support of marking stack overflow
 623   void          lower_restart_addr(HeapWord* low);
 624 
 625   // Counters in support of marking stack / work queue overflow handling:
 626   // a non-zero value indicates certain types of overflow events during
 627   // the current CMS cycle and could lead to stack resizing efforts at
 628   // an opportune future time.
 629   size_t        _ser_pmc_preclean_ovflw;
 630   size_t        _ser_pmc_remark_ovflw;
 631   size_t        _par_pmc_remark_ovflw;
 632   size_t        _ser_kac_preclean_ovflw;
 633   size_t        _ser_kac_ovflw;
 634   size_t        _par_kac_ovflw;
 635   NOT_PRODUCT(ssize_t _num_par_pushes;)
 636 
 637   // ("Weak") Reference processing support.
 638   ReferenceProcessor*            _ref_processor;
 639   CMSIsAliveClosure              _is_alive_closure;
 640   // Keep this textually after _markBitMap and _span; c'tor dependency.
 641 
 642   ConcurrentMarkSweepThread*     _cmsThread;   // The thread doing the work
 643   ModUnionClosurePar _modUnionClosurePar;
 644 
 645   // CMS abstract state machine
 646   // initial_state: Idling
 647   // next_state(Idling)            = {Marking}
 648   // next_state(Marking)           = {Precleaning, Sweeping}
 649   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
 650   // next_state(AbortablePreclean) = {FinalMarking}
 651   // next_state(FinalMarking)      = {Sweeping}
 652   // next_state(Sweeping)          = {Resizing}
 653   // next_state(Resizing)          = {Resetting}
 654   // next_state(Resetting)         = {Idling}
 655   // The numeric values below are chosen so that:
 656   // . _collectorState <= Idling ==  post-sweep && pre-mark
 657   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
 658   //                                            precleaning || abortablePrecleanb
 659  public:
 660   enum CollectorState {
 661     Resizing            = 0,
 662     Resetting           = 1,
 663     Idling              = 2,
 664     InitialMarking      = 3,
 665     Marking             = 4,
 666     Precleaning         = 5,
 667     AbortablePreclean   = 6,
 668     FinalMarking        = 7,
 669     Sweeping            = 8
 670   };
 671  protected:
 672   static CollectorState _collectorState;
 673 
 674   // State related to prologue/epilogue invocation for my generations
 675   bool _between_prologue_and_epilogue;
 676 
 677   // Signaling/State related to coordination between fore- and background GC
 678   // Note: When the baton has been passed from background GC to foreground GC,
 679   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
 680   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
 681                                  // wants to go active
 682   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
 683                                  // yet passed the baton to the foreground GC
 684 
 685   // Support for CMSScheduleRemark (abortable preclean)
 686   bool _abort_preclean;
 687   bool _start_sampling;
 688 
 689   int    _numYields;
 690   size_t _numDirtyCards;
 691   size_t _sweep_count;
 692 
 693   // Occupancy used for bootstrapping stats
 694   double _bootstrap_occupancy;
 695 
 696   // Timer
 697   elapsedTimer _timer;
 698 
 699   // Timing, allocation and promotion statistics, used for scheduling.
 700   CMSStats      _stats;
 701 
 702   enum CMS_op_type {
 703     CMS_op_checkpointRootsInitial,
 704     CMS_op_checkpointRootsFinal
 705   };
 706 
 707   void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
 708   bool stop_world_and_do(CMS_op_type op);
 709 
 710   OopTaskQueueSet* task_queues() { return _task_queues; }
 711   int*             hash_seed(int i) { return &_hash_seed[i]; }
 712   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
 713 
 714   // Support for parallelizing Eden rescan in CMS remark phase
 715   void sample_eden(); // ... sample Eden space top
 716 
 717  private:
 718   // Support for parallelizing young gen rescan in CMS remark phase
 719   ParNewGeneration* _young_gen;
 720 
 721   HeapWord* volatile* _top_addr;    // ... Top of Eden
 722   HeapWord**          _end_addr;    // ... End of Eden
 723   Mutex*              _eden_chunk_lock;
 724   HeapWord**          _eden_chunk_array; // ... Eden partitioning array
 725   size_t              _eden_chunk_index; // ... top (exclusive) of array
 726   size_t              _eden_chunk_capacity;  // ... max entries in array
 727 
 728   // Support for parallelizing survivor space rescan
 729   HeapWord** _survivor_chunk_array;
 730   size_t     _survivor_chunk_index;
 731   size_t     _survivor_chunk_capacity;
 732   size_t*    _cursor;
 733   ChunkArray* _survivor_plab_array;
 734 
 735   // Support for marking stack overflow handling
 736   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
 737   bool par_take_from_overflow_list(size_t num,
 738                                    OopTaskQueue* to_work_q,
 739                                    int no_of_gc_threads);
 740   void push_on_overflow_list(oop p);
 741   void par_push_on_overflow_list(oop p);
 742   // The following is, obviously, not, in general, "MT-stable"
 743   bool overflow_list_is_empty() const;
 744 
 745   void preserve_mark_if_necessary(oop p);
 746   void par_preserve_mark_if_necessary(oop p);
 747   void preserve_mark_work(oop p, markOop m);
 748   void restore_preserved_marks_if_any();
 749   NOT_PRODUCT(bool no_preserved_marks() const;)
 750   // In support of testing overflow code
 751   NOT_PRODUCT(int _overflow_counter;)
 752   NOT_PRODUCT(bool simulate_overflow();)       // Sequential
 753   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
 754 
 755   // CMS work methods
 756   void checkpointRootsInitialWork(); // Initial checkpoint work
 757 
 758   // A return value of false indicates failure due to stack overflow
 759   bool markFromRootsWork();  // Concurrent marking work
 760 
 761  public:   // FIX ME!!! only for testing
 762   bool do_marking_st();      // Single-threaded marking
 763   bool do_marking_mt();      // Multi-threaded  marking
 764 
 765  private:
 766 
 767   // Concurrent precleaning work
 768   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* old_gen,
 769                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
 770   size_t preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
 771                              ScanMarkedObjectsAgainCarefullyClosure* cl);
 772   // Does precleaning work, returning a quantity indicative of
 773   // the amount of "useful work" done.
 774   size_t preclean_work(bool clean_refs, bool clean_survivors);
 775   void preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
 776   void abortable_preclean(); // Preclean while looking for possible abort
 777   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
 778   // Helper function for above; merge-sorts the per-thread plab samples
 779   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
 780   // Resets (i.e. clears) the per-thread plab sample vectors
 781   void reset_survivor_plab_arrays();
 782 
 783   // Final (second) checkpoint work
 784   void checkpointRootsFinalWork();
 785   // Work routine for parallel version of remark
 786   void do_remark_parallel();
 787   // Work routine for non-parallel version of remark
 788   void do_remark_non_parallel();
 789   // Reference processing work routine (during second checkpoint)
 790   void refProcessingWork();
 791 
 792   // Concurrent sweeping work
 793   void sweepWork(ConcurrentMarkSweepGeneration* old_gen);
 794 
 795   // Concurrent resetting of support data structures
 796   void reset_concurrent();
 797   // Resetting of support data structures from a STW full GC
 798   void reset_stw();
 799 
 800   // Clear _expansion_cause fields of constituent generations
 801   void clear_expansion_cause();
 802 
 803   // An auxiliary method used to record the ends of
 804   // used regions of each generation to limit the extent of sweep
 805   void save_sweep_limits();
 806 
 807   // A work method used by the foreground collector to do
 808   // a mark-sweep-compact.
 809   void do_compaction_work(bool clear_all_soft_refs);
 810 
 811   // Work methods for reporting concurrent mode interruption or failure
 812   bool is_external_interruption();
 813   void report_concurrent_mode_interruption();
 814 
 815   // If the background GC is active, acquire control from the background
 816   // GC and do the collection.
 817   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
 818 
 819   // For synchronizing passing of control from background to foreground
 820   // GC.  waitForForegroundGC() is called by the background
 821   // collector.  It if had to wait for a foreground collection,
 822   // it returns true and the background collection should assume
 823   // that the collection was finished by the foreground
 824   // collector.
 825   bool waitForForegroundGC();
 826 
 827   size_t block_size_using_printezis_bits(HeapWord* addr) const;
 828   size_t block_size_if_printezis_bits(HeapWord* addr) const;
 829   HeapWord* next_card_start_after_block(HeapWord* addr) const;
 830 
 831   void setup_cms_unloading_and_verification_state();
 832  public:
 833   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 834                CardTableRS*                   ct);
 835   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
 836 
 837   ReferenceProcessor* ref_processor() { return _ref_processor; }
 838   void ref_processor_init();
 839 
 840   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
 841   static CollectorState abstract_state() { return _collectorState;  }
 842 
 843   bool should_abort_preclean() const; // Whether preclean should be aborted.
 844   size_t get_eden_used() const;
 845   size_t get_eden_capacity() const;
 846 
 847   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
 848 
 849   // Locking checks
 850   NOT_PRODUCT(static bool have_cms_token();)
 851 
 852   bool shouldConcurrentCollect();
 853 
 854   void collect(bool   full,
 855                bool   clear_all_soft_refs,
 856                size_t size,
 857                bool   tlab);
 858   void collect_in_background(GCCause::Cause cause);
 859 
 860   // In support of ExplicitGCInvokesConcurrent
 861   static void request_full_gc(unsigned int full_gc_count, GCCause::Cause cause);
 862   // Should we unload classes in a particular concurrent cycle?
 863   bool should_unload_classes() const {
 864     return _should_unload_classes;
 865   }
 866   void update_should_unload_classes();
 867 
 868   void direct_allocated(HeapWord* start, size_t size);
 869 
 870   // Object is dead if not marked and current phase is sweeping.
 871   bool is_dead_obj(oop obj) const;
 872 
 873   // After a promotion (of "start"), do any necessary marking.
 874   // If "par", then it's being done by a parallel GC thread.
 875   // The last two args indicate if we need precise marking
 876   // and if so the size of the object so it can be dirtied
 877   // in its entirety.
 878   void promoted(bool par, HeapWord* start,
 879                 bool is_obj_array, size_t obj_size);
 880 
 881   void getFreelistLocks() const;
 882   void releaseFreelistLocks() const;
 883   bool haveFreelistLocks() const;
 884 
 885   // Adjust size of underlying generation
 886   void compute_new_size();
 887 
 888   // GC prologue and epilogue
 889   void gc_prologue(bool full);
 890   void gc_epilogue(bool full);
 891 
 892   jlong time_of_last_gc(jlong now) {
 893     if (_collectorState <= Idling) {
 894       // gc not in progress
 895       return _time_of_last_gc;
 896     } else {
 897       // collection in progress
 898       return now;
 899     }
 900   }
 901 
 902   // Support for parallel remark of survivor space
 903   void* get_data_recorder(int thr_num);
 904   void sample_eden_chunk();
 905 
 906   CMSBitMap* markBitMap()  { return &_markBitMap; }
 907   void directAllocated(HeapWord* start, size_t size);
 908 
 909   // Main CMS steps and related support
 910   void checkpointRootsInitial();
 911   bool markFromRoots();  // a return value of false indicates failure
 912                          // due to stack overflow
 913   void preclean();
 914   void checkpointRootsFinal();
 915   void sweep();
 916 
 917   // Check that the currently executing thread is the expected
 918   // one (foreground collector or background collector).
 919   static void check_correct_thread_executing() PRODUCT_RETURN;
 920 
 921   NOT_PRODUCT(bool is_cms_reachable(HeapWord* addr);)
 922 
 923   // Performance Counter Support
 924   CollectorCounters* counters()    { return _gc_counters; }
 925 
 926   // Timer stuff
 927   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
 928   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
 929   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
 930   jlong   timerTicks() { assert(!_timer.is_active(), "Error"); return _timer.ticks(); }
 931 
 932   int  yields()          { return _numYields; }
 933   void resetYields()     { _numYields = 0;    }
 934   void incrementYields() { _numYields++;      }
 935   void resetNumDirtyCards()               { _numDirtyCards = 0; }
 936   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
 937   size_t  numDirtyCards()                 { return _numDirtyCards; }
 938 
 939   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
 940   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
 941   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
 942   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
 943   size_t sweep_count() const             { return _sweep_count; }
 944   void   increment_sweep_count()         { _sweep_count++; }
 945 
 946   // Timers/stats for gc scheduling and incremental mode pacing.
 947   CMSStats& stats() { return _stats; }
 948 
 949   // Adaptive size policy
 950   AdaptiveSizePolicy* size_policy();
 951 
 952   static void print_on_error(outputStream* st);
 953 
 954   // Debugging
 955   void verify();
 956   bool verify_after_remark();
 957   void verify_ok_to_terminate() const PRODUCT_RETURN;
 958   void verify_work_stacks_empty() const PRODUCT_RETURN;
 959   void verify_overflow_empty() const PRODUCT_RETURN;
 960 
 961   // Convenience methods in support of debugging
 962   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
 963   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
 964 
 965   // Accessors
 966   CMSMarkStack* verification_mark_stack() { return &_markStack; }
 967   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
 968 
 969   // Initialization errors
 970   bool completed_initialization() { return _completed_initialization; }
 971 
 972   void print_eden_and_survivor_chunk_arrays();
 973 
 974   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 975 };
 976 
 977 class CMSExpansionCause : public AllStatic  {
 978  public:
 979   enum Cause {
 980     _no_expansion,
 981     _satisfy_free_ratio,
 982     _satisfy_promotion,
 983     _satisfy_allocation,
 984     _allocate_par_lab,
 985     _allocate_par_spooling_space,
 986     _adaptive_size_policy
 987   };
 988   // Return a string describing the cause of the expansion.
 989   static const char* to_string(CMSExpansionCause::Cause cause);
 990 };
 991 
 992 class ConcurrentMarkSweepGeneration: public CardGeneration {
 993   friend class VMStructs;
 994   friend class ConcurrentMarkSweepThread;
 995   friend class ConcurrentMarkSweep;
 996   friend class CMSCollector;
 997  protected:
 998   static CMSCollector*       _collector; // the collector that collects us
 999   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
1000 
1001   // Performance Counters
1002   GenerationCounters*      _gen_counters;
1003   GSpaceCounters*          _space_counters;
1004 
1005   // Words directly allocated, used by CMSStats.
1006   size_t _direct_allocated_words;
1007 
1008   // Non-product stat counters
1009   NOT_PRODUCT(
1010     size_t _numObjectsPromoted;
1011     size_t _numWordsPromoted;
1012     size_t _numObjectsAllocated;
1013     size_t _numWordsAllocated;
1014   )
1015 
1016   // Used for sizing decisions
1017   bool _incremental_collection_failed;
1018   bool incremental_collection_failed() {
1019     return _incremental_collection_failed;
1020   }
1021   void set_incremental_collection_failed() {
1022     _incremental_collection_failed = true;
1023   }
1024   void clear_incremental_collection_failed() {
1025     _incremental_collection_failed = false;
1026   }
1027 
1028   // accessors
1029   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
1030   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
1031 
1032   // Accessing spaces
1033   CompactibleSpace* space() const { return (CompactibleSpace*)_cmsSpace; }
1034 
1035  private:
1036   // For parallel young-gen GC support.
1037   CMSParGCThreadState** _par_gc_thread_states;
1038 
1039   // Reason generation was expanded
1040   CMSExpansionCause::Cause _expansion_cause;
1041 
1042   // In support of MinChunkSize being larger than min object size
1043   const double _dilatation_factor;
1044 
1045   // True if a compacting collection was done.
1046   bool _did_compact;
1047   bool did_compact() { return _did_compact; }
1048 
1049   // Fraction of current occupancy at which to start a CMS collection which
1050   // will collect this generation (at least).
1051   double _initiating_occupancy;
1052 
1053  protected:
1054   // Shrink generation by specified size (returns false if unable to shrink)
1055   void shrink_free_list_by(size_t bytes);
1056 
1057   // Update statistics for GC
1058   virtual void update_gc_stats(Generation* current_generation, bool full);
1059 
1060   // Maximum available space in the generation (including uncommitted)
1061   // space.
1062   size_t max_available() const;
1063 
1064   // getter and initializer for _initiating_occupancy field.
1065   double initiating_occupancy() const { return _initiating_occupancy; }
1066   void   init_initiating_occupancy(intx io, uintx tr);
1067 
1068   void expand_for_gc_cause(size_t bytes, size_t expand_bytes, CMSExpansionCause::Cause cause);
1069 
1070   void assert_correct_size_change_locking();
1071 
1072  public:
1073   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size, size_t min_byte_size, size_t max_byte_size, CardTableRS* ct);
1074 
1075   // Accessors
1076   CMSCollector* collector() const { return _collector; }
1077   static void set_collector(CMSCollector* collector) {
1078     assert(_collector == NULL, "already set");
1079     _collector = collector;
1080   }
1081   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
1082 
1083   Mutex* freelistLock() const;
1084 
1085   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
1086 
1087   void set_did_compact(bool v) { _did_compact = v; }
1088 
1089   bool refs_discovery_is_atomic() const { return false; }
1090   bool refs_discovery_is_mt()     const {
1091     // Note: CMS does MT-discovery during the parallel-remark
1092     // phases. Use ReferenceProcessorMTMutator to make refs
1093     // discovery MT-safe during such phases or other parallel
1094     // discovery phases in the future. This may all go away
1095     // if/when we decide that refs discovery is sufficiently
1096     // rare that the cost of the CAS's involved is in the
1097     // noise. That's a measurement that should be done, and
1098     // the code simplified if that turns out to be the case.
1099     return ConcGCThreads > 1;
1100   }
1101 
1102   // Override
1103   virtual void ref_processor_init();
1104 
1105   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
1106 
1107   // Space enquiries
1108   double occupancy() const { return ((double)used())/((double)capacity()); }
1109   size_t contiguous_available() const;
1110   size_t unsafe_max_alloc_nogc() const;
1111 
1112   // over-rides
1113   MemRegion used_region_at_save_marks() const;
1114 
1115   // Adjust quantities in the generation affected by
1116   // the compaction.
1117   void reset_after_compaction();
1118 
1119   // Allocation support
1120   HeapWord* allocate(size_t size, bool tlab);
1121   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
1122   oop       promote(oop obj, size_t obj_size);
1123   HeapWord* par_allocate(size_t size, bool tlab) {
1124     return allocate(size, tlab);
1125   }
1126 
1127 
1128   // Used by CMSStats to track direct allocation.  The value is sampled and
1129   // reset after each young gen collection.
1130   size_t direct_allocated_words() const { return _direct_allocated_words; }
1131   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
1132 
1133   // Overrides for parallel promotion.
1134   virtual oop par_promote(int thread_num,
1135                           oop obj, markOop m, size_t word_sz);
1136   virtual void par_promote_alloc_done(int thread_num);
1137   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
1138 
1139   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
1140 
1141   // Inform this (old) generation that a promotion failure was
1142   // encountered during a collection of the young generation.
1143   virtual void promotion_failure_occurred();
1144 
1145   bool should_collect(bool full, size_t size, bool tlab);
1146   virtual bool should_concurrent_collect() const;
1147   virtual bool is_too_full() const;
1148   void collect(bool   full,
1149                bool   clear_all_soft_refs,
1150                size_t size,
1151                bool   tlab);
1152 
1153   HeapWord* expand_and_allocate(size_t word_size,
1154                                 bool tlab,
1155                                 bool parallel = false);
1156 
1157   // GC prologue and epilogue
1158   void gc_prologue(bool full);
1159   void gc_prologue_work(bool full, bool registerClosure,
1160                         ModUnionClosure* modUnionClosure);
1161   void gc_epilogue(bool full);
1162   void gc_epilogue_work(bool full);
1163 
1164   // Time since last GC of this generation
1165   jlong time_of_last_gc(jlong now) {
1166     return collector()->time_of_last_gc(now);
1167   }
1168   void update_time_of_last_gc(jlong now) {
1169     collector()-> update_time_of_last_gc(now);
1170   }
1171 
1172   // Allocation failure
1173   void shrink(size_t bytes);
1174   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
1175   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
1176 
1177   // Iteration support and related enquiries
1178   void save_marks();
1179   bool no_allocs_since_save_marks();
1180 
1181   // Iteration support specific to CMS generations
1182   void save_sweep_limit();
1183 
1184   // More iteration support
1185   virtual void oop_iterate(ExtendedOopClosure* cl);
1186   virtual void safe_object_iterate(ObjectClosure* cl);
1187   virtual void object_iterate(ObjectClosure* cl);
1188 
1189   // Need to declare the full complement of closures, whether we'll
1190   // override them or not, or get message from the compiler:
1191   //   oop_since_save_marks_iterate_nv hides virtual function...
1192   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
1193     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
1194   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
1195 
1196   // Smart allocation  XXX -- move to CFLSpace?
1197   void setNearLargestChunk();
1198   bool isNearLargestChunk(HeapWord* addr);
1199 
1200   // Get the chunk at the end of the space.  Delegates to
1201   // the space.
1202   FreeChunk* find_chunk_at_end();
1203 
1204   void post_compact();
1205 
1206   // Debugging
1207   void prepare_for_verify();
1208   void verify();
1209   void print_statistics()               PRODUCT_RETURN;
1210 
1211   // Performance Counters support
1212   virtual void update_counters();
1213   virtual void update_counters(size_t used);
1214   void initialize_performance_counters(size_t min_byte_size, size_t max_byte_size);
1215   CollectorCounters* counters()  { return collector()->counters(); }
1216 
1217   // Support for parallel remark of survivor space
1218   void* get_data_recorder(int thr_num) {
1219     //Delegate to collector
1220     return collector()->get_data_recorder(thr_num);
1221   }
1222   void sample_eden_chunk() {
1223     //Delegate to collector
1224     return collector()->sample_eden_chunk();
1225   }
1226 
1227   // Printing
1228   const char* name() const;
1229   virtual const char* short_name() const { return "CMS"; }
1230   void        print() const;
1231 
1232   // Resize the generation after a compacting GC.  The
1233   // generation can be treated as a contiguous space
1234   // after the compaction.
1235   virtual void compute_new_size();
1236   // Resize the generation after a non-compacting
1237   // collection.
1238   void compute_new_size_free_list();
1239 };
1240 
1241 //
1242 // Closures of various sorts used by CMS to accomplish its work
1243 //
1244 
1245 // This closure is used to do concurrent marking from the roots
1246 // following the first checkpoint.
1247 class MarkFromRootsClosure: public BitMapClosure {
1248   CMSCollector*  _collector;
1249   MemRegion      _span;
1250   CMSBitMap*     _bitMap;
1251   CMSBitMap*     _mut;
1252   CMSMarkStack*  _markStack;
1253   bool           _yield;
1254   int            _skipBits;
1255   HeapWord*      _finger;
1256   HeapWord*      _threshold;
1257   DEBUG_ONLY(bool _verifying;)
1258 
1259  public:
1260   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
1261                        CMSBitMap* bitMap,
1262                        CMSMarkStack*  markStack,
1263                        bool should_yield, bool verifying = false);
1264   bool do_bit(size_t offset);
1265   void reset(HeapWord* addr);
1266   inline void do_yield_check();
1267 
1268  private:
1269   void scanOopsInOop(HeapWord* ptr);
1270   void do_yield_work();
1271 };
1272 
1273 // This closure is used to do concurrent multi-threaded
1274 // marking from the roots following the first checkpoint.
1275 // XXX This should really be a subclass of The serial version
1276 // above, but i have not had the time to refactor things cleanly.
1277 class ParMarkFromRootsClosure: public BitMapClosure {
1278   CMSCollector*  _collector;
1279   MemRegion      _whole_span;
1280   MemRegion      _span;
1281   CMSBitMap*     _bit_map;
1282   CMSBitMap*     _mut;
1283   OopTaskQueue*  _work_queue;
1284   CMSMarkStack*  _overflow_stack;
1285   int            _skip_bits;
1286   HeapWord*      _finger;
1287   HeapWord*      _threshold;
1288   CMSConcMarkingTask* _task;
1289  public:
1290   ParMarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
1291                           MemRegion span,
1292                           CMSBitMap* bit_map,
1293                           OopTaskQueue* work_queue,
1294                           CMSMarkStack*  overflow_stack);
1295   bool do_bit(size_t offset);
1296   inline void do_yield_check();
1297 
1298  private:
1299   void scan_oops_in_oop(HeapWord* ptr);
1300   void do_yield_work();
1301   bool get_work_from_overflow_stack();
1302 };
1303 
1304 // The following closures are used to do certain kinds of verification of
1305 // CMS marking.
1306 class PushAndMarkVerifyClosure: public MetadataAwareOopClosure {
1307   CMSCollector*    _collector;
1308   MemRegion        _span;
1309   CMSBitMap*       _verification_bm;
1310   CMSBitMap*       _cms_bm;
1311   CMSMarkStack*    _mark_stack;
1312  protected:
1313   void do_oop(oop p);
1314   template <class T> inline void do_oop_work(T *p) {
1315     oop obj = oopDesc::load_decode_heap_oop(p);
1316     do_oop(obj);
1317   }
1318  public:
1319   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
1320                            MemRegion span,
1321                            CMSBitMap* verification_bm,
1322                            CMSBitMap* cms_bm,
1323                            CMSMarkStack*  mark_stack);
1324   void do_oop(oop* p);
1325   void do_oop(narrowOop* p);
1326 
1327   // Deal with a stack overflow condition
1328   void handle_stack_overflow(HeapWord* lost);
1329 };
1330 
1331 class MarkFromRootsVerifyClosure: public BitMapClosure {
1332   CMSCollector*  _collector;
1333   MemRegion      _span;
1334   CMSBitMap*     _verification_bm;
1335   CMSBitMap*     _cms_bm;
1336   CMSMarkStack*  _mark_stack;
1337   HeapWord*      _finger;
1338   PushAndMarkVerifyClosure _pam_verify_closure;
1339  public:
1340   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
1341                              CMSBitMap* verification_bm,
1342                              CMSBitMap* cms_bm,
1343                              CMSMarkStack*  mark_stack);
1344   bool do_bit(size_t offset);
1345   void reset(HeapWord* addr);
1346 };
1347 
1348 
1349 // This closure is used to check that a certain set of bits is
1350 // "empty" (i.e. the bit vector doesn't have any 1-bits).
1351 class FalseBitMapClosure: public BitMapClosure {
1352  public:
1353   bool do_bit(size_t offset) {
1354     guarantee(false, "Should not have a 1 bit");
1355     return true;
1356   }
1357 };
1358 
1359 // A version of ObjectClosure with "memory" (see _previous_address below)
1360 class UpwardsObjectClosure: public BoolObjectClosure {
1361   HeapWord* _previous_address;
1362  public:
1363   UpwardsObjectClosure() : _previous_address(NULL) { }
1364   void set_previous(HeapWord* addr) { _previous_address = addr; }
1365   HeapWord* previous()              { return _previous_address; }
1366   // A return value of "true" can be used by the caller to decide
1367   // if this object's end should *NOT* be recorded in
1368   // _previous_address above.
1369   virtual bool do_object_bm(oop obj, MemRegion mr) = 0;
1370 };
1371 
1372 // This closure is used during the second checkpointing phase
1373 // to rescan the marked objects on the dirty cards in the mod
1374 // union table and the card table proper. It's invoked via
1375 // MarkFromDirtyCardsClosure below. It uses either
1376 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
1377 // declared in genOopClosures.hpp to accomplish some of its work.
1378 // In the parallel case the bitMap is shared, so access to
1379 // it needs to be suitably synchronized for updates by embedded
1380 // closures that update it; however, this closure itself only
1381 // reads the bit_map and because it is idempotent, is immune to
1382 // reading stale values.
1383 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
1384   #ifdef ASSERT
1385     CMSCollector*          _collector;
1386     MemRegion              _span;
1387     union {
1388       CMSMarkStack*        _mark_stack;
1389       OopTaskQueue*        _work_queue;
1390     };
1391   #endif // ASSERT
1392   bool                       _parallel;
1393   CMSBitMap*                 _bit_map;
1394   union {
1395     MarkRefsIntoAndScanClosure*    _scan_closure;
1396     ParMarkRefsIntoAndScanClosure* _par_scan_closure;
1397   };
1398 
1399  public:
1400   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1401                                 MemRegion span,
1402                                 ReferenceProcessor* rp,
1403                                 CMSBitMap* bit_map,
1404                                 CMSMarkStack*  mark_stack,
1405                                 MarkRefsIntoAndScanClosure* cl):
1406     #ifdef ASSERT
1407       _collector(collector),
1408       _span(span),
1409       _mark_stack(mark_stack),
1410     #endif // ASSERT
1411     _parallel(false),
1412     _bit_map(bit_map),
1413     _scan_closure(cl) { }
1414 
1415   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1416                                 MemRegion span,
1417                                 ReferenceProcessor* rp,
1418                                 CMSBitMap* bit_map,
1419                                 OopTaskQueue* work_queue,
1420                                 ParMarkRefsIntoAndScanClosure* cl):
1421     #ifdef ASSERT
1422       _collector(collector),
1423       _span(span),
1424       _work_queue(work_queue),
1425     #endif // ASSERT
1426     _parallel(true),
1427     _bit_map(bit_map),
1428     _par_scan_closure(cl) { }
1429 
1430   bool do_object_b(oop obj) {
1431     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
1432     return false;
1433   }
1434   bool do_object_bm(oop p, MemRegion mr);
1435 };
1436 
1437 // This closure is used during the second checkpointing phase
1438 // to rescan the marked objects on the dirty cards in the mod
1439 // union table and the card table proper. It invokes
1440 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
1441 // In the parallel case, the bit map is shared and requires
1442 // synchronized access.
1443 class MarkFromDirtyCardsClosure: public MemRegionClosure {
1444   CompactibleFreeListSpace*      _space;
1445   ScanMarkedObjectsAgainClosure  _scan_cl;
1446   size_t                         _num_dirty_cards;
1447 
1448  public:
1449   MarkFromDirtyCardsClosure(CMSCollector* collector,
1450                             MemRegion span,
1451                             CompactibleFreeListSpace* space,
1452                             CMSBitMap* bit_map,
1453                             CMSMarkStack* mark_stack,
1454                             MarkRefsIntoAndScanClosure* cl):
1455     _space(space),
1456     _num_dirty_cards(0),
1457     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1458                  mark_stack, cl) { }
1459 
1460   MarkFromDirtyCardsClosure(CMSCollector* collector,
1461                             MemRegion span,
1462                             CompactibleFreeListSpace* space,
1463                             CMSBitMap* bit_map,
1464                             OopTaskQueue* work_queue,
1465                             ParMarkRefsIntoAndScanClosure* cl):
1466     _space(space),
1467     _num_dirty_cards(0),
1468     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1469              work_queue, cl) { }
1470 
1471   void do_MemRegion(MemRegion mr);
1472   void set_space(CompactibleFreeListSpace* space) { _space = space; }
1473   size_t num_dirty_cards() { return _num_dirty_cards; }
1474 };
1475 
1476 // This closure is used in the non-product build to check
1477 // that there are no MemRegions with a certain property.
1478 class FalseMemRegionClosure: public MemRegionClosure {
1479   void do_MemRegion(MemRegion mr) {
1480     guarantee(!mr.is_empty(), "Shouldn't be empty");
1481     guarantee(false, "Should never be here");
1482   }
1483 };
1484 
1485 // This closure is used during the precleaning phase
1486 // to "carefully" rescan marked objects on dirty cards.
1487 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
1488 // to accomplish some of its work.
1489 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
1490   CMSCollector*                  _collector;
1491   MemRegion                      _span;
1492   bool                           _yield;
1493   Mutex*                         _freelistLock;
1494   CMSBitMap*                     _bitMap;
1495   CMSMarkStack*                  _markStack;
1496   MarkRefsIntoAndScanClosure*    _scanningClosure;
1497   DEBUG_ONLY(HeapWord*           _last_scanned_object;)
1498 
1499  public:
1500   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
1501                                          MemRegion     span,
1502                                          CMSBitMap* bitMap,
1503                                          CMSMarkStack*  markStack,
1504                                          MarkRefsIntoAndScanClosure* cl,
1505                                          bool should_yield):
1506     _collector(collector),
1507     _span(span),
1508     _yield(should_yield),
1509     _bitMap(bitMap),
1510     _markStack(markStack),
1511     _scanningClosure(cl)
1512     DEBUG_ONLY(COMMA _last_scanned_object(NULL))
1513   { }
1514 
1515   void do_object(oop p) {
1516     guarantee(false, "call do_object_careful instead");
1517   }
1518 
1519   size_t      do_object_careful(oop p) {
1520     guarantee(false, "Unexpected caller");
1521     return 0;
1522   }
1523 
1524   size_t      do_object_careful_m(oop p, MemRegion mr);
1525 
1526   void setFreelistLock(Mutex* m) {
1527     _freelistLock = m;
1528     _scanningClosure->set_freelistLock(m);
1529   }
1530 
1531  private:
1532   inline bool do_yield_check();
1533 
1534   void do_yield_work();
1535 };
1536 
1537 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
1538   CMSCollector*                  _collector;
1539   MemRegion                      _span;
1540   bool                           _yield;
1541   CMSBitMap*                     _bit_map;
1542   CMSMarkStack*                  _mark_stack;
1543   PushAndMarkClosure*            _scanning_closure;
1544   unsigned int                   _before_count;
1545 
1546  public:
1547   SurvivorSpacePrecleanClosure(CMSCollector* collector,
1548                                MemRegion     span,
1549                                CMSBitMap*    bit_map,
1550                                CMSMarkStack* mark_stack,
1551                                PushAndMarkClosure* cl,
1552                                unsigned int  before_count,
1553                                bool          should_yield):
1554     _collector(collector),
1555     _span(span),
1556     _yield(should_yield),
1557     _bit_map(bit_map),
1558     _mark_stack(mark_stack),
1559     _scanning_closure(cl),
1560     _before_count(before_count)
1561   { }
1562 
1563   void do_object(oop p) {
1564     guarantee(false, "call do_object_careful instead");
1565   }
1566 
1567   size_t      do_object_careful(oop p);
1568 
1569   size_t      do_object_careful_m(oop p, MemRegion mr) {
1570     guarantee(false, "Unexpected caller");
1571     return 0;
1572   }
1573 
1574  private:
1575   inline void do_yield_check();
1576   void do_yield_work();
1577 };
1578 
1579 // This closure is used to accomplish the sweeping work
1580 // after the second checkpoint but before the concurrent reset
1581 // phase.
1582 //
1583 // Terminology
1584 //   left hand chunk (LHC) - block of one or more chunks currently being
1585 //     coalesced.  The LHC is available for coalescing with a new chunk.
1586 //   right hand chunk (RHC) - block that is currently being swept that is
1587 //     free or garbage that can be coalesced with the LHC.
1588 // _inFreeRange is true if there is currently a LHC
1589 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
1590 // _freeRangeInFreeLists is true if the LHC is in the free lists.
1591 // _freeFinger is the address of the current LHC
1592 class SweepClosure: public BlkClosureCareful {
1593   CMSCollector*                  _collector;  // collector doing the work
1594   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
1595   CompactibleFreeListSpace*      _sp;   // Space being swept
1596   HeapWord*                      _limit;// the address at or above which the sweep should stop
1597                                         // because we do not expect newly garbage blocks
1598                                         // eligible for sweeping past that address.
1599   Mutex*                         _freelistLock; // Free list lock (in space)
1600   CMSBitMap*                     _bitMap;       // Marking bit map (in
1601                                                 // generation)
1602   bool                           _inFreeRange;  // Indicates if we are in the
1603                                                 // midst of a free run
1604   bool                           _freeRangeInFreeLists;
1605                                         // Often, we have just found
1606                                         // a free chunk and started
1607                                         // a new free range; we do not
1608                                         // eagerly remove this chunk from
1609                                         // the free lists unless there is
1610                                         // a possibility of coalescing.
1611                                         // When true, this flag indicates
1612                                         // that the _freeFinger below
1613                                         // points to a potentially free chunk
1614                                         // that may still be in the free lists
1615   bool                           _lastFreeRangeCoalesced;
1616                                         // free range contains chunks
1617                                         // coalesced
1618   bool                           _yield;
1619                                         // Whether sweeping should be
1620                                         // done with yields. For instance
1621                                         // when done by the foreground
1622                                         // collector we shouldn't yield.
1623   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
1624                                                 // pointer to the "left hand
1625                                                 // chunk"
1626   size_t                         _freeRangeSize;
1627                                         // When _inFreeRange is set, this
1628                                         // indicates the accumulated size
1629                                         // of the "left hand chunk"
1630   NOT_PRODUCT(
1631     size_t                       _numObjectsFreed;
1632     size_t                       _numWordsFreed;
1633     size_t                       _numObjectsLive;
1634     size_t                       _numWordsLive;
1635     size_t                       _numObjectsAlreadyFree;
1636     size_t                       _numWordsAlreadyFree;
1637     FreeChunk*                   _last_fc;
1638   )
1639  private:
1640   // Code that is common to a free chunk or garbage when
1641   // encountered during sweeping.
1642   void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
1643   // Process a free chunk during sweeping.
1644   void do_already_free_chunk(FreeChunk *fc);
1645   // Work method called when processing an already free or a
1646   // freshly garbage chunk to do a lookahead and possibly a
1647   // preemptive flush if crossing over _limit.
1648   void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
1649   // Process a garbage chunk during sweeping.
1650   size_t do_garbage_chunk(FreeChunk *fc);
1651   // Process a live chunk during sweeping.
1652   size_t do_live_chunk(FreeChunk* fc);
1653 
1654   // Accessors.
1655   HeapWord* freeFinger() const          { return _freeFinger; }
1656   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
1657   bool inFreeRange()    const           { return _inFreeRange; }
1658   void set_inFreeRange(bool v)          { _inFreeRange = v; }
1659   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
1660   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
1661   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
1662   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
1663 
1664   // Initialize a free range.
1665   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
1666   // Return this chunk to the free lists.
1667   void flush_cur_free_chunk(HeapWord* chunk, size_t size);
1668 
1669   // Check if we should yield and do so when necessary.
1670   inline void do_yield_check(HeapWord* addr);
1671 
1672   // Yield
1673   void do_yield_work(HeapWord* addr);
1674 
1675   // Debugging/Printing
1676   void print_free_block_coalesced(FreeChunk* fc) const;
1677 
1678  public:
1679   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
1680                CMSBitMap* bitMap, bool should_yield);
1681   ~SweepClosure() PRODUCT_RETURN;
1682 
1683   size_t       do_blk_careful(HeapWord* addr);
1684   void         print() const { print_on(tty); }
1685   void         print_on(outputStream *st) const;
1686 };
1687 
1688 // Closures related to weak references processing
1689 
1690 // During CMS' weak reference processing, this is a
1691 // work-routine/closure used to complete transitive
1692 // marking of objects as live after a certain point
1693 // in which an initial set has been completely accumulated.
1694 // This closure is currently used both during the final
1695 // remark stop-world phase, as well as during the concurrent
1696 // precleaning of the discovered reference lists.
1697 class CMSDrainMarkingStackClosure: public VoidClosure {
1698   CMSCollector*        _collector;
1699   MemRegion            _span;
1700   CMSMarkStack*        _mark_stack;
1701   CMSBitMap*           _bit_map;
1702   CMSKeepAliveClosure* _keep_alive;
1703   bool                 _concurrent_precleaning;
1704  public:
1705   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
1706                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
1707                       CMSKeepAliveClosure* keep_alive,
1708                       bool cpc):
1709     _collector(collector),
1710     _span(span),
1711     _bit_map(bit_map),
1712     _mark_stack(mark_stack),
1713     _keep_alive(keep_alive),
1714     _concurrent_precleaning(cpc) {
1715     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
1716            "Mismatch");
1717   }
1718 
1719   void do_void();
1720 };
1721 
1722 // A parallel version of CMSDrainMarkingStackClosure above.
1723 class CMSParDrainMarkingStackClosure: public VoidClosure {
1724   CMSCollector*           _collector;
1725   MemRegion               _span;
1726   OopTaskQueue*           _work_queue;
1727   CMSBitMap*              _bit_map;
1728   CMSInnerParMarkAndPushClosure _mark_and_push;
1729 
1730  public:
1731   CMSParDrainMarkingStackClosure(CMSCollector* collector,
1732                                  MemRegion span, CMSBitMap* bit_map,
1733                                  OopTaskQueue* work_queue):
1734     _collector(collector),
1735     _span(span),
1736     _bit_map(bit_map),
1737     _work_queue(work_queue),
1738     _mark_and_push(collector, span, bit_map, work_queue) { }
1739 
1740  public:
1741   void trim_queue(uint max);
1742   void do_void();
1743 };
1744 
1745 // Allow yielding or short-circuiting of reference list
1746 // precleaning work.
1747 class CMSPrecleanRefsYieldClosure: public YieldClosure {
1748   CMSCollector* _collector;
1749   void do_yield_work();
1750  public:
1751   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
1752     _collector(collector) {}
1753   virtual bool should_return();
1754 };
1755 
1756 
1757 // Convenience class that locks free list locks for given CMS collector
1758 class FreelistLocker: public StackObj {
1759  private:
1760   CMSCollector* _collector;
1761  public:
1762   FreelistLocker(CMSCollector* collector):
1763     _collector(collector) {
1764     _collector->getFreelistLocks();
1765   }
1766 
1767   ~FreelistLocker() {
1768     _collector->releaseFreelistLocks();
1769   }
1770 };
1771 
1772 // Mark all dead objects in a given space.
1773 class MarkDeadObjectsClosure: public BlkClosure {
1774   const CMSCollector*             _collector;
1775   const CompactibleFreeListSpace* _sp;
1776   CMSBitMap*                      _live_bit_map;
1777   CMSBitMap*                      _dead_bit_map;
1778 public:
1779   MarkDeadObjectsClosure(const CMSCollector* collector,
1780                          const CompactibleFreeListSpace* sp,
1781                          CMSBitMap *live_bit_map,
1782                          CMSBitMap *dead_bit_map) :
1783     _collector(collector),
1784     _sp(sp),
1785     _live_bit_map(live_bit_map),
1786     _dead_bit_map(dead_bit_map) {}
1787   size_t do_blk(HeapWord* addr);
1788 };
1789 
1790 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
1791 
1792  public:
1793   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
1794 };
1795 
1796 
1797 #endif // SHARE_VM_GC_CMS_CONCURRENTMARKSWEEPGENERATION_HPP