1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP
  26 #define SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP
  27 
  28 #include "gc/parallel/objectStartArray.hpp"
  29 #include "gc/parallel/psGCAdaptivePolicyCounters.hpp"
  30 #include "gc/parallel/psOldGen.hpp"
  31 #include "gc/parallel/psSettings.hpp"
  32 #include "gc/parallel/psYoungGen.hpp"
  33 #include "gc/shared/collectedHeap.hpp"
  34 #include "gc/shared/gcPolicyCounters.hpp"
  35 #include "gc/shared/gcWhen.hpp"
  36 #include "gc/shared/softRefPolicy.hpp"
  37 #include "gc/shared/strongRootsScope.hpp"
  38 #include "memory/metaspace.hpp"
  39 #include "utilities/growableArray.hpp"
  40 #include "utilities/ostream.hpp"
  41 
  42 class AdjoiningGenerations;
  43 class GCHeapSummary;
  44 class GCTaskManager;
  45 class MemoryManager;
  46 class MemoryPool;
  47 class PSAdaptiveSizePolicy;
  48 class PSGCAdaptivePolicyCounters;
  49 class PSHeapSummary;
  50 
  51 class ParallelScavengeHeap : public CollectedHeap {
  52   friend class VMStructs;
  53  private:
  54   static PSYoungGen* _young_gen;
  55   static PSOldGen*   _old_gen;
  56 
  57   // Sizing policy for entire heap
  58   static PSAdaptiveSizePolicy*       _size_policy;
  59   static PSGCAdaptivePolicyCounters* _gc_policy_counters;
  60 
  61   const PSSettings _settings;
  62 
  63   SoftRefPolicy _soft_ref_policy;
  64 
  65   // Collection of generations that are adjacent in the
  66   // space reserved for the heap.
  67   AdjoiningGenerations* _gens;
  68   unsigned int _death_march_count;
  69 
  70   // The task manager
  71   static GCTaskManager* _gc_task_manager;
  72 
  73   GCMemoryManager* _young_manager;
  74   GCMemoryManager* _old_manager;
  75 
  76   MemoryPool* _eden_pool;
  77   MemoryPool* _survivor_pool;
  78   MemoryPool* _old_pool;
  79 
  80   virtual void initialize_serviceability();
  81 
  82   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
  83 
  84  protected:
  85   static inline size_t total_invocations();
  86   HeapWord* allocate_new_tlab(size_t size);
  87 
  88   inline bool should_alloc_in_eden(size_t size) const;
  89   inline void death_march_check(HeapWord* const result, size_t size);
  90   HeapWord* mem_allocate_old_gen(size_t size);
  91 
  92  public:
  93   ParallelScavengeHeap(const PSSettings& settings) :
  94       CollectedHeap(),
  95       _settings(settings),
  96       _death_march_count(0) { }
  97 
  98   // For use by VM operations
  99   enum CollectionType {
 100     Scavenge,
 101     MarkSweep
 102   };
 103 
 104   virtual Name kind() const {
 105     return CollectedHeap::ParallelScavengeHeap;
 106   }
 107 
 108   virtual const char* name() const {
 109     return "Parallel";
 110   }
 111 
 112   virtual SoftRefPolicy* soft_ref_policy() { return &_soft_ref_policy; }
 113 
 114   virtual GrowableArray<GCMemoryManager*> memory_managers();
 115   virtual GrowableArray<MemoryPool*> memory_pools();
 116 
 117   static PSYoungGen* young_gen() { return _young_gen; }
 118   static PSOldGen* old_gen()     { return _old_gen; }
 119 
 120   virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
 121 
 122   static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
 123 
 124   static ParallelScavengeHeap* heap();
 125 
 126   static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
 127 
 128   AdjoiningGenerations* gens() { return _gens; }
 129 
 130   // Returns JNI_OK on success
 131   virtual jint initialize();
 132 
 133   void post_initialize();
 134   void update_counters();
 135 
 136   // The alignment used for the various areas
 137   size_t gen_alignment()   const { return _settings._gen_alignment; }
 138   size_t space_alignment() const { return _settings._space_alignment; }
 139   size_t heap_alignment()  const { return _settings._heap_alignment; }
 140 
 141   // Return the (conservative) maximum heap alignment
 142   static size_t conservative_max_heap_alignment() {
 143     return compute_heap_alignment();
 144   }
 145 
 146   size_t capacity() const;
 147   size_t used() const;
 148 
 149   // Return "true" if all generations have reached the
 150   // maximal committed limit that they can reach, without a garbage
 151   // collection.
 152   virtual bool is_maximal_no_gc() const;
 153 
 154   // Return true if the reference points to an object that
 155   // can be moved in a partial collection.  For currently implemented
 156   // generational collectors that means during a collection of
 157   // the young gen.
 158   virtual bool is_scavengable(oop obj);
 159   virtual void register_nmethod(nmethod* nm);
 160   virtual void verify_nmethod(nmethod* nmethod);
 161 
 162   size_t max_capacity() const;
 163 
 164   // Whether p is in the allocated part of the heap
 165   bool is_in(const void* p) const;
 166 
 167   bool is_in_reserved(const void* p) const;
 168 
 169   bool is_in_young(oop p);  // reserved part
 170   bool is_in_old(oop p);    // reserved part
 171 
 172   // Memory allocation.   "gc_time_limit_was_exceeded" will
 173   // be set to true if the adaptive size policy determine that
 174   // an excessive amount of time is being spent doing collections
 175   // and caused a NULL to be returned.  If a NULL is not returned,
 176   // "gc_time_limit_was_exceeded" has an undefined meaning.
 177   HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded);
 178 
 179   // Allocation attempt(s) during a safepoint. It should never be called
 180   // to allocate a new TLAB as this allocation might be satisfied out
 181   // of the old generation.
 182   HeapWord* failed_mem_allocate(size_t size);
 183 
 184   // Support for System.gc()
 185   void collect(GCCause::Cause cause);
 186 
 187   // These also should be called by the vm thread at a safepoint (e.g., from a
 188   // VM operation).
 189   //
 190   // The first collects the young generation only, unless the scavenge fails; it
 191   // will then attempt a full gc.  The second collects the entire heap; if
 192   // maximum_compaction is true, it will compact everything and clear all soft
 193   // references.
 194   inline void invoke_scavenge();
 195 
 196   // Perform a full collection
 197   virtual void do_full_collection(bool clear_all_soft_refs);
 198 
 199   bool supports_inline_contig_alloc() const { return !UseNUMA; }
 200 
 201   HeapWord* volatile* top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord* volatile*)-1; }
 202   HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
 203 
 204   void ensure_parsability(bool retire_tlabs);
 205   void accumulate_statistics_all_tlabs();
 206   void resize_all_tlabs();
 207 
 208   bool supports_tlab_allocation() const { return true; }
 209 
 210   size_t tlab_capacity(Thread* thr) const;
 211   size_t tlab_used(Thread* thr) const;
 212   size_t unsafe_max_tlab_alloc(Thread* thr) const;
 213 
 214   void object_iterate(ObjectClosure* cl);
 215   void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
 216 
 217   HeapWord* block_start(const void* addr) const;
 218   size_t block_size(const HeapWord* addr) const;
 219   bool block_is_obj(const HeapWord* addr) const;
 220 
 221   jlong millis_since_last_gc();
 222 
 223   void prepare_for_verify();
 224   PSHeapSummary create_ps_heap_summary();
 225   virtual void print_on(outputStream* st) const;
 226   virtual void print_on_error(outputStream* st) const;
 227   virtual void print_gc_threads_on(outputStream* st) const;
 228   virtual void gc_threads_do(ThreadClosure* tc) const;
 229   virtual void print_tracing_info() const;
 230 
 231   void verify(VerifyOption option /* ignored */);
 232 
 233   // Resize the young generation.  The reserved space for the
 234   // generation may be expanded in preparation for the resize.
 235   void resize_young_gen(size_t eden_size, size_t survivor_size);
 236 
 237   // Resize the old generation.  The reserved space for the
 238   // generation may be expanded in preparation for the resize.
 239   void resize_old_gen(size_t desired_free_space);
 240 
 241   // Save the tops of the spaces in all generations
 242   void record_gen_tops_before_GC() PRODUCT_RETURN;
 243 
 244   // Mangle the unused parts of all spaces in the heap
 245   void gen_mangle_unused_area() PRODUCT_RETURN;
 246 
 247   // Call these in sequential code around the processing of strong roots.
 248   class ParStrongRootsScope : public MarkScope {
 249    public:
 250     ParStrongRootsScope();
 251     ~ParStrongRootsScope();
 252   };
 253 
 254   GCMemoryManager* old_gc_manager() const { return _old_manager; }
 255   GCMemoryManager* young_gc_manager() const { return _young_manager; }
 256 };
 257 
 258 // Simple class for storing info about the heap at the start of GC, to be used
 259 // after GC for comparison/printing.
 260 class PreGCValues {
 261 public:
 262   PreGCValues(ParallelScavengeHeap* heap) :
 263       _heap_used(heap->used()),
 264       _young_gen_used(heap->young_gen()->used_in_bytes()),
 265       _old_gen_used(heap->old_gen()->used_in_bytes()),
 266       _metadata_used(MetaspaceAux::used_bytes()) { };
 267 
 268   size_t heap_used() const      { return _heap_used; }
 269   size_t young_gen_used() const { return _young_gen_used; }
 270   size_t old_gen_used() const   { return _old_gen_used; }
 271   size_t metadata_used() const  { return _metadata_used; }
 272 
 273 private:
 274   size_t _heap_used;
 275   size_t _young_gen_used;
 276   size_t _old_gen_used;
 277   size_t _metadata_used;
 278 };
 279 
 280 // Class that can be used to print information about the
 281 // adaptive size policy at intervals specified by
 282 // AdaptiveSizePolicyOutputInterval.  Only print information
 283 // if an adaptive size policy is in use.
 284 class AdaptiveSizePolicyOutput : AllStatic {
 285   static bool enabled() {
 286     return UseParallelGC &&
 287            UseAdaptiveSizePolicy &&
 288            log_is_enabled(Debug, gc, ergo);
 289   }
 290  public:
 291   static void print() {
 292     if (enabled()) {
 293       ParallelScavengeHeap::heap()->size_policy()->print();
 294     }
 295   }
 296 
 297   static void print(AdaptiveSizePolicy* size_policy, uint count) {
 298     bool do_print =
 299         enabled() &&
 300         (AdaptiveSizePolicyOutputInterval > 0) &&
 301         (count % AdaptiveSizePolicyOutputInterval) == 0;
 302 
 303     if (do_print) {
 304       size_policy->print();
 305     }
 306   }
 307 };
 308 
 309 #endif // SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP