1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc/shared/allocTracer.hpp"
  28 #include "gc/shared/barrierSet.inline.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "gc/shared/gcHeapSummary.hpp"
  32 #include "gc/shared/gcTrace.hpp"
  33 #include "gc/shared/gcTraceTime.inline.hpp"
  34 #include "gc/shared/gcWhen.hpp"
  35 #include "gc/shared/vmGCOperations.hpp"
  36 #include "logging/log.hpp"
  37 #include "memory/metaspace.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/instanceMirrorKlass.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "runtime/init.hpp"
  42 #include "runtime/thread.inline.hpp"
  43 #include "runtime/threadSMR.hpp"
  44 #include "services/heapDumper.hpp"
  45 #include "utilities/align.hpp"
  46 
  47 
  48 #ifdef ASSERT
  49 int CollectedHeap::_fire_out_of_memory_count = 0;
  50 #endif
  51 
  52 size_t CollectedHeap::_filler_array_max_size = 0;
  53 
  54 template <>
  55 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
  56   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
  57   st->print_raw(m);
  58 }
  59 
  60 void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
  61   if (!should_log()) {
  62     return;
  63   }
  64 
  65   double timestamp = fetch_timestamp();
  66   MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
  67   int index = compute_log_index();
  68   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
  69   _records[index].timestamp = timestamp;
  70   _records[index].data.is_before = before;
  71   stringStream st(_records[index].data.buffer(), _records[index].data.size());
  72 
  73   st.print_cr("{Heap %s GC invocations=%u (full %u):",
  74                  before ? "before" : "after",
  75                  heap->total_collections(),
  76                  heap->total_full_collections());
  77 
  78   heap->print_on(&st);
  79   st.print_cr("}");
  80 }
  81 
  82 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
  83   size_t capacity_in_words = capacity() / HeapWordSize;
  84 
  85   return VirtualSpaceSummary(
  86     reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
  87 }
  88 
  89 GCHeapSummary CollectedHeap::create_heap_summary() {
  90   VirtualSpaceSummary heap_space = create_heap_space_summary();
  91   return GCHeapSummary(heap_space, used());
  92 }
  93 
  94 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
  95   const MetaspaceSizes meta_space(
  96       MetaspaceAux::committed_bytes(),
  97       MetaspaceAux::used_bytes(),
  98       MetaspaceAux::reserved_bytes());
  99   const MetaspaceSizes data_space(
 100       MetaspaceAux::committed_bytes(Metaspace::NonClassType),
 101       MetaspaceAux::used_bytes(Metaspace::NonClassType),
 102       MetaspaceAux::reserved_bytes(Metaspace::NonClassType));
 103   const MetaspaceSizes class_space(
 104       MetaspaceAux::committed_bytes(Metaspace::ClassType),
 105       MetaspaceAux::used_bytes(Metaspace::ClassType),
 106       MetaspaceAux::reserved_bytes(Metaspace::ClassType));
 107 
 108   const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
 109     MetaspaceAux::chunk_free_list_summary(Metaspace::NonClassType);
 110   const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
 111     MetaspaceAux::chunk_free_list_summary(Metaspace::ClassType);
 112 
 113   return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
 114                           ms_chunk_free_list_summary, class_chunk_free_list_summary);
 115 }
 116 
 117 void CollectedHeap::print_heap_before_gc() {
 118   Universe::print_heap_before_gc();
 119   if (_gc_heap_log != NULL) {
 120     _gc_heap_log->log_heap_before(this);
 121   }
 122 }
 123 
 124 void CollectedHeap::print_heap_after_gc() {
 125   Universe::print_heap_after_gc();
 126   if (_gc_heap_log != NULL) {
 127     _gc_heap_log->log_heap_after(this);
 128   }
 129 }
 130 
 131 void CollectedHeap::print_on_error(outputStream* st) const {
 132   st->print_cr("Heap:");
 133   print_extended_on(st);
 134   st->cr();
 135 
 136   _barrier_set->print_on(st);
 137 }
 138 
 139 void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 140   const GCHeapSummary& heap_summary = create_heap_summary();
 141   gc_tracer->report_gc_heap_summary(when, heap_summary);
 142 
 143   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 144   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 145 }
 146 
 147 void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
 148   trace_heap(GCWhen::BeforeGC, gc_tracer);
 149 }
 150 
 151 void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
 152   trace_heap(GCWhen::AfterGC, gc_tracer);
 153 }
 154 
 155 // WhiteBox API support for concurrent collectors.  These are the
 156 // default implementations, for collectors which don't support this
 157 // feature.
 158 bool CollectedHeap::supports_concurrent_phase_control() const {
 159   return false;
 160 }
 161 
 162 const char* const* CollectedHeap::concurrent_phases() const {
 163   static const char* const result[] = { NULL };
 164   return result;
 165 }
 166 
 167 bool CollectedHeap::request_concurrent_phase(const char* phase) {
 168   return false;
 169 }
 170 
 171 // Memory state functions.
 172 
 173 
 174 CollectedHeap::CollectedHeap() :
 175   _barrier_set(NULL),
 176   _is_gc_active(false),
 177   _total_collections(0),
 178   _total_full_collections(0),
 179   _gc_cause(GCCause::_no_gc),
 180   _gc_lastcause(GCCause::_no_gc)
 181 {
 182   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
 183   const size_t elements_per_word = HeapWordSize / sizeof(jint);
 184   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
 185                                              max_len / elements_per_word);
 186 
 187   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
 188   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
 189 
 190   if (UsePerfData) {
 191     EXCEPTION_MARK;
 192 
 193     // create the gc cause jvmstat counters
 194     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
 195                              80, GCCause::to_string(_gc_cause), CHECK);
 196 
 197     _perf_gc_lastcause =
 198                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
 199                              80, GCCause::to_string(_gc_lastcause), CHECK);
 200   }
 201 
 202   // Create the ring log
 203   if (LogEvents) {
 204     _gc_heap_log = new GCHeapLog();
 205   } else {
 206     _gc_heap_log = NULL;
 207   }
 208 }
 209 
 210 // This interface assumes that it's being called by the
 211 // vm thread. It collects the heap assuming that the
 212 // heap lock is already held and that we are executing in
 213 // the context of the vm thread.
 214 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 215   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 216   assert(Heap_lock->is_locked(), "Precondition#2");
 217   GCCauseSetter gcs(this, cause);
 218   switch (cause) {
 219     case GCCause::_heap_inspection:
 220     case GCCause::_heap_dump:
 221     case GCCause::_metadata_GC_threshold : {
 222       HandleMark hm;
 223       do_full_collection(false);        // don't clear all soft refs
 224       break;
 225     }
 226     case GCCause::_metadata_GC_clear_soft_refs: {
 227       HandleMark hm;
 228       do_full_collection(true);         // do clear all soft refs
 229       break;
 230     }
 231     default:
 232       ShouldNotReachHere(); // Unexpected use of this function
 233   }
 234 }
 235 
 236 void CollectedHeap::set_barrier_set(BarrierSet* barrier_set) {
 237   _barrier_set = barrier_set;
 238   BarrierSet::set_bs(barrier_set);
 239 }
 240 
 241 #ifndef PRODUCT
 242 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
 243   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 244     for (size_t slot = 0; slot < size; slot += 1) {
 245       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
 246              "Found badHeapWordValue in post-allocation check");
 247     }
 248   }
 249 }
 250 
 251 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 252   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 253     for (size_t slot = 0; slot < size; slot += 1) {
 254       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 255              "Found non badHeapWordValue in pre-allocation check");
 256     }
 257   }
 258 }
 259 #endif // PRODUCT
 260 
 261 #ifdef ASSERT
 262 void CollectedHeap::check_for_valid_allocation_state() {
 263   Thread *thread = Thread::current();
 264   // How to choose between a pending exception and a potential
 265   // OutOfMemoryError?  Don't allow pending exceptions.
 266   // This is a VM policy failure, so how do we exhaustively test it?
 267   assert(!thread->has_pending_exception(),
 268          "shouldn't be allocating with pending exception");
 269   if (StrictSafepointChecks) {
 270     assert(thread->allow_allocation(),
 271            "Allocation done by thread for which allocation is blocked "
 272            "by No_Allocation_Verifier!");
 273     // Allocation of an oop can always invoke a safepoint,
 274     // hence, the true argument
 275     thread->check_for_valid_safepoint_state(true);
 276   }
 277 }
 278 #endif
 279 
 280 HeapWord* CollectedHeap::allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size) {
 281 
 282   // Retain tlab and allocate object in shared space if
 283   // the amount free in the tlab is too large to discard.
 284   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 285     thread->tlab().record_slow_allocation(size);
 286     return NULL;
 287   }
 288 
 289   // Discard tlab and allocate a new one.
 290   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 291   size_t new_tlab_size = thread->tlab().compute_size(size);
 292 
 293   thread->tlab().clear_before_allocation();
 294 
 295   if (new_tlab_size == 0) {
 296     return NULL;
 297   }
 298 
 299   // Allocate a new TLAB...
 300   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 301   if (obj == NULL) {
 302     return NULL;
 303   }
 304 
 305   AllocTracer::send_allocation_in_new_tlab(klass, obj, new_tlab_size * HeapWordSize, size * HeapWordSize, thread);
 306 
 307   if (ZeroTLAB) {
 308     // ..and clear it.
 309     Copy::zero_to_words(obj, new_tlab_size);
 310   } else {
 311     // ...and zap just allocated object.
 312 #ifdef ASSERT
 313     // Skip mangling the space corresponding to the object header to
 314     // ensure that the returned space is not considered parsable by
 315     // any concurrent GC thread.
 316     size_t hdr_size = oopDesc::header_size();
 317     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
 318 #endif // ASSERT
 319   }
 320   thread->tlab().fill(obj, obj + size, new_tlab_size);
 321   return obj;
 322 }
 323 
 324 size_t CollectedHeap::max_tlab_size() const {
 325   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
 326   // This restriction could be removed by enabling filling with multiple arrays.
 327   // If we compute that the reasonable way as
 328   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
 329   // we'll overflow on the multiply, so we do the divide first.
 330   // We actually lose a little by dividing first,
 331   // but that just makes the TLAB  somewhat smaller than the biggest array,
 332   // which is fine, since we'll be able to fill that.
 333   size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
 334               sizeof(jint) *
 335               ((juint) max_jint / (size_t) HeapWordSize);
 336   return align_down(max_int_size, MinObjAlignment);
 337 }
 338 
 339 size_t CollectedHeap::filler_array_hdr_size() {
 340   return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long
 341 }
 342 
 343 size_t CollectedHeap::filler_array_min_size() {
 344   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 345 }
 346 
 347 #ifdef ASSERT
 348 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 349 {
 350   assert(words >= min_fill_size(), "too small to fill");
 351   assert(is_object_aligned(words), "unaligned size");
 352   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 353   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 354 }
 355 
 356 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 357 {
 358   if (ZapFillerObjects && zap) {
 359     Copy::fill_to_words(start + filler_array_hdr_size(),
 360                         words - filler_array_hdr_size(), 0XDEAFBABE);
 361   }
 362 }
 363 #endif // ASSERT
 364 
 365 void
 366 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 367 {
 368   assert(words >= filler_array_min_size(), "too small for an array");
 369   assert(words <= filler_array_max_size(), "too big for a single object");
 370 
 371   const size_t payload_size = words - filler_array_hdr_size();
 372   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 373   assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len);
 374 
 375   // Set the length first for concurrent GC.
 376   ((arrayOop)start)->set_length((int)len);
 377   post_allocation_setup_common(Universe::intArrayKlassObj(), start);
 378   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 379 }
 380 
 381 void
 382 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 383 {
 384   assert(words <= filler_array_max_size(), "too big for a single object");
 385 
 386   if (words >= filler_array_min_size()) {
 387     fill_with_array(start, words, zap);
 388   } else if (words > 0) {
 389     assert(words == min_fill_size(), "unaligned size");
 390     post_allocation_setup_common(SystemDictionary::Object_klass(), start);
 391   }
 392 }
 393 
 394 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 395 {
 396   DEBUG_ONLY(fill_args_check(start, words);)
 397   HandleMark hm;  // Free handles before leaving.
 398   fill_with_object_impl(start, words, zap);
 399 }
 400 
 401 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 402 {
 403   DEBUG_ONLY(fill_args_check(start, words);)
 404   HandleMark hm;  // Free handles before leaving.
 405 
 406   // Multiple objects may be required depending on the filler array maximum size. Fill
 407   // the range up to that with objects that are filler_array_max_size sized. The
 408   // remainder is filled with a single object.
 409   const size_t min = min_fill_size();
 410   const size_t max = filler_array_max_size();
 411   while (words > max) {
 412     const size_t cur = (words - max) >= min ? max : max - min;
 413     fill_with_array(start, cur, zap);
 414     start += cur;
 415     words -= cur;
 416   }
 417 
 418   fill_with_object_impl(start, words, zap);
 419 }
 420 
 421 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 422   guarantee(false, "thread-local allocation buffers not supported");
 423   return NULL;
 424 }
 425 
 426 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 427   // The second disjunct in the assertion below makes a concession
 428   // for the start-up verification done while the VM is being
 429   // created. Callers be careful that you know that mutators
 430   // aren't going to interfere -- for instance, this is permissible
 431   // if we are still single-threaded and have either not yet
 432   // started allocating (nothing much to verify) or we have
 433   // started allocating but are now a full-fledged JavaThread
 434   // (and have thus made our TLAB's) available for filling.
 435   assert(SafepointSynchronize::is_at_safepoint() ||
 436          !is_init_completed(),
 437          "Should only be called at a safepoint or at start-up"
 438          " otherwise concurrent mutator activity may make heap "
 439          " unparsable again");
 440   const bool use_tlab = UseTLAB;
 441   // The main thread starts allocating via a TLAB even before it
 442   // has added itself to the threads list at vm boot-up.
 443   JavaThreadIteratorWithHandle jtiwh;
 444   assert(!use_tlab || jtiwh.length() > 0,
 445          "Attempt to fill tlabs before main thread has been added"
 446          " to threads list is doomed to failure!");
 447   BarrierSet *bs = barrier_set();
 448   for (; JavaThread *thread = jtiwh.next(); ) {
 449      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 450      bs->make_parsable(thread);
 451   }
 452 }
 453 
 454 void CollectedHeap::accumulate_statistics_all_tlabs() {
 455   if (UseTLAB) {
 456     assert(SafepointSynchronize::is_at_safepoint() ||
 457          !is_init_completed(),
 458          "should only accumulate statistics on tlabs at safepoint");
 459 
 460     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 461   }
 462 }
 463 
 464 void CollectedHeap::resize_all_tlabs() {
 465   if (UseTLAB) {
 466     assert(SafepointSynchronize::is_at_safepoint() ||
 467          !is_init_completed(),
 468          "should only resize tlabs at safepoint");
 469 
 470     ThreadLocalAllocBuffer::resize_all_tlabs();
 471   }
 472 }
 473 
 474 void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
 475   assert(timer != NULL, "timer is null");
 476   if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
 477     GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
 478     HeapDumper::dump_heap();
 479   }
 480 
 481   LogTarget(Trace, gc, classhisto) lt;
 482   if (lt.is_enabled()) {
 483     GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
 484     ResourceMark rm;
 485     LogStream ls(lt);
 486     VM_GC_HeapInspection inspector(&ls, false /* ! full gc */);
 487     inspector.doit();
 488   }
 489 }
 490 
 491 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
 492   full_gc_dump(timer, true);
 493 }
 494 
 495 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
 496   full_gc_dump(timer, false);
 497 }
 498 
 499 void CollectedHeap::initialize_reserved_region(HeapWord *start, HeapWord *end) {
 500   // It is important to do this in a way such that concurrent readers can't
 501   // temporarily think something is in the heap.  (Seen this happen in asserts.)
 502   _reserved.set_word_size(0);
 503   _reserved.set_start(start);
 504   _reserved.set_end(end);
 505 }
 506 
 507 void CollectedHeap::post_initialize() {
 508   initialize_serviceability();
 509 }