1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/events.hpp"
  36 #include "utilities/formatBuffer.hpp"
  37 #include "utilities/growableArray.hpp"
  38 
  39 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  40 // is an abstract class: there may be many different kinds of heaps.  This
  41 // class defines the functions that a heap must implement, and contains
  42 // infrastructure common to all heaps.
  43 
  44 class AdaptiveSizePolicy;
  45 class BarrierSet;
  46 class SoftRefPolicy;
  47 class GCHeapSummary;
  48 class GCTimer;
  49 class GCTracer;
  50 class GCMemoryManager;
  51 class MemoryPool;
  52 class MetaspaceSummary;
  53 class Thread;
  54 class ThreadClosure;
  55 class VirtualSpaceSummary;
  56 class WorkGang;
  57 class nmethod;
  58 
  59 class GCMessage : public FormatBuffer<1024> {
  60  public:
  61   bool is_before;
  62 
  63  public:
  64   GCMessage() {}
  65 };
  66 
  67 class CollectedHeap;
  68 
  69 class GCHeapLog : public EventLogBase<GCMessage> {
  70  private:
  71   void log_heap(CollectedHeap* heap, bool before);
  72 
  73  public:
  74   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  75 
  76   void log_heap_before(CollectedHeap* heap) {
  77     log_heap(heap, true);
  78   }
  79   void log_heap_after(CollectedHeap* heap) {
  80     log_heap(heap, false);
  81   }
  82 };
  83 
  84 //
  85 // CollectedHeap
  86 //   GenCollectedHeap
  87 //     SerialHeap
  88 //     CMSHeap
  89 //   G1CollectedHeap
  90 //   ParallelScavengeHeap
  91 //
  92 class CollectedHeap : public CHeapObj<mtInternal> {
  93   friend class VMStructs;
  94   friend class JVMCIVMStructs;
  95   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  96 
  97  private:
  98 #ifdef ASSERT
  99   static int       _fire_out_of_memory_count;
 100 #endif
 101 
 102   GCHeapLog* _gc_heap_log;
 103 
 104   MemRegion _reserved;
 105 
 106  protected:
 107   BarrierSet* _barrier_set;
 108   bool _is_gc_active;
 109 
 110   // Used for filler objects (static, but initialized in ctor).
 111   static size_t _filler_array_max_size;
 112 
 113   unsigned int _total_collections;          // ... started
 114   unsigned int _total_full_collections;     // ... started
 115   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 116   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 117 
 118   // Reason for current garbage collection.  Should be set to
 119   // a value reflecting no collection between collections.
 120   GCCause::Cause _gc_cause;
 121   GCCause::Cause _gc_lastcause;
 122   PerfStringVariable* _perf_gc_cause;
 123   PerfStringVariable* _perf_gc_lastcause;
 124 
 125   // Constructor
 126   CollectedHeap();
 127 
 128   // Create a new tlab. All TLAB allocations must go through this.
 129   virtual HeapWord* allocate_new_tlab(size_t size);
 130 
 131   // Accumulate statistics on all tlabs.
 132   virtual void accumulate_statistics_all_tlabs();
 133 
 134   // Reinitialize tlabs before resuming mutators.
 135   virtual void resize_all_tlabs();
 136 
 137   // Allocate from the current thread's TLAB, with broken-out slow path.
 138   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
 139   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
 140 
 141   // Allocate an uninitialized block of the given size, or returns NULL if
 142   // this is impossible.
 143   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 144 
 145   // Like allocate_init, but the block returned by a successful allocation
 146   // is guaranteed initialized to zeros.
 147   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 148 
 149   // Helper functions for (VM) allocation.
 150   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 151   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 152                                                             HeapWord* objPtr);
 153 
 154   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 155 
 156   inline static void post_allocation_setup_array(Klass* klass,
 157                                                  HeapWord* obj, int length);
 158 
 159   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 160 
 161   // Clears an allocated object.
 162   inline static void init_obj(HeapWord* obj, size_t size);
 163 
 164   // Filler object utilities.
 165   static inline size_t filler_array_hdr_size();
 166   static inline size_t filler_array_min_size();
 167 
 168   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 169   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 170 
 171   // Fill with a single array; caller must ensure filler_array_min_size() <=
 172   // words <= filler_array_max_size().
 173   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 174 
 175   // Fill with a single object (either an int array or a java.lang.Object).
 176   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 177 
 178   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 179 
 180   // Verification functions
 181   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 182     PRODUCT_RETURN;
 183   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 184     PRODUCT_RETURN;
 185   debug_only(static void check_for_valid_allocation_state();)
 186 
 187  public:
 188   enum Name {
 189     SerialHeap,
 190     ParallelScavengeHeap,
 191     G1CollectedHeap,
 192     CMSHeap
 193   };
 194 
 195   static inline size_t filler_array_max_size() {
 196     return _filler_array_max_size;
 197   }
 198 
 199   virtual Name kind() const = 0;
 200 
 201   virtual const char* name() const = 0;
 202 
 203   /**
 204    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 205    * and JNI_OK on success.
 206    */
 207   virtual jint initialize() = 0;
 208 
 209   // In many heaps, there will be a need to perform some initialization activities
 210   // after the Universe is fully formed, but before general heap allocation is allowed.
 211   // This is the correct place to place such initialization methods.
 212   virtual void post_initialize();
 213 
 214   // Stop any onging concurrent work and prepare for exit.
 215   virtual void stop() {}
 216 
 217   // Stop and resume concurrent GC threads interfering with safepoint operations
 218   virtual void safepoint_synchronize_begin() {}
 219   virtual void safepoint_synchronize_end() {}
 220 
 221   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 222   MemRegion reserved_region() const { return _reserved; }
 223   address base() const { return (address)reserved_region().start(); }
 224 
 225   virtual size_t capacity() const = 0;
 226   virtual size_t used() const = 0;
 227 
 228   // Return "true" if the part of the heap that allocates Java
 229   // objects has reached the maximal committed limit that it can
 230   // reach, without a garbage collection.
 231   virtual bool is_maximal_no_gc() const = 0;
 232 
 233   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 234   // memory that the vm could make available for storing 'normal' java objects.
 235   // This is based on the reserved address space, but should not include space
 236   // that the vm uses internally for bookkeeping or temporary storage
 237   // (e.g., in the case of the young gen, one of the survivor
 238   // spaces).
 239   virtual size_t max_capacity() const = 0;
 240 
 241   virtual size_t space_alignment() const = 0;
 242   virtual size_t heap_alignment() const = 0;
 243 
 244   // Returns "TRUE" if "p" points into the reserved area of the heap.
 245   bool is_in_reserved(const void* p) const {
 246     return _reserved.contains(p);
 247   }
 248 
 249   bool is_in_reserved_or_null(const void* p) const {
 250     return p == NULL || is_in_reserved(p);
 251   }
 252 
 253   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 254   // This method can be expensive so avoid using it in performance critical
 255   // code.
 256   virtual bool is_in(const void* p) const = 0;
 257 
 258   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 259 
 260   // Let's define some terms: a "closed" subset of a heap is one that
 261   //
 262   // 1) contains all currently-allocated objects, and
 263   //
 264   // 2) is closed under reference: no object in the closed subset
 265   //    references one outside the closed subset.
 266   //
 267   // Membership in a heap's closed subset is useful for assertions.
 268   // Clearly, the entire heap is a closed subset, so the default
 269   // implementation is to use "is_in_reserved".  But this may not be too
 270   // liberal to perform useful checking.  Also, the "is_in" predicate
 271   // defines a closed subset, but may be too expensive, since "is_in"
 272   // verifies that its argument points to an object head.  The
 273   // "closed_subset" method allows a heap to define an intermediate
 274   // predicate, allowing more precise checking than "is_in_reserved" at
 275   // lower cost than "is_in."
 276 
 277   // One important case is a heap composed of disjoint contiguous spaces,
 278   // such as the Garbage-First collector.  Such heaps have a convenient
 279   // closed subset consisting of the allocated portions of those
 280   // contiguous spaces.
 281 
 282   // Return "TRUE" iff the given pointer points into the heap's defined
 283   // closed subset (which defaults to the entire heap).
 284   virtual bool is_in_closed_subset(const void* p) const {
 285     return is_in_reserved(p);
 286   }
 287 
 288   bool is_in_closed_subset_or_null(const void* p) const {
 289     return p == NULL || is_in_closed_subset(p);
 290   }
 291 
 292   void set_gc_cause(GCCause::Cause v) {
 293      if (UsePerfData) {
 294        _gc_lastcause = _gc_cause;
 295        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 296        _perf_gc_cause->set_value(GCCause::to_string(v));
 297      }
 298     _gc_cause = v;
 299   }
 300   GCCause::Cause gc_cause() { return _gc_cause; }
 301 
 302   // General obj/array allocation facilities.
 303   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 304   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 305   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 306   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 307 
 308   // Raw memory allocation facilities
 309   // The obj and array allocate methods are covers for these methods.
 310   // mem_allocate() should never be
 311   // called to allocate TLABs, only individual objects.
 312   virtual HeapWord* mem_allocate(size_t size,
 313                                  bool* gc_overhead_limit_was_exceeded) = 0;
 314 
 315   // Utilities for turning raw memory into filler objects.
 316   //
 317   // min_fill_size() is the smallest region that can be filled.
 318   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 319   // multiple objects.  fill_with_object() is for regions known to be smaller
 320   // than the largest array of integers; it uses a single object to fill the
 321   // region and has slightly less overhead.
 322   static size_t min_fill_size() {
 323     return size_t(align_object_size(oopDesc::header_size()));
 324   }
 325 
 326   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 327 
 328   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 329   static void fill_with_object(MemRegion region, bool zap = true) {
 330     fill_with_object(region.start(), region.word_size(), zap);
 331   }
 332   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 333     fill_with_object(start, pointer_delta(end, start), zap);
 334   }
 335 
 336   // Return the address "addr" aligned by "alignment_in_bytes" if such
 337   // an address is below "end".  Return NULL otherwise.
 338   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 339                                                    HeapWord* end,
 340                                                    unsigned short alignment_in_bytes);
 341 
 342   // Some heaps may offer a contiguous region for shared non-blocking
 343   // allocation, via inlined code (by exporting the address of the top and
 344   // end fields defining the extent of the contiguous allocation region.)
 345 
 346   // This function returns "true" iff the heap supports this kind of
 347   // allocation.  (Default is "no".)
 348   virtual bool supports_inline_contig_alloc() const {
 349     return false;
 350   }
 351   // These functions return the addresses of the fields that define the
 352   // boundaries of the contiguous allocation area.  (These fields should be
 353   // physically near to one another.)
 354   virtual HeapWord* volatile* top_addr() const {
 355     guarantee(false, "inline contiguous allocation not supported");
 356     return NULL;
 357   }
 358   virtual HeapWord** end_addr() const {
 359     guarantee(false, "inline contiguous allocation not supported");
 360     return NULL;
 361   }
 362 
 363   // Some heaps may be in an unparseable state at certain times between
 364   // collections. This may be necessary for efficient implementation of
 365   // certain allocation-related activities. Calling this function before
 366   // attempting to parse a heap ensures that the heap is in a parsable
 367   // state (provided other concurrent activity does not introduce
 368   // unparsability). It is normally expected, therefore, that this
 369   // method is invoked with the world stopped.
 370   // NOTE: if you override this method, make sure you call
 371   // super::ensure_parsability so that the non-generational
 372   // part of the work gets done. See implementation of
 373   // CollectedHeap::ensure_parsability and, for instance,
 374   // that of GenCollectedHeap::ensure_parsability().
 375   // The argument "retire_tlabs" controls whether existing TLABs
 376   // are merely filled or also retired, thus preventing further
 377   // allocation from them and necessitating allocation of new TLABs.
 378   virtual void ensure_parsability(bool retire_tlabs);
 379 
 380   // Section on thread-local allocation buffers (TLABs)
 381   // If the heap supports thread-local allocation buffers, it should override
 382   // the following methods:
 383   // Returns "true" iff the heap supports thread-local allocation buffers.
 384   // The default is "no".
 385   virtual bool supports_tlab_allocation() const = 0;
 386 
 387   // The amount of space available for thread-local allocation buffers.
 388   virtual size_t tlab_capacity(Thread *thr) const = 0;
 389 
 390   // The amount of used space for thread-local allocation buffers for the given thread.
 391   virtual size_t tlab_used(Thread *thr) const = 0;
 392 
 393   virtual size_t max_tlab_size() const;
 394 
 395   // An estimate of the maximum allocation that could be performed
 396   // for thread-local allocation buffers without triggering any
 397   // collection or expansion activity.
 398   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 399     guarantee(false, "thread-local allocation buffers not supported");
 400     return 0;
 401   }
 402 
 403   // Perform a collection of the heap; intended for use in implementing
 404   // "System.gc".  This probably implies as full a collection as the
 405   // "CollectedHeap" supports.
 406   virtual void collect(GCCause::Cause cause) = 0;
 407 
 408   // Perform a full collection
 409   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 410 
 411   // This interface assumes that it's being called by the
 412   // vm thread. It collects the heap assuming that the
 413   // heap lock is already held and that we are executing in
 414   // the context of the vm thread.
 415   virtual void collect_as_vm_thread(GCCause::Cause cause);
 416 
 417   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 418                                                        size_t size,
 419                                                        Metaspace::MetadataType mdtype);
 420 
 421   // Returns the barrier set for this heap
 422   BarrierSet* barrier_set() { return _barrier_set; }
 423   void set_barrier_set(BarrierSet* barrier_set);
 424 
 425   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 426   // that it should answer "false" for the concurrent part of a concurrent
 427   // collector -- dld).
 428   bool is_gc_active() const { return _is_gc_active; }
 429 
 430   // Total number of GC collections (started)
 431   unsigned int total_collections() const { return _total_collections; }
 432   unsigned int total_full_collections() const { return _total_full_collections;}
 433 
 434   // Increment total number of GC collections (started)
 435   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 436   void increment_total_collections(bool full = false) {
 437     _total_collections++;
 438     if (full) {
 439       increment_total_full_collections();
 440     }
 441   }
 442 
 443   void increment_total_full_collections() { _total_full_collections++; }
 444 
 445   virtual SoftRefPolicy* soft_ref_policy() = 0;
 446 
 447   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
 448   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
 449 
 450   // Iterate over all objects, calling "cl.do_object" on each.
 451   virtual void object_iterate(ObjectClosure* cl) = 0;
 452 
 453   // Similar to object_iterate() except iterates only
 454   // over live objects.
 455   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 456 
 457   // NOTE! There is no requirement that a collector implement these
 458   // functions.
 459   //
 460   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 461   // each address in the (reserved) heap is a member of exactly
 462   // one block.  The defining characteristic of a block is that it is
 463   // possible to find its size, and thus to progress forward to the next
 464   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 465   // represent Java objects, or they might be free blocks in a
 466   // free-list-based heap (or subheap), as long as the two kinds are
 467   // distinguishable and the size of each is determinable.
 468 
 469   // Returns the address of the start of the "block" that contains the
 470   // address "addr".  We say "blocks" instead of "object" since some heaps
 471   // may not pack objects densely; a chunk may either be an object or a
 472   // non-object.
 473   virtual HeapWord* block_start(const void* addr) const = 0;
 474 
 475   // Requires "addr" to be the start of a chunk, and returns its size.
 476   // "addr + size" is required to be the start of a new chunk, or the end
 477   // of the active area of the heap.
 478   virtual size_t block_size(const HeapWord* addr) const = 0;
 479 
 480   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 481   // the block is an object.
 482   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 483 
 484   // Returns the longest time (in ms) that has elapsed since the last
 485   // time that any part of the heap was examined by a garbage collection.
 486   virtual jlong millis_since_last_gc() = 0;
 487 
 488   // Perform any cleanup actions necessary before allowing a verification.
 489   virtual void prepare_for_verify() = 0;
 490 
 491   // Generate any dumps preceding or following a full gc
 492  private:
 493   void full_gc_dump(GCTimer* timer, bool before);
 494 
 495   virtual void initialize_serviceability() = 0;
 496 
 497  public:
 498   void pre_full_gc_dump(GCTimer* timer);
 499   void post_full_gc_dump(GCTimer* timer);
 500 
 501   virtual VirtualSpaceSummary create_heap_space_summary();
 502   GCHeapSummary create_heap_summary();
 503 
 504   MetaspaceSummary create_metaspace_summary();
 505 
 506   // Print heap information on the given outputStream.
 507   virtual void print_on(outputStream* st) const = 0;
 508   // The default behavior is to call print_on() on tty.
 509   virtual void print() const {
 510     print_on(tty);
 511   }
 512   // Print more detailed heap information on the given
 513   // outputStream. The default behavior is to call print_on(). It is
 514   // up to each subclass to override it and add any additional output
 515   // it needs.
 516   virtual void print_extended_on(outputStream* st) const {
 517     print_on(st);
 518   }
 519 
 520   virtual void print_on_error(outputStream* st) const;
 521 
 522   // Print all GC threads (other than the VM thread)
 523   // used by this heap.
 524   virtual void print_gc_threads_on(outputStream* st) const = 0;
 525   // The default behavior is to call print_gc_threads_on() on tty.
 526   void print_gc_threads() {
 527     print_gc_threads_on(tty);
 528   }
 529   // Iterator for all GC threads (other than VM thread)
 530   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 531 
 532   // Print any relevant tracing info that flags imply.
 533   // Default implementation does nothing.
 534   virtual void print_tracing_info() const = 0;
 535 
 536   void print_heap_before_gc();
 537   void print_heap_after_gc();
 538 
 539   // An object is scavengable if its location may move during a scavenge.
 540   // (A scavenge is a GC which is not a full GC.)
 541   virtual bool is_scavengable(oop obj) = 0;
 542   // Registering and unregistering an nmethod (compiled code) with the heap.
 543   // Override with specific mechanism for each specialized heap type.
 544   virtual void register_nmethod(nmethod* nm) {}
 545   virtual void unregister_nmethod(nmethod* nm) {}
 546   virtual void verify_nmethod(nmethod* nmethod) {}
 547 
 548   void trace_heap_before_gc(const GCTracer* gc_tracer);
 549   void trace_heap_after_gc(const GCTracer* gc_tracer);
 550 
 551   // Heap verification
 552   virtual void verify(VerifyOption option) = 0;
 553 
 554   // Return true if concurrent phase control (via
 555   // request_concurrent_phase_control) is supported by this collector.
 556   // The default implementation returns false.
 557   virtual bool supports_concurrent_phase_control() const;
 558 
 559   // Return a NULL terminated array of concurrent phase names provided
 560   // by this collector.  Supports Whitebox testing.  These are the
 561   // names recognized by request_concurrent_phase(). The default
 562   // implementation returns an array of one NULL element.
 563   virtual const char* const* concurrent_phases() const;
 564 
 565   // Request the collector enter the indicated concurrent phase, and
 566   // wait until it does so.  Supports WhiteBox testing.  Only one
 567   // request may be active at a time.  Phases are designated by name;
 568   // the set of names and their meaning is GC-specific.  Once the
 569   // requested phase has been reached, the collector will attempt to
 570   // avoid transitioning to a new phase until a new request is made.
 571   // [Note: A collector might not be able to remain in a given phase.
 572   // For example, a full collection might cancel an in-progress
 573   // concurrent collection.]
 574   //
 575   // Returns true when the phase is reached.  Returns false for an
 576   // unknown phase.  The default implementation returns false.
 577   virtual bool request_concurrent_phase(const char* phase);
 578 
 579   // Provides a thread pool to SafepointSynchronize to use
 580   // for parallel safepoint cleanup.
 581   // GCs that use a GC worker thread pool may want to share
 582   // it for use during safepoint cleanup. This is only possible
 583   // if the GC can pause and resume concurrent work (e.g. G1
 584   // concurrent marking) for an intermittent non-GC safepoint.
 585   // If this method returns NULL, SafepointSynchronize will
 586   // perform cleanup tasks serially in the VMThread.
 587   virtual WorkGang* get_safepoint_workers() { return NULL; }
 588 
 589   // Non product verification and debugging.
 590 #ifndef PRODUCT
 591   // Support for PromotionFailureALot.  Return true if it's time to cause a
 592   // promotion failure.  The no-argument version uses
 593   // this->_promotion_failure_alot_count as the counter.
 594   inline bool promotion_should_fail(volatile size_t* count);
 595   inline bool promotion_should_fail();
 596 
 597   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 598   // GC in which promotion failure occurred.
 599   inline void reset_promotion_should_fail(volatile size_t* count);
 600   inline void reset_promotion_should_fail();
 601 #endif  // #ifndef PRODUCT
 602 
 603 #ifdef ASSERT
 604   static int fired_fake_oom() {
 605     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 606   }
 607 #endif
 608 
 609  public:
 610   // Copy the current allocation context statistics for the specified contexts.
 611   // For each context in contexts, set the corresponding entries in the totals
 612   // and accuracy arrays to the current values held by the statistics.  Each
 613   // array should be of length len.
 614   // Returns true if there are more stats available.
 615   virtual bool copy_allocation_context_stats(const jint* contexts,
 616                                              jlong* totals,
 617                                              jbyte* accuracy,
 618                                              jint len) {
 619     return false;
 620   }
 621 
 622 };
 623 
 624 // Class to set and reset the GC cause for a CollectedHeap.
 625 
 626 class GCCauseSetter : StackObj {
 627   CollectedHeap* _heap;
 628   GCCause::Cause _previous_cause;
 629  public:
 630   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 631     assert(SafepointSynchronize::is_at_safepoint(),
 632            "This method manipulates heap state without locking");
 633     _heap = heap;
 634     _previous_cause = _heap->gc_cause();
 635     _heap->set_gc_cause(cause);
 636   }
 637 
 638   ~GCCauseSetter() {
 639     assert(SafepointSynchronize::is_at_safepoint(),
 640           "This method manipulates heap state without locking");
 641     _heap->set_gc_cause(_previous_cause);
 642   }
 643 };
 644 
 645 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP