rev 60538 : imported patch jep387-all.patch
1 /*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_MEMORY_ALLOCATION_HPP
26 #define SHARE_MEMORY_ALLOCATION_HPP
27
28 #include "memory/allStatic.hpp"
29 #include "utilities/globalDefinitions.hpp"
30 #include "utilities/macros.hpp"
31
32 #include <new>
33
34 class outputStream;
35 class Thread;
36
37 class AllocFailStrategy {
38 public:
39 enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
40 };
41 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
42
43 // The virtual machine must never call one of the implicitly declared
44 // global allocation or deletion functions. (Such calls may result in
45 // link-time or run-time errors.) For convenience and documentation of
46 // intended use, classes in the virtual machine may be derived from one
47 // of the following allocation classes, some of which define allocation
48 // and deletion functions.
49 // Note: std::malloc and std::free should never called directly.
50
51 //
52 // For objects allocated in the resource area (see resourceArea.hpp).
53 // - ResourceObj
54 //
55 // For objects allocated in the C-heap (managed by: free & malloc and tracked with NMT)
56 // - CHeapObj
57 //
58 // For objects allocated on the stack.
59 // - StackObj
60 //
61 // For classes used as name spaces.
62 // - AllStatic
63 //
64 // For classes in Metaspace (class data)
65 // - MetaspaceObj
66 //
67 // The printable subclasses are used for debugging and define virtual
68 // member functions for printing. Classes that avoid allocating the
69 // vtbl entries in the objects should therefore not be the printable
70 // subclasses.
71 //
72 // The following macros and function should be used to allocate memory
73 // directly in the resource area or in the C-heap, The _OBJ variants
74 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
75 // objects which are not inherited from CHeapObj, note constructor and
76 // destructor are not called. The preferable way to allocate objects
77 // is using the new operator.
78 //
79 // WARNING: The array variant must only be used for a homogenous array
80 // where all objects are of the exact type specified. If subtypes are
81 // stored in the array then must pay attention to calling destructors
82 // at needed.
83 //
84 // NEW_RESOURCE_ARRAY*
85 // REALLOC_RESOURCE_ARRAY*
86 // FREE_RESOURCE_ARRAY*
87 // NEW_RESOURCE_OBJ*
88 // NEW_C_HEAP_ARRAY*
89 // REALLOC_C_HEAP_ARRAY*
90 // FREE_C_HEAP_ARRAY*
91 // NEW_C_HEAP_OBJ*
92 // FREE_C_HEAP_OBJ
93 //
94 // char* AllocateHeap(size_t size, MEMFLAGS flags, const NativeCallStack& stack, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
95 // char* AllocateHeap(size_t size, MEMFLAGS flags, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
96 // char* ReallocateHeap(char *old, size_t size, MEMFLAGS flag, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
97 // void FreeHeap(void* p);
98 //
99 // In non product mode we introduce a super class for all allocation classes
100 // that supports printing.
101 // We avoid the superclass in product mode to save space.
102
103 #ifdef PRODUCT
104 #define ALLOCATION_SUPER_CLASS_SPEC
105 #else
106 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
107 class AllocatedObj {
108 public:
109 // Printing support
110 void print() const;
111 void print_value() const;
112
113 virtual void print_on(outputStream* st) const;
114 virtual void print_value_on(outputStream* st) const;
115 };
116 #endif
117
118 #define MEMORY_TYPES_DO(f) \
119 /* Memory type by sub systems. It occupies lower byte. */ \
120 f(mtJavaHeap, "Java Heap") /* Java heap */ \
121 f(mtClass, "Class") /* Java classes */ \
122 f(mtThread, "Thread") /* thread objects */ \
123 f(mtThreadStack, "Thread Stack") \
124 f(mtCode, "Code") /* generated code */ \
125 f(mtGC, "GC") \
126 f(mtCompiler, "Compiler") \
127 f(mtJVMCI, "JVMCI") \
128 f(mtInternal, "Internal") /* memory used by VM, but does not belong to */ \
129 /* any of above categories, and not used by */ \
130 /* NMT */ \
131 f(mtOther, "Other") /* memory not used by VM */ \
132 f(mtSymbol, "Symbol") \
133 f(mtNMT, "Native Memory Tracking") /* memory used by NMT */ \
134 f(mtClassShared, "Shared class space") /* class data sharing */ \
135 f(mtChunk, "Arena Chunk") /* chunk that holds content of arenas */ \
136 f(mtTest, "Test") /* Test type for verifying NMT */ \
137 f(mtTracing, "Tracing") \
138 f(mtLogging, "Logging") \
139 f(mtStatistics, "Statistics") \
140 f(mtArguments, "Arguments") \
141 f(mtModule, "Module") \
142 f(mtSafepoint, "Safepoint") \
143 f(mtSynchronizer, "Synchronization") \
144 f(mtServiceability, "Serviceability") \
145 f(mtNone, "Unknown") \
146 //end
147
148 #define MEMORY_TYPE_DECLARE_ENUM(type, human_readable) \
149 type,
150
151 /*
152 * Memory types
153 */
154 enum MemoryType {
155 MEMORY_TYPES_DO(MEMORY_TYPE_DECLARE_ENUM)
156 mt_number_of_types // number of memory types (mtDontTrack
157 // is not included as validate type)
158 };
159
160 typedef MemoryType MEMFLAGS;
161
162
163 #if INCLUDE_NMT
164
165 extern bool NMT_track_callsite;
166
167 #else
168
169 const bool NMT_track_callsite = false;
170
171 #endif // INCLUDE_NMT
172
173 class NativeCallStack;
174
175
176 char* AllocateHeap(size_t size,
177 MEMFLAGS flags,
178 const NativeCallStack& stack,
179 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
180 char* AllocateHeap(size_t size,
181 MEMFLAGS flags,
182 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
183
184 char* ReallocateHeap(char *old,
185 size_t size,
186 MEMFLAGS flag,
187 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
188
189 // handles NULL pointers
190 void FreeHeap(void* p);
191
192 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
193 public:
194 ALWAYSINLINE void* operator new(size_t size) throw() {
195 return (void*)AllocateHeap(size, F);
196 }
197
198 ALWAYSINLINE void* operator new(size_t size,
199 const NativeCallStack& stack) throw() {
200 return (void*)AllocateHeap(size, F, stack);
201 }
202
203 ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&,
204 const NativeCallStack& stack) throw() {
205 return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
206 }
207
208 ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&) throw() {
209 return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
210 }
211
212 ALWAYSINLINE void* operator new[](size_t size) throw() {
213 return (void*)AllocateHeap(size, F);
214 }
215
216 ALWAYSINLINE void* operator new[](size_t size,
217 const NativeCallStack& stack) throw() {
218 return (void*)AllocateHeap(size, F, stack);
219 }
220
221 ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&,
222 const NativeCallStack& stack) throw() {
223 return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
224 }
225
226 ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&) throw() {
227 return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
228 }
229
230 void operator delete(void* p) { FreeHeap(p); }
231 void operator delete [] (void* p) { FreeHeap(p); }
232 };
233
234 // Base class for objects allocated on the stack only.
235 // Calling new or delete will result in fatal error.
236
237 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
238 private:
239 void* operator new(size_t size) throw();
240 void* operator new [](size_t size) throw();
241 void operator delete(void* p);
242 void operator delete [](void* p);
243 };
244
245 // Base class for objects stored in Metaspace.
246 // Calling delete will result in fatal error.
247 //
248 // Do not inherit from something with a vptr because this class does
249 // not introduce one. This class is used to allocate both shared read-only
250 // and shared read-write classes.
251 //
252
253 class ClassLoaderData;
254 class MetaspaceClosure;
255
256 class MetaspaceObj {
257 friend class VMStructs;
258 // When CDS is enabled, all shared metaspace objects are mapped
259 // into a single contiguous memory block, so we can use these
260 // two pointers to quickly determine if something is in the
261 // shared metaspace.
262 // When CDS is not enabled, both pointers are set to NULL.
263 static void* _shared_metaspace_base; // (inclusive) low address
264 static void* _shared_metaspace_top; // (exclusive) high address
265
266 public:
267
268 // Returns true if the pointer points to a valid MetaspaceObj. A valid
269 // MetaspaceObj is MetaWord-aligned and contained within either
270 // non-shared or shared metaspace.
271 static bool is_valid(const MetaspaceObj* p);
272
273 static bool is_shared(const MetaspaceObj* p) {
274 // If no shared metaspace regions are mapped, _shared_metaspace_{base,top} will
275 // both be NULL and all values of p will be rejected quickly.
276 return (((void*)p) < _shared_metaspace_top &&
277 ((void*)p) >= _shared_metaspace_base);
278 }
279 bool is_shared() const { return MetaspaceObj::is_shared(this); }
280
281 void print_address_on(outputStream* st) const; // nonvirtual address printing
282
283 static void set_shared_metaspace_range(void* base, void* top) {
284 _shared_metaspace_base = base;
285 _shared_metaspace_top = top;
286 }
287
288 static void* shared_metaspace_base() { return _shared_metaspace_base; }
289 static void* shared_metaspace_top() { return _shared_metaspace_top; }
290
291 #define METASPACE_OBJ_TYPES_DO(f) \
292 f(Class) \
293 f(Symbol) \
294 f(TypeArrayU1) \
295 f(TypeArrayU2) \
296 f(TypeArrayU4) \
297 f(TypeArrayU8) \
298 f(TypeArrayOther) \
299 f(Method) \
300 f(ConstMethod) \
301 f(MethodData) \
302 f(ConstantPool) \
303 f(ConstantPoolCache) \
304 f(Annotations) \
305 f(MethodCounters) \
306 f(RecordComponent)
307
308 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
309 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
310
311 enum Type {
312 // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
313 METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
314 _number_of_types
315 };
316
317 static const char * type_name(Type type) {
318 switch(type) {
319 METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
320 default:
321 ShouldNotReachHere();
322 return NULL;
323 }
324 }
325
326 static MetaspaceObj::Type array_type(size_t elem_size) {
327 switch (elem_size) {
328 case 1: return TypeArrayU1Type;
329 case 2: return TypeArrayU2Type;
330 case 4: return TypeArrayU4Type;
331 case 8: return TypeArrayU8Type;
332 default:
333 return TypeArrayOtherType;
334 }
335 }
336
337 void* operator new(size_t size, ClassLoaderData* loader_data,
338 size_t word_size,
339 Type type, Thread* thread) throw();
340 // can't use TRAPS from this header file.
341 void operator delete(void* p) { ShouldNotCallThis(); }
342
343 // Declare a *static* method with the same signature in any subclass of MetaspaceObj
344 // that should be read-only by default. See symbol.hpp for an example. This function
345 // is used by the templates in metaspaceClosure.hpp
346 static bool is_read_only_by_default() { return false; }
347 };
348
349 // Base class for classes that constitute name spaces.
350
351 class Arena;
352
353 extern char* resource_allocate_bytes(size_t size,
354 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
355 extern char* resource_allocate_bytes(Thread* thread, size_t size,
356 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
357 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
358 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
359 extern void resource_free_bytes( char *old, size_t size );
360
361 //----------------------------------------------------------------------
362 // Base class for objects allocated in the resource area per default.
363 // Optionally, objects may be allocated on the C heap with
364 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
365 // ResourceObj's can be allocated within other objects, but don't use
366 // new or delete (allocation_type is unknown). If new is used to allocate,
367 // use delete to deallocate.
368 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
369 public:
370 enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
371 static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
372 #ifdef ASSERT
373 private:
374 // When this object is allocated on stack the new() operator is not
375 // called but garbage on stack may look like a valid allocation_type.
376 // Store negated 'this' pointer when new() is called to distinguish cases.
377 // Use second array's element for verification value to distinguish garbage.
378 uintptr_t _allocation_t[2];
379 bool is_type_set() const;
380 void initialize_allocation_info();
381 public:
382 allocation_type get_allocation_type() const;
383 bool allocated_on_stack() const { return get_allocation_type() == STACK_OR_EMBEDDED; }
384 bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
385 bool allocated_on_C_heap() const { return get_allocation_type() == C_HEAP; }
386 bool allocated_on_arena() const { return get_allocation_type() == ARENA; }
387 protected:
388 ResourceObj(); // default constructor
389 ResourceObj(const ResourceObj& r); // default copy constructor
390 ResourceObj& operator=(const ResourceObj& r); // default copy assignment
391 ~ResourceObj();
392 #endif // ASSERT
393
394 public:
395 void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
396 void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
397 void* operator new(size_t size, const std::nothrow_t& nothrow_constant,
398 allocation_type type, MEMFLAGS flags) throw();
399 void* operator new [](size_t size, const std::nothrow_t& nothrow_constant,
400 allocation_type type, MEMFLAGS flags) throw();
401
402 void* operator new(size_t size, Arena *arena) throw();
403
404 void* operator new [](size_t size, Arena *arena) throw();
405
406 void* operator new(size_t size) throw() {
407 address res = (address)resource_allocate_bytes(size);
408 DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
409 return res;
410 }
411
412 void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
413 address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
414 DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
415 return res;
416 }
417
418 void* operator new [](size_t size) throw() {
419 address res = (address)resource_allocate_bytes(size);
420 DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
421 return res;
422 }
423
424 void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
425 address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
426 DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
427 return res;
428 }
429
430 void operator delete(void* p);
431 void operator delete [](void* p);
432 };
433
434 // One of the following macros must be used when allocating an array
435 // or object to determine whether it should reside in the C heap on in
436 // the resource area.
437
438 #define NEW_RESOURCE_ARRAY(type, size)\
439 (type*) resource_allocate_bytes((size) * sizeof(type))
440
441 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
442 (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
443
444 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
445 (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
446
447 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
448 (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
449
450 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
451 (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
452
453 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
454 (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
455 (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
456
457 #define FREE_RESOURCE_ARRAY(type, old, size)\
458 resource_free_bytes((char*)(old), (size) * sizeof(type))
459
460 #define FREE_FAST(old)\
461 /* nop */
462
463 #define NEW_RESOURCE_OBJ(type)\
464 NEW_RESOURCE_ARRAY(type, 1)
465
466 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
467 NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
468
469 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
470 (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
471
472 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
473 (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
474
475 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
476 (type*) (AllocateHeap((size) * sizeof(type), memflags))
477
478 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
479 NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
480
481 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
482 NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
483
484 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
485 (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
486
487 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
488 (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
489
490 #define FREE_C_HEAP_ARRAY(type, old) \
491 FreeHeap((char*)(old))
492
493 // allocate type in heap without calling ctor
494 #define NEW_C_HEAP_OBJ(type, memflags)\
495 NEW_C_HEAP_ARRAY(type, 1, memflags)
496
497 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
498 NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
499
500 // deallocate obj of type in heap without calling dtor
501 #define FREE_C_HEAP_OBJ(objname)\
502 FreeHeap((char*)objname);
503
504
505 //------------------------------ReallocMark---------------------------------
506 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
507 // ReallocMark, which is declared in the same scope as the reallocated
508 // pointer. Any operation that could __potentially__ cause a reallocation
509 // should check the ReallocMark.
510 class ReallocMark: public StackObj {
511 protected:
512 NOT_PRODUCT(int _nesting;)
513
514 public:
515 ReallocMark() PRODUCT_RETURN;
516 void check() PRODUCT_RETURN;
517 };
518
519 // Helper class to allocate arrays that may become large.
520 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
521 // and uses mapped memory for larger allocations.
522 // Most OS mallocs do something similar but Solaris malloc does not revert
523 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
524 // is set so that we always use malloc except for Solaris where we set the
525 // limit to get mapped memory.
526 template <class E>
527 class ArrayAllocator : public AllStatic {
528 private:
529 static bool should_use_malloc(size_t length);
530
531 static E* allocate_malloc(size_t length, MEMFLAGS flags);
532 static E* allocate_mmap(size_t length, MEMFLAGS flags);
533
534 static void free_malloc(E* addr, size_t length);
535 static void free_mmap(E* addr, size_t length);
536
537 public:
538 static E* allocate(size_t length, MEMFLAGS flags);
539 static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
540 static void free(E* addr, size_t length);
541 };
542
543 // Uses mmaped memory for all allocations. All allocations are initially
544 // zero-filled. No pre-touching.
545 template <class E>
546 class MmapArrayAllocator : public AllStatic {
547 private:
548 static size_t size_for(size_t length);
549
550 public:
551 static E* allocate_or_null(size_t length, MEMFLAGS flags);
552 static E* allocate(size_t length, MEMFLAGS flags);
553 static void free(E* addr, size_t length);
554 };
555
556 // Uses malloc:ed memory for all allocations.
557 template <class E>
558 class MallocArrayAllocator : public AllStatic {
559 public:
560 static size_t size_for(size_t length);
561
562 static E* allocate(size_t length, MEMFLAGS flags);
563 static void free(E* addr);
564 };
565
566 #endif // SHARE_MEMORY_ALLOCATION_HPP
--- EOF ---