1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_bsd.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_bsd.inline.hpp"
  40 #include "os_share_bsd.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 // put OS-includes here
  72 # include <sys/types.h>
  73 # include <sys/mman.h>
  74 # include <sys/stat.h>
  75 # include <sys/select.h>
  76 # include <pthread.h>
  77 # include <signal.h>
  78 # include <errno.h>
  79 # include <dlfcn.h>
  80 # include <stdio.h>
  81 # include <unistd.h>
  82 # include <sys/resource.h>
  83 # include <pthread.h>
  84 # include <sys/stat.h>
  85 # include <sys/time.h>
  86 # include <sys/times.h>
  87 # include <sys/utsname.h>
  88 # include <sys/socket.h>
  89 # include <sys/wait.h>
  90 # include <time.h>
  91 # include <pwd.h>
  92 # include <poll.h>
  93 # include <semaphore.h>
  94 # include <fcntl.h>
  95 # include <string.h>
  96 # include <sys/param.h>
  97 # include <sys/sysctl.h>
  98 # include <sys/ipc.h>
  99 # include <sys/shm.h>
 100 #ifndef __APPLE__
 101 # include <link.h>
 102 #endif
 103 # include <stdint.h>
 104 # include <inttypes.h>
 105 # include <sys/ioctl.h>
 106 # include <sys/syscall.h>
 107 
 108 #if defined(__FreeBSD__) || defined(__NetBSD__)
 109   #include <elf.h>
 110 #endif
 111 
 112 #ifdef __APPLE__
 113   #include <mach/mach.h> // semaphore_* API
 114   #include <mach-o/dyld.h>
 115   #include <sys/proc_info.h>
 116   #include <objc/objc-auto.h>
 117 #endif
 118 
 119 #ifndef MAP_ANONYMOUS
 120   #define MAP_ANONYMOUS MAP_ANON
 121 #endif
 122 
 123 #define MAX_PATH    (2 * K)
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 
 128 #define LARGEPAGES_BIT (1 << 6)
 129 
 130 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 131 
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Bsd::_physical_memory = 0;
 135 
 136 #ifdef __APPLE__
 137 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 138 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 139 #else
 140 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 #endif
 142 pthread_t os::Bsd::_main_thread;
 143 int os::Bsd::_page_size = -1;
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 
 162 ////////////////////////////////////////////////////////////////////////////////
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 167 
 168 julong os::available_memory() {
 169   return Bsd::available_memory();
 170 }
 171 
 172 // available here means free
 173 julong os::Bsd::available_memory() {
 174   uint64_t available = physical_memory() >> 2;
 175 #ifdef __APPLE__
 176   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 177   vm_statistics64_data_t vmstat;
 178   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 179                                          (host_info64_t)&vmstat, &count);
 180   assert(kerr == KERN_SUCCESS,
 181          "host_statistics64 failed - check mach_host_self() and count");
 182   if (kerr == KERN_SUCCESS) {
 183     available = vmstat.free_count * os::vm_page_size();
 184   }
 185 #endif
 186   return available;
 187 }
 188 
 189 julong os::physical_memory() {
 190   return Bsd::physical_memory();
 191 }
 192 
 193 // Return true if user is running as root.
 194 
 195 bool os::have_special_privileges() {
 196   static bool init = false;
 197   static bool privileges = false;
 198   if (!init) {
 199     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 200     init = true;
 201   }
 202   return privileges;
 203 }
 204 
 205 
 206 
 207 // Cpu architecture string
 208 #if   defined(ZERO)
 209 static char cpu_arch[] = ZERO_LIBARCH;
 210 #elif defined(IA64)
 211 static char cpu_arch[] = "ia64";
 212 #elif defined(IA32)
 213 static char cpu_arch[] = "i386";
 214 #elif defined(AMD64)
 215 static char cpu_arch[] = "amd64";
 216 #elif defined(ARM)
 217 static char cpu_arch[] = "arm";
 218 #elif defined(PPC32)
 219 static char cpu_arch[] = "ppc";
 220 #elif defined(SPARC)
 221   #ifdef _LP64
 222 static char cpu_arch[] = "sparcv9";
 223   #else
 224 static char cpu_arch[] = "sparc";
 225   #endif
 226 #else
 227   #error Add appropriate cpu_arch setting
 228 #endif
 229 
 230 // Compiler variant
 231 #ifdef COMPILER2
 232   #define COMPILER_VARIANT "server"
 233 #else
 234   #define COMPILER_VARIANT "client"
 235 #endif
 236 
 237 
 238 void os::Bsd::initialize_system_info() {
 239   int mib[2];
 240   size_t len;
 241   int cpu_val;
 242   julong mem_val;
 243 
 244   // get processors count via hw.ncpus sysctl
 245   mib[0] = CTL_HW;
 246   mib[1] = HW_NCPU;
 247   len = sizeof(cpu_val);
 248   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 249     assert(len == sizeof(cpu_val), "unexpected data size");
 250     set_processor_count(cpu_val);
 251   } else {
 252     set_processor_count(1);   // fallback
 253   }
 254 
 255   // get physical memory via hw.memsize sysctl (hw.memsize is used
 256   // since it returns a 64 bit value)
 257   mib[0] = CTL_HW;
 258 
 259 #if defined (HW_MEMSIZE) // Apple
 260   mib[1] = HW_MEMSIZE;
 261 #elif defined(HW_PHYSMEM) // Most of BSD
 262   mib[1] = HW_PHYSMEM;
 263 #elif defined(HW_REALMEM) // Old FreeBSD
 264   mib[1] = HW_REALMEM;
 265 #else
 266   #error No ways to get physmem
 267 #endif
 268 
 269   len = sizeof(mem_val);
 270   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 271     assert(len == sizeof(mem_val), "unexpected data size");
 272     _physical_memory = mem_val;
 273   } else {
 274     _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
 275   }
 276 
 277 #ifdef __OpenBSD__
 278   {
 279     // limit _physical_memory memory view on OpenBSD since
 280     // datasize rlimit restricts us anyway.
 281     struct rlimit limits;
 282     getrlimit(RLIMIT_DATA, &limits);
 283     _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 284   }
 285 #endif
 286 }
 287 
 288 #ifdef __APPLE__
 289 static const char *get_home() {
 290   const char *home_dir = ::getenv("HOME");
 291   if ((home_dir == NULL) || (*home_dir == '\0')) {
 292     struct passwd *passwd_info = getpwuid(geteuid());
 293     if (passwd_info != NULL) {
 294       home_dir = passwd_info->pw_dir;
 295     }
 296   }
 297 
 298   return home_dir;
 299 }
 300 #endif
 301 
 302 void os::init_system_properties_values() {
 303   // The next steps are taken in the product version:
 304   //
 305   // Obtain the JAVA_HOME value from the location of libjvm.so.
 306   // This library should be located at:
 307   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 308   //
 309   // If "/jre/lib/" appears at the right place in the path, then we
 310   // assume libjvm.so is installed in a JDK and we use this path.
 311   //
 312   // Otherwise exit with message: "Could not create the Java virtual machine."
 313   //
 314   // The following extra steps are taken in the debugging version:
 315   //
 316   // If "/jre/lib/" does NOT appear at the right place in the path
 317   // instead of exit check for $JAVA_HOME environment variable.
 318   //
 319   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 320   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 321   // it looks like libjvm.so is installed there
 322   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 323   //
 324   // Otherwise exit.
 325   //
 326   // Important note: if the location of libjvm.so changes this
 327   // code needs to be changed accordingly.
 328 
 329   // See ld(1):
 330   //      The linker uses the following search paths to locate required
 331   //      shared libraries:
 332   //        1: ...
 333   //        ...
 334   //        7: The default directories, normally /lib and /usr/lib.
 335 #ifndef DEFAULT_LIBPATH
 336   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 337 #endif
 338 
 339 // Base path of extensions installed on the system.
 340 #define SYS_EXT_DIR     "/usr/java/packages"
 341 #define EXTENSIONS_DIR  "/lib/ext"
 342 
 343 #ifndef __APPLE__
 344 
 345   // Buffer that fits several sprintfs.
 346   // Note that the space for the colon and the trailing null are provided
 347   // by the nulls included by the sizeof operator.
 348   const size_t bufsize =
 349     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 350          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 351   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 352 
 353   // sysclasspath, java_home, dll_dir
 354   {
 355     char *pslash;
 356     os::jvm_path(buf, bufsize);
 357 
 358     // Found the full path to libjvm.so.
 359     // Now cut the path to <java_home>/jre if we can.
 360     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 361     pslash = strrchr(buf, '/');
 362     if (pslash != NULL) {
 363       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 364     }
 365     Arguments::set_dll_dir(buf);
 366 
 367     if (pslash != NULL) {
 368       pslash = strrchr(buf, '/');
 369       if (pslash != NULL) {
 370         *pslash = '\0';          // Get rid of /<arch>.
 371         pslash = strrchr(buf, '/');
 372         if (pslash != NULL) {
 373           *pslash = '\0';        // Get rid of /lib.
 374         }
 375       }
 376     }
 377     Arguments::set_java_home(buf);
 378     set_boot_path('/', ':');
 379   }
 380 
 381   // Where to look for native libraries.
 382   //
 383   // Note: Due to a legacy implementation, most of the library path
 384   // is set in the launcher. This was to accomodate linking restrictions
 385   // on legacy Bsd implementations (which are no longer supported).
 386   // Eventually, all the library path setting will be done here.
 387   //
 388   // However, to prevent the proliferation of improperly built native
 389   // libraries, the new path component /usr/java/packages is added here.
 390   // Eventually, all the library path setting will be done here.
 391   {
 392     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 393     // should always exist (until the legacy problem cited above is
 394     // addressed).
 395     const char *v = ::getenv("LD_LIBRARY_PATH");
 396     const char *v_colon = ":";
 397     if (v == NULL) { v = ""; v_colon = ""; }
 398     // That's +1 for the colon and +1 for the trailing '\0'.
 399     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 400                                                      strlen(v) + 1 +
 401                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 402                                                      mtInternal);
 403     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 404     Arguments::set_library_path(ld_library_path);
 405     FREE_C_HEAP_ARRAY(char, ld_library_path);
 406   }
 407 
 408   // Extensions directories.
 409   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 410   Arguments::set_ext_dirs(buf);
 411 
 412   FREE_C_HEAP_ARRAY(char, buf);
 413 
 414 #else // __APPLE__
 415 
 416   #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 417   #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 418 
 419   const char *user_home_dir = get_home();
 420   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 421   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 422     sizeof(SYS_EXTENSIONS_DIRS);
 423 
 424   // Buffer that fits several sprintfs.
 425   // Note that the space for the colon and the trailing null are provided
 426   // by the nulls included by the sizeof operator.
 427   const size_t bufsize =
 428     MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
 429          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
 430   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 431 
 432   // sysclasspath, java_home, dll_dir
 433   {
 434     char *pslash;
 435     os::jvm_path(buf, bufsize);
 436 
 437     // Found the full path to libjvm.so.
 438     // Now cut the path to <java_home>/jre if we can.
 439     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 440     pslash = strrchr(buf, '/');
 441     if (pslash != NULL) {
 442       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 443     }
 444     Arguments::set_dll_dir(buf);
 445 
 446     if (pslash != NULL) {
 447       pslash = strrchr(buf, '/');
 448       if (pslash != NULL) {
 449         *pslash = '\0';          // Get rid of /lib.
 450       }
 451     }
 452     Arguments::set_java_home(buf);
 453     set_boot_path('/', ':');
 454   }
 455 
 456   // Where to look for native libraries.
 457   //
 458   // Note: Due to a legacy implementation, most of the library path
 459   // is set in the launcher. This was to accomodate linking restrictions
 460   // on legacy Bsd implementations (which are no longer supported).
 461   // Eventually, all the library path setting will be done here.
 462   //
 463   // However, to prevent the proliferation of improperly built native
 464   // libraries, the new path component /usr/java/packages is added here.
 465   // Eventually, all the library path setting will be done here.
 466   {
 467     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 468     // should always exist (until the legacy problem cited above is
 469     // addressed).
 470     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 471     // can specify a directory inside an app wrapper
 472     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 473     const char *l_colon = ":";
 474     if (l == NULL) { l = ""; l_colon = ""; }
 475 
 476     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 477     const char *v_colon = ":";
 478     if (v == NULL) { v = ""; v_colon = ""; }
 479 
 480     // Apple's Java6 has "." at the beginning of java.library.path.
 481     // OpenJDK on Windows has "." at the end of java.library.path.
 482     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 483     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 484     // "." is appended to the end of java.library.path. Yes, this
 485     // could cause a change in behavior, but Apple's Java6 behavior
 486     // can be achieved by putting "." at the beginning of the
 487     // JAVA_LIBRARY_PATH environment variable.
 488     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 489                                                      strlen(v) + 1 + strlen(l) + 1 +
 490                                                      system_ext_size + 3,
 491                                                      mtInternal);
 492     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 493             v, v_colon, l, l_colon, user_home_dir);
 494     Arguments::set_library_path(ld_library_path);
 495     FREE_C_HEAP_ARRAY(char, ld_library_path);
 496   }
 497 
 498   // Extensions directories.
 499   //
 500   // Note that the space for the colon and the trailing null are provided
 501   // by the nulls included by the sizeof operator (so actually one byte more
 502   // than necessary is allocated).
 503   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 504           user_home_dir, Arguments::get_java_home());
 505   Arguments::set_ext_dirs(buf);
 506 
 507   FREE_C_HEAP_ARRAY(char, buf);
 508 
 509 #undef SYS_EXTENSIONS_DIR
 510 #undef SYS_EXTENSIONS_DIRS
 511 
 512 #endif // __APPLE__
 513 
 514 #undef SYS_EXT_DIR
 515 #undef EXTENSIONS_DIR
 516 }
 517 
 518 ////////////////////////////////////////////////////////////////////////////////
 519 // breakpoint support
 520 
 521 void os::breakpoint() {
 522   BREAKPOINT;
 523 }
 524 
 525 extern "C" void breakpoint() {
 526   // use debugger to set breakpoint here
 527 }
 528 
 529 ////////////////////////////////////////////////////////////////////////////////
 530 // signal support
 531 
 532 debug_only(static bool signal_sets_initialized = false);
 533 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 534 
 535 bool os::Bsd::is_sig_ignored(int sig) {
 536   struct sigaction oact;
 537   sigaction(sig, (struct sigaction*)NULL, &oact);
 538   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 539                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 540   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 541     return true;
 542   } else {
 543     return false;
 544   }
 545 }
 546 
 547 void os::Bsd::signal_sets_init() {
 548   // Should also have an assertion stating we are still single-threaded.
 549   assert(!signal_sets_initialized, "Already initialized");
 550   // Fill in signals that are necessarily unblocked for all threads in
 551   // the VM. Currently, we unblock the following signals:
 552   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 553   //                         by -Xrs (=ReduceSignalUsage));
 554   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 555   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 556   // the dispositions or masks wrt these signals.
 557   // Programs embedding the VM that want to use the above signals for their
 558   // own purposes must, at this time, use the "-Xrs" option to prevent
 559   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 560   // (See bug 4345157, and other related bugs).
 561   // In reality, though, unblocking these signals is really a nop, since
 562   // these signals are not blocked by default.
 563   sigemptyset(&unblocked_sigs);
 564   sigemptyset(&allowdebug_blocked_sigs);
 565   sigaddset(&unblocked_sigs, SIGILL);
 566   sigaddset(&unblocked_sigs, SIGSEGV);
 567   sigaddset(&unblocked_sigs, SIGBUS);
 568   sigaddset(&unblocked_sigs, SIGFPE);
 569   sigaddset(&unblocked_sigs, SR_signum);
 570 
 571   if (!ReduceSignalUsage) {
 572     if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 573       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 574       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 575     }
 576     if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 577       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 578       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 579     }
 580     if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 581       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 582       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 583     }
 584   }
 585   // Fill in signals that are blocked by all but the VM thread.
 586   sigemptyset(&vm_sigs);
 587   if (!ReduceSignalUsage) {
 588     sigaddset(&vm_sigs, BREAK_SIGNAL);
 589   }
 590   debug_only(signal_sets_initialized = true);
 591 
 592 }
 593 
 594 // These are signals that are unblocked while a thread is running Java.
 595 // (For some reason, they get blocked by default.)
 596 sigset_t* os::Bsd::unblocked_signals() {
 597   assert(signal_sets_initialized, "Not initialized");
 598   return &unblocked_sigs;
 599 }
 600 
 601 // These are the signals that are blocked while a (non-VM) thread is
 602 // running Java. Only the VM thread handles these signals.
 603 sigset_t* os::Bsd::vm_signals() {
 604   assert(signal_sets_initialized, "Not initialized");
 605   return &vm_sigs;
 606 }
 607 
 608 // These are signals that are blocked during cond_wait to allow debugger in
 609 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 610   assert(signal_sets_initialized, "Not initialized");
 611   return &allowdebug_blocked_sigs;
 612 }
 613 
 614 void os::Bsd::hotspot_sigmask(Thread* thread) {
 615 
 616   //Save caller's signal mask before setting VM signal mask
 617   sigset_t caller_sigmask;
 618   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 619 
 620   OSThread* osthread = thread->osthread();
 621   osthread->set_caller_sigmask(caller_sigmask);
 622 
 623   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 624 
 625   if (!ReduceSignalUsage) {
 626     if (thread->is_VM_thread()) {
 627       // Only the VM thread handles BREAK_SIGNAL ...
 628       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 629     } else {
 630       // ... all other threads block BREAK_SIGNAL
 631       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 632     }
 633   }
 634 }
 635 
 636 
 637 //////////////////////////////////////////////////////////////////////////////
 638 // create new thread
 639 
 640 #ifdef __APPLE__
 641 // library handle for calling objc_registerThreadWithCollector()
 642 // without static linking to the libobjc library
 643   #define OBJC_LIB "/usr/lib/libobjc.dylib"
 644   #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 645 typedef void (*objc_registerThreadWithCollector_t)();
 646 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 647 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 648 #endif
 649 
 650 #ifdef __APPLE__
 651 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 652   // Additional thread_id used to correlate threads in SA
 653   thread_identifier_info_data_t     m_ident_info;
 654   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 655 
 656   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 657               (thread_info_t) &m_ident_info, &count);
 658 
 659   return m_ident_info.thread_id;
 660 }
 661 #endif
 662 
 663 // Thread start routine for all newly created threads
 664 static void *java_start(Thread *thread) {
 665   // Try to randomize the cache line index of hot stack frames.
 666   // This helps when threads of the same stack traces evict each other's
 667   // cache lines. The threads can be either from the same JVM instance, or
 668   // from different JVM instances. The benefit is especially true for
 669   // processors with hyperthreading technology.
 670   static int counter = 0;
 671   int pid = os::current_process_id();
 672   alloca(((pid ^ counter++) & 7) * 128);
 673 
 674   ThreadLocalStorage::set_thread(thread);
 675 
 676   OSThread* osthread = thread->osthread();
 677   Monitor* sync = osthread->startThread_lock();
 678 
 679   osthread->set_thread_id(os::Bsd::gettid());
 680 
 681 #ifdef __APPLE__
 682   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 683   guarantee(unique_thread_id != 0, "unique thread id was not found");
 684   osthread->set_unique_thread_id(unique_thread_id);
 685 #endif
 686   // initialize signal mask for this thread
 687   os::Bsd::hotspot_sigmask(thread);
 688 
 689   // initialize floating point control register
 690   os::Bsd::init_thread_fpu_state();
 691 
 692 #ifdef __APPLE__
 693   // register thread with objc gc
 694   if (objc_registerThreadWithCollectorFunction != NULL) {
 695     objc_registerThreadWithCollectorFunction();
 696   }
 697 #endif
 698 
 699   // handshaking with parent thread
 700   {
 701     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 702 
 703     // notify parent thread
 704     osthread->set_state(INITIALIZED);
 705     sync->notify_all();
 706 
 707     // wait until os::start_thread()
 708     while (osthread->get_state() == INITIALIZED) {
 709       sync->wait(Mutex::_no_safepoint_check_flag);
 710     }
 711   }
 712 
 713   // call one more level start routine
 714   thread->run();
 715 
 716   return 0;
 717 }
 718 
 719 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 720   assert(thread->osthread() == NULL, "caller responsible");
 721 
 722   // Allocate the OSThread object
 723   OSThread* osthread = new OSThread(NULL, NULL);
 724   if (osthread == NULL) {
 725     return false;
 726   }
 727 
 728   // set the correct thread state
 729   osthread->set_thread_type(thr_type);
 730 
 731   // Initial state is ALLOCATED but not INITIALIZED
 732   osthread->set_state(ALLOCATED);
 733 
 734   thread->set_osthread(osthread);
 735 
 736   // init thread attributes
 737   pthread_attr_t attr;
 738   pthread_attr_init(&attr);
 739   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 740 
 741   // stack size
 742   if (os::Bsd::supports_variable_stack_size()) {
 743     // calculate stack size if it's not specified by caller
 744     if (stack_size == 0) {
 745       stack_size = os::Bsd::default_stack_size(thr_type);
 746 
 747       switch (thr_type) {
 748       case os::java_thread:
 749         // Java threads use ThreadStackSize which default value can be
 750         // changed with the flag -Xss
 751         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 752         stack_size = JavaThread::stack_size_at_create();
 753         break;
 754       case os::compiler_thread:
 755         if (CompilerThreadStackSize > 0) {
 756           stack_size = (size_t)(CompilerThreadStackSize * K);
 757           break;
 758         } // else fall through:
 759           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 760       case os::vm_thread:
 761       case os::pgc_thread:
 762       case os::cgc_thread:
 763       case os::watcher_thread:
 764         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 765         break;
 766       }
 767     }
 768 
 769     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
 770     pthread_attr_setstacksize(&attr, stack_size);
 771   } else {
 772     // let pthread_create() pick the default value.
 773   }
 774 
 775   ThreadState state;
 776 
 777   {
 778     pthread_t tid;
 779     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 780 
 781     pthread_attr_destroy(&attr);
 782 
 783     if (ret != 0) {
 784       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 785         perror("pthread_create()");
 786       }
 787       // Need to clean up stuff we've allocated so far
 788       thread->set_osthread(NULL);
 789       delete osthread;
 790       return false;
 791     }
 792 
 793     // Store pthread info into the OSThread
 794     osthread->set_pthread_id(tid);
 795 
 796     // Wait until child thread is either initialized or aborted
 797     {
 798       Monitor* sync_with_child = osthread->startThread_lock();
 799       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 800       while ((state = osthread->get_state()) == ALLOCATED) {
 801         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 802       }
 803     }
 804 
 805   }
 806 
 807   // Aborted due to thread limit being reached
 808   if (state == ZOMBIE) {
 809     thread->set_osthread(NULL);
 810     delete osthread;
 811     return false;
 812   }
 813 
 814   // The thread is returned suspended (in state INITIALIZED),
 815   // and is started higher up in the call chain
 816   assert(state == INITIALIZED, "race condition");
 817   return true;
 818 }
 819 
 820 /////////////////////////////////////////////////////////////////////////////
 821 // attach existing thread
 822 
 823 // bootstrap the main thread
 824 bool os::create_main_thread(JavaThread* thread) {
 825   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 826   return create_attached_thread(thread);
 827 }
 828 
 829 bool os::create_attached_thread(JavaThread* thread) {
 830 #ifdef ASSERT
 831   thread->verify_not_published();
 832 #endif
 833 
 834   // Allocate the OSThread object
 835   OSThread* osthread = new OSThread(NULL, NULL);
 836 
 837   if (osthread == NULL) {
 838     return false;
 839   }
 840 
 841   osthread->set_thread_id(os::Bsd::gettid());
 842 
 843   // Store pthread info into the OSThread
 844 #ifdef __APPLE__
 845   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 846   guarantee(unique_thread_id != 0, "just checking");
 847   osthread->set_unique_thread_id(unique_thread_id);
 848 #endif
 849   osthread->set_pthread_id(::pthread_self());
 850 
 851   // initialize floating point control register
 852   os::Bsd::init_thread_fpu_state();
 853 
 854   // Initial thread state is RUNNABLE
 855   osthread->set_state(RUNNABLE);
 856 
 857   thread->set_osthread(osthread);
 858 
 859   // initialize signal mask for this thread
 860   // and save the caller's signal mask
 861   os::Bsd::hotspot_sigmask(thread);
 862 
 863   return true;
 864 }
 865 
 866 void os::pd_start_thread(Thread* thread) {
 867   OSThread * osthread = thread->osthread();
 868   assert(osthread->get_state() != INITIALIZED, "just checking");
 869   Monitor* sync_with_child = osthread->startThread_lock();
 870   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 871   sync_with_child->notify();
 872 }
 873 
 874 // Free Bsd resources related to the OSThread
 875 void os::free_thread(OSThread* osthread) {
 876   assert(osthread != NULL, "osthread not set");
 877 
 878   if (Thread::current()->osthread() == osthread) {
 879     // Restore caller's signal mask
 880     sigset_t sigmask = osthread->caller_sigmask();
 881     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 882   }
 883 
 884   delete osthread;
 885 }
 886 
 887 //////////////////////////////////////////////////////////////////////////////
 888 // thread local storage
 889 
 890 // Restore the thread pointer if the destructor is called. This is in case
 891 // someone from JNI code sets up a destructor with pthread_key_create to run
 892 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 893 // will hang or crash. When detachCurrentThread is called the key will be set
 894 // to null and we will not be called again. If detachCurrentThread is never
 895 // called we could loop forever depending on the pthread implementation.
 896 static void restore_thread_pointer(void* p) {
 897   Thread* thread = (Thread*) p;
 898   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 899 }
 900 
 901 int os::allocate_thread_local_storage() {
 902   pthread_key_t key;
 903   int rslt = pthread_key_create(&key, restore_thread_pointer);
 904   assert(rslt == 0, "cannot allocate thread local storage");
 905   return (int)key;
 906 }
 907 
 908 // Note: This is currently not used by VM, as we don't destroy TLS key
 909 // on VM exit.
 910 void os::free_thread_local_storage(int index) {
 911   int rslt = pthread_key_delete((pthread_key_t)index);
 912   assert(rslt == 0, "invalid index");
 913 }
 914 
 915 void os::thread_local_storage_at_put(int index, void* value) {
 916   int rslt = pthread_setspecific((pthread_key_t)index, value);
 917   assert(rslt == 0, "pthread_setspecific failed");
 918 }
 919 
 920 extern "C" Thread* get_thread() {
 921   return ThreadLocalStorage::thread();
 922 }
 923 
 924 
 925 ////////////////////////////////////////////////////////////////////////////////
 926 // time support
 927 
 928 // Time since start-up in seconds to a fine granularity.
 929 // Used by VMSelfDestructTimer and the MemProfiler.
 930 double os::elapsedTime() {
 931 
 932   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 933 }
 934 
 935 jlong os::elapsed_counter() {
 936   return javaTimeNanos() - initial_time_count;
 937 }
 938 
 939 jlong os::elapsed_frequency() {
 940   return NANOSECS_PER_SEC; // nanosecond resolution
 941 }
 942 
 943 bool os::supports_vtime() { return true; }
 944 bool os::enable_vtime()   { return false; }
 945 bool os::vtime_enabled()  { return false; }
 946 
 947 double os::elapsedVTime() {
 948   // better than nothing, but not much
 949   return elapsedTime();
 950 }
 951 
 952 jlong os::javaTimeMillis() {
 953   timeval time;
 954   int status = gettimeofday(&time, NULL);
 955   assert(status != -1, "bsd error");
 956   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 957 }
 958 
 959 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 960   timeval time;
 961   int status = gettimeofday(&time, NULL);
 962   assert(status != -1, "bsd error");
 963   seconds = jlong(time.tv_sec);
 964   nanos = jlong(time.tv_usec) * 1000;
 965 }
 966 
 967 #ifndef __APPLE__
 968   #ifndef CLOCK_MONOTONIC
 969     #define CLOCK_MONOTONIC (1)
 970   #endif
 971 #endif
 972 
 973 #ifdef __APPLE__
 974 void os::Bsd::clock_init() {
 975   mach_timebase_info(&_timebase_info);
 976 }
 977 #else
 978 void os::Bsd::clock_init() {
 979   struct timespec res;
 980   struct timespec tp;
 981   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 982       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 983     // yes, monotonic clock is supported
 984     _clock_gettime = ::clock_gettime;
 985   }
 986 }
 987 #endif
 988 
 989 
 990 
 991 #ifdef __APPLE__
 992 
 993 jlong os::javaTimeNanos() {
 994   const uint64_t tm = mach_absolute_time();
 995   const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
 996   const uint64_t prev = Bsd::_max_abstime;
 997   if (now <= prev) {
 998     return prev;   // same or retrograde time;
 999   }
1000   const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1001   assert(obsv >= prev, "invariant");   // Monotonicity
1002   // If the CAS succeeded then we're done and return "now".
1003   // If the CAS failed and the observed value "obsv" is >= now then
1004   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1005   // some other thread raced this thread and installed a new value, in which case
1006   // we could either (a) retry the entire operation, (b) retry trying to install now
1007   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1008   // we might discard a higher "now" value in deference to a slightly lower but freshly
1009   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1010   // to (a) or (b) -- and greatly reduces coherence traffic.
1011   // We might also condition (c) on the magnitude of the delta between obsv and now.
1012   // Avoiding excessive CAS operations to hot RW locations is critical.
1013   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1014   return (prev == obsv) ? now : obsv;
1015 }
1016 
1017 #else // __APPLE__
1018 
1019 jlong os::javaTimeNanos() {
1020   if (os::supports_monotonic_clock()) {
1021     struct timespec tp;
1022     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1023     assert(status == 0, "gettime error");
1024     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1025     return result;
1026   } else {
1027     timeval time;
1028     int status = gettimeofday(&time, NULL);
1029     assert(status != -1, "bsd error");
1030     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1031     return 1000 * usecs;
1032   }
1033 }
1034 
1035 #endif // __APPLE__
1036 
1037 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1038   if (os::supports_monotonic_clock()) {
1039     info_ptr->max_value = ALL_64_BITS;
1040 
1041     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1042     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1043     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1044   } else {
1045     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1046     info_ptr->max_value = ALL_64_BITS;
1047 
1048     // gettimeofday is a real time clock so it skips
1049     info_ptr->may_skip_backward = true;
1050     info_ptr->may_skip_forward = true;
1051   }
1052 
1053   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1054 }
1055 
1056 // Return the real, user, and system times in seconds from an
1057 // arbitrary fixed point in the past.
1058 bool os::getTimesSecs(double* process_real_time,
1059                       double* process_user_time,
1060                       double* process_system_time) {
1061   struct tms ticks;
1062   clock_t real_ticks = times(&ticks);
1063 
1064   if (real_ticks == (clock_t) (-1)) {
1065     return false;
1066   } else {
1067     double ticks_per_second = (double) clock_tics_per_sec;
1068     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1069     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1070     *process_real_time = ((double) real_ticks) / ticks_per_second;
1071 
1072     return true;
1073   }
1074 }
1075 
1076 
1077 char * os::local_time_string(char *buf, size_t buflen) {
1078   struct tm t;
1079   time_t long_time;
1080   time(&long_time);
1081   localtime_r(&long_time, &t);
1082   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1083                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1084                t.tm_hour, t.tm_min, t.tm_sec);
1085   return buf;
1086 }
1087 
1088 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1089   return localtime_r(clock, res);
1090 }
1091 
1092 ////////////////////////////////////////////////////////////////////////////////
1093 // runtime exit support
1094 
1095 // Note: os::shutdown() might be called very early during initialization, or
1096 // called from signal handler. Before adding something to os::shutdown(), make
1097 // sure it is async-safe and can handle partially initialized VM.
1098 void os::shutdown() {
1099 
1100   // allow PerfMemory to attempt cleanup of any persistent resources
1101   perfMemory_exit();
1102 
1103   // needs to remove object in file system
1104   AttachListener::abort();
1105 
1106   // flush buffered output, finish log files
1107   ostream_abort();
1108 
1109   // Check for abort hook
1110   abort_hook_t abort_hook = Arguments::abort_hook();
1111   if (abort_hook != NULL) {
1112     abort_hook();
1113   }
1114 
1115 }
1116 
1117 // Note: os::abort() might be called very early during initialization, or
1118 // called from signal handler. Before adding something to os::abort(), make
1119 // sure it is async-safe and can handle partially initialized VM.
1120 void os::abort(bool dump_core, void* siginfo, void* context) {
1121   os::shutdown();
1122   if (dump_core) {
1123 #ifndef PRODUCT
1124     fdStream out(defaultStream::output_fd());
1125     out.print_raw("Current thread is ");
1126     char buf[16];
1127     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1128     out.print_raw_cr(buf);
1129     out.print_raw_cr("Dumping core ...");
1130 #endif
1131     ::abort(); // dump core
1132   }
1133 
1134   ::exit(1);
1135 }
1136 
1137 // Die immediately, no exit hook, no abort hook, no cleanup.
1138 void os::die() {
1139   // _exit() on BsdThreads only kills current thread
1140   ::abort();
1141 }
1142 
1143 // This method is a copy of JDK's sysGetLastErrorString
1144 // from src/solaris/hpi/src/system_md.c
1145 
1146 size_t os::lasterror(char *buf, size_t len) {
1147   if (errno == 0)  return 0;
1148 
1149   const char *s = ::strerror(errno);
1150   size_t n = ::strlen(s);
1151   if (n >= len) {
1152     n = len - 1;
1153   }
1154   ::strncpy(buf, s, n);
1155   buf[n] = '\0';
1156   return n;
1157 }
1158 
1159 // Information of current thread in variety of formats
1160 pid_t os::Bsd::gettid() {
1161   int retval = -1;
1162 
1163 #ifdef __APPLE__ //XNU kernel
1164   // despite the fact mach port is actually not a thread id use it
1165   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1166   retval = ::pthread_mach_thread_np(::pthread_self());
1167   guarantee(retval != 0, "just checking");
1168   return retval;
1169 
1170 #else
1171   #ifdef __FreeBSD__
1172   retval = syscall(SYS_thr_self);
1173   #else
1174     #ifdef __OpenBSD__
1175   retval = syscall(SYS_getthrid);
1176     #else
1177       #ifdef __NetBSD__
1178   retval = (pid_t) syscall(SYS__lwp_self);
1179       #endif
1180     #endif
1181   #endif
1182 #endif
1183 
1184   if (retval == -1) {
1185     return getpid();
1186   }
1187 }
1188 
1189 intx os::current_thread_id() {
1190 #ifdef __APPLE__
1191   return (intx)::pthread_mach_thread_np(::pthread_self());
1192 #else
1193   return (intx)::pthread_self();
1194 #endif
1195 }
1196 
1197 int os::current_process_id() {
1198 
1199   // Under the old bsd thread library, bsd gives each thread
1200   // its own process id. Because of this each thread will return
1201   // a different pid if this method were to return the result
1202   // of getpid(2). Bsd provides no api that returns the pid
1203   // of the launcher thread for the vm. This implementation
1204   // returns a unique pid, the pid of the launcher thread
1205   // that starts the vm 'process'.
1206 
1207   // Under the NPTL, getpid() returns the same pid as the
1208   // launcher thread rather than a unique pid per thread.
1209   // Use gettid() if you want the old pre NPTL behaviour.
1210 
1211   // if you are looking for the result of a call to getpid() that
1212   // returns a unique pid for the calling thread, then look at the
1213   // OSThread::thread_id() method in osThread_bsd.hpp file
1214 
1215   return (int)(_initial_pid ? _initial_pid : getpid());
1216 }
1217 
1218 // DLL functions
1219 
1220 #define JNI_LIB_PREFIX "lib"
1221 #ifdef __APPLE__
1222   #define JNI_LIB_SUFFIX ".dylib"
1223 #else
1224   #define JNI_LIB_SUFFIX ".so"
1225 #endif
1226 
1227 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1228 
1229 // This must be hard coded because it's the system's temporary
1230 // directory not the java application's temp directory, ala java.io.tmpdir.
1231 #ifdef __APPLE__
1232 // macosx has a secure per-user temporary directory
1233 char temp_path_storage[PATH_MAX];
1234 const char* os::get_temp_directory() {
1235   static char *temp_path = NULL;
1236   if (temp_path == NULL) {
1237     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1238     if (pathSize == 0 || pathSize > PATH_MAX) {
1239       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1240     }
1241     temp_path = temp_path_storage;
1242   }
1243   return temp_path;
1244 }
1245 #else // __APPLE__
1246 const char* os::get_temp_directory() { return "/tmp"; }
1247 #endif // __APPLE__
1248 
1249 static bool file_exists(const char* filename) {
1250   struct stat statbuf;
1251   if (filename == NULL || strlen(filename) == 0) {
1252     return false;
1253   }
1254   return os::stat(filename, &statbuf) == 0;
1255 }
1256 
1257 bool os::dll_build_name(char* buffer, size_t buflen,
1258                         const char* pname, const char* fname) {
1259   bool retval = false;
1260   // Copied from libhpi
1261   const size_t pnamelen = pname ? strlen(pname) : 0;
1262 
1263   // Return error on buffer overflow.
1264   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1265     return retval;
1266   }
1267 
1268   if (pnamelen == 0) {
1269     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1270     retval = true;
1271   } else if (strchr(pname, *os::path_separator()) != NULL) {
1272     int n;
1273     char** pelements = split_path(pname, &n);
1274     if (pelements == NULL) {
1275       return false;
1276     }
1277     for (int i = 0; i < n; i++) {
1278       // Really shouldn't be NULL, but check can't hurt
1279       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1280         continue; // skip the empty path values
1281       }
1282       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1283                pelements[i], fname);
1284       if (file_exists(buffer)) {
1285         retval = true;
1286         break;
1287       }
1288     }
1289     // release the storage
1290     for (int i = 0; i < n; i++) {
1291       if (pelements[i] != NULL) {
1292         FREE_C_HEAP_ARRAY(char, pelements[i]);
1293       }
1294     }
1295     if (pelements != NULL) {
1296       FREE_C_HEAP_ARRAY(char*, pelements);
1297     }
1298   } else {
1299     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1300     retval = true;
1301   }
1302   return retval;
1303 }
1304 
1305 // check if addr is inside libjvm.so
1306 bool os::address_is_in_vm(address addr) {
1307   static address libjvm_base_addr;
1308   Dl_info dlinfo;
1309 
1310   if (libjvm_base_addr == NULL) {
1311     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1312       libjvm_base_addr = (address)dlinfo.dli_fbase;
1313     }
1314     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1315   }
1316 
1317   if (dladdr((void *)addr, &dlinfo) != 0) {
1318     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1319   }
1320 
1321   return false;
1322 }
1323 
1324 
1325 #define MACH_MAXSYMLEN 256
1326 
1327 bool os::dll_address_to_function_name(address addr, char *buf,
1328                                       int buflen, int *offset) {
1329   // buf is not optional, but offset is optional
1330   assert(buf != NULL, "sanity check");
1331 
1332   Dl_info dlinfo;
1333   char localbuf[MACH_MAXSYMLEN];
1334 
1335   if (dladdr((void*)addr, &dlinfo) != 0) {
1336     // see if we have a matching symbol
1337     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1338       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1339         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1340       }
1341       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1342       return true;
1343     }
1344     // no matching symbol so try for just file info
1345     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1346       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1347                           buf, buflen, offset, dlinfo.dli_fname)) {
1348         return true;
1349       }
1350     }
1351 
1352     // Handle non-dynamic manually:
1353     if (dlinfo.dli_fbase != NULL &&
1354         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1355       if (!Decoder::demangle(localbuf, buf, buflen)) {
1356         jio_snprintf(buf, buflen, "%s", localbuf);
1357       }
1358       return true;
1359     }
1360   }
1361   buf[0] = '\0';
1362   if (offset != NULL) *offset = -1;
1363   return false;
1364 }
1365 
1366 // ported from solaris version
1367 bool os::dll_address_to_library_name(address addr, char* buf,
1368                                      int buflen, int* offset) {
1369   // buf is not optional, but offset is optional
1370   assert(buf != NULL, "sanity check");
1371 
1372   Dl_info dlinfo;
1373 
1374   if (dladdr((void*)addr, &dlinfo) != 0) {
1375     if (dlinfo.dli_fname != NULL) {
1376       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1377     }
1378     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1379       *offset = addr - (address)dlinfo.dli_fbase;
1380     }
1381     return true;
1382   }
1383 
1384   buf[0] = '\0';
1385   if (offset) *offset = -1;
1386   return false;
1387 }
1388 
1389 // Loads .dll/.so and
1390 // in case of error it checks if .dll/.so was built for the
1391 // same architecture as Hotspot is running on
1392 
1393 #ifdef __APPLE__
1394 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1395   void * result= ::dlopen(filename, RTLD_LAZY);
1396   if (result != NULL) {
1397     // Successful loading
1398     return result;
1399   }
1400 
1401   // Read system error message into ebuf
1402   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1403   ebuf[ebuflen-1]='\0';
1404 
1405   return NULL;
1406 }
1407 #else
1408 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1409   void * result= ::dlopen(filename, RTLD_LAZY);
1410   if (result != NULL) {
1411     // Successful loading
1412     return result;
1413   }
1414 
1415   Elf32_Ehdr elf_head;
1416 
1417   // Read system error message into ebuf
1418   // It may or may not be overwritten below
1419   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1420   ebuf[ebuflen-1]='\0';
1421   int diag_msg_max_length=ebuflen-strlen(ebuf);
1422   char* diag_msg_buf=ebuf+strlen(ebuf);
1423 
1424   if (diag_msg_max_length==0) {
1425     // No more space in ebuf for additional diagnostics message
1426     return NULL;
1427   }
1428 
1429 
1430   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1431 
1432   if (file_descriptor < 0) {
1433     // Can't open library, report dlerror() message
1434     return NULL;
1435   }
1436 
1437   bool failed_to_read_elf_head=
1438     (sizeof(elf_head)!=
1439      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1440 
1441   ::close(file_descriptor);
1442   if (failed_to_read_elf_head) {
1443     // file i/o error - report dlerror() msg
1444     return NULL;
1445   }
1446 
1447   typedef struct {
1448     Elf32_Half  code;         // Actual value as defined in elf.h
1449     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1450     char        elf_class;    // 32 or 64 bit
1451     char        endianess;    // MSB or LSB
1452     char*       name;         // String representation
1453   } arch_t;
1454 
1455   #ifndef EM_486
1456     #define EM_486          6               /* Intel 80486 */
1457   #endif
1458 
1459   #ifndef EM_MIPS_RS3_LE
1460     #define EM_MIPS_RS3_LE  10              /* MIPS */
1461   #endif
1462 
1463   #ifndef EM_PPC64
1464     #define EM_PPC64        21              /* PowerPC64 */
1465   #endif
1466 
1467   #ifndef EM_S390
1468     #define EM_S390         22              /* IBM System/390 */
1469   #endif
1470 
1471   #ifndef EM_IA_64
1472     #define EM_IA_64        50              /* HP/Intel IA-64 */
1473   #endif
1474 
1475   #ifndef EM_X86_64
1476     #define EM_X86_64       62              /* AMD x86-64 */
1477   #endif
1478 
1479   static const arch_t arch_array[]={
1480     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1481     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1482     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1483     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1484     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1485     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1486     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1487     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1488     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1489     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1490     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1491     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1492     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1493     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1494     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1495     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1496   };
1497 
1498   #if  (defined IA32)
1499   static  Elf32_Half running_arch_code=EM_386;
1500   #elif   (defined AMD64)
1501   static  Elf32_Half running_arch_code=EM_X86_64;
1502   #elif  (defined IA64)
1503   static  Elf32_Half running_arch_code=EM_IA_64;
1504   #elif  (defined __sparc) && (defined _LP64)
1505   static  Elf32_Half running_arch_code=EM_SPARCV9;
1506   #elif  (defined __sparc) && (!defined _LP64)
1507   static  Elf32_Half running_arch_code=EM_SPARC;
1508   #elif  (defined __powerpc64__)
1509   static  Elf32_Half running_arch_code=EM_PPC64;
1510   #elif  (defined __powerpc__)
1511   static  Elf32_Half running_arch_code=EM_PPC;
1512   #elif  (defined ARM)
1513   static  Elf32_Half running_arch_code=EM_ARM;
1514   #elif  (defined S390)
1515   static  Elf32_Half running_arch_code=EM_S390;
1516   #elif  (defined ALPHA)
1517   static  Elf32_Half running_arch_code=EM_ALPHA;
1518   #elif  (defined MIPSEL)
1519   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1520   #elif  (defined PARISC)
1521   static  Elf32_Half running_arch_code=EM_PARISC;
1522   #elif  (defined MIPS)
1523   static  Elf32_Half running_arch_code=EM_MIPS;
1524   #elif  (defined M68K)
1525   static  Elf32_Half running_arch_code=EM_68K;
1526   #else
1527     #error Method os::dll_load requires that one of following is defined:\
1528          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1529   #endif
1530 
1531   // Identify compatability class for VM's architecture and library's architecture
1532   // Obtain string descriptions for architectures
1533 
1534   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1535   int running_arch_index=-1;
1536 
1537   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1538     if (running_arch_code == arch_array[i].code) {
1539       running_arch_index    = i;
1540     }
1541     if (lib_arch.code == arch_array[i].code) {
1542       lib_arch.compat_class = arch_array[i].compat_class;
1543       lib_arch.name         = arch_array[i].name;
1544     }
1545   }
1546 
1547   assert(running_arch_index != -1,
1548          "Didn't find running architecture code (running_arch_code) in arch_array");
1549   if (running_arch_index == -1) {
1550     // Even though running architecture detection failed
1551     // we may still continue with reporting dlerror() message
1552     return NULL;
1553   }
1554 
1555   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1556     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1557     return NULL;
1558   }
1559 
1560 #ifndef S390
1561   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1562     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1563     return NULL;
1564   }
1565 #endif // !S390
1566 
1567   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1568     if (lib_arch.name!=NULL) {
1569       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1570                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1571                  lib_arch.name, arch_array[running_arch_index].name);
1572     } else {
1573       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1574                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1575                  lib_arch.code,
1576                  arch_array[running_arch_index].name);
1577     }
1578   }
1579 
1580   return NULL;
1581 }
1582 #endif // !__APPLE__
1583 
1584 void* os::get_default_process_handle() {
1585 #ifdef __APPLE__
1586   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1587   // to avoid finding unexpected symbols on second (or later)
1588   // loads of a library.
1589   return (void*)::dlopen(NULL, RTLD_FIRST);
1590 #else
1591   return (void*)::dlopen(NULL, RTLD_LAZY);
1592 #endif
1593 }
1594 
1595 // XXX: Do we need a lock around this as per Linux?
1596 void* os::dll_lookup(void* handle, const char* name) {
1597   return dlsym(handle, name);
1598 }
1599 
1600 
1601 static bool _print_ascii_file(const char* filename, outputStream* st) {
1602   int fd = ::open(filename, O_RDONLY);
1603   if (fd == -1) {
1604     return false;
1605   }
1606 
1607   char buf[32];
1608   int bytes;
1609   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1610     st->print_raw(buf, bytes);
1611   }
1612 
1613   ::close(fd);
1614 
1615   return true;
1616 }
1617 
1618 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1619   outputStream * out = (outputStream *) param;
1620   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1621   return 0;
1622 }
1623 
1624 void os::print_dll_info(outputStream *st) {
1625   st->print_cr("Dynamic libraries:");
1626   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1627     st->print_cr("Error: Cannot print dynamic libraries.");
1628   }
1629 }
1630 
1631 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1632 #ifdef RTLD_DI_LINKMAP
1633   Dl_info dli;
1634   void *handle;
1635   Link_map *map;
1636   Link_map *p;
1637 
1638   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1639       dli.dli_fname == NULL) {
1640     return 1;
1641   }
1642   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1643   if (handle == NULL) {
1644     return 1;
1645   }
1646   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1647   if (map == NULL) {
1648     dlclose(handle);
1649     return 1;
1650   }
1651 
1652   while (map->l_prev != NULL)
1653     map = map->l_prev;
1654 
1655   while (map != NULL) {
1656     // Value for top_address is returned as 0 since we don't have any information about module size
1657     if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1658       dlclose(handle);
1659       return 1;
1660     }
1661     map = map->l_next;
1662   }
1663 
1664   dlclose(handle);
1665 #elif defined(__APPLE__)
1666   for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1667     // Value for top_address is returned as 0 since we don't have any information about module size
1668     if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1669       return 1;
1670     }
1671   }
1672   return 0;
1673 #else
1674   return 1;
1675 #endif
1676 }
1677 
1678 void os::print_os_info_brief(outputStream* st) {
1679   st->print("Bsd");
1680 
1681   os::Posix::print_uname_info(st);
1682 }
1683 
1684 void os::print_os_info(outputStream* st) {
1685   st->print("OS:");
1686   st->print("Bsd");
1687 
1688   os::Posix::print_uname_info(st);
1689 
1690   os::Posix::print_rlimit_info(st);
1691 
1692   os::Posix::print_load_average(st);
1693 }
1694 
1695 void os::pd_print_cpu_info(outputStream* st) {
1696   // Nothing to do for now.
1697 }
1698 
1699 void os::print_memory_info(outputStream* st) {
1700 
1701   st->print("Memory:");
1702   st->print(" %dk page", os::vm_page_size()>>10);
1703 
1704   st->print(", physical " UINT64_FORMAT "k",
1705             os::physical_memory() >> 10);
1706   st->print("(" UINT64_FORMAT "k free)",
1707             os::available_memory() >> 10);
1708   st->cr();
1709 
1710   // meminfo
1711   st->print("\n/proc/meminfo:\n");
1712   _print_ascii_file("/proc/meminfo", st);
1713   st->cr();
1714 }
1715 
1716 void os::print_siginfo(outputStream* st, void* siginfo) {
1717   const siginfo_t* si = (const siginfo_t*)siginfo;
1718 
1719   os::Posix::print_siginfo_brief(st, si);
1720 
1721   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1722       UseSharedSpaces) {
1723     FileMapInfo* mapinfo = FileMapInfo::current_info();
1724     if (mapinfo->is_in_shared_space(si->si_addr)) {
1725       st->print("\n\nError accessing class data sharing archive."   \
1726                 " Mapped file inaccessible during execution, "      \
1727                 " possible disk/network problem.");
1728     }
1729   }
1730   st->cr();
1731 }
1732 
1733 
1734 static void print_signal_handler(outputStream* st, int sig,
1735                                  char* buf, size_t buflen);
1736 
1737 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1738   st->print_cr("Signal Handlers:");
1739   print_signal_handler(st, SIGSEGV, buf, buflen);
1740   print_signal_handler(st, SIGBUS , buf, buflen);
1741   print_signal_handler(st, SIGFPE , buf, buflen);
1742   print_signal_handler(st, SIGPIPE, buf, buflen);
1743   print_signal_handler(st, SIGXFSZ, buf, buflen);
1744   print_signal_handler(st, SIGILL , buf, buflen);
1745   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1746   print_signal_handler(st, SR_signum, buf, buflen);
1747   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1748   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1749   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1750   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1751 }
1752 
1753 static char saved_jvm_path[MAXPATHLEN] = {0};
1754 
1755 // Find the full path to the current module, libjvm
1756 void os::jvm_path(char *buf, jint buflen) {
1757   // Error checking.
1758   if (buflen < MAXPATHLEN) {
1759     assert(false, "must use a large-enough buffer");
1760     buf[0] = '\0';
1761     return;
1762   }
1763   // Lazy resolve the path to current module.
1764   if (saved_jvm_path[0] != 0) {
1765     strcpy(buf, saved_jvm_path);
1766     return;
1767   }
1768 
1769   char dli_fname[MAXPATHLEN];
1770   bool ret = dll_address_to_library_name(
1771                                          CAST_FROM_FN_PTR(address, os::jvm_path),
1772                                          dli_fname, sizeof(dli_fname), NULL);
1773   assert(ret, "cannot locate libjvm");
1774   char *rp = NULL;
1775   if (ret && dli_fname[0] != '\0') {
1776     rp = realpath(dli_fname, buf);
1777   }
1778   if (rp == NULL) {
1779     return;
1780   }
1781 
1782   if (Arguments::sun_java_launcher_is_altjvm()) {
1783     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1784     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1785     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1786     // appears at the right place in the string, then assume we are
1787     // installed in a JDK and we're done. Otherwise, check for a
1788     // JAVA_HOME environment variable and construct a path to the JVM
1789     // being overridden.
1790 
1791     const char *p = buf + strlen(buf) - 1;
1792     for (int count = 0; p > buf && count < 5; ++count) {
1793       for (--p; p > buf && *p != '/'; --p)
1794         /* empty */ ;
1795     }
1796 
1797     if (strncmp(p, "/jre/lib/", 9) != 0) {
1798       // Look for JAVA_HOME in the environment.
1799       char* java_home_var = ::getenv("JAVA_HOME");
1800       if (java_home_var != NULL && java_home_var[0] != 0) {
1801         char* jrelib_p;
1802         int len;
1803 
1804         // Check the current module name "libjvm"
1805         p = strrchr(buf, '/');
1806         assert(strstr(p, "/libjvm") == p, "invalid library name");
1807 
1808         rp = realpath(java_home_var, buf);
1809         if (rp == NULL) {
1810           return;
1811         }
1812 
1813         // determine if this is a legacy image or modules image
1814         // modules image doesn't have "jre" subdirectory
1815         len = strlen(buf);
1816         assert(len < buflen, "Ran out of buffer space");
1817         jrelib_p = buf + len;
1818 
1819         // Add the appropriate library subdir
1820         snprintf(jrelib_p, buflen-len, "/jre/lib");
1821         if (0 != access(buf, F_OK)) {
1822           snprintf(jrelib_p, buflen-len, "/lib");
1823         }
1824 
1825         // Add the appropriate client or server subdir
1826         len = strlen(buf);
1827         jrelib_p = buf + len;
1828         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1829         if (0 != access(buf, F_OK)) {
1830           snprintf(jrelib_p, buflen-len, "%s", "");
1831         }
1832 
1833         // If the path exists within JAVA_HOME, add the JVM library name
1834         // to complete the path to JVM being overridden.  Otherwise fallback
1835         // to the path to the current library.
1836         if (0 == access(buf, F_OK)) {
1837           // Use current module name "libjvm"
1838           len = strlen(buf);
1839           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1840         } else {
1841           // Fall back to path of current library
1842           rp = realpath(dli_fname, buf);
1843           if (rp == NULL) {
1844             return;
1845           }
1846         }
1847       }
1848     }
1849   }
1850 
1851   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1852   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1853 }
1854 
1855 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1856   // no prefix required, not even "_"
1857 }
1858 
1859 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1860   // no suffix required
1861 }
1862 
1863 ////////////////////////////////////////////////////////////////////////////////
1864 // sun.misc.Signal support
1865 
1866 static volatile jint sigint_count = 0;
1867 
1868 static void UserHandler(int sig, void *siginfo, void *context) {
1869   // 4511530 - sem_post is serialized and handled by the manager thread. When
1870   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1871   // don't want to flood the manager thread with sem_post requests.
1872   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1873     return;
1874   }
1875 
1876   // Ctrl-C is pressed during error reporting, likely because the error
1877   // handler fails to abort. Let VM die immediately.
1878   if (sig == SIGINT && is_error_reported()) {
1879     os::die();
1880   }
1881 
1882   os::signal_notify(sig);
1883 }
1884 
1885 void* os::user_handler() {
1886   return CAST_FROM_FN_PTR(void*, UserHandler);
1887 }
1888 
1889 extern "C" {
1890   typedef void (*sa_handler_t)(int);
1891   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1892 }
1893 
1894 void* os::signal(int signal_number, void* handler) {
1895   struct sigaction sigAct, oldSigAct;
1896 
1897   sigfillset(&(sigAct.sa_mask));
1898   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1899   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1900 
1901   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1902     // -1 means registration failed
1903     return (void *)-1;
1904   }
1905 
1906   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1907 }
1908 
1909 void os::signal_raise(int signal_number) {
1910   ::raise(signal_number);
1911 }
1912 
1913 // The following code is moved from os.cpp for making this
1914 // code platform specific, which it is by its very nature.
1915 
1916 // Will be modified when max signal is changed to be dynamic
1917 int os::sigexitnum_pd() {
1918   return NSIG;
1919 }
1920 
1921 // a counter for each possible signal value
1922 static volatile jint pending_signals[NSIG+1] = { 0 };
1923 
1924 // Bsd(POSIX) specific hand shaking semaphore.
1925 #ifdef __APPLE__
1926 typedef semaphore_t os_semaphore_t;
1927 
1928   #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1929   #define SEM_WAIT(sem)           semaphore_wait(sem)
1930   #define SEM_POST(sem)           semaphore_signal(sem)
1931   #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1932 #else
1933 typedef sem_t os_semaphore_t;
1934 
1935   #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1936   #define SEM_WAIT(sem)           sem_wait(&sem)
1937   #define SEM_POST(sem)           sem_post(&sem)
1938   #define SEM_DESTROY(sem)        sem_destroy(&sem)
1939 #endif
1940 
1941 class Semaphore : public StackObj {
1942  public:
1943   Semaphore();
1944   ~Semaphore();
1945   void signal();
1946   void wait();
1947   bool trywait();
1948   bool timedwait(unsigned int sec, int nsec);
1949  private:
1950   jlong currenttime() const;
1951   os_semaphore_t _semaphore;
1952 };
1953 
1954 Semaphore::Semaphore() : _semaphore(0) {
1955   SEM_INIT(_semaphore, 0);
1956 }
1957 
1958 Semaphore::~Semaphore() {
1959   SEM_DESTROY(_semaphore);
1960 }
1961 
1962 void Semaphore::signal() {
1963   SEM_POST(_semaphore);
1964 }
1965 
1966 void Semaphore::wait() {
1967   SEM_WAIT(_semaphore);
1968 }
1969 
1970 jlong Semaphore::currenttime() const {
1971   struct timeval tv;
1972   gettimeofday(&tv, NULL);
1973   return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1974 }
1975 
1976 #ifdef __APPLE__
1977 bool Semaphore::trywait() {
1978   return timedwait(0, 0);
1979 }
1980 
1981 bool Semaphore::timedwait(unsigned int sec, int nsec) {
1982   kern_return_t kr = KERN_ABORTED;
1983   mach_timespec_t waitspec;
1984   waitspec.tv_sec = sec;
1985   waitspec.tv_nsec = nsec;
1986 
1987   jlong starttime = currenttime();
1988 
1989   kr = semaphore_timedwait(_semaphore, waitspec);
1990   while (kr == KERN_ABORTED) {
1991     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1992 
1993     jlong current = currenttime();
1994     jlong passedtime = current - starttime;
1995 
1996     if (passedtime >= totalwait) {
1997       waitspec.tv_sec = 0;
1998       waitspec.tv_nsec = 0;
1999     } else {
2000       jlong waittime = totalwait - (current - starttime);
2001       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2002       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2003     }
2004 
2005     kr = semaphore_timedwait(_semaphore, waitspec);
2006   }
2007 
2008   return kr == KERN_SUCCESS;
2009 }
2010 
2011 #else
2012 
2013 bool Semaphore::trywait() {
2014   return sem_trywait(&_semaphore) == 0;
2015 }
2016 
2017 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2018   struct timespec ts;
2019   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2020 
2021   while (1) {
2022     int result = sem_timedwait(&_semaphore, &ts);
2023     if (result == 0) {
2024       return true;
2025     } else if (errno == EINTR) {
2026       continue;
2027     } else if (errno == ETIMEDOUT) {
2028       return false;
2029     } else {
2030       return false;
2031     }
2032   }
2033 }
2034 
2035 #endif // __APPLE__
2036 
2037 static os_semaphore_t sig_sem;
2038 static Semaphore sr_semaphore;
2039 
2040 void os::signal_init_pd() {
2041   // Initialize signal structures
2042   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2043 
2044   // Initialize signal semaphore
2045   ::SEM_INIT(sig_sem, 0);
2046 }
2047 
2048 void os::signal_notify(int sig) {
2049   Atomic::inc(&pending_signals[sig]);
2050   ::SEM_POST(sig_sem);
2051 }
2052 
2053 static int check_pending_signals(bool wait) {
2054   Atomic::store(0, &sigint_count);
2055   for (;;) {
2056     for (int i = 0; i < NSIG + 1; i++) {
2057       jint n = pending_signals[i];
2058       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2059         return i;
2060       }
2061     }
2062     if (!wait) {
2063       return -1;
2064     }
2065     JavaThread *thread = JavaThread::current();
2066     ThreadBlockInVM tbivm(thread);
2067 
2068     bool threadIsSuspended;
2069     do {
2070       thread->set_suspend_equivalent();
2071       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2072       ::SEM_WAIT(sig_sem);
2073 
2074       // were we externally suspended while we were waiting?
2075       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2076       if (threadIsSuspended) {
2077         // The semaphore has been incremented, but while we were waiting
2078         // another thread suspended us. We don't want to continue running
2079         // while suspended because that would surprise the thread that
2080         // suspended us.
2081         ::SEM_POST(sig_sem);
2082 
2083         thread->java_suspend_self();
2084       }
2085     } while (threadIsSuspended);
2086   }
2087 }
2088 
2089 int os::signal_lookup() {
2090   return check_pending_signals(false);
2091 }
2092 
2093 int os::signal_wait() {
2094   return check_pending_signals(true);
2095 }
2096 
2097 ////////////////////////////////////////////////////////////////////////////////
2098 // Virtual Memory
2099 
2100 int os::vm_page_size() {
2101   // Seems redundant as all get out
2102   assert(os::Bsd::page_size() != -1, "must call os::init");
2103   return os::Bsd::page_size();
2104 }
2105 
2106 // Solaris allocates memory by pages.
2107 int os::vm_allocation_granularity() {
2108   assert(os::Bsd::page_size() != -1, "must call os::init");
2109   return os::Bsd::page_size();
2110 }
2111 
2112 // Rationale behind this function:
2113 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2114 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2115 //  samples for JITted code. Here we create private executable mapping over the code cache
2116 //  and then we can use standard (well, almost, as mapping can change) way to provide
2117 //  info for the reporting script by storing timestamp and location of symbol
2118 void bsd_wrap_code(char* base, size_t size) {
2119   static volatile jint cnt = 0;
2120 
2121   if (!UseOprofile) {
2122     return;
2123   }
2124 
2125   char buf[PATH_MAX + 1];
2126   int num = Atomic::add(1, &cnt);
2127 
2128   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2129            os::get_temp_directory(), os::current_process_id(), num);
2130   unlink(buf);
2131 
2132   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2133 
2134   if (fd != -1) {
2135     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2136     if (rv != (off_t)-1) {
2137       if (::write(fd, "", 1) == 1) {
2138         mmap(base, size,
2139              PROT_READ|PROT_WRITE|PROT_EXEC,
2140              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2141       }
2142     }
2143     ::close(fd);
2144     unlink(buf);
2145   }
2146 }
2147 
2148 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2149                                     int err) {
2150   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2151           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2152           strerror(err), err);
2153 }
2154 
2155 // NOTE: Bsd kernel does not really reserve the pages for us.
2156 //       All it does is to check if there are enough free pages
2157 //       left at the time of mmap(). This could be a potential
2158 //       problem.
2159 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2160   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2161 #ifdef __OpenBSD__
2162   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2163   if (::mprotect(addr, size, prot) == 0) {
2164     return true;
2165   }
2166 #else
2167   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2168                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2169   if (res != (uintptr_t) MAP_FAILED) {
2170     return true;
2171   }
2172 #endif
2173 
2174   // Warn about any commit errors we see in non-product builds just
2175   // in case mmap() doesn't work as described on the man page.
2176   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2177 
2178   return false;
2179 }
2180 
2181 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2182                           bool exec) {
2183   // alignment_hint is ignored on this OS
2184   return pd_commit_memory(addr, size, exec);
2185 }
2186 
2187 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2188                                   const char* mesg) {
2189   assert(mesg != NULL, "mesg must be specified");
2190   if (!pd_commit_memory(addr, size, exec)) {
2191     // add extra info in product mode for vm_exit_out_of_memory():
2192     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2193     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2194   }
2195 }
2196 
2197 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2198                                   size_t alignment_hint, bool exec,
2199                                   const char* mesg) {
2200   // alignment_hint is ignored on this OS
2201   pd_commit_memory_or_exit(addr, size, exec, mesg);
2202 }
2203 
2204 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2205 }
2206 
2207 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2208   ::madvise(addr, bytes, MADV_DONTNEED);
2209 }
2210 
2211 void os::numa_make_global(char *addr, size_t bytes) {
2212 }
2213 
2214 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2215 }
2216 
2217 bool os::numa_topology_changed()   { return false; }
2218 
2219 size_t os::numa_get_groups_num() {
2220   return 1;
2221 }
2222 
2223 int os::numa_get_group_id() {
2224   return 0;
2225 }
2226 
2227 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2228   if (size > 0) {
2229     ids[0] = 0;
2230     return 1;
2231   }
2232   return 0;
2233 }
2234 
2235 bool os::get_page_info(char *start, page_info* info) {
2236   return false;
2237 }
2238 
2239 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2240   return end;
2241 }
2242 
2243 
2244 bool os::pd_uncommit_memory(char* addr, size_t size) {
2245 #ifdef __OpenBSD__
2246   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2247   return ::mprotect(addr, size, PROT_NONE) == 0;
2248 #else
2249   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2250                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2251   return res  != (uintptr_t) MAP_FAILED;
2252 #endif
2253 }
2254 
2255 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2256   return os::commit_memory(addr, size, !ExecMem);
2257 }
2258 
2259 // If this is a growable mapping, remove the guard pages entirely by
2260 // munmap()ping them.  If not, just call uncommit_memory().
2261 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2262   return os::uncommit_memory(addr, size);
2263 }
2264 
2265 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2266 // at 'requested_addr'. If there are existing memory mappings at the same
2267 // location, however, they will be overwritten. If 'fixed' is false,
2268 // 'requested_addr' is only treated as a hint, the return value may or
2269 // may not start from the requested address. Unlike Bsd mmap(), this
2270 // function returns NULL to indicate failure.
2271 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2272   char * addr;
2273   int flags;
2274 
2275   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2276   if (fixed) {
2277     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2278     flags |= MAP_FIXED;
2279   }
2280 
2281   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2282   // touch an uncommitted page. Otherwise, the read/write might
2283   // succeed if we have enough swap space to back the physical page.
2284   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2285                        flags, -1, 0);
2286 
2287   return addr == MAP_FAILED ? NULL : addr;
2288 }
2289 
2290 static int anon_munmap(char * addr, size_t size) {
2291   return ::munmap(addr, size) == 0;
2292 }
2293 
2294 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2295                             size_t alignment_hint) {
2296   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2297 }
2298 
2299 bool os::pd_release_memory(char* addr, size_t size) {
2300   return anon_munmap(addr, size);
2301 }
2302 
2303 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2304   // Bsd wants the mprotect address argument to be page aligned.
2305   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2306 
2307   // According to SUSv3, mprotect() should only be used with mappings
2308   // established by mmap(), and mmap() always maps whole pages. Unaligned
2309   // 'addr' likely indicates problem in the VM (e.g. trying to change
2310   // protection of malloc'ed or statically allocated memory). Check the
2311   // caller if you hit this assert.
2312   assert(addr == bottom, "sanity check");
2313 
2314   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2315   return ::mprotect(bottom, size, prot) == 0;
2316 }
2317 
2318 // Set protections specified
2319 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2320                         bool is_committed) {
2321   unsigned int p = 0;
2322   switch (prot) {
2323   case MEM_PROT_NONE: p = PROT_NONE; break;
2324   case MEM_PROT_READ: p = PROT_READ; break;
2325   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2326   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2327   default:
2328     ShouldNotReachHere();
2329   }
2330   // is_committed is unused.
2331   return bsd_mprotect(addr, bytes, p);
2332 }
2333 
2334 bool os::guard_memory(char* addr, size_t size) {
2335   return bsd_mprotect(addr, size, PROT_NONE);
2336 }
2337 
2338 bool os::unguard_memory(char* addr, size_t size) {
2339   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2340 }
2341 
2342 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2343   return false;
2344 }
2345 
2346 // Large page support
2347 
2348 static size_t _large_page_size = 0;
2349 
2350 void os::large_page_init() {
2351 }
2352 
2353 
2354 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2355   fatal("This code is not used or maintained.");
2356 
2357   // "exec" is passed in but not used.  Creating the shared image for
2358   // the code cache doesn't have an SHM_X executable permission to check.
2359   assert(UseLargePages && UseSHM, "only for SHM large pages");
2360 
2361   key_t key = IPC_PRIVATE;
2362   char *addr;
2363 
2364   bool warn_on_failure = UseLargePages &&
2365                          (!FLAG_IS_DEFAULT(UseLargePages) ||
2366                           !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2367 
2368   // Create a large shared memory region to attach to based on size.
2369   // Currently, size is the total size of the heap
2370   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2371   if (shmid == -1) {
2372     // Possible reasons for shmget failure:
2373     // 1. shmmax is too small for Java heap.
2374     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2375     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2376     // 2. not enough large page memory.
2377     //    > check available large pages: cat /proc/meminfo
2378     //    > increase amount of large pages:
2379     //          echo new_value > /proc/sys/vm/nr_hugepages
2380     //      Note 1: different Bsd may use different name for this property,
2381     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2382     //      Note 2: it's possible there's enough physical memory available but
2383     //            they are so fragmented after a long run that they can't
2384     //            coalesce into large pages. Try to reserve large pages when
2385     //            the system is still "fresh".
2386     if (warn_on_failure) {
2387       warning("Failed to reserve shared memory (errno = %d).", errno);
2388     }
2389     return NULL;
2390   }
2391 
2392   // attach to the region
2393   addr = (char*)shmat(shmid, req_addr, 0);
2394   int err = errno;
2395 
2396   // Remove shmid. If shmat() is successful, the actual shared memory segment
2397   // will be deleted when it's detached by shmdt() or when the process
2398   // terminates. If shmat() is not successful this will remove the shared
2399   // segment immediately.
2400   shmctl(shmid, IPC_RMID, NULL);
2401 
2402   if ((intptr_t)addr == -1) {
2403     if (warn_on_failure) {
2404       warning("Failed to attach shared memory (errno = %d).", err);
2405     }
2406     return NULL;
2407   }
2408 
2409   // The memory is committed
2410   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2411 
2412   return addr;
2413 }
2414 
2415 bool os::release_memory_special(char* base, size_t bytes) {
2416   if (MemTracker::tracking_level() > NMT_minimal) {
2417     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2418     // detaching the SHM segment will also delete it, see reserve_memory_special()
2419     int rslt = shmdt(base);
2420     if (rslt == 0) {
2421       tkr.record((address)base, bytes);
2422       return true;
2423     } else {
2424       return false;
2425     }
2426   } else {
2427     return shmdt(base) == 0;
2428   }
2429 }
2430 
2431 size_t os::large_page_size() {
2432   return _large_page_size;
2433 }
2434 
2435 // HugeTLBFS allows application to commit large page memory on demand;
2436 // with SysV SHM the entire memory region must be allocated as shared
2437 // memory.
2438 bool os::can_commit_large_page_memory() {
2439   return UseHugeTLBFS;
2440 }
2441 
2442 bool os::can_execute_large_page_memory() {
2443   return UseHugeTLBFS;
2444 }
2445 
2446 // Reserve memory at an arbitrary address, only if that area is
2447 // available (and not reserved for something else).
2448 
2449 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2450   const int max_tries = 10;
2451   char* base[max_tries];
2452   size_t size[max_tries];
2453   const size_t gap = 0x000000;
2454 
2455   // Assert only that the size is a multiple of the page size, since
2456   // that's all that mmap requires, and since that's all we really know
2457   // about at this low abstraction level.  If we need higher alignment,
2458   // we can either pass an alignment to this method or verify alignment
2459   // in one of the methods further up the call chain.  See bug 5044738.
2460   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2461 
2462   // Repeatedly allocate blocks until the block is allocated at the
2463   // right spot.
2464 
2465   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2466   // if kernel honors the hint then we can return immediately.
2467   char * addr = anon_mmap(requested_addr, bytes, false);
2468   if (addr == requested_addr) {
2469     return requested_addr;
2470   }
2471 
2472   if (addr != NULL) {
2473     // mmap() is successful but it fails to reserve at the requested address
2474     anon_munmap(addr, bytes);
2475   }
2476 
2477   int i;
2478   for (i = 0; i < max_tries; ++i) {
2479     base[i] = reserve_memory(bytes);
2480 
2481     if (base[i] != NULL) {
2482       // Is this the block we wanted?
2483       if (base[i] == requested_addr) {
2484         size[i] = bytes;
2485         break;
2486       }
2487 
2488       // Does this overlap the block we wanted? Give back the overlapped
2489       // parts and try again.
2490 
2491       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2492       if (top_overlap >= 0 && top_overlap < bytes) {
2493         unmap_memory(base[i], top_overlap);
2494         base[i] += top_overlap;
2495         size[i] = bytes - top_overlap;
2496       } else {
2497         size_t bottom_overlap = base[i] + bytes - requested_addr;
2498         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2499           unmap_memory(requested_addr, bottom_overlap);
2500           size[i] = bytes - bottom_overlap;
2501         } else {
2502           size[i] = bytes;
2503         }
2504       }
2505     }
2506   }
2507 
2508   // Give back the unused reserved pieces.
2509 
2510   for (int j = 0; j < i; ++j) {
2511     if (base[j] != NULL) {
2512       unmap_memory(base[j], size[j]);
2513     }
2514   }
2515 
2516   if (i < max_tries) {
2517     return requested_addr;
2518   } else {
2519     return NULL;
2520   }
2521 }
2522 
2523 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2524   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2525 }
2526 
2527 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2528   RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2529 }
2530 
2531 void os::naked_short_sleep(jlong ms) {
2532   struct timespec req;
2533 
2534   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2535   req.tv_sec = 0;
2536   if (ms > 0) {
2537     req.tv_nsec = (ms % 1000) * 1000000;
2538   } else {
2539     req.tv_nsec = 1;
2540   }
2541 
2542   nanosleep(&req, NULL);
2543 
2544   return;
2545 }
2546 
2547 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2548 void os::infinite_sleep() {
2549   while (true) {    // sleep forever ...
2550     ::sleep(100);   // ... 100 seconds at a time
2551   }
2552 }
2553 
2554 // Used to convert frequent JVM_Yield() to nops
2555 bool os::dont_yield() {
2556   return DontYieldALot;
2557 }
2558 
2559 void os::naked_yield() {
2560   sched_yield();
2561 }
2562 
2563 ////////////////////////////////////////////////////////////////////////////////
2564 // thread priority support
2565 
2566 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2567 // only supports dynamic priority, static priority must be zero. For real-time
2568 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2569 // However, for large multi-threaded applications, SCHED_RR is not only slower
2570 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2571 // of 5 runs - Sep 2005).
2572 //
2573 // The following code actually changes the niceness of kernel-thread/LWP. It
2574 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2575 // not the entire user process, and user level threads are 1:1 mapped to kernel
2576 // threads. It has always been the case, but could change in the future. For
2577 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2578 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2579 
2580 #if !defined(__APPLE__)
2581 int os::java_to_os_priority[CriticalPriority + 1] = {
2582   19,              // 0 Entry should never be used
2583 
2584    0,              // 1 MinPriority
2585    3,              // 2
2586    6,              // 3
2587 
2588   10,              // 4
2589   15,              // 5 NormPriority
2590   18,              // 6
2591 
2592   21,              // 7
2593   25,              // 8
2594   28,              // 9 NearMaxPriority
2595 
2596   31,              // 10 MaxPriority
2597 
2598   31               // 11 CriticalPriority
2599 };
2600 #else
2601 // Using Mach high-level priority assignments
2602 int os::java_to_os_priority[CriticalPriority + 1] = {
2603    0,              // 0 Entry should never be used (MINPRI_USER)
2604 
2605   27,              // 1 MinPriority
2606   28,              // 2
2607   29,              // 3
2608 
2609   30,              // 4
2610   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2611   32,              // 6
2612 
2613   33,              // 7
2614   34,              // 8
2615   35,              // 9 NearMaxPriority
2616 
2617   36,              // 10 MaxPriority
2618 
2619   36               // 11 CriticalPriority
2620 };
2621 #endif
2622 
2623 static int prio_init() {
2624   if (ThreadPriorityPolicy == 1) {
2625     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2626     // if effective uid is not root. Perhaps, a more elegant way of doing
2627     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2628     if (geteuid() != 0) {
2629       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2630         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2631       }
2632       ThreadPriorityPolicy = 0;
2633     }
2634   }
2635   if (UseCriticalJavaThreadPriority) {
2636     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2637   }
2638   return 0;
2639 }
2640 
2641 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2642   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2643 
2644 #ifdef __OpenBSD__
2645   // OpenBSD pthread_setprio starves low priority threads
2646   return OS_OK;
2647 #elif defined(__FreeBSD__)
2648   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2649 #elif defined(__APPLE__) || defined(__NetBSD__)
2650   struct sched_param sp;
2651   int policy;
2652   pthread_t self = pthread_self();
2653 
2654   if (pthread_getschedparam(self, &policy, &sp) != 0) {
2655     return OS_ERR;
2656   }
2657 
2658   sp.sched_priority = newpri;
2659   if (pthread_setschedparam(self, policy, &sp) != 0) {
2660     return OS_ERR;
2661   }
2662 
2663   return OS_OK;
2664 #else
2665   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2666   return (ret == 0) ? OS_OK : OS_ERR;
2667 #endif
2668 }
2669 
2670 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2671   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2672     *priority_ptr = java_to_os_priority[NormPriority];
2673     return OS_OK;
2674   }
2675 
2676   errno = 0;
2677 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2678   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2679 #elif defined(__APPLE__) || defined(__NetBSD__)
2680   int policy;
2681   struct sched_param sp;
2682 
2683   pthread_getschedparam(pthread_self(), &policy, &sp);
2684   *priority_ptr = sp.sched_priority;
2685 #else
2686   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2687 #endif
2688   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2689 }
2690 
2691 // Hint to the underlying OS that a task switch would not be good.
2692 // Void return because it's a hint and can fail.
2693 void os::hint_no_preempt() {}
2694 
2695 ////////////////////////////////////////////////////////////////////////////////
2696 // suspend/resume support
2697 
2698 //  the low-level signal-based suspend/resume support is a remnant from the
2699 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2700 //  within hotspot. Now there is a single use-case for this:
2701 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2702 //      that runs in the watcher thread.
2703 //  The remaining code is greatly simplified from the more general suspension
2704 //  code that used to be used.
2705 //
2706 //  The protocol is quite simple:
2707 //  - suspend:
2708 //      - sends a signal to the target thread
2709 //      - polls the suspend state of the osthread using a yield loop
2710 //      - target thread signal handler (SR_handler) sets suspend state
2711 //        and blocks in sigsuspend until continued
2712 //  - resume:
2713 //      - sets target osthread state to continue
2714 //      - sends signal to end the sigsuspend loop in the SR_handler
2715 //
2716 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2717 
2718 static void resume_clear_context(OSThread *osthread) {
2719   osthread->set_ucontext(NULL);
2720   osthread->set_siginfo(NULL);
2721 }
2722 
2723 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2724   osthread->set_ucontext(context);
2725   osthread->set_siginfo(siginfo);
2726 }
2727 
2728 // Handler function invoked when a thread's execution is suspended or
2729 // resumed. We have to be careful that only async-safe functions are
2730 // called here (Note: most pthread functions are not async safe and
2731 // should be avoided.)
2732 //
2733 // Note: sigwait() is a more natural fit than sigsuspend() from an
2734 // interface point of view, but sigwait() prevents the signal hander
2735 // from being run. libpthread would get very confused by not having
2736 // its signal handlers run and prevents sigwait()'s use with the
2737 // mutex granting granting signal.
2738 //
2739 // Currently only ever called on the VMThread or JavaThread
2740 //
2741 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2742   // Save and restore errno to avoid confusing native code with EINTR
2743   // after sigsuspend.
2744   int old_errno = errno;
2745 
2746   Thread* thread = Thread::current();
2747   OSThread* osthread = thread->osthread();
2748   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2749 
2750   os::SuspendResume::State current = osthread->sr.state();
2751   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2752     suspend_save_context(osthread, siginfo, context);
2753 
2754     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2755     os::SuspendResume::State state = osthread->sr.suspended();
2756     if (state == os::SuspendResume::SR_SUSPENDED) {
2757       sigset_t suspend_set;  // signals for sigsuspend()
2758 
2759       // get current set of blocked signals and unblock resume signal
2760       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2761       sigdelset(&suspend_set, SR_signum);
2762 
2763       sr_semaphore.signal();
2764       // wait here until we are resumed
2765       while (1) {
2766         sigsuspend(&suspend_set);
2767 
2768         os::SuspendResume::State result = osthread->sr.running();
2769         if (result == os::SuspendResume::SR_RUNNING) {
2770           sr_semaphore.signal();
2771           break;
2772         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2773           ShouldNotReachHere();
2774         }
2775       }
2776 
2777     } else if (state == os::SuspendResume::SR_RUNNING) {
2778       // request was cancelled, continue
2779     } else {
2780       ShouldNotReachHere();
2781     }
2782 
2783     resume_clear_context(osthread);
2784   } else if (current == os::SuspendResume::SR_RUNNING) {
2785     // request was cancelled, continue
2786   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2787     // ignore
2788   } else {
2789     // ignore
2790   }
2791 
2792   errno = old_errno;
2793 }
2794 
2795 
2796 static int SR_initialize() {
2797   struct sigaction act;
2798   char *s;
2799   // Get signal number to use for suspend/resume
2800   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2801     int sig = ::strtol(s, 0, 10);
2802     if (sig > 0 || sig < NSIG) {
2803       SR_signum = sig;
2804     }
2805   }
2806 
2807   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2808          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2809 
2810   sigemptyset(&SR_sigset);
2811   sigaddset(&SR_sigset, SR_signum);
2812 
2813   // Set up signal handler for suspend/resume
2814   act.sa_flags = SA_RESTART|SA_SIGINFO;
2815   act.sa_handler = (void (*)(int)) SR_handler;
2816 
2817   // SR_signum is blocked by default.
2818   // 4528190 - We also need to block pthread restart signal (32 on all
2819   // supported Bsd platforms). Note that BsdThreads need to block
2820   // this signal for all threads to work properly. So we don't have
2821   // to use hard-coded signal number when setting up the mask.
2822   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2823 
2824   if (sigaction(SR_signum, &act, 0) == -1) {
2825     return -1;
2826   }
2827 
2828   // Save signal flag
2829   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2830   return 0;
2831 }
2832 
2833 static int sr_notify(OSThread* osthread) {
2834   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2835   assert_status(status == 0, status, "pthread_kill");
2836   return status;
2837 }
2838 
2839 // "Randomly" selected value for how long we want to spin
2840 // before bailing out on suspending a thread, also how often
2841 // we send a signal to a thread we want to resume
2842 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2843 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2844 
2845 // returns true on success and false on error - really an error is fatal
2846 // but this seems the normal response to library errors
2847 static bool do_suspend(OSThread* osthread) {
2848   assert(osthread->sr.is_running(), "thread should be running");
2849   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2850 
2851   // mark as suspended and send signal
2852   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2853     // failed to switch, state wasn't running?
2854     ShouldNotReachHere();
2855     return false;
2856   }
2857 
2858   if (sr_notify(osthread) != 0) {
2859     ShouldNotReachHere();
2860   }
2861 
2862   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2863   while (true) {
2864     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2865       break;
2866     } else {
2867       // timeout
2868       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2869       if (cancelled == os::SuspendResume::SR_RUNNING) {
2870         return false;
2871       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2872         // make sure that we consume the signal on the semaphore as well
2873         sr_semaphore.wait();
2874         break;
2875       } else {
2876         ShouldNotReachHere();
2877         return false;
2878       }
2879     }
2880   }
2881 
2882   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2883   return true;
2884 }
2885 
2886 static void do_resume(OSThread* osthread) {
2887   assert(osthread->sr.is_suspended(), "thread should be suspended");
2888   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2889 
2890   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2891     // failed to switch to WAKEUP_REQUEST
2892     ShouldNotReachHere();
2893     return;
2894   }
2895 
2896   while (true) {
2897     if (sr_notify(osthread) == 0) {
2898       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2899         if (osthread->sr.is_running()) {
2900           return;
2901         }
2902       }
2903     } else {
2904       ShouldNotReachHere();
2905     }
2906   }
2907 
2908   guarantee(osthread->sr.is_running(), "Must be running!");
2909 }
2910 
2911 ///////////////////////////////////////////////////////////////////////////////////
2912 // signal handling (except suspend/resume)
2913 
2914 // This routine may be used by user applications as a "hook" to catch signals.
2915 // The user-defined signal handler must pass unrecognized signals to this
2916 // routine, and if it returns true (non-zero), then the signal handler must
2917 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2918 // routine will never retun false (zero), but instead will execute a VM panic
2919 // routine kill the process.
2920 //
2921 // If this routine returns false, it is OK to call it again.  This allows
2922 // the user-defined signal handler to perform checks either before or after
2923 // the VM performs its own checks.  Naturally, the user code would be making
2924 // a serious error if it tried to handle an exception (such as a null check
2925 // or breakpoint) that the VM was generating for its own correct operation.
2926 //
2927 // This routine may recognize any of the following kinds of signals:
2928 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2929 // It should be consulted by handlers for any of those signals.
2930 //
2931 // The caller of this routine must pass in the three arguments supplied
2932 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2933 // field of the structure passed to sigaction().  This routine assumes that
2934 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2935 //
2936 // Note that the VM will print warnings if it detects conflicting signal
2937 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2938 //
2939 extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2940                                                void* ucontext,
2941                                                int abort_if_unrecognized);
2942 
2943 void signalHandler(int sig, siginfo_t* info, void* uc) {
2944   assert(info != NULL && uc != NULL, "it must be old kernel");
2945   int orig_errno = errno;  // Preserve errno value over signal handler.
2946   JVM_handle_bsd_signal(sig, info, uc, true);
2947   errno = orig_errno;
2948 }
2949 
2950 
2951 // This boolean allows users to forward their own non-matching signals
2952 // to JVM_handle_bsd_signal, harmlessly.
2953 bool os::Bsd::signal_handlers_are_installed = false;
2954 
2955 // For signal-chaining
2956 struct sigaction os::Bsd::sigact[MAXSIGNUM];
2957 unsigned int os::Bsd::sigs = 0;
2958 bool os::Bsd::libjsig_is_loaded = false;
2959 typedef struct sigaction *(*get_signal_t)(int);
2960 get_signal_t os::Bsd::get_signal_action = NULL;
2961 
2962 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2963   struct sigaction *actp = NULL;
2964 
2965   if (libjsig_is_loaded) {
2966     // Retrieve the old signal handler from libjsig
2967     actp = (*get_signal_action)(sig);
2968   }
2969   if (actp == NULL) {
2970     // Retrieve the preinstalled signal handler from jvm
2971     actp = get_preinstalled_handler(sig);
2972   }
2973 
2974   return actp;
2975 }
2976 
2977 static bool call_chained_handler(struct sigaction *actp, int sig,
2978                                  siginfo_t *siginfo, void *context) {
2979   // Call the old signal handler
2980   if (actp->sa_handler == SIG_DFL) {
2981     // It's more reasonable to let jvm treat it as an unexpected exception
2982     // instead of taking the default action.
2983     return false;
2984   } else if (actp->sa_handler != SIG_IGN) {
2985     if ((actp->sa_flags & SA_NODEFER) == 0) {
2986       // automaticlly block the signal
2987       sigaddset(&(actp->sa_mask), sig);
2988     }
2989 
2990     sa_handler_t hand;
2991     sa_sigaction_t sa;
2992     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2993     // retrieve the chained handler
2994     if (siginfo_flag_set) {
2995       sa = actp->sa_sigaction;
2996     } else {
2997       hand = actp->sa_handler;
2998     }
2999 
3000     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3001       actp->sa_handler = SIG_DFL;
3002     }
3003 
3004     // try to honor the signal mask
3005     sigset_t oset;
3006     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3007 
3008     // call into the chained handler
3009     if (siginfo_flag_set) {
3010       (*sa)(sig, siginfo, context);
3011     } else {
3012       (*hand)(sig);
3013     }
3014 
3015     // restore the signal mask
3016     pthread_sigmask(SIG_SETMASK, &oset, 0);
3017   }
3018   // Tell jvm's signal handler the signal is taken care of.
3019   return true;
3020 }
3021 
3022 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3023   bool chained = false;
3024   // signal-chaining
3025   if (UseSignalChaining) {
3026     struct sigaction *actp = get_chained_signal_action(sig);
3027     if (actp != NULL) {
3028       chained = call_chained_handler(actp, sig, siginfo, context);
3029     }
3030   }
3031   return chained;
3032 }
3033 
3034 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3035   if ((((unsigned int)1 << sig) & sigs) != 0) {
3036     return &sigact[sig];
3037   }
3038   return NULL;
3039 }
3040 
3041 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3042   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3043   sigact[sig] = oldAct;
3044   sigs |= (unsigned int)1 << sig;
3045 }
3046 
3047 // for diagnostic
3048 int os::Bsd::sigflags[MAXSIGNUM];
3049 
3050 int os::Bsd::get_our_sigflags(int sig) {
3051   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3052   return sigflags[sig];
3053 }
3054 
3055 void os::Bsd::set_our_sigflags(int sig, int flags) {
3056   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3057   sigflags[sig] = flags;
3058 }
3059 
3060 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3061   // Check for overwrite.
3062   struct sigaction oldAct;
3063   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3064 
3065   void* oldhand = oldAct.sa_sigaction
3066                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3067                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3068   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3069       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3070       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3071     if (AllowUserSignalHandlers || !set_installed) {
3072       // Do not overwrite; user takes responsibility to forward to us.
3073       return;
3074     } else if (UseSignalChaining) {
3075       // save the old handler in jvm
3076       save_preinstalled_handler(sig, oldAct);
3077       // libjsig also interposes the sigaction() call below and saves the
3078       // old sigaction on it own.
3079     } else {
3080       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3081                     "%#lx for signal %d.", (long)oldhand, sig));
3082     }
3083   }
3084 
3085   struct sigaction sigAct;
3086   sigfillset(&(sigAct.sa_mask));
3087   sigAct.sa_handler = SIG_DFL;
3088   if (!set_installed) {
3089     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3090   } else {
3091     sigAct.sa_sigaction = signalHandler;
3092     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3093   }
3094 #ifdef __APPLE__
3095   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3096   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3097   // if the signal handler declares it will handle it on alternate stack.
3098   // Notice we only declare we will handle it on alt stack, but we are not
3099   // actually going to use real alt stack - this is just a workaround.
3100   // Please see ux_exception.c, method catch_mach_exception_raise for details
3101   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3102   if (sig == SIGSEGV) {
3103     sigAct.sa_flags |= SA_ONSTACK;
3104   }
3105 #endif
3106 
3107   // Save flags, which are set by ours
3108   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3109   sigflags[sig] = sigAct.sa_flags;
3110 
3111   int ret = sigaction(sig, &sigAct, &oldAct);
3112   assert(ret == 0, "check");
3113 
3114   void* oldhand2  = oldAct.sa_sigaction
3115                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3116                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3117   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3118 }
3119 
3120 // install signal handlers for signals that HotSpot needs to
3121 // handle in order to support Java-level exception handling.
3122 
3123 void os::Bsd::install_signal_handlers() {
3124   if (!signal_handlers_are_installed) {
3125     signal_handlers_are_installed = true;
3126 
3127     // signal-chaining
3128     typedef void (*signal_setting_t)();
3129     signal_setting_t begin_signal_setting = NULL;
3130     signal_setting_t end_signal_setting = NULL;
3131     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3132                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3133     if (begin_signal_setting != NULL) {
3134       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3135                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3136       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3137                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3138       libjsig_is_loaded = true;
3139       assert(UseSignalChaining, "should enable signal-chaining");
3140     }
3141     if (libjsig_is_loaded) {
3142       // Tell libjsig jvm is setting signal handlers
3143       (*begin_signal_setting)();
3144     }
3145 
3146     set_signal_handler(SIGSEGV, true);
3147     set_signal_handler(SIGPIPE, true);
3148     set_signal_handler(SIGBUS, true);
3149     set_signal_handler(SIGILL, true);
3150     set_signal_handler(SIGFPE, true);
3151     set_signal_handler(SIGXFSZ, true);
3152 
3153 #if defined(__APPLE__)
3154     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3155     // signals caught and handled by the JVM. To work around this, we reset the mach task
3156     // signal handler that's placed on our process by CrashReporter. This disables
3157     // CrashReporter-based reporting.
3158     //
3159     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3160     // on caught fatal signals.
3161     //
3162     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3163     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3164     // exception handling, while leaving the standard BSD signal handlers functional.
3165     kern_return_t kr;
3166     kr = task_set_exception_ports(mach_task_self(),
3167                                   EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3168                                   MACH_PORT_NULL,
3169                                   EXCEPTION_STATE_IDENTITY,
3170                                   MACHINE_THREAD_STATE);
3171 
3172     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3173 #endif
3174 
3175     if (libjsig_is_loaded) {
3176       // Tell libjsig jvm finishes setting signal handlers
3177       (*end_signal_setting)();
3178     }
3179 
3180     // We don't activate signal checker if libjsig is in place, we trust ourselves
3181     // and if UserSignalHandler is installed all bets are off
3182     if (CheckJNICalls) {
3183       if (libjsig_is_loaded) {
3184         if (PrintJNIResolving) {
3185           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3186         }
3187         check_signals = false;
3188       }
3189       if (AllowUserSignalHandlers) {
3190         if (PrintJNIResolving) {
3191           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3192         }
3193         check_signals = false;
3194       }
3195     }
3196   }
3197 }
3198 
3199 
3200 /////
3201 // glibc on Bsd platform uses non-documented flag
3202 // to indicate, that some special sort of signal
3203 // trampoline is used.
3204 // We will never set this flag, and we should
3205 // ignore this flag in our diagnostic
3206 #ifdef SIGNIFICANT_SIGNAL_MASK
3207   #undef SIGNIFICANT_SIGNAL_MASK
3208 #endif
3209 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3210 
3211 static const char* get_signal_handler_name(address handler,
3212                                            char* buf, int buflen) {
3213   int offset;
3214   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3215   if (found) {
3216     // skip directory names
3217     const char *p1, *p2;
3218     p1 = buf;
3219     size_t len = strlen(os::file_separator());
3220     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3221     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3222   } else {
3223     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3224   }
3225   return buf;
3226 }
3227 
3228 static void print_signal_handler(outputStream* st, int sig,
3229                                  char* buf, size_t buflen) {
3230   struct sigaction sa;
3231 
3232   sigaction(sig, NULL, &sa);
3233 
3234   // See comment for SIGNIFICANT_SIGNAL_MASK define
3235   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3236 
3237   st->print("%s: ", os::exception_name(sig, buf, buflen));
3238 
3239   address handler = (sa.sa_flags & SA_SIGINFO)
3240     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3241     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3242 
3243   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3244     st->print("SIG_DFL");
3245   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3246     st->print("SIG_IGN");
3247   } else {
3248     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3249   }
3250 
3251   st->print(", sa_mask[0]=");
3252   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3253 
3254   address rh = VMError::get_resetted_sighandler(sig);
3255   // May be, handler was resetted by VMError?
3256   if (rh != NULL) {
3257     handler = rh;
3258     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3259   }
3260 
3261   st->print(", sa_flags=");
3262   os::Posix::print_sa_flags(st, sa.sa_flags);
3263 
3264   // Check: is it our handler?
3265   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3266       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3267     // It is our signal handler
3268     // check for flags, reset system-used one!
3269     if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3270       st->print(
3271                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3272                 os::Bsd::get_our_sigflags(sig));
3273     }
3274   }
3275   st->cr();
3276 }
3277 
3278 
3279 #define DO_SIGNAL_CHECK(sig)                      \
3280   do {                                            \
3281     if (!sigismember(&check_signal_done, sig)) {  \
3282       os::Bsd::check_signal_handler(sig);         \
3283     }                                             \
3284   } while (0)
3285 
3286 // This method is a periodic task to check for misbehaving JNI applications
3287 // under CheckJNI, we can add any periodic checks here
3288 
3289 void os::run_periodic_checks() {
3290 
3291   if (check_signals == false) return;
3292 
3293   // SEGV and BUS if overridden could potentially prevent
3294   // generation of hs*.log in the event of a crash, debugging
3295   // such a case can be very challenging, so we absolutely
3296   // check the following for a good measure:
3297   DO_SIGNAL_CHECK(SIGSEGV);
3298   DO_SIGNAL_CHECK(SIGILL);
3299   DO_SIGNAL_CHECK(SIGFPE);
3300   DO_SIGNAL_CHECK(SIGBUS);
3301   DO_SIGNAL_CHECK(SIGPIPE);
3302   DO_SIGNAL_CHECK(SIGXFSZ);
3303 
3304 
3305   // ReduceSignalUsage allows the user to override these handlers
3306   // see comments at the very top and jvm_solaris.h
3307   if (!ReduceSignalUsage) {
3308     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3309     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3310     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3311     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3312   }
3313 
3314   DO_SIGNAL_CHECK(SR_signum);
3315   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3316 }
3317 
3318 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3319 
3320 static os_sigaction_t os_sigaction = NULL;
3321 
3322 void os::Bsd::check_signal_handler(int sig) {
3323   char buf[O_BUFLEN];
3324   address jvmHandler = NULL;
3325 
3326 
3327   struct sigaction act;
3328   if (os_sigaction == NULL) {
3329     // only trust the default sigaction, in case it has been interposed
3330     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3331     if (os_sigaction == NULL) return;
3332   }
3333 
3334   os_sigaction(sig, (struct sigaction*)NULL, &act);
3335 
3336 
3337   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3338 
3339   address thisHandler = (act.sa_flags & SA_SIGINFO)
3340     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3341     : CAST_FROM_FN_PTR(address, act.sa_handler);
3342 
3343 
3344   switch (sig) {
3345   case SIGSEGV:
3346   case SIGBUS:
3347   case SIGFPE:
3348   case SIGPIPE:
3349   case SIGILL:
3350   case SIGXFSZ:
3351     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3352     break;
3353 
3354   case SHUTDOWN1_SIGNAL:
3355   case SHUTDOWN2_SIGNAL:
3356   case SHUTDOWN3_SIGNAL:
3357   case BREAK_SIGNAL:
3358     jvmHandler = (address)user_handler();
3359     break;
3360 
3361   case INTERRUPT_SIGNAL:
3362     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3363     break;
3364 
3365   default:
3366     if (sig == SR_signum) {
3367       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3368     } else {
3369       return;
3370     }
3371     break;
3372   }
3373 
3374   if (thisHandler != jvmHandler) {
3375     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3376     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3377     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3378     // No need to check this sig any longer
3379     sigaddset(&check_signal_done, sig);
3380     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3381     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3382       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3383                     exception_name(sig, buf, O_BUFLEN));
3384     }
3385   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3386     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3387     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3388     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3389     // No need to check this sig any longer
3390     sigaddset(&check_signal_done, sig);
3391   }
3392 
3393   // Dump all the signal
3394   if (sigismember(&check_signal_done, sig)) {
3395     print_signal_handlers(tty, buf, O_BUFLEN);
3396   }
3397 }
3398 
3399 extern void report_error(char* file_name, int line_no, char* title,
3400                          char* format, ...);
3401 
3402 extern bool signal_name(int signo, char* buf, size_t len);
3403 
3404 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3405   if (0 < exception_code && exception_code <= SIGRTMAX) {
3406     // signal
3407     if (!signal_name(exception_code, buf, size)) {
3408       jio_snprintf(buf, size, "SIG%d", exception_code);
3409     }
3410     return buf;
3411   } else {
3412     return NULL;
3413   }
3414 }
3415 
3416 // this is called _before_ the most of global arguments have been parsed
3417 void os::init(void) {
3418   char dummy;   // used to get a guess on initial stack address
3419 //  first_hrtime = gethrtime();
3420 
3421   // With BsdThreads the JavaMain thread pid (primordial thread)
3422   // is different than the pid of the java launcher thread.
3423   // So, on Bsd, the launcher thread pid is passed to the VM
3424   // via the sun.java.launcher.pid property.
3425   // Use this property instead of getpid() if it was correctly passed.
3426   // See bug 6351349.
3427   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3428 
3429   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3430 
3431   clock_tics_per_sec = CLK_TCK;
3432 
3433   init_random(1234567);
3434 
3435   ThreadCritical::initialize();
3436 
3437   Bsd::set_page_size(getpagesize());
3438   if (Bsd::page_size() == -1) {
3439     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3440                   strerror(errno)));
3441   }
3442   init_page_sizes((size_t) Bsd::page_size());
3443 
3444   Bsd::initialize_system_info();
3445 
3446   // main_thread points to the aboriginal thread
3447   Bsd::_main_thread = pthread_self();
3448 
3449   Bsd::clock_init();
3450   initial_time_count = javaTimeNanos();
3451 
3452 #ifdef __APPLE__
3453   // XXXDARWIN
3454   // Work around the unaligned VM callbacks in hotspot's
3455   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3456   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3457   // alignment when doing symbol lookup. To work around this, we force early
3458   // binding of all symbols now, thus binding when alignment is known-good.
3459   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3460 #endif
3461 }
3462 
3463 // To install functions for atexit system call
3464 extern "C" {
3465   static void perfMemory_exit_helper() {
3466     perfMemory_exit();
3467   }
3468 }
3469 
3470 // this is called _after_ the global arguments have been parsed
3471 jint os::init_2(void) {
3472   // Allocate a single page and mark it as readable for safepoint polling
3473   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3474   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3475 
3476   os::set_polling_page(polling_page);
3477 
3478 #ifndef PRODUCT
3479   if (Verbose && PrintMiscellaneous) {
3480     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3481                (intptr_t)polling_page);
3482   }
3483 #endif
3484 
3485   if (!UseMembar) {
3486     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3487     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3488     os::set_memory_serialize_page(mem_serialize_page);
3489 
3490 #ifndef PRODUCT
3491     if (Verbose && PrintMiscellaneous) {
3492       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3493                  (intptr_t)mem_serialize_page);
3494     }
3495 #endif
3496   }
3497 
3498   // initialize suspend/resume support - must do this before signal_sets_init()
3499   if (SR_initialize() != 0) {
3500     perror("SR_initialize failed");
3501     return JNI_ERR;
3502   }
3503 
3504   Bsd::signal_sets_init();
3505   Bsd::install_signal_handlers();
3506 
3507   // Check minimum allowable stack size for thread creation and to initialize
3508   // the java system classes, including StackOverflowError - depends on page
3509   // size.  Add a page for compiler2 recursion in main thread.
3510   // Add in 2*BytesPerWord times page size to account for VM stack during
3511   // class initialization depending on 32 or 64 bit VM.
3512   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3513                                     (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3514                                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3515 
3516   size_t threadStackSizeInBytes = ThreadStackSize * K;
3517   if (threadStackSizeInBytes != 0 &&
3518       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3519     tty->print_cr("\nThe stack size specified is too small, "
3520                   "Specify at least %dk",
3521                   os::Bsd::min_stack_allowed/ K);
3522     return JNI_ERR;
3523   }
3524 
3525   // Make the stack size a multiple of the page size so that
3526   // the yellow/red zones can be guarded.
3527   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3528                                                 vm_page_size()));
3529 
3530   if (MaxFDLimit) {
3531     // set the number of file descriptors to max. print out error
3532     // if getrlimit/setrlimit fails but continue regardless.
3533     struct rlimit nbr_files;
3534     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3535     if (status != 0) {
3536       if (PrintMiscellaneous && (Verbose || WizardMode)) {
3537         perror("os::init_2 getrlimit failed");
3538       }
3539     } else {
3540       nbr_files.rlim_cur = nbr_files.rlim_max;
3541 
3542 #ifdef __APPLE__
3543       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3544       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3545       // be used instead
3546       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3547 #endif
3548 
3549       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3550       if (status != 0) {
3551         if (PrintMiscellaneous && (Verbose || WizardMode)) {
3552           perror("os::init_2 setrlimit failed");
3553         }
3554       }
3555     }
3556   }
3557 
3558   // at-exit methods are called in the reverse order of their registration.
3559   // atexit functions are called on return from main or as a result of a
3560   // call to exit(3C). There can be only 32 of these functions registered
3561   // and atexit() does not set errno.
3562 
3563   if (PerfAllowAtExitRegistration) {
3564     // only register atexit functions if PerfAllowAtExitRegistration is set.
3565     // atexit functions can be delayed until process exit time, which
3566     // can be problematic for embedded VM situations. Embedded VMs should
3567     // call DestroyJavaVM() to assure that VM resources are released.
3568 
3569     // note: perfMemory_exit_helper atexit function may be removed in
3570     // the future if the appropriate cleanup code can be added to the
3571     // VM_Exit VMOperation's doit method.
3572     if (atexit(perfMemory_exit_helper) != 0) {
3573       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3574     }
3575   }
3576 
3577   // initialize thread priority policy
3578   prio_init();
3579 
3580 #ifdef __APPLE__
3581   // dynamically link to objective c gc registration
3582   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3583   if (handleLibObjc != NULL) {
3584     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3585   }
3586 #endif
3587 
3588   return JNI_OK;
3589 }
3590 
3591 // Mark the polling page as unreadable
3592 void os::make_polling_page_unreadable(void) {
3593   if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3594     fatal("Could not disable polling page");
3595   }
3596 }
3597 
3598 // Mark the polling page as readable
3599 void os::make_polling_page_readable(void) {
3600   if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3601     fatal("Could not enable polling page");
3602   }
3603 }
3604 
3605 int os::active_processor_count() {
3606   return _processor_count;
3607 }
3608 
3609 void os::set_native_thread_name(const char *name) {
3610 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3611   // This is only supported in Snow Leopard and beyond
3612   if (name != NULL) {
3613     // Add a "Java: " prefix to the name
3614     char buf[MAXTHREADNAMESIZE];
3615     snprintf(buf, sizeof(buf), "Java: %s", name);
3616     pthread_setname_np(buf);
3617   }
3618 #endif
3619 }
3620 
3621 bool os::distribute_processes(uint length, uint* distribution) {
3622   // Not yet implemented.
3623   return false;
3624 }
3625 
3626 bool os::bind_to_processor(uint processor_id) {
3627   // Not yet implemented.
3628   return false;
3629 }
3630 
3631 void os::SuspendedThreadTask::internal_do_task() {
3632   if (do_suspend(_thread->osthread())) {
3633     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3634     do_task(context);
3635     do_resume(_thread->osthread());
3636   }
3637 }
3638 
3639 ///
3640 class PcFetcher : public os::SuspendedThreadTask {
3641  public:
3642   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3643   ExtendedPC result();
3644  protected:
3645   void do_task(const os::SuspendedThreadTaskContext& context);
3646  private:
3647   ExtendedPC _epc;
3648 };
3649 
3650 ExtendedPC PcFetcher::result() {
3651   guarantee(is_done(), "task is not done yet.");
3652   return _epc;
3653 }
3654 
3655 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3656   Thread* thread = context.thread();
3657   OSThread* osthread = thread->osthread();
3658   if (osthread->ucontext() != NULL) {
3659     _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3660   } else {
3661     // NULL context is unexpected, double-check this is the VMThread
3662     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3663   }
3664 }
3665 
3666 // Suspends the target using the signal mechanism and then grabs the PC before
3667 // resuming the target. Used by the flat-profiler only
3668 ExtendedPC os::get_thread_pc(Thread* thread) {
3669   // Make sure that it is called by the watcher for the VMThread
3670   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3671   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3672 
3673   PcFetcher fetcher(thread);
3674   fetcher.run();
3675   return fetcher.result();
3676 }
3677 
3678 ////////////////////////////////////////////////////////////////////////////////
3679 // debug support
3680 
3681 bool os::find(address addr, outputStream* st) {
3682   Dl_info dlinfo;
3683   memset(&dlinfo, 0, sizeof(dlinfo));
3684   if (dladdr(addr, &dlinfo) != 0) {
3685     st->print(PTR_FORMAT ": ", addr);
3686     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3687       st->print("%s+%#x", dlinfo.dli_sname,
3688                 addr - (intptr_t)dlinfo.dli_saddr);
3689     } else if (dlinfo.dli_fbase != NULL) {
3690       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3691     } else {
3692       st->print("<absolute address>");
3693     }
3694     if (dlinfo.dli_fname != NULL) {
3695       st->print(" in %s", dlinfo.dli_fname);
3696     }
3697     if (dlinfo.dli_fbase != NULL) {
3698       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3699     }
3700     st->cr();
3701 
3702     if (Verbose) {
3703       // decode some bytes around the PC
3704       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3705       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3706       address       lowest = (address) dlinfo.dli_sname;
3707       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3708       if (begin < lowest)  begin = lowest;
3709       Dl_info dlinfo2;
3710       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3711           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3712         end = (address) dlinfo2.dli_saddr;
3713       }
3714       Disassembler::decode(begin, end, st);
3715     }
3716     return true;
3717   }
3718   return false;
3719 }
3720 
3721 ////////////////////////////////////////////////////////////////////////////////
3722 // misc
3723 
3724 // This does not do anything on Bsd. This is basically a hook for being
3725 // able to use structured exception handling (thread-local exception filters)
3726 // on, e.g., Win32.
3727 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3728                               methodHandle* method, JavaCallArguments* args,
3729                               Thread* thread) {
3730   f(value, method, args, thread);
3731 }
3732 
3733 void os::print_statistics() {
3734 }
3735 
3736 int os::message_box(const char* title, const char* message) {
3737   int i;
3738   fdStream err(defaultStream::error_fd());
3739   for (i = 0; i < 78; i++) err.print_raw("=");
3740   err.cr();
3741   err.print_raw_cr(title);
3742   for (i = 0; i < 78; i++) err.print_raw("-");
3743   err.cr();
3744   err.print_raw_cr(message);
3745   for (i = 0; i < 78; i++) err.print_raw("=");
3746   err.cr();
3747 
3748   char buf[16];
3749   // Prevent process from exiting upon "read error" without consuming all CPU
3750   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3751 
3752   return buf[0] == 'y' || buf[0] == 'Y';
3753 }
3754 
3755 int os::stat(const char *path, struct stat *sbuf) {
3756   char pathbuf[MAX_PATH];
3757   if (strlen(path) > MAX_PATH - 1) {
3758     errno = ENAMETOOLONG;
3759     return -1;
3760   }
3761   os::native_path(strcpy(pathbuf, path));
3762   return ::stat(pathbuf, sbuf);
3763 }
3764 
3765 bool os::check_heap(bool force) {
3766   return true;
3767 }
3768 
3769 // Is a (classpath) directory empty?
3770 bool os::dir_is_empty(const char* path) {
3771   DIR *dir = NULL;
3772   struct dirent *ptr;
3773 
3774   dir = opendir(path);
3775   if (dir == NULL) return true;
3776 
3777   // Scan the directory
3778   bool result = true;
3779   char buf[sizeof(struct dirent) + MAX_PATH];
3780   while (result && (ptr = ::readdir(dir)) != NULL) {
3781     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3782       result = false;
3783     }
3784   }
3785   closedir(dir);
3786   return result;
3787 }
3788 
3789 // This code originates from JDK's sysOpen and open64_w
3790 // from src/solaris/hpi/src/system_md.c
3791 
3792 int os::open(const char *path, int oflag, int mode) {
3793   if (strlen(path) > MAX_PATH - 1) {
3794     errno = ENAMETOOLONG;
3795     return -1;
3796   }
3797   int fd;
3798 
3799   fd = ::open(path, oflag, mode);
3800   if (fd == -1) return -1;
3801 
3802   // If the open succeeded, the file might still be a directory
3803   {
3804     struct stat buf;
3805     int ret = ::fstat(fd, &buf);
3806     int st_mode = buf.st_mode;
3807 
3808     if (ret != -1) {
3809       if ((st_mode & S_IFMT) == S_IFDIR) {
3810         errno = EISDIR;
3811         ::close(fd);
3812         return -1;
3813       }
3814     } else {
3815       ::close(fd);
3816       return -1;
3817     }
3818   }
3819 
3820   // All file descriptors that are opened in the JVM and not
3821   // specifically destined for a subprocess should have the
3822   // close-on-exec flag set.  If we don't set it, then careless 3rd
3823   // party native code might fork and exec without closing all
3824   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3825   // UNIXProcess.c), and this in turn might:
3826   //
3827   // - cause end-of-file to fail to be detected on some file
3828   //   descriptors, resulting in mysterious hangs, or
3829   //
3830   // - might cause an fopen in the subprocess to fail on a system
3831   //   suffering from bug 1085341.
3832   //
3833   // (Yes, the default setting of the close-on-exec flag is a Unix
3834   // design flaw)
3835   //
3836   // See:
3837   // 1085341: 32-bit stdio routines should support file descriptors >255
3838   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3839   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3840   //
3841 #ifdef FD_CLOEXEC
3842   {
3843     int flags = ::fcntl(fd, F_GETFD);
3844     if (flags != -1) {
3845       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3846     }
3847   }
3848 #endif
3849 
3850   return fd;
3851 }
3852 
3853 
3854 // create binary file, rewriting existing file if required
3855 int os::create_binary_file(const char* path, bool rewrite_existing) {
3856   int oflags = O_WRONLY | O_CREAT;
3857   if (!rewrite_existing) {
3858     oflags |= O_EXCL;
3859   }
3860   return ::open(path, oflags, S_IREAD | S_IWRITE);
3861 }
3862 
3863 // return current position of file pointer
3864 jlong os::current_file_offset(int fd) {
3865   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3866 }
3867 
3868 // move file pointer to the specified offset
3869 jlong os::seek_to_file_offset(int fd, jlong offset) {
3870   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3871 }
3872 
3873 // This code originates from JDK's sysAvailable
3874 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3875 
3876 int os::available(int fd, jlong *bytes) {
3877   jlong cur, end;
3878   int mode;
3879   struct stat buf;
3880 
3881   if (::fstat(fd, &buf) >= 0) {
3882     mode = buf.st_mode;
3883     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3884       // XXX: is the following call interruptible? If so, this might
3885       // need to go through the INTERRUPT_IO() wrapper as for other
3886       // blocking, interruptible calls in this file.
3887       int n;
3888       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3889         *bytes = n;
3890         return 1;
3891       }
3892     }
3893   }
3894   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3895     return 0;
3896   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3897     return 0;
3898   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3899     return 0;
3900   }
3901   *bytes = end - cur;
3902   return 1;
3903 }
3904 
3905 // Map a block of memory.
3906 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3907                         char *addr, size_t bytes, bool read_only,
3908                         bool allow_exec) {
3909   int prot;
3910   int flags;
3911 
3912   if (read_only) {
3913     prot = PROT_READ;
3914     flags = MAP_SHARED;
3915   } else {
3916     prot = PROT_READ | PROT_WRITE;
3917     flags = MAP_PRIVATE;
3918   }
3919 
3920   if (allow_exec) {
3921     prot |= PROT_EXEC;
3922   }
3923 
3924   if (addr != NULL) {
3925     flags |= MAP_FIXED;
3926   }
3927 
3928   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3929                                      fd, file_offset);
3930   if (mapped_address == MAP_FAILED) {
3931     return NULL;
3932   }
3933   return mapped_address;
3934 }
3935 
3936 
3937 // Remap a block of memory.
3938 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3939                           char *addr, size_t bytes, bool read_only,
3940                           bool allow_exec) {
3941   // same as map_memory() on this OS
3942   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3943                         allow_exec);
3944 }
3945 
3946 
3947 // Unmap a block of memory.
3948 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3949   return munmap(addr, bytes) == 0;
3950 }
3951 
3952 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3953 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3954 // of a thread.
3955 //
3956 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3957 // the fast estimate available on the platform.
3958 
3959 jlong os::current_thread_cpu_time() {
3960 #ifdef __APPLE__
3961   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3962 #else
3963   Unimplemented();
3964   return 0;
3965 #endif
3966 }
3967 
3968 jlong os::thread_cpu_time(Thread* thread) {
3969 #ifdef __APPLE__
3970   return os::thread_cpu_time(thread, true /* user + sys */);
3971 #else
3972   Unimplemented();
3973   return 0;
3974 #endif
3975 }
3976 
3977 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3978 #ifdef __APPLE__
3979   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3980 #else
3981   Unimplemented();
3982   return 0;
3983 #endif
3984 }
3985 
3986 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3987 #ifdef __APPLE__
3988   struct thread_basic_info tinfo;
3989   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3990   kern_return_t kr;
3991   thread_t mach_thread;
3992 
3993   mach_thread = thread->osthread()->thread_id();
3994   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3995   if (kr != KERN_SUCCESS) {
3996     return -1;
3997   }
3998 
3999   if (user_sys_cpu_time) {
4000     jlong nanos;
4001     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4002     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4003     return nanos;
4004   } else {
4005     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4006   }
4007 #else
4008   Unimplemented();
4009   return 0;
4010 #endif
4011 }
4012 
4013 
4014 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4015   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4016   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4017   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4018   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4019 }
4020 
4021 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4022   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4023   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4024   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4025   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4026 }
4027 
4028 bool os::is_thread_cpu_time_supported() {
4029 #ifdef __APPLE__
4030   return true;
4031 #else
4032   return false;
4033 #endif
4034 }
4035 
4036 // System loadavg support.  Returns -1 if load average cannot be obtained.
4037 // Bsd doesn't yet have a (official) notion of processor sets,
4038 // so just return the system wide load average.
4039 int os::loadavg(double loadavg[], int nelem) {
4040   return ::getloadavg(loadavg, nelem);
4041 }
4042 
4043 void os::pause() {
4044   char filename[MAX_PATH];
4045   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4046     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4047   } else {
4048     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4049   }
4050 
4051   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4052   if (fd != -1) {
4053     struct stat buf;
4054     ::close(fd);
4055     while (::stat(filename, &buf) == 0) {
4056       (void)::poll(NULL, 0, 100);
4057     }
4058   } else {
4059     jio_fprintf(stderr,
4060                 "Could not open pause file '%s', continuing immediately.\n", filename);
4061   }
4062 }
4063 
4064 
4065 // Refer to the comments in os_solaris.cpp park-unpark. The next two
4066 // comment paragraphs are worth repeating here:
4067 //
4068 // Assumption:
4069 //    Only one parker can exist on an event, which is why we allocate
4070 //    them per-thread. Multiple unparkers can coexist.
4071 //
4072 // _Event serves as a restricted-range semaphore.
4073 //   -1 : thread is blocked, i.e. there is a waiter
4074 //    0 : neutral: thread is running or ready,
4075 //        could have been signaled after a wait started
4076 //    1 : signaled - thread is running or ready
4077 //
4078 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4079 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4080 // For specifics regarding the bug see GLIBC BUGID 261237 :
4081 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4082 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4083 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4084 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4085 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4086 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4087 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4088 // of libpthread avoids the problem, but isn't practical.
4089 //
4090 // Possible remedies:
4091 //
4092 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4093 //      This is palliative and probabilistic, however.  If the thread is preempted
4094 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4095 //      than the minimum period may have passed, and the abstime may be stale (in the
4096 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4097 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4098 //
4099 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4100 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4101 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4102 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4103 //      thread.
4104 //
4105 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4106 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4107 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4108 //      This also works well.  In fact it avoids kernel-level scalability impediments
4109 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4110 //      timers in a graceful fashion.
4111 //
4112 // 4.   When the abstime value is in the past it appears that control returns
4113 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4114 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4115 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4116 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4117 //      It may be possible to avoid reinitialization by checking the return
4118 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4119 //      condvar we must establish the invariant that cond_signal() is only called
4120 //      within critical sections protected by the adjunct mutex.  This prevents
4121 //      cond_signal() from "seeing" a condvar that's in the midst of being
4122 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4123 //      desirable signal-after-unlock optimization that avoids futile context switching.
4124 //
4125 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4126 //      structure when a condvar is used or initialized.  cond_destroy()  would
4127 //      release the helper structure.  Our reinitialize-after-timedwait fix
4128 //      put excessive stress on malloc/free and locks protecting the c-heap.
4129 //
4130 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4131 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4132 // and only enabling the work-around for vulnerable environments.
4133 
4134 // utility to compute the abstime argument to timedwait:
4135 // millis is the relative timeout time
4136 // abstime will be the absolute timeout time
4137 // TODO: replace compute_abstime() with unpackTime()
4138 
4139 static struct timespec* compute_abstime(struct timespec* abstime,
4140                                         jlong millis) {
4141   if (millis < 0)  millis = 0;
4142   struct timeval now;
4143   int status = gettimeofday(&now, NULL);
4144   assert(status == 0, "gettimeofday");
4145   jlong seconds = millis / 1000;
4146   millis %= 1000;
4147   if (seconds > 50000000) { // see man cond_timedwait(3T)
4148     seconds = 50000000;
4149   }
4150   abstime->tv_sec = now.tv_sec  + seconds;
4151   long       usec = now.tv_usec + millis * 1000;
4152   if (usec >= 1000000) {
4153     abstime->tv_sec += 1;
4154     usec -= 1000000;
4155   }
4156   abstime->tv_nsec = usec * 1000;
4157   return abstime;
4158 }
4159 
4160 void os::PlatformEvent::park() {       // AKA "down()"
4161   // Transitions for _Event:
4162   //   -1 => -1 : illegal
4163   //    1 =>  0 : pass - return immediately
4164   //    0 => -1 : block; then set _Event to 0 before returning
4165 
4166   // Invariant: Only the thread associated with the Event/PlatformEvent
4167   // may call park().
4168   // TODO: assert that _Assoc != NULL or _Assoc == Self
4169   assert(_nParked == 0, "invariant");
4170 
4171   int v;
4172   for (;;) {
4173     v = _Event;
4174     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4175   }
4176   guarantee(v >= 0, "invariant");
4177   if (v == 0) {
4178     // Do this the hard way by blocking ...
4179     int status = pthread_mutex_lock(_mutex);
4180     assert_status(status == 0, status, "mutex_lock");
4181     guarantee(_nParked == 0, "invariant");
4182     ++_nParked;
4183     while (_Event < 0) {
4184       status = pthread_cond_wait(_cond, _mutex);
4185       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4186       // Treat this the same as if the wait was interrupted
4187       if (status == ETIMEDOUT) { status = EINTR; }
4188       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4189     }
4190     --_nParked;
4191 
4192     _Event = 0;
4193     status = pthread_mutex_unlock(_mutex);
4194     assert_status(status == 0, status, "mutex_unlock");
4195     // Paranoia to ensure our locked and lock-free paths interact
4196     // correctly with each other.
4197     OrderAccess::fence();
4198   }
4199   guarantee(_Event >= 0, "invariant");
4200 }
4201 
4202 int os::PlatformEvent::park(jlong millis) {
4203   // Transitions for _Event:
4204   //   -1 => -1 : illegal
4205   //    1 =>  0 : pass - return immediately
4206   //    0 => -1 : block; then set _Event to 0 before returning
4207 
4208   guarantee(_nParked == 0, "invariant");
4209 
4210   int v;
4211   for (;;) {
4212     v = _Event;
4213     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4214   }
4215   guarantee(v >= 0, "invariant");
4216   if (v != 0) return OS_OK;
4217 
4218   // We do this the hard way, by blocking the thread.
4219   // Consider enforcing a minimum timeout value.
4220   struct timespec abst;
4221   compute_abstime(&abst, millis);
4222 
4223   int ret = OS_TIMEOUT;
4224   int status = pthread_mutex_lock(_mutex);
4225   assert_status(status == 0, status, "mutex_lock");
4226   guarantee(_nParked == 0, "invariant");
4227   ++_nParked;
4228 
4229   // Object.wait(timo) will return because of
4230   // (a) notification
4231   // (b) timeout
4232   // (c) thread.interrupt
4233   //
4234   // Thread.interrupt and object.notify{All} both call Event::set.
4235   // That is, we treat thread.interrupt as a special case of notification.
4236   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4237   // We assume all ETIME returns are valid.
4238   //
4239   // TODO: properly differentiate simultaneous notify+interrupt.
4240   // In that case, we should propagate the notify to another waiter.
4241 
4242   while (_Event < 0) {
4243     status = pthread_cond_timedwait(_cond, _mutex, &abst);
4244     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4245       pthread_cond_destroy(_cond);
4246       pthread_cond_init(_cond, NULL);
4247     }
4248     assert_status(status == 0 || status == EINTR ||
4249                   status == ETIMEDOUT,
4250                   status, "cond_timedwait");
4251     if (!FilterSpuriousWakeups) break;                 // previous semantics
4252     if (status == ETIMEDOUT) break;
4253     // We consume and ignore EINTR and spurious wakeups.
4254   }
4255   --_nParked;
4256   if (_Event >= 0) {
4257     ret = OS_OK;
4258   }
4259   _Event = 0;
4260   status = pthread_mutex_unlock(_mutex);
4261   assert_status(status == 0, status, "mutex_unlock");
4262   assert(_nParked == 0, "invariant");
4263   // Paranoia to ensure our locked and lock-free paths interact
4264   // correctly with each other.
4265   OrderAccess::fence();
4266   return ret;
4267 }
4268 
4269 void os::PlatformEvent::unpark() {
4270   // Transitions for _Event:
4271   //    0 => 1 : just return
4272   //    1 => 1 : just return
4273   //   -1 => either 0 or 1; must signal target thread
4274   //         That is, we can safely transition _Event from -1 to either
4275   //         0 or 1.
4276   // See also: "Semaphores in Plan 9" by Mullender & Cox
4277   //
4278   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4279   // that it will take two back-to-back park() calls for the owning
4280   // thread to block. This has the benefit of forcing a spurious return
4281   // from the first park() call after an unpark() call which will help
4282   // shake out uses of park() and unpark() without condition variables.
4283 
4284   if (Atomic::xchg(1, &_Event) >= 0) return;
4285 
4286   // Wait for the thread associated with the event to vacate
4287   int status = pthread_mutex_lock(_mutex);
4288   assert_status(status == 0, status, "mutex_lock");
4289   int AnyWaiters = _nParked;
4290   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4291   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4292     AnyWaiters = 0;
4293     pthread_cond_signal(_cond);
4294   }
4295   status = pthread_mutex_unlock(_mutex);
4296   assert_status(status == 0, status, "mutex_unlock");
4297   if (AnyWaiters != 0) {
4298     // Note that we signal() *after* dropping the lock for "immortal" Events.
4299     // This is safe and avoids a common class of  futile wakeups.  In rare
4300     // circumstances this can cause a thread to return prematurely from
4301     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4302     // will simply re-test the condition and re-park itself.
4303     // This provides particular benefit if the underlying platform does not
4304     // provide wait morphing.
4305     status = pthread_cond_signal(_cond);
4306     assert_status(status == 0, status, "cond_signal");
4307   }
4308 }
4309 
4310 
4311 // JSR166
4312 // -------------------------------------------------------
4313 
4314 // The solaris and bsd implementations of park/unpark are fairly
4315 // conservative for now, but can be improved. They currently use a
4316 // mutex/condvar pair, plus a a count.
4317 // Park decrements count if > 0, else does a condvar wait.  Unpark
4318 // sets count to 1 and signals condvar.  Only one thread ever waits
4319 // on the condvar. Contention seen when trying to park implies that someone
4320 // is unparking you, so don't wait. And spurious returns are fine, so there
4321 // is no need to track notifications.
4322 
4323 #define MAX_SECS 100000000
4324 
4325 // This code is common to bsd and solaris and will be moved to a
4326 // common place in dolphin.
4327 //
4328 // The passed in time value is either a relative time in nanoseconds
4329 // or an absolute time in milliseconds. Either way it has to be unpacked
4330 // into suitable seconds and nanoseconds components and stored in the
4331 // given timespec structure.
4332 // Given time is a 64-bit value and the time_t used in the timespec is only
4333 // a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4334 // overflow if times way in the future are given. Further on Solaris versions
4335 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4336 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4337 // As it will be 28 years before "now + 100000000" will overflow we can
4338 // ignore overflow and just impose a hard-limit on seconds using the value
4339 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4340 // years from "now".
4341 
4342 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4343   assert(time > 0, "convertTime");
4344 
4345   struct timeval now;
4346   int status = gettimeofday(&now, NULL);
4347   assert(status == 0, "gettimeofday");
4348 
4349   time_t max_secs = now.tv_sec + MAX_SECS;
4350 
4351   if (isAbsolute) {
4352     jlong secs = time / 1000;
4353     if (secs > max_secs) {
4354       absTime->tv_sec = max_secs;
4355     } else {
4356       absTime->tv_sec = secs;
4357     }
4358     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4359   } else {
4360     jlong secs = time / NANOSECS_PER_SEC;
4361     if (secs >= MAX_SECS) {
4362       absTime->tv_sec = max_secs;
4363       absTime->tv_nsec = 0;
4364     } else {
4365       absTime->tv_sec = now.tv_sec + secs;
4366       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4367       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4368         absTime->tv_nsec -= NANOSECS_PER_SEC;
4369         ++absTime->tv_sec; // note: this must be <= max_secs
4370       }
4371     }
4372   }
4373   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4374   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4375   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4376   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4377 }
4378 
4379 void Parker::park(bool isAbsolute, jlong time) {
4380   // Ideally we'd do something useful while spinning, such
4381   // as calling unpackTime().
4382 
4383   // Optional fast-path check:
4384   // Return immediately if a permit is available.
4385   // We depend on Atomic::xchg() having full barrier semantics
4386   // since we are doing a lock-free update to _counter.
4387   if (Atomic::xchg(0, &_counter) > 0) return;
4388 
4389   Thread* thread = Thread::current();
4390   assert(thread->is_Java_thread(), "Must be JavaThread");
4391   JavaThread *jt = (JavaThread *)thread;
4392 
4393   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4394   // Check interrupt before trying to wait
4395   if (Thread::is_interrupted(thread, false)) {
4396     return;
4397   }
4398 
4399   // Next, demultiplex/decode time arguments
4400   struct timespec absTime;
4401   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4402     return;
4403   }
4404   if (time > 0) {
4405     unpackTime(&absTime, isAbsolute, time);
4406   }
4407 
4408 
4409   // Enter safepoint region
4410   // Beware of deadlocks such as 6317397.
4411   // The per-thread Parker:: mutex is a classic leaf-lock.
4412   // In particular a thread must never block on the Threads_lock while
4413   // holding the Parker:: mutex.  If safepoints are pending both the
4414   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4415   ThreadBlockInVM tbivm(jt);
4416 
4417   // Don't wait if cannot get lock since interference arises from
4418   // unblocking.  Also. check interrupt before trying wait
4419   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4420     return;
4421   }
4422 
4423   int status;
4424   if (_counter > 0)  { // no wait needed
4425     _counter = 0;
4426     status = pthread_mutex_unlock(_mutex);
4427     assert(status == 0, "invariant");
4428     // Paranoia to ensure our locked and lock-free paths interact
4429     // correctly with each other and Java-level accesses.
4430     OrderAccess::fence();
4431     return;
4432   }
4433 
4434 #ifdef ASSERT
4435   // Don't catch signals while blocked; let the running threads have the signals.
4436   // (This allows a debugger to break into the running thread.)
4437   sigset_t oldsigs;
4438   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4439   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4440 #endif
4441 
4442   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4443   jt->set_suspend_equivalent();
4444   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4445 
4446   if (time == 0) {
4447     status = pthread_cond_wait(_cond, _mutex);
4448   } else {
4449     status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4450     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4451       pthread_cond_destroy(_cond);
4452       pthread_cond_init(_cond, NULL);
4453     }
4454   }
4455   assert_status(status == 0 || status == EINTR ||
4456                 status == ETIMEDOUT,
4457                 status, "cond_timedwait");
4458 
4459 #ifdef ASSERT
4460   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4461 #endif
4462 
4463   _counter = 0;
4464   status = pthread_mutex_unlock(_mutex);
4465   assert_status(status == 0, status, "invariant");
4466   // Paranoia to ensure our locked and lock-free paths interact
4467   // correctly with each other and Java-level accesses.
4468   OrderAccess::fence();
4469 
4470   // If externally suspended while waiting, re-suspend
4471   if (jt->handle_special_suspend_equivalent_condition()) {
4472     jt->java_suspend_self();
4473   }
4474 }
4475 
4476 void Parker::unpark() {
4477   int status = pthread_mutex_lock(_mutex);
4478   assert(status == 0, "invariant");
4479   const int s = _counter;
4480   _counter = 1;
4481   if (s < 1) {
4482     if (WorkAroundNPTLTimedWaitHang) {
4483       status = pthread_cond_signal(_cond);
4484       assert(status == 0, "invariant");
4485       status = pthread_mutex_unlock(_mutex);
4486       assert(status == 0, "invariant");
4487     } else {
4488       status = pthread_mutex_unlock(_mutex);
4489       assert(status == 0, "invariant");
4490       status = pthread_cond_signal(_cond);
4491       assert(status == 0, "invariant");
4492     }
4493   } else {
4494     pthread_mutex_unlock(_mutex);
4495     assert(status == 0, "invariant");
4496   }
4497 }
4498 
4499 
4500 // Darwin has no "environ" in a dynamic library.
4501 #ifdef __APPLE__
4502   #include <crt_externs.h>
4503   #define environ (*_NSGetEnviron())
4504 #else
4505 extern char** environ;
4506 #endif
4507 
4508 // Run the specified command in a separate process. Return its exit value,
4509 // or -1 on failure (e.g. can't fork a new process).
4510 // Unlike system(), this function can be called from signal handler. It
4511 // doesn't block SIGINT et al.
4512 int os::fork_and_exec(char* cmd) {
4513   const char * argv[4] = {"sh", "-c", cmd, NULL};
4514 
4515   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4516   // pthread_atfork handlers and reset pthread library. All we need is a
4517   // separate process to execve. Make a direct syscall to fork process.
4518   // On IA64 there's no fork syscall, we have to use fork() and hope for
4519   // the best...
4520   pid_t pid = fork();
4521 
4522   if (pid < 0) {
4523     // fork failed
4524     return -1;
4525 
4526   } else if (pid == 0) {
4527     // child process
4528 
4529     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4530     // first to kill every thread on the thread list. Because this list is
4531     // not reset by fork() (see notes above), execve() will instead kill
4532     // every thread in the parent process. We know this is the only thread
4533     // in the new process, so make a system call directly.
4534     // IA64 should use normal execve() from glibc to match the glibc fork()
4535     // above.
4536     execve("/bin/sh", (char* const*)argv, environ);
4537 
4538     // execve failed
4539     _exit(-1);
4540 
4541   } else  {
4542     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4543     // care about the actual exit code, for now.
4544 
4545     int status;
4546 
4547     // Wait for the child process to exit.  This returns immediately if
4548     // the child has already exited. */
4549     while (waitpid(pid, &status, 0) < 0) {
4550       switch (errno) {
4551       case ECHILD: return 0;
4552       case EINTR: break;
4553       default: return -1;
4554       }
4555     }
4556 
4557     if (WIFEXITED(status)) {
4558       // The child exited normally; get its exit code.
4559       return WEXITSTATUS(status);
4560     } else if (WIFSIGNALED(status)) {
4561       // The child exited because of a signal
4562       // The best value to return is 0x80 + signal number,
4563       // because that is what all Unix shells do, and because
4564       // it allows callers to distinguish between process exit and
4565       // process death by signal.
4566       return 0x80 + WTERMSIG(status);
4567     } else {
4568       // Unknown exit code; pass it through
4569       return status;
4570     }
4571   }
4572 }
4573 
4574 // is_headless_jre()
4575 //
4576 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4577 // in order to report if we are running in a headless jre
4578 //
4579 // Since JDK8 xawt/libmawt.so was moved into the same directory
4580 // as libawt.so, and renamed libawt_xawt.so
4581 //
4582 bool os::is_headless_jre() {
4583 #ifdef __APPLE__
4584   // We no longer build headless-only on Mac OS X
4585   return false;
4586 #else
4587   struct stat statbuf;
4588   char buf[MAXPATHLEN];
4589   char libmawtpath[MAXPATHLEN];
4590   const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4591   const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4592   char *p;
4593 
4594   // Get path to libjvm.so
4595   os::jvm_path(buf, sizeof(buf));
4596 
4597   // Get rid of libjvm.so
4598   p = strrchr(buf, '/');
4599   if (p == NULL) {
4600     return false;
4601   } else {
4602     *p = '\0';
4603   }
4604 
4605   // Get rid of client or server
4606   p = strrchr(buf, '/');
4607   if (p == NULL) {
4608     return false;
4609   } else {
4610     *p = '\0';
4611   }
4612 
4613   // check xawt/libmawt.so
4614   strcpy(libmawtpath, buf);
4615   strcat(libmawtpath, xawtstr);
4616   if (::stat(libmawtpath, &statbuf) == 0) return false;
4617 
4618   // check libawt_xawt.so
4619   strcpy(libmawtpath, buf);
4620   strcat(libmawtpath, new_xawtstr);
4621   if (::stat(libmawtpath, &statbuf) == 0) return false;
4622 
4623   return true;
4624 #endif
4625 }
4626 
4627 // Get the default path to the core file
4628 // Returns the length of the string
4629 int os::get_core_path(char* buffer, size_t bufferSize) {
4630   int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4631 
4632   // Truncate if theoretical string was longer than bufferSize
4633   n = MIN2(n, (int)bufferSize);
4634 
4635   return n;
4636 }
4637 
4638 #ifndef PRODUCT
4639 void TestReserveMemorySpecial_test() {
4640   // No tests available for this platform
4641 }
4642 #endif