1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <sys/types.h>
  76 # include <sys/mman.h>
  77 # include <sys/stat.h>
  78 # include <sys/select.h>
  79 # include <pthread.h>
  80 # include <signal.h>
  81 # include <errno.h>
  82 # include <dlfcn.h>
  83 # include <stdio.h>
  84 # include <unistd.h>
  85 # include <sys/resource.h>
  86 # include <pthread.h>
  87 # include <sys/stat.h>
  88 # include <sys/time.h>
  89 # include <sys/times.h>
  90 # include <sys/utsname.h>
  91 # include <sys/socket.h>
  92 # include <sys/wait.h>
  93 # include <pwd.h>
  94 # include <poll.h>
  95 # include <semaphore.h>
  96 # include <fcntl.h>
  97 # include <string.h>
  98 # include <syscall.h>
  99 # include <sys/sysinfo.h>
 100 # include <gnu/libc-version.h>
 101 # include <sys/ipc.h>
 102 # include <sys/shm.h>
 103 # include <link.h>
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 
 108 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 109 
 110 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 #define MAX_PATH    (2 * K)
 117 
 118 #define MAX_SECS 100000000
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 #define LARGEPAGES_BIT (1 << 6)
 124 ////////////////////////////////////////////////////////////////////////////////
 125 // global variables
 126 julong os::Linux::_physical_memory = 0;
 127 
 128 address   os::Linux::_initial_thread_stack_bottom = NULL;
 129 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 130 
 131 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 132 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 133 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 134 Mutex* os::Linux::_createThread_lock = NULL;
 135 pthread_t os::Linux::_main_thread;
 136 int os::Linux::_page_size = -1;
 137 const int os::Linux::_vm_default_page_size = (8 * K);
 138 bool os::Linux::_supports_fast_thread_cpu_time = false;
 139 const char * os::Linux::_glibc_version = NULL;
 140 const char * os::Linux::_libpthread_version = NULL;
 141 pthread_condattr_t os::Linux::_condattr[1];
 142 
 143 static jlong initial_time_count=0;
 144 
 145 static int clock_tics_per_sec = 100;
 146 
 147 // For diagnostics to print a message once. see run_periodic_checks
 148 static sigset_t check_signal_done;
 149 static bool check_signals = true;
 150 
 151 // Signal number used to suspend/resume a thread
 152 
 153 // do not use any signal number less than SIGSEGV, see 4355769
 154 static int SR_signum = SIGUSR2;
 155 sigset_t SR_sigset;
 156 
 157 // Declarations
 158 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 159 
 160 // utility functions
 161 
 162 static int SR_initialize();
 163 
 164 julong os::available_memory() {
 165   return Linux::available_memory();
 166 }
 167 
 168 julong os::Linux::available_memory() {
 169   // values in struct sysinfo are "unsigned long"
 170   struct sysinfo si;
 171   sysinfo(&si);
 172 
 173   return (julong)si.freeram * si.mem_unit;
 174 }
 175 
 176 julong os::physical_memory() {
 177   return Linux::physical_memory();
 178 }
 179 
 180 // Return true if user is running as root.
 181 
 182 bool os::have_special_privileges() {
 183   static bool init = false;
 184   static bool privileges = false;
 185   if (!init) {
 186     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 187     init = true;
 188   }
 189   return privileges;
 190 }
 191 
 192 
 193 #ifndef SYS_gettid
 194 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 195   #ifdef __ia64__
 196     #define SYS_gettid 1105
 197   #else
 198     #ifdef __i386__
 199       #define SYS_gettid 224
 200     #else
 201       #ifdef __amd64__
 202         #define SYS_gettid 186
 203       #else
 204         #ifdef __sparc__
 205           #define SYS_gettid 143
 206         #else
 207           #error define gettid for the arch
 208         #endif
 209       #endif
 210     #endif
 211   #endif
 212 #endif
 213 
 214 // Cpu architecture string
 215 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 216 
 217 
 218 // pid_t gettid()
 219 //
 220 // Returns the kernel thread id of the currently running thread. Kernel
 221 // thread id is used to access /proc.
 222 pid_t os::Linux::gettid() {
 223   int rslt = syscall(SYS_gettid);
 224   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 225   return (pid_t)rslt;
 226 }
 227 
 228 // Most versions of linux have a bug where the number of processors are
 229 // determined by looking at the /proc file system.  In a chroot environment,
 230 // the system call returns 1.  This causes the VM to act as if it is
 231 // a single processor and elide locking (see is_MP() call).
 232 static bool unsafe_chroot_detected = false;
 233 static const char *unstable_chroot_error = "/proc file system not found.\n"
 234                      "Java may be unstable running multithreaded in a chroot "
 235                      "environment on Linux when /proc filesystem is not mounted.";
 236 
 237 void os::Linux::initialize_system_info() {
 238   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 239   if (processor_count() == 1) {
 240     pid_t pid = os::Linux::gettid();
 241     char fname[32];
 242     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 243     FILE *fp = fopen(fname, "r");
 244     if (fp == NULL) {
 245       unsafe_chroot_detected = true;
 246     } else {
 247       fclose(fp);
 248     }
 249   }
 250   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 251   assert(processor_count() > 0, "linux error");
 252 }
 253 
 254 void os::init_system_properties_values() {
 255   // The next steps are taken in the product version:
 256   //
 257   // Obtain the JAVA_HOME value from the location of libjvm.so.
 258   // This library should be located at:
 259   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 260   //
 261   // If "/jre/lib/" appears at the right place in the path, then we
 262   // assume libjvm.so is installed in a JDK and we use this path.
 263   //
 264   // Otherwise exit with message: "Could not create the Java virtual machine."
 265   //
 266   // The following extra steps are taken in the debugging version:
 267   //
 268   // If "/jre/lib/" does NOT appear at the right place in the path
 269   // instead of exit check for $JAVA_HOME environment variable.
 270   //
 271   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 272   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 273   // it looks like libjvm.so is installed there
 274   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 275   //
 276   // Otherwise exit.
 277   //
 278   // Important note: if the location of libjvm.so changes this
 279   // code needs to be changed accordingly.
 280 
 281   // See ld(1):
 282   //      The linker uses the following search paths to locate required
 283   //      shared libraries:
 284   //        1: ...
 285   //        ...
 286   //        7: The default directories, normally /lib and /usr/lib.
 287 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 288   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 289 #else
 290   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 291 #endif
 292 
 293 // Base path of extensions installed on the system.
 294 #define SYS_EXT_DIR     "/usr/java/packages"
 295 #define EXTENSIONS_DIR  "/lib/ext"
 296 
 297   // Buffer that fits several sprintfs.
 298   // Note that the space for the colon and the trailing null are provided
 299   // by the nulls included by the sizeof operator.
 300   const size_t bufsize =
 301     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 302          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 303   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 304 
 305   // sysclasspath, java_home, dll_dir
 306   {
 307     char *pslash;
 308     os::jvm_path(buf, bufsize);
 309 
 310     // Found the full path to libjvm.so.
 311     // Now cut the path to <java_home>/jre if we can.
 312     pslash = strrchr(buf, '/');
 313     if (pslash != NULL) {
 314       *pslash = '\0';            // Get rid of /libjvm.so.
 315     }
 316     pslash = strrchr(buf, '/');
 317     if (pslash != NULL) {
 318       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 319     }
 320     Arguments::set_dll_dir(buf);
 321 
 322     if (pslash != NULL) {
 323       pslash = strrchr(buf, '/');
 324       if (pslash != NULL) {
 325         *pslash = '\0';          // Get rid of /<arch>.
 326         pslash = strrchr(buf, '/');
 327         if (pslash != NULL) {
 328           *pslash = '\0';        // Get rid of /lib.
 329         }
 330       }
 331     }
 332     Arguments::set_java_home(buf);
 333     set_boot_path('/', ':');
 334   }
 335 
 336   // Where to look for native libraries.
 337   //
 338   // Note: Due to a legacy implementation, most of the library path
 339   // is set in the launcher. This was to accomodate linking restrictions
 340   // on legacy Linux implementations (which are no longer supported).
 341   // Eventually, all the library path setting will be done here.
 342   //
 343   // However, to prevent the proliferation of improperly built native
 344   // libraries, the new path component /usr/java/packages is added here.
 345   // Eventually, all the library path setting will be done here.
 346   {
 347     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 348     // should always exist (until the legacy problem cited above is
 349     // addressed).
 350     const char *v = ::getenv("LD_LIBRARY_PATH");
 351     const char *v_colon = ":";
 352     if (v == NULL) { v = ""; v_colon = ""; }
 353     // That's +1 for the colon and +1 for the trailing '\0'.
 354     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 355                                                      strlen(v) + 1 +
 356                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 357                                                      mtInternal);
 358     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 359     Arguments::set_library_path(ld_library_path);
 360     FREE_C_HEAP_ARRAY(char, ld_library_path);
 361   }
 362 
 363   // Extensions directories.
 364   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 365   Arguments::set_ext_dirs(buf);
 366 
 367   FREE_C_HEAP_ARRAY(char, buf);
 368 
 369 #undef DEFAULT_LIBPATH
 370 #undef SYS_EXT_DIR
 371 #undef EXTENSIONS_DIR
 372 }
 373 
 374 ////////////////////////////////////////////////////////////////////////////////
 375 // breakpoint support
 376 
 377 void os::breakpoint() {
 378   BREAKPOINT;
 379 }
 380 
 381 extern "C" void breakpoint() {
 382   // use debugger to set breakpoint here
 383 }
 384 
 385 ////////////////////////////////////////////////////////////////////////////////
 386 // signal support
 387 
 388 debug_only(static bool signal_sets_initialized = false);
 389 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 390 
 391 bool os::Linux::is_sig_ignored(int sig) {
 392   struct sigaction oact;
 393   sigaction(sig, (struct sigaction*)NULL, &oact);
 394   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 395                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 396   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 397     return true;
 398   } else {
 399     return false;
 400   }
 401 }
 402 
 403 void os::Linux::signal_sets_init() {
 404   // Should also have an assertion stating we are still single-threaded.
 405   assert(!signal_sets_initialized, "Already initialized");
 406   // Fill in signals that are necessarily unblocked for all threads in
 407   // the VM. Currently, we unblock the following signals:
 408   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 409   //                         by -Xrs (=ReduceSignalUsage));
 410   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 411   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 412   // the dispositions or masks wrt these signals.
 413   // Programs embedding the VM that want to use the above signals for their
 414   // own purposes must, at this time, use the "-Xrs" option to prevent
 415   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 416   // (See bug 4345157, and other related bugs).
 417   // In reality, though, unblocking these signals is really a nop, since
 418   // these signals are not blocked by default.
 419   sigemptyset(&unblocked_sigs);
 420   sigemptyset(&allowdebug_blocked_sigs);
 421   sigaddset(&unblocked_sigs, SIGILL);
 422   sigaddset(&unblocked_sigs, SIGSEGV);
 423   sigaddset(&unblocked_sigs, SIGBUS);
 424   sigaddset(&unblocked_sigs, SIGFPE);
 425 #if defined(PPC64)
 426   sigaddset(&unblocked_sigs, SIGTRAP);
 427 #endif
 428   sigaddset(&unblocked_sigs, SR_signum);
 429 
 430   if (!ReduceSignalUsage) {
 431     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 432       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 433       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 434     }
 435     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 436       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 437       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 438     }
 439     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 440       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 441       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 442     }
 443   }
 444   // Fill in signals that are blocked by all but the VM thread.
 445   sigemptyset(&vm_sigs);
 446   if (!ReduceSignalUsage) {
 447     sigaddset(&vm_sigs, BREAK_SIGNAL);
 448   }
 449   debug_only(signal_sets_initialized = true);
 450 
 451 }
 452 
 453 // These are signals that are unblocked while a thread is running Java.
 454 // (For some reason, they get blocked by default.)
 455 sigset_t* os::Linux::unblocked_signals() {
 456   assert(signal_sets_initialized, "Not initialized");
 457   return &unblocked_sigs;
 458 }
 459 
 460 // These are the signals that are blocked while a (non-VM) thread is
 461 // running Java. Only the VM thread handles these signals.
 462 sigset_t* os::Linux::vm_signals() {
 463   assert(signal_sets_initialized, "Not initialized");
 464   return &vm_sigs;
 465 }
 466 
 467 // These are signals that are blocked during cond_wait to allow debugger in
 468 sigset_t* os::Linux::allowdebug_blocked_signals() {
 469   assert(signal_sets_initialized, "Not initialized");
 470   return &allowdebug_blocked_sigs;
 471 }
 472 
 473 void os::Linux::hotspot_sigmask(Thread* thread) {
 474 
 475   //Save caller's signal mask before setting VM signal mask
 476   sigset_t caller_sigmask;
 477   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 478 
 479   OSThread* osthread = thread->osthread();
 480   osthread->set_caller_sigmask(caller_sigmask);
 481 
 482   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 483 
 484   if (!ReduceSignalUsage) {
 485     if (thread->is_VM_thread()) {
 486       // Only the VM thread handles BREAK_SIGNAL ...
 487       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 488     } else {
 489       // ... all other threads block BREAK_SIGNAL
 490       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 491     }
 492   }
 493 }
 494 
 495 //////////////////////////////////////////////////////////////////////////////
 496 // detecting pthread library
 497 
 498 void os::Linux::libpthread_init() {
 499   // Save glibc and pthread version strings.
 500 #if !defined(_CS_GNU_LIBC_VERSION) || \
 501     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 502   #error "glibc too old (< 2.3.2)"
 503 #endif
 504 
 505   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 506   assert(n > 0, "cannot retrieve glibc version");
 507   char *str = (char *)malloc(n, mtInternal);
 508   confstr(_CS_GNU_LIBC_VERSION, str, n);
 509   os::Linux::set_glibc_version(str);
 510 
 511   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 512   assert(n > 0, "cannot retrieve pthread version");
 513   str = (char *)malloc(n, mtInternal);
 514   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 515   os::Linux::set_libpthread_version(str);
 516 }
 517 
 518 /////////////////////////////////////////////////////////////////////////////
 519 // thread stack expansion
 520 
 521 // os::Linux::manually_expand_stack() takes care of expanding the thread
 522 // stack. Note that this is normally not needed: pthread stacks allocate
 523 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 524 // committed. Therefore it is not necessary to expand the stack manually.
 525 //
 526 // Manually expanding the stack was historically needed on LinuxThreads
 527 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 528 // it is kept to deal with very rare corner cases:
 529 //
 530 // For one, user may run the VM on an own implementation of threads
 531 // whose stacks are - like the old LinuxThreads - implemented using
 532 // mmap(MAP_GROWSDOWN).
 533 //
 534 // Also, this coding may be needed if the VM is running on the primordial
 535 // thread. Normally we avoid running on the primordial thread; however,
 536 // user may still invoke the VM on the primordial thread.
 537 //
 538 // The following historical comment describes the details about running
 539 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 540 
 541 
 542 // Force Linux kernel to expand current thread stack. If "bottom" is close
 543 // to the stack guard, caller should block all signals.
 544 //
 545 // MAP_GROWSDOWN:
 546 //   A special mmap() flag that is used to implement thread stacks. It tells
 547 //   kernel that the memory region should extend downwards when needed. This
 548 //   allows early versions of LinuxThreads to only mmap the first few pages
 549 //   when creating a new thread. Linux kernel will automatically expand thread
 550 //   stack as needed (on page faults).
 551 //
 552 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 553 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 554 //   region, it's hard to tell if the fault is due to a legitimate stack
 555 //   access or because of reading/writing non-exist memory (e.g. buffer
 556 //   overrun). As a rule, if the fault happens below current stack pointer,
 557 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 558 //   application (see Linux kernel fault.c).
 559 //
 560 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 561 //   stack overflow detection.
 562 //
 563 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 564 //   not use MAP_GROWSDOWN.
 565 //
 566 // To get around the problem and allow stack banging on Linux, we need to
 567 // manually expand thread stack after receiving the SIGSEGV.
 568 //
 569 // There are two ways to expand thread stack to address "bottom", we used
 570 // both of them in JVM before 1.5:
 571 //   1. adjust stack pointer first so that it is below "bottom", and then
 572 //      touch "bottom"
 573 //   2. mmap() the page in question
 574 //
 575 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 576 // if current sp is already near the lower end of page 101, and we need to
 577 // call mmap() to map page 100, it is possible that part of the mmap() frame
 578 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 579 // That will destroy the mmap() frame and cause VM to crash.
 580 //
 581 // The following code works by adjusting sp first, then accessing the "bottom"
 582 // page to force a page fault. Linux kernel will then automatically expand the
 583 // stack mapping.
 584 //
 585 // _expand_stack_to() assumes its frame size is less than page size, which
 586 // should always be true if the function is not inlined.
 587 
 588 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 589   #define NOINLINE
 590 #else
 591   #define NOINLINE __attribute__ ((noinline))
 592 #endif
 593 
 594 static void _expand_stack_to(address bottom) NOINLINE;
 595 
 596 static void _expand_stack_to(address bottom) {
 597   address sp;
 598   size_t size;
 599   volatile char *p;
 600 
 601   // Adjust bottom to point to the largest address within the same page, it
 602   // gives us a one-page buffer if alloca() allocates slightly more memory.
 603   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 604   bottom += os::Linux::page_size() - 1;
 605 
 606   // sp might be slightly above current stack pointer; if that's the case, we
 607   // will alloca() a little more space than necessary, which is OK. Don't use
 608   // os::current_stack_pointer(), as its result can be slightly below current
 609   // stack pointer, causing us to not alloca enough to reach "bottom".
 610   sp = (address)&sp;
 611 
 612   if (sp > bottom) {
 613     size = sp - bottom;
 614     p = (volatile char *)alloca(size);
 615     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 616     p[0] = '\0';
 617   }
 618 }
 619 
 620 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 621   assert(t!=NULL, "just checking");
 622   assert(t->osthread()->expanding_stack(), "expand should be set");
 623   assert(t->stack_base() != NULL, "stack_base was not initialized");
 624 
 625   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 626     sigset_t mask_all, old_sigset;
 627     sigfillset(&mask_all);
 628     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 629     _expand_stack_to(addr);
 630     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 631     return true;
 632   }
 633   return false;
 634 }
 635 
 636 //////////////////////////////////////////////////////////////////////////////
 637 // create new thread
 638 
 639 // Thread start routine for all newly created threads
 640 static void *java_start(Thread *thread) {
 641   // Try to randomize the cache line index of hot stack frames.
 642   // This helps when threads of the same stack traces evict each other's
 643   // cache lines. The threads can be either from the same JVM instance, or
 644   // from different JVM instances. The benefit is especially true for
 645   // processors with hyperthreading technology.
 646   static int counter = 0;
 647   int pid = os::current_process_id();
 648   alloca(((pid ^ counter++) & 7) * 128);
 649 
 650   ThreadLocalStorage::set_thread(thread);
 651 
 652   OSThread* osthread = thread->osthread();
 653   Monitor* sync = osthread->startThread_lock();
 654 
 655   // thread_id is kernel thread id (similar to Solaris LWP id)
 656   osthread->set_thread_id(os::Linux::gettid());
 657 
 658   if (UseNUMA) {
 659     int lgrp_id = os::numa_get_group_id();
 660     if (lgrp_id != -1) {
 661       thread->set_lgrp_id(lgrp_id);
 662     }
 663   }
 664   // initialize signal mask for this thread
 665   os::Linux::hotspot_sigmask(thread);
 666 
 667   // initialize floating point control register
 668   os::Linux::init_thread_fpu_state();
 669 
 670   // handshaking with parent thread
 671   {
 672     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 673 
 674     // notify parent thread
 675     osthread->set_state(INITIALIZED);
 676     sync->notify_all();
 677 
 678     // wait until os::start_thread()
 679     while (osthread->get_state() == INITIALIZED) {
 680       sync->wait(Mutex::_no_safepoint_check_flag);
 681     }
 682   }
 683 
 684   // call one more level start routine
 685   thread->run();
 686 
 687   return 0;
 688 }
 689 
 690 bool os::create_thread(Thread* thread, ThreadType thr_type,
 691                        size_t stack_size) {
 692   assert(thread->osthread() == NULL, "caller responsible");
 693 
 694   // Allocate the OSThread object
 695   OSThread* osthread = new OSThread(NULL, NULL);
 696   if (osthread == NULL) {
 697     return false;
 698   }
 699 
 700   // set the correct thread state
 701   osthread->set_thread_type(thr_type);
 702 
 703   // Initial state is ALLOCATED but not INITIALIZED
 704   osthread->set_state(ALLOCATED);
 705 
 706   thread->set_osthread(osthread);
 707 
 708   // init thread attributes
 709   pthread_attr_t attr;
 710   pthread_attr_init(&attr);
 711   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 712 
 713   // stack size
 714   if (os::Linux::supports_variable_stack_size()) {
 715     // calculate stack size if it's not specified by caller
 716     if (stack_size == 0) {
 717       stack_size = os::Linux::default_stack_size(thr_type);
 718 
 719       switch (thr_type) {
 720       case os::java_thread:
 721         // Java threads use ThreadStackSize which default value can be
 722         // changed with the flag -Xss
 723         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 724         stack_size = JavaThread::stack_size_at_create();
 725         break;
 726       case os::compiler_thread:
 727         if (CompilerThreadStackSize > 0) {
 728           stack_size = (size_t)(CompilerThreadStackSize * K);
 729           break;
 730         } // else fall through:
 731           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 732       case os::vm_thread:
 733       case os::pgc_thread:
 734       case os::cgc_thread:
 735       case os::watcher_thread:
 736         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 737         break;
 738       }
 739     }
 740 
 741     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 742     pthread_attr_setstacksize(&attr, stack_size);
 743   } else {
 744     // let pthread_create() pick the default value.
 745   }
 746 
 747   // glibc guard page
 748   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 749 
 750   ThreadState state;
 751 
 752   {
 753     pthread_t tid;
 754     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 755 
 756     pthread_attr_destroy(&attr);
 757 
 758     if (ret != 0) {
 759       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 760         perror("pthread_create()");
 761       }
 762       // Need to clean up stuff we've allocated so far
 763       thread->set_osthread(NULL);
 764       delete osthread;
 765       return false;
 766     }
 767 
 768     // Store pthread info into the OSThread
 769     osthread->set_pthread_id(tid);
 770 
 771     // Wait until child thread is either initialized or aborted
 772     {
 773       Monitor* sync_with_child = osthread->startThread_lock();
 774       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 775       while ((state = osthread->get_state()) == ALLOCATED) {
 776         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 777       }
 778     }
 779   }
 780 
 781   // Aborted due to thread limit being reached
 782   if (state == ZOMBIE) {
 783     thread->set_osthread(NULL);
 784     delete osthread;
 785     return false;
 786   }
 787 
 788   // The thread is returned suspended (in state INITIALIZED),
 789   // and is started higher up in the call chain
 790   assert(state == INITIALIZED, "race condition");
 791   return true;
 792 }
 793 
 794 /////////////////////////////////////////////////////////////////////////////
 795 // attach existing thread
 796 
 797 // bootstrap the main thread
 798 bool os::create_main_thread(JavaThread* thread) {
 799   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 800   return create_attached_thread(thread);
 801 }
 802 
 803 bool os::create_attached_thread(JavaThread* thread) {
 804 #ifdef ASSERT
 805   thread->verify_not_published();
 806 #endif
 807 
 808   // Allocate the OSThread object
 809   OSThread* osthread = new OSThread(NULL, NULL);
 810 
 811   if (osthread == NULL) {
 812     return false;
 813   }
 814 
 815   // Store pthread info into the OSThread
 816   osthread->set_thread_id(os::Linux::gettid());
 817   osthread->set_pthread_id(::pthread_self());
 818 
 819   // initialize floating point control register
 820   os::Linux::init_thread_fpu_state();
 821 
 822   // Initial thread state is RUNNABLE
 823   osthread->set_state(RUNNABLE);
 824 
 825   thread->set_osthread(osthread);
 826 
 827   if (UseNUMA) {
 828     int lgrp_id = os::numa_get_group_id();
 829     if (lgrp_id != -1) {
 830       thread->set_lgrp_id(lgrp_id);
 831     }
 832   }
 833 
 834   if (os::Linux::is_initial_thread()) {
 835     // If current thread is initial thread, its stack is mapped on demand,
 836     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 837     // the entire stack region to avoid SEGV in stack banging.
 838     // It is also useful to get around the heap-stack-gap problem on SuSE
 839     // kernel (see 4821821 for details). We first expand stack to the top
 840     // of yellow zone, then enable stack yellow zone (order is significant,
 841     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 842     // is no gap between the last two virtual memory regions.
 843 
 844     JavaThread *jt = (JavaThread *)thread;
 845     address addr = jt->stack_yellow_zone_base();
 846     assert(addr != NULL, "initialization problem?");
 847     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 848 
 849     osthread->set_expanding_stack();
 850     os::Linux::manually_expand_stack(jt, addr);
 851     osthread->clear_expanding_stack();
 852   }
 853 
 854   // initialize signal mask for this thread
 855   // and save the caller's signal mask
 856   os::Linux::hotspot_sigmask(thread);
 857 
 858   return true;
 859 }
 860 
 861 void os::pd_start_thread(Thread* thread) {
 862   OSThread * osthread = thread->osthread();
 863   assert(osthread->get_state() != INITIALIZED, "just checking");
 864   Monitor* sync_with_child = osthread->startThread_lock();
 865   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 866   sync_with_child->notify();
 867 }
 868 
 869 // Free Linux resources related to the OSThread
 870 void os::free_thread(OSThread* osthread) {
 871   assert(osthread != NULL, "osthread not set");
 872 
 873   if (Thread::current()->osthread() == osthread) {
 874     // Restore caller's signal mask
 875     sigset_t sigmask = osthread->caller_sigmask();
 876     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 877   }
 878 
 879   delete osthread;
 880 }
 881 
 882 //////////////////////////////////////////////////////////////////////////////
 883 // thread local storage
 884 
 885 // Restore the thread pointer if the destructor is called. This is in case
 886 // someone from JNI code sets up a destructor with pthread_key_create to run
 887 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 888 // will hang or crash. When detachCurrentThread is called the key will be set
 889 // to null and we will not be called again. If detachCurrentThread is never
 890 // called we could loop forever depending on the pthread implementation.
 891 static void restore_thread_pointer(void* p) {
 892   Thread* thread = (Thread*) p;
 893   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 894 }
 895 
 896 int os::allocate_thread_local_storage() {
 897   pthread_key_t key;
 898   int rslt = pthread_key_create(&key, restore_thread_pointer);
 899   assert(rslt == 0, "cannot allocate thread local storage");
 900   return (int)key;
 901 }
 902 
 903 // Note: This is currently not used by VM, as we don't destroy TLS key
 904 // on VM exit.
 905 void os::free_thread_local_storage(int index) {
 906   int rslt = pthread_key_delete((pthread_key_t)index);
 907   assert(rslt == 0, "invalid index");
 908 }
 909 
 910 void os::thread_local_storage_at_put(int index, void* value) {
 911   int rslt = pthread_setspecific((pthread_key_t)index, value);
 912   assert(rslt == 0, "pthread_setspecific failed");
 913 }
 914 
 915 extern "C" Thread* get_thread() {
 916   return ThreadLocalStorage::thread();
 917 }
 918 
 919 //////////////////////////////////////////////////////////////////////////////
 920 // initial thread
 921 
 922 // Check if current thread is the initial thread, similar to Solaris thr_main.
 923 bool os::Linux::is_initial_thread(void) {
 924   char dummy;
 925   // If called before init complete, thread stack bottom will be null.
 926   // Can be called if fatal error occurs before initialization.
 927   if (initial_thread_stack_bottom() == NULL) return false;
 928   assert(initial_thread_stack_bottom() != NULL &&
 929          initial_thread_stack_size()   != 0,
 930          "os::init did not locate initial thread's stack region");
 931   if ((address)&dummy >= initial_thread_stack_bottom() &&
 932       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 933     return true;
 934   } else {
 935     return false;
 936   }
 937 }
 938 
 939 // Find the virtual memory area that contains addr
 940 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 941   FILE *fp = fopen("/proc/self/maps", "r");
 942   if (fp) {
 943     address low, high;
 944     while (!feof(fp)) {
 945       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 946         if (low <= addr && addr < high) {
 947           if (vma_low)  *vma_low  = low;
 948           if (vma_high) *vma_high = high;
 949           fclose(fp);
 950           return true;
 951         }
 952       }
 953       for (;;) {
 954         int ch = fgetc(fp);
 955         if (ch == EOF || ch == (int)'\n') break;
 956       }
 957     }
 958     fclose(fp);
 959   }
 960   return false;
 961 }
 962 
 963 // Locate initial thread stack. This special handling of initial thread stack
 964 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 965 // bogus value for initial thread.
 966 void os::Linux::capture_initial_stack(size_t max_size) {
 967   // stack size is the easy part, get it from RLIMIT_STACK
 968   size_t stack_size;
 969   struct rlimit rlim;
 970   getrlimit(RLIMIT_STACK, &rlim);
 971   stack_size = rlim.rlim_cur;
 972 
 973   // 6308388: a bug in ld.so will relocate its own .data section to the
 974   //   lower end of primordial stack; reduce ulimit -s value a little bit
 975   //   so we won't install guard page on ld.so's data section.
 976   stack_size -= 2 * page_size();
 977 
 978   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 979   //   7.1, in both cases we will get 2G in return value.
 980   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 981   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 982   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 983   //   in case other parts in glibc still assumes 2M max stack size.
 984   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 985   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 986   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 987     stack_size = 2 * K * K IA64_ONLY(*2);
 988   }
 989   // Try to figure out where the stack base (top) is. This is harder.
 990   //
 991   // When an application is started, glibc saves the initial stack pointer in
 992   // a global variable "__libc_stack_end", which is then used by system
 993   // libraries. __libc_stack_end should be pretty close to stack top. The
 994   // variable is available since the very early days. However, because it is
 995   // a private interface, it could disappear in the future.
 996   //
 997   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 998   // to __libc_stack_end, it is very close to stack top, but isn't the real
 999   // stack top. Note that /proc may not exist if VM is running as a chroot
1000   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1001   // /proc/<pid>/stat could change in the future (though unlikely).
1002   //
1003   // We try __libc_stack_end first. If that doesn't work, look for
1004   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1005   // as a hint, which should work well in most cases.
1006 
1007   uintptr_t stack_start;
1008 
1009   // try __libc_stack_end first
1010   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1011   if (p && *p) {
1012     stack_start = *p;
1013   } else {
1014     // see if we can get the start_stack field from /proc/self/stat
1015     FILE *fp;
1016     int pid;
1017     char state;
1018     int ppid;
1019     int pgrp;
1020     int session;
1021     int nr;
1022     int tpgrp;
1023     unsigned long flags;
1024     unsigned long minflt;
1025     unsigned long cminflt;
1026     unsigned long majflt;
1027     unsigned long cmajflt;
1028     unsigned long utime;
1029     unsigned long stime;
1030     long cutime;
1031     long cstime;
1032     long prio;
1033     long nice;
1034     long junk;
1035     long it_real;
1036     uintptr_t start;
1037     uintptr_t vsize;
1038     intptr_t rss;
1039     uintptr_t rsslim;
1040     uintptr_t scodes;
1041     uintptr_t ecode;
1042     int i;
1043 
1044     // Figure what the primordial thread stack base is. Code is inspired
1045     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1046     // followed by command name surrounded by parentheses, state, etc.
1047     char stat[2048];
1048     int statlen;
1049 
1050     fp = fopen("/proc/self/stat", "r");
1051     if (fp) {
1052       statlen = fread(stat, 1, 2047, fp);
1053       stat[statlen] = '\0';
1054       fclose(fp);
1055 
1056       // Skip pid and the command string. Note that we could be dealing with
1057       // weird command names, e.g. user could decide to rename java launcher
1058       // to "java 1.4.2 :)", then the stat file would look like
1059       //                1234 (java 1.4.2 :)) R ... ...
1060       // We don't really need to know the command string, just find the last
1061       // occurrence of ")" and then start parsing from there. See bug 4726580.
1062       char * s = strrchr(stat, ')');
1063 
1064       i = 0;
1065       if (s) {
1066         // Skip blank chars
1067         do { s++; } while (s && isspace(*s));
1068 
1069 #define _UFM UINTX_FORMAT
1070 #define _DFM INTX_FORMAT
1071 
1072         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1073         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1074         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1075                    &state,          // 3  %c
1076                    &ppid,           // 4  %d
1077                    &pgrp,           // 5  %d
1078                    &session,        // 6  %d
1079                    &nr,             // 7  %d
1080                    &tpgrp,          // 8  %d
1081                    &flags,          // 9  %lu
1082                    &minflt,         // 10 %lu
1083                    &cminflt,        // 11 %lu
1084                    &majflt,         // 12 %lu
1085                    &cmajflt,        // 13 %lu
1086                    &utime,          // 14 %lu
1087                    &stime,          // 15 %lu
1088                    &cutime,         // 16 %ld
1089                    &cstime,         // 17 %ld
1090                    &prio,           // 18 %ld
1091                    &nice,           // 19 %ld
1092                    &junk,           // 20 %ld
1093                    &it_real,        // 21 %ld
1094                    &start,          // 22 UINTX_FORMAT
1095                    &vsize,          // 23 UINTX_FORMAT
1096                    &rss,            // 24 INTX_FORMAT
1097                    &rsslim,         // 25 UINTX_FORMAT
1098                    &scodes,         // 26 UINTX_FORMAT
1099                    &ecode,          // 27 UINTX_FORMAT
1100                    &stack_start);   // 28 UINTX_FORMAT
1101       }
1102 
1103 #undef _UFM
1104 #undef _DFM
1105 
1106       if (i != 28 - 2) {
1107         assert(false, "Bad conversion from /proc/self/stat");
1108         // product mode - assume we are the initial thread, good luck in the
1109         // embedded case.
1110         warning("Can't detect initial thread stack location - bad conversion");
1111         stack_start = (uintptr_t) &rlim;
1112       }
1113     } else {
1114       // For some reason we can't open /proc/self/stat (for example, running on
1115       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1116       // most cases, so don't abort:
1117       warning("Can't detect initial thread stack location - no /proc/self/stat");
1118       stack_start = (uintptr_t) &rlim;
1119     }
1120   }
1121 
1122   // Now we have a pointer (stack_start) very close to the stack top, the
1123   // next thing to do is to figure out the exact location of stack top. We
1124   // can find out the virtual memory area that contains stack_start by
1125   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1126   // and its upper limit is the real stack top. (again, this would fail if
1127   // running inside chroot, because /proc may not exist.)
1128 
1129   uintptr_t stack_top;
1130   address low, high;
1131   if (find_vma((address)stack_start, &low, &high)) {
1132     // success, "high" is the true stack top. (ignore "low", because initial
1133     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1134     stack_top = (uintptr_t)high;
1135   } else {
1136     // failed, likely because /proc/self/maps does not exist
1137     warning("Can't detect initial thread stack location - find_vma failed");
1138     // best effort: stack_start is normally within a few pages below the real
1139     // stack top, use it as stack top, and reduce stack size so we won't put
1140     // guard page outside stack.
1141     stack_top = stack_start;
1142     stack_size -= 16 * page_size();
1143   }
1144 
1145   // stack_top could be partially down the page so align it
1146   stack_top = align_size_up(stack_top, page_size());
1147 
1148   if (max_size && stack_size > max_size) {
1149     _initial_thread_stack_size = max_size;
1150   } else {
1151     _initial_thread_stack_size = stack_size;
1152   }
1153 
1154   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1155   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1156 }
1157 
1158 ////////////////////////////////////////////////////////////////////////////////
1159 // time support
1160 
1161 // Time since start-up in seconds to a fine granularity.
1162 // Used by VMSelfDestructTimer and the MemProfiler.
1163 double os::elapsedTime() {
1164 
1165   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1166 }
1167 
1168 jlong os::elapsed_counter() {
1169   return javaTimeNanos() - initial_time_count;
1170 }
1171 
1172 jlong os::elapsed_frequency() {
1173   return NANOSECS_PER_SEC; // nanosecond resolution
1174 }
1175 
1176 bool os::supports_vtime() { return true; }
1177 bool os::enable_vtime()   { return false; }
1178 bool os::vtime_enabled()  { return false; }
1179 
1180 double os::elapsedVTime() {
1181   struct rusage usage;
1182   int retval = getrusage(RUSAGE_THREAD, &usage);
1183   if (retval == 0) {
1184     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1185   } else {
1186     // better than nothing, but not much
1187     return elapsedTime();
1188   }
1189 }
1190 
1191 jlong os::javaTimeMillis() {
1192   timeval time;
1193   int status = gettimeofday(&time, NULL);
1194   assert(status != -1, "linux error");
1195   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1196 }
1197 
1198 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1199   timeval time;
1200   int status = gettimeofday(&time, NULL);
1201   assert(status != -1, "linux error");
1202   seconds = jlong(time.tv_sec);
1203   nanos = jlong(time.tv_usec) * 1000;
1204 }
1205 
1206 
1207 #ifndef CLOCK_MONOTONIC
1208   #define CLOCK_MONOTONIC (1)
1209 #endif
1210 
1211 void os::Linux::clock_init() {
1212   // we do dlopen's in this particular order due to bug in linux
1213   // dynamical loader (see 6348968) leading to crash on exit
1214   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1215   if (handle == NULL) {
1216     handle = dlopen("librt.so", RTLD_LAZY);
1217   }
1218 
1219   if (handle) {
1220     int (*clock_getres_func)(clockid_t, struct timespec*) =
1221            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1222     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1223            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1224     if (clock_getres_func && clock_gettime_func) {
1225       // See if monotonic clock is supported by the kernel. Note that some
1226       // early implementations simply return kernel jiffies (updated every
1227       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1228       // for nano time (though the monotonic property is still nice to have).
1229       // It's fixed in newer kernels, however clock_getres() still returns
1230       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1231       // resolution for now. Hopefully as people move to new kernels, this
1232       // won't be a problem.
1233       struct timespec res;
1234       struct timespec tp;
1235       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1236           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1237         // yes, monotonic clock is supported
1238         _clock_gettime = clock_gettime_func;
1239         return;
1240       } else {
1241         // close librt if there is no monotonic clock
1242         dlclose(handle);
1243       }
1244     }
1245   }
1246   warning("No monotonic clock was available - timed services may " \
1247           "be adversely affected if the time-of-day clock changes");
1248 }
1249 
1250 #ifndef SYS_clock_getres
1251   #if defined(IA32) || defined(AMD64)
1252     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1253     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1254   #else
1255     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1256     #define sys_clock_getres(x,y)  -1
1257   #endif
1258 #else
1259   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1260 #endif
1261 
1262 void os::Linux::fast_thread_clock_init() {
1263   if (!UseLinuxPosixThreadCPUClocks) {
1264     return;
1265   }
1266   clockid_t clockid;
1267   struct timespec tp;
1268   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1269       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1270 
1271   // Switch to using fast clocks for thread cpu time if
1272   // the sys_clock_getres() returns 0 error code.
1273   // Note, that some kernels may support the current thread
1274   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1275   // returned by the pthread_getcpuclockid().
1276   // If the fast Posix clocks are supported then the sys_clock_getres()
1277   // must return at least tp.tv_sec == 0 which means a resolution
1278   // better than 1 sec. This is extra check for reliability.
1279 
1280   if (pthread_getcpuclockid_func &&
1281       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1282       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1283     _supports_fast_thread_cpu_time = true;
1284     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1285   }
1286 }
1287 
1288 jlong os::javaTimeNanos() {
1289   if (os::supports_monotonic_clock()) {
1290     struct timespec tp;
1291     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1292     assert(status == 0, "gettime error");
1293     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1294     return result;
1295   } else {
1296     timeval time;
1297     int status = gettimeofday(&time, NULL);
1298     assert(status != -1, "linux error");
1299     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1300     return 1000 * usecs;
1301   }
1302 }
1303 
1304 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1305   if (os::supports_monotonic_clock()) {
1306     info_ptr->max_value = ALL_64_BITS;
1307 
1308     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1309     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1310     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1311   } else {
1312     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1313     info_ptr->max_value = ALL_64_BITS;
1314 
1315     // gettimeofday is a real time clock so it skips
1316     info_ptr->may_skip_backward = true;
1317     info_ptr->may_skip_forward = true;
1318   }
1319 
1320   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1321 }
1322 
1323 // Return the real, user, and system times in seconds from an
1324 // arbitrary fixed point in the past.
1325 bool os::getTimesSecs(double* process_real_time,
1326                       double* process_user_time,
1327                       double* process_system_time) {
1328   struct tms ticks;
1329   clock_t real_ticks = times(&ticks);
1330 
1331   if (real_ticks == (clock_t) (-1)) {
1332     return false;
1333   } else {
1334     double ticks_per_second = (double) clock_tics_per_sec;
1335     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1336     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1337     *process_real_time = ((double) real_ticks) / ticks_per_second;
1338 
1339     return true;
1340   }
1341 }
1342 
1343 
1344 char * os::local_time_string(char *buf, size_t buflen) {
1345   struct tm t;
1346   time_t long_time;
1347   time(&long_time);
1348   localtime_r(&long_time, &t);
1349   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1350                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1351                t.tm_hour, t.tm_min, t.tm_sec);
1352   return buf;
1353 }
1354 
1355 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1356   return localtime_r(clock, res);
1357 }
1358 
1359 ////////////////////////////////////////////////////////////////////////////////
1360 // runtime exit support
1361 
1362 // Note: os::shutdown() might be called very early during initialization, or
1363 // called from signal handler. Before adding something to os::shutdown(), make
1364 // sure it is async-safe and can handle partially initialized VM.
1365 void os::shutdown() {
1366 
1367   // allow PerfMemory to attempt cleanup of any persistent resources
1368   perfMemory_exit();
1369 
1370   // needs to remove object in file system
1371   AttachListener::abort();
1372 
1373   // flush buffered output, finish log files
1374   ostream_abort();
1375 
1376   // Check for abort hook
1377   abort_hook_t abort_hook = Arguments::abort_hook();
1378   if (abort_hook != NULL) {
1379     abort_hook();
1380   }
1381 
1382 }
1383 
1384 // Note: os::abort() might be called very early during initialization, or
1385 // called from signal handler. Before adding something to os::abort(), make
1386 // sure it is async-safe and can handle partially initialized VM.
1387 void os::abort(bool dump_core, void* siginfo, void* context) {
1388   os::shutdown();
1389   if (dump_core) {
1390 #ifndef PRODUCT
1391     fdStream out(defaultStream::output_fd());
1392     out.print_raw("Current thread is ");
1393     char buf[16];
1394     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1395     out.print_raw_cr(buf);
1396     out.print_raw_cr("Dumping core ...");
1397 #endif
1398     ::abort(); // dump core
1399   }
1400 
1401   ::exit(1);
1402 }
1403 
1404 // Die immediately, no exit hook, no abort hook, no cleanup.
1405 void os::die() {
1406   ::abort();
1407 }
1408 
1409 
1410 // This method is a copy of JDK's sysGetLastErrorString
1411 // from src/solaris/hpi/src/system_md.c
1412 
1413 size_t os::lasterror(char *buf, size_t len) {
1414   if (errno == 0)  return 0;
1415 
1416   const char *s = ::strerror(errno);
1417   size_t n = ::strlen(s);
1418   if (n >= len) {
1419     n = len - 1;
1420   }
1421   ::strncpy(buf, s, n);
1422   buf[n] = '\0';
1423   return n;
1424 }
1425 
1426 intx os::current_thread_id() { return (intx)pthread_self(); }
1427 int os::current_process_id() {
1428   return ::getpid();
1429 }
1430 
1431 // DLL functions
1432 
1433 const char* os::dll_file_extension() { return ".so"; }
1434 
1435 // This must be hard coded because it's the system's temporary
1436 // directory not the java application's temp directory, ala java.io.tmpdir.
1437 const char* os::get_temp_directory() { return "/tmp"; }
1438 
1439 static bool file_exists(const char* filename) {
1440   struct stat statbuf;
1441   if (filename == NULL || strlen(filename) == 0) {
1442     return false;
1443   }
1444   return os::stat(filename, &statbuf) == 0;
1445 }
1446 
1447 bool os::dll_build_name(char* buffer, size_t buflen,
1448                         const char* pname, const char* fname) {
1449   bool retval = false;
1450   // Copied from libhpi
1451   const size_t pnamelen = pname ? strlen(pname) : 0;
1452 
1453   // Return error on buffer overflow.
1454   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1455     return retval;
1456   }
1457 
1458   if (pnamelen == 0) {
1459     snprintf(buffer, buflen, "lib%s.so", fname);
1460     retval = true;
1461   } else if (strchr(pname, *os::path_separator()) != NULL) {
1462     int n;
1463     char** pelements = split_path(pname, &n);
1464     if (pelements == NULL) {
1465       return false;
1466     }
1467     for (int i = 0; i < n; i++) {
1468       // Really shouldn't be NULL, but check can't hurt
1469       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1470         continue; // skip the empty path values
1471       }
1472       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1473       if (file_exists(buffer)) {
1474         retval = true;
1475         break;
1476       }
1477     }
1478     // release the storage
1479     for (int i = 0; i < n; i++) {
1480       if (pelements[i] != NULL) {
1481         FREE_C_HEAP_ARRAY(char, pelements[i]);
1482       }
1483     }
1484     if (pelements != NULL) {
1485       FREE_C_HEAP_ARRAY(char*, pelements);
1486     }
1487   } else {
1488     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1489     retval = true;
1490   }
1491   return retval;
1492 }
1493 
1494 // check if addr is inside libjvm.so
1495 bool os::address_is_in_vm(address addr) {
1496   static address libjvm_base_addr;
1497   Dl_info dlinfo;
1498 
1499   if (libjvm_base_addr == NULL) {
1500     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1501       libjvm_base_addr = (address)dlinfo.dli_fbase;
1502     }
1503     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1504   }
1505 
1506   if (dladdr((void *)addr, &dlinfo) != 0) {
1507     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1508   }
1509 
1510   return false;
1511 }
1512 
1513 bool os::dll_address_to_function_name(address addr, char *buf,
1514                                       int buflen, int *offset) {
1515   // buf is not optional, but offset is optional
1516   assert(buf != NULL, "sanity check");
1517 
1518   Dl_info dlinfo;
1519 
1520   if (dladdr((void*)addr, &dlinfo) != 0) {
1521     // see if we have a matching symbol
1522     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1523       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1524         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1525       }
1526       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1527       return true;
1528     }
1529     // no matching symbol so try for just file info
1530     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1531       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1532                           buf, buflen, offset, dlinfo.dli_fname)) {
1533         return true;
1534       }
1535     }
1536   }
1537 
1538   buf[0] = '\0';
1539   if (offset != NULL) *offset = -1;
1540   return false;
1541 }
1542 
1543 struct _address_to_library_name {
1544   address addr;          // input : memory address
1545   size_t  buflen;        //         size of fname
1546   char*   fname;         // output: library name
1547   address base;          //         library base addr
1548 };
1549 
1550 static int address_to_library_name_callback(struct dl_phdr_info *info,
1551                                             size_t size, void *data) {
1552   int i;
1553   bool found = false;
1554   address libbase = NULL;
1555   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1556 
1557   // iterate through all loadable segments
1558   for (i = 0; i < info->dlpi_phnum; i++) {
1559     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1560     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1561       // base address of a library is the lowest address of its loaded
1562       // segments.
1563       if (libbase == NULL || libbase > segbase) {
1564         libbase = segbase;
1565       }
1566       // see if 'addr' is within current segment
1567       if (segbase <= d->addr &&
1568           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1569         found = true;
1570       }
1571     }
1572   }
1573 
1574   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1575   // so dll_address_to_library_name() can fall through to use dladdr() which
1576   // can figure out executable name from argv[0].
1577   if (found && info->dlpi_name && info->dlpi_name[0]) {
1578     d->base = libbase;
1579     if (d->fname) {
1580       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1581     }
1582     return 1;
1583   }
1584   return 0;
1585 }
1586 
1587 bool os::dll_address_to_library_name(address addr, char* buf,
1588                                      int buflen, int* offset) {
1589   // buf is not optional, but offset is optional
1590   assert(buf != NULL, "sanity check");
1591 
1592   Dl_info dlinfo;
1593   struct _address_to_library_name data;
1594 
1595   // There is a bug in old glibc dladdr() implementation that it could resolve
1596   // to wrong library name if the .so file has a base address != NULL. Here
1597   // we iterate through the program headers of all loaded libraries to find
1598   // out which library 'addr' really belongs to. This workaround can be
1599   // removed once the minimum requirement for glibc is moved to 2.3.x.
1600   data.addr = addr;
1601   data.fname = buf;
1602   data.buflen = buflen;
1603   data.base = NULL;
1604   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1605 
1606   if (rslt) {
1607     // buf already contains library name
1608     if (offset) *offset = addr - data.base;
1609     return true;
1610   }
1611   if (dladdr((void*)addr, &dlinfo) != 0) {
1612     if (dlinfo.dli_fname != NULL) {
1613       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1614     }
1615     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1616       *offset = addr - (address)dlinfo.dli_fbase;
1617     }
1618     return true;
1619   }
1620 
1621   buf[0] = '\0';
1622   if (offset) *offset = -1;
1623   return false;
1624 }
1625 
1626 // Loads .dll/.so and
1627 // in case of error it checks if .dll/.so was built for the
1628 // same architecture as Hotspot is running on
1629 
1630 
1631 // Remember the stack's state. The Linux dynamic linker will change
1632 // the stack to 'executable' at most once, so we must safepoint only once.
1633 bool os::Linux::_stack_is_executable = false;
1634 
1635 // VM operation that loads a library.  This is necessary if stack protection
1636 // of the Java stacks can be lost during loading the library.  If we
1637 // do not stop the Java threads, they can stack overflow before the stacks
1638 // are protected again.
1639 class VM_LinuxDllLoad: public VM_Operation {
1640  private:
1641   const char *_filename;
1642   char *_ebuf;
1643   int _ebuflen;
1644   void *_lib;
1645  public:
1646   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1647     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1648   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1649   void doit() {
1650     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1651     os::Linux::_stack_is_executable = true;
1652   }
1653   void* loaded_library() { return _lib; }
1654 };
1655 
1656 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1657   void * result = NULL;
1658   bool load_attempted = false;
1659 
1660   // Check whether the library to load might change execution rights
1661   // of the stack. If they are changed, the protection of the stack
1662   // guard pages will be lost. We need a safepoint to fix this.
1663   //
1664   // See Linux man page execstack(8) for more info.
1665   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1666     ElfFile ef(filename);
1667     if (!ef.specifies_noexecstack()) {
1668       if (!is_init_completed()) {
1669         os::Linux::_stack_is_executable = true;
1670         // This is OK - No Java threads have been created yet, and hence no
1671         // stack guard pages to fix.
1672         //
1673         // This should happen only when you are building JDK7 using a very
1674         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1675         //
1676         // Dynamic loader will make all stacks executable after
1677         // this function returns, and will not do that again.
1678         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1679       } else {
1680         warning("You have loaded library %s which might have disabled stack guard. "
1681                 "The VM will try to fix the stack guard now.\n"
1682                 "It's highly recommended that you fix the library with "
1683                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1684                 filename);
1685 
1686         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1687         JavaThread *jt = JavaThread::current();
1688         if (jt->thread_state() != _thread_in_native) {
1689           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1690           // that requires ExecStack. Cannot enter safe point. Let's give up.
1691           warning("Unable to fix stack guard. Giving up.");
1692         } else {
1693           if (!LoadExecStackDllInVMThread) {
1694             // This is for the case where the DLL has an static
1695             // constructor function that executes JNI code. We cannot
1696             // load such DLLs in the VMThread.
1697             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1698           }
1699 
1700           ThreadInVMfromNative tiv(jt);
1701           debug_only(VMNativeEntryWrapper vew;)
1702 
1703           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1704           VMThread::execute(&op);
1705           if (LoadExecStackDllInVMThread) {
1706             result = op.loaded_library();
1707           }
1708           load_attempted = true;
1709         }
1710       }
1711     }
1712   }
1713 
1714   if (!load_attempted) {
1715     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1716   }
1717 
1718   if (result != NULL) {
1719     // Successful loading
1720     return result;
1721   }
1722 
1723   Elf32_Ehdr elf_head;
1724   int diag_msg_max_length=ebuflen-strlen(ebuf);
1725   char* diag_msg_buf=ebuf+strlen(ebuf);
1726 
1727   if (diag_msg_max_length==0) {
1728     // No more space in ebuf for additional diagnostics message
1729     return NULL;
1730   }
1731 
1732 
1733   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1734 
1735   if (file_descriptor < 0) {
1736     // Can't open library, report dlerror() message
1737     return NULL;
1738   }
1739 
1740   bool failed_to_read_elf_head=
1741     (sizeof(elf_head)!=
1742      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1743 
1744   ::close(file_descriptor);
1745   if (failed_to_read_elf_head) {
1746     // file i/o error - report dlerror() msg
1747     return NULL;
1748   }
1749 
1750   typedef struct {
1751     Elf32_Half  code;         // Actual value as defined in elf.h
1752     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1753     char        elf_class;    // 32 or 64 bit
1754     char        endianess;    // MSB or LSB
1755     char*       name;         // String representation
1756   } arch_t;
1757 
1758 #ifndef EM_486
1759   #define EM_486          6               /* Intel 80486 */
1760 #endif
1761 #ifndef EM_AARCH64
1762   #define EM_AARCH64    183               /* ARM AARCH64 */
1763 #endif
1764 
1765   static const arch_t arch_array[]={
1766     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1767     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1768     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1769     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1770     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1771     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1772     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1773     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1774 #if defined(VM_LITTLE_ENDIAN)
1775     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1776 #else
1777     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1778 #endif
1779     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1780     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1781     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1782     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1783     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1784     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1785     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1786     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1787   };
1788 
1789 #if  (defined IA32)
1790   static  Elf32_Half running_arch_code=EM_386;
1791 #elif   (defined AMD64)
1792   static  Elf32_Half running_arch_code=EM_X86_64;
1793 #elif  (defined IA64)
1794   static  Elf32_Half running_arch_code=EM_IA_64;
1795 #elif  (defined __sparc) && (defined _LP64)
1796   static  Elf32_Half running_arch_code=EM_SPARCV9;
1797 #elif  (defined __sparc) && (!defined _LP64)
1798   static  Elf32_Half running_arch_code=EM_SPARC;
1799 #elif  (defined __powerpc64__)
1800   static  Elf32_Half running_arch_code=EM_PPC64;
1801 #elif  (defined __powerpc__)
1802   static  Elf32_Half running_arch_code=EM_PPC;
1803 #elif  (defined ARM)
1804   static  Elf32_Half running_arch_code=EM_ARM;
1805 #elif  (defined S390)
1806   static  Elf32_Half running_arch_code=EM_S390;
1807 #elif  (defined ALPHA)
1808   static  Elf32_Half running_arch_code=EM_ALPHA;
1809 #elif  (defined MIPSEL)
1810   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1811 #elif  (defined PARISC)
1812   static  Elf32_Half running_arch_code=EM_PARISC;
1813 #elif  (defined MIPS)
1814   static  Elf32_Half running_arch_code=EM_MIPS;
1815 #elif  (defined M68K)
1816   static  Elf32_Half running_arch_code=EM_68K;
1817 #elif  (defined AARCH64)
1818   static  Elf32_Half running_arch_code=EM_AARCH64;
1819 #else
1820     #error Method os::dll_load requires that one of following is defined:\
1821          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1822 #endif
1823 
1824   // Identify compatability class for VM's architecture and library's architecture
1825   // Obtain string descriptions for architectures
1826 
1827   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1828   int running_arch_index=-1;
1829 
1830   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1831     if (running_arch_code == arch_array[i].code) {
1832       running_arch_index    = i;
1833     }
1834     if (lib_arch.code == arch_array[i].code) {
1835       lib_arch.compat_class = arch_array[i].compat_class;
1836       lib_arch.name         = arch_array[i].name;
1837     }
1838   }
1839 
1840   assert(running_arch_index != -1,
1841          "Didn't find running architecture code (running_arch_code) in arch_array");
1842   if (running_arch_index == -1) {
1843     // Even though running architecture detection failed
1844     // we may still continue with reporting dlerror() message
1845     return NULL;
1846   }
1847 
1848   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1849     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1850     return NULL;
1851   }
1852 
1853 #ifndef S390
1854   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1855     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1856     return NULL;
1857   }
1858 #endif // !S390
1859 
1860   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1861     if (lib_arch.name!=NULL) {
1862       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1863                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1864                  lib_arch.name, arch_array[running_arch_index].name);
1865     } else {
1866       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1867                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1868                  lib_arch.code,
1869                  arch_array[running_arch_index].name);
1870     }
1871   }
1872 
1873   return NULL;
1874 }
1875 
1876 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1877                                 int ebuflen) {
1878   void * result = ::dlopen(filename, RTLD_LAZY);
1879   if (result == NULL) {
1880     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1881     ebuf[ebuflen-1] = '\0';
1882   }
1883   return result;
1884 }
1885 
1886 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1887                                        int ebuflen) {
1888   void * result = NULL;
1889   if (LoadExecStackDllInVMThread) {
1890     result = dlopen_helper(filename, ebuf, ebuflen);
1891   }
1892 
1893   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1894   // library that requires an executable stack, or which does not have this
1895   // stack attribute set, dlopen changes the stack attribute to executable. The
1896   // read protection of the guard pages gets lost.
1897   //
1898   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1899   // may have been queued at the same time.
1900 
1901   if (!_stack_is_executable) {
1902     JavaThread *jt = Threads::first();
1903 
1904     while (jt) {
1905       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1906           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1907         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1908                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1909           warning("Attempt to reguard stack yellow zone failed.");
1910         }
1911       }
1912       jt = jt->next();
1913     }
1914   }
1915 
1916   return result;
1917 }
1918 
1919 void* os::dll_lookup(void* handle, const char* name) {
1920   void* res = dlsym(handle, name);
1921   return res;
1922 }
1923 
1924 void* os::get_default_process_handle() {
1925   return (void*)::dlopen(NULL, RTLD_LAZY);
1926 }
1927 
1928 static bool _print_ascii_file(const char* filename, outputStream* st) {
1929   int fd = ::open(filename, O_RDONLY);
1930   if (fd == -1) {
1931     return false;
1932   }
1933 
1934   char buf[32];
1935   int bytes;
1936   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1937     st->print_raw(buf, bytes);
1938   }
1939 
1940   ::close(fd);
1941 
1942   return true;
1943 }
1944 
1945 void os::print_dll_info(outputStream *st) {
1946   st->print_cr("Dynamic libraries:");
1947 
1948   char fname[32];
1949   pid_t pid = os::Linux::gettid();
1950 
1951   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1952 
1953   if (!_print_ascii_file(fname, st)) {
1954     st->print("Can not get library information for pid = %d\n", pid);
1955   }
1956 }
1957 
1958 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1959   FILE *procmapsFile = NULL;
1960 
1961   // Open the procfs maps file for the current process
1962   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1963     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1964     char line[PATH_MAX + 100];
1965 
1966     // Read line by line from 'file'
1967     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1968       u8 base, top, offset, inode;
1969       char permissions[5];
1970       char device[6];
1971       char name[PATH_MAX + 1];
1972 
1973       // Parse fields from line
1974       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
1975 
1976       // Filter by device id '00:00' so that we only get file system mapped files.
1977       if (strcmp(device, "00:00") != 0) {
1978 
1979         // Call callback with the fields of interest
1980         if(callback(name, (address)base, (address)top, param)) {
1981           // Oops abort, callback aborted
1982           fclose(procmapsFile);
1983           return 1;
1984         }
1985       }
1986     }
1987     fclose(procmapsFile);
1988   }
1989   return 0;
1990 }
1991 
1992 void os::print_os_info_brief(outputStream* st) {
1993   os::Linux::print_distro_info(st);
1994 
1995   os::Posix::print_uname_info(st);
1996 
1997   os::Linux::print_libversion_info(st);
1998 
1999 }
2000 
2001 void os::print_os_info(outputStream* st) {
2002   st->print("OS:");
2003 
2004   os::Linux::print_distro_info(st);
2005 
2006   os::Posix::print_uname_info(st);
2007 
2008   // Print warning if unsafe chroot environment detected
2009   if (unsafe_chroot_detected) {
2010     st->print("WARNING!! ");
2011     st->print_cr("%s", unstable_chroot_error);
2012   }
2013 
2014   os::Linux::print_libversion_info(st);
2015 
2016   os::Posix::print_rlimit_info(st);
2017 
2018   os::Posix::print_load_average(st);
2019 
2020   os::Linux::print_full_memory_info(st);
2021 }
2022 
2023 // Try to identify popular distros.
2024 // Most Linux distributions have a /etc/XXX-release file, which contains
2025 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2026 // file that also contains the OS version string. Some have more than one
2027 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2028 // /etc/redhat-release.), so the order is important.
2029 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2030 // their own specific XXX-release file as well as a redhat-release file.
2031 // Because of this the XXX-release file needs to be searched for before the
2032 // redhat-release file.
2033 // Since Red Hat has a lsb-release file that is not very descriptive the
2034 // search for redhat-release needs to be before lsb-release.
2035 // Since the lsb-release file is the new standard it needs to be searched
2036 // before the older style release files.
2037 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2038 // next to last resort.  The os-release file is a new standard that contains
2039 // distribution information and the system-release file seems to be an old
2040 // standard that has been replaced by the lsb-release and os-release files.
2041 // Searching for the debian_version file is the last resort.  It contains
2042 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2043 // "Debian " is printed before the contents of the debian_version file.
2044 void os::Linux::print_distro_info(outputStream* st) {
2045   if (!_print_ascii_file("/etc/oracle-release", st) &&
2046       !_print_ascii_file("/etc/mandriva-release", st) &&
2047       !_print_ascii_file("/etc/mandrake-release", st) &&
2048       !_print_ascii_file("/etc/sun-release", st) &&
2049       !_print_ascii_file("/etc/redhat-release", st) &&
2050       !_print_ascii_file("/etc/lsb-release", st) &&
2051       !_print_ascii_file("/etc/SuSE-release", st) &&
2052       !_print_ascii_file("/etc/turbolinux-release", st) &&
2053       !_print_ascii_file("/etc/gentoo-release", st) &&
2054       !_print_ascii_file("/etc/ltib-release", st) &&
2055       !_print_ascii_file("/etc/angstrom-version", st) &&
2056       !_print_ascii_file("/etc/system-release", st) &&
2057       !_print_ascii_file("/etc/os-release", st)) {
2058 
2059     if (file_exists("/etc/debian_version")) {
2060       st->print("Debian ");
2061       _print_ascii_file("/etc/debian_version", st);
2062     } else {
2063       st->print("Linux");
2064     }
2065   }
2066   st->cr();
2067 }
2068 
2069 void os::Linux::print_libversion_info(outputStream* st) {
2070   // libc, pthread
2071   st->print("libc:");
2072   st->print("%s ", os::Linux::glibc_version());
2073   st->print("%s ", os::Linux::libpthread_version());
2074   st->cr();
2075 }
2076 
2077 void os::Linux::print_full_memory_info(outputStream* st) {
2078   st->print("\n/proc/meminfo:\n");
2079   _print_ascii_file("/proc/meminfo", st);
2080   st->cr();
2081 }
2082 
2083 void os::print_memory_info(outputStream* st) {
2084 
2085   st->print("Memory:");
2086   st->print(" %dk page", os::vm_page_size()>>10);
2087 
2088   // values in struct sysinfo are "unsigned long"
2089   struct sysinfo si;
2090   sysinfo(&si);
2091 
2092   st->print(", physical " UINT64_FORMAT "k",
2093             os::physical_memory() >> 10);
2094   st->print("(" UINT64_FORMAT "k free)",
2095             os::available_memory() >> 10);
2096   st->print(", swap " UINT64_FORMAT "k",
2097             ((jlong)si.totalswap * si.mem_unit) >> 10);
2098   st->print("(" UINT64_FORMAT "k free)",
2099             ((jlong)si.freeswap * si.mem_unit) >> 10);
2100   st->cr();
2101 }
2102 
2103 void os::pd_print_cpu_info(outputStream* st) {
2104   st->print("\n/proc/cpuinfo:\n");
2105   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2106     st->print("  <Not Available>");
2107   }
2108   st->cr();
2109 }
2110 
2111 void os::print_siginfo(outputStream* st, void* siginfo) {
2112   const siginfo_t* si = (const siginfo_t*)siginfo;
2113 
2114   os::Posix::print_siginfo_brief(st, si);
2115 #if INCLUDE_CDS
2116   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2117       UseSharedSpaces) {
2118     FileMapInfo* mapinfo = FileMapInfo::current_info();
2119     if (mapinfo->is_in_shared_space(si->si_addr)) {
2120       st->print("\n\nError accessing class data sharing archive."   \
2121                 " Mapped file inaccessible during execution, "      \
2122                 " possible disk/network problem.");
2123     }
2124   }
2125 #endif
2126   st->cr();
2127 }
2128 
2129 
2130 static void print_signal_handler(outputStream* st, int sig,
2131                                  char* buf, size_t buflen);
2132 
2133 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2134   st->print_cr("Signal Handlers:");
2135   print_signal_handler(st, SIGSEGV, buf, buflen);
2136   print_signal_handler(st, SIGBUS , buf, buflen);
2137   print_signal_handler(st, SIGFPE , buf, buflen);
2138   print_signal_handler(st, SIGPIPE, buf, buflen);
2139   print_signal_handler(st, SIGXFSZ, buf, buflen);
2140   print_signal_handler(st, SIGILL , buf, buflen);
2141   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2142   print_signal_handler(st, SR_signum, buf, buflen);
2143   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2144   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2145   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2146   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2147 #if defined(PPC64)
2148   print_signal_handler(st, SIGTRAP, buf, buflen);
2149 #endif
2150 }
2151 
2152 static char saved_jvm_path[MAXPATHLEN] = {0};
2153 
2154 // Find the full path to the current module, libjvm.so
2155 void os::jvm_path(char *buf, jint buflen) {
2156   // Error checking.
2157   if (buflen < MAXPATHLEN) {
2158     assert(false, "must use a large-enough buffer");
2159     buf[0] = '\0';
2160     return;
2161   }
2162   // Lazy resolve the path to current module.
2163   if (saved_jvm_path[0] != 0) {
2164     strcpy(buf, saved_jvm_path);
2165     return;
2166   }
2167 
2168   char dli_fname[MAXPATHLEN];
2169   bool ret = dll_address_to_library_name(
2170                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2171                                          dli_fname, sizeof(dli_fname), NULL);
2172   assert(ret, "cannot locate libjvm");
2173   char *rp = NULL;
2174   if (ret && dli_fname[0] != '\0') {
2175     rp = realpath(dli_fname, buf);
2176   }
2177   if (rp == NULL) {
2178     return;
2179   }
2180 
2181   if (Arguments::sun_java_launcher_is_altjvm()) {
2182     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2183     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2184     // If "/jre/lib/" appears at the right place in the string, then
2185     // assume we are installed in a JDK and we're done. Otherwise, check
2186     // for a JAVA_HOME environment variable and fix up the path so it
2187     // looks like libjvm.so is installed there (append a fake suffix
2188     // hotspot/libjvm.so).
2189     const char *p = buf + strlen(buf) - 1;
2190     for (int count = 0; p > buf && count < 5; ++count) {
2191       for (--p; p > buf && *p != '/'; --p)
2192         /* empty */ ;
2193     }
2194 
2195     if (strncmp(p, "/jre/lib/", 9) != 0) {
2196       // Look for JAVA_HOME in the environment.
2197       char* java_home_var = ::getenv("JAVA_HOME");
2198       if (java_home_var != NULL && java_home_var[0] != 0) {
2199         char* jrelib_p;
2200         int len;
2201 
2202         // Check the current module name "libjvm.so".
2203         p = strrchr(buf, '/');
2204         if (p == NULL) {
2205           return;
2206         }
2207         assert(strstr(p, "/libjvm") == p, "invalid library name");
2208 
2209         rp = realpath(java_home_var, buf);
2210         if (rp == NULL) {
2211           return;
2212         }
2213 
2214         // determine if this is a legacy image or modules image
2215         // modules image doesn't have "jre" subdirectory
2216         len = strlen(buf);
2217         assert(len < buflen, "Ran out of buffer room");
2218         jrelib_p = buf + len;
2219         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2220         if (0 != access(buf, F_OK)) {
2221           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2222         }
2223 
2224         if (0 == access(buf, F_OK)) {
2225           // Use current module name "libjvm.so"
2226           len = strlen(buf);
2227           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2228         } else {
2229           // Go back to path of .so
2230           rp = realpath(dli_fname, buf);
2231           if (rp == NULL) {
2232             return;
2233           }
2234         }
2235       }
2236     }
2237   }
2238 
2239   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2240   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2241 }
2242 
2243 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2244   // no prefix required, not even "_"
2245 }
2246 
2247 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2248   // no suffix required
2249 }
2250 
2251 ////////////////////////////////////////////////////////////////////////////////
2252 // sun.misc.Signal support
2253 
2254 static volatile jint sigint_count = 0;
2255 
2256 static void UserHandler(int sig, void *siginfo, void *context) {
2257   // 4511530 - sem_post is serialized and handled by the manager thread. When
2258   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2259   // don't want to flood the manager thread with sem_post requests.
2260   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2261     return;
2262   }
2263 
2264   // Ctrl-C is pressed during error reporting, likely because the error
2265   // handler fails to abort. Let VM die immediately.
2266   if (sig == SIGINT && is_error_reported()) {
2267     os::die();
2268   }
2269 
2270   os::signal_notify(sig);
2271 }
2272 
2273 void* os::user_handler() {
2274   return CAST_FROM_FN_PTR(void*, UserHandler);
2275 }
2276 
2277 class Semaphore : public StackObj {
2278  public:
2279   Semaphore();
2280   ~Semaphore();
2281   void signal();
2282   void wait();
2283   bool trywait();
2284   bool timedwait(unsigned int sec, int nsec);
2285  private:
2286   sem_t _semaphore;
2287 };
2288 
2289 Semaphore::Semaphore() {
2290   sem_init(&_semaphore, 0, 0);
2291 }
2292 
2293 Semaphore::~Semaphore() {
2294   sem_destroy(&_semaphore);
2295 }
2296 
2297 void Semaphore::signal() {
2298   sem_post(&_semaphore);
2299 }
2300 
2301 void Semaphore::wait() {
2302   sem_wait(&_semaphore);
2303 }
2304 
2305 bool Semaphore::trywait() {
2306   return sem_trywait(&_semaphore) == 0;
2307 }
2308 
2309 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2310 
2311   struct timespec ts;
2312   // Semaphore's are always associated with CLOCK_REALTIME
2313   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2314   // see unpackTime for discussion on overflow checking
2315   if (sec >= MAX_SECS) {
2316     ts.tv_sec += MAX_SECS;
2317     ts.tv_nsec = 0;
2318   } else {
2319     ts.tv_sec += sec;
2320     ts.tv_nsec += nsec;
2321     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2322       ts.tv_nsec -= NANOSECS_PER_SEC;
2323       ++ts.tv_sec; // note: this must be <= max_secs
2324     }
2325   }
2326 
2327   while (1) {
2328     int result = sem_timedwait(&_semaphore, &ts);
2329     if (result == 0) {
2330       return true;
2331     } else if (errno == EINTR) {
2332       continue;
2333     } else if (errno == ETIMEDOUT) {
2334       return false;
2335     } else {
2336       return false;
2337     }
2338   }
2339 }
2340 
2341 extern "C" {
2342   typedef void (*sa_handler_t)(int);
2343   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2344 }
2345 
2346 void* os::signal(int signal_number, void* handler) {
2347   struct sigaction sigAct, oldSigAct;
2348 
2349   sigfillset(&(sigAct.sa_mask));
2350   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2351   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2352 
2353   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2354     // -1 means registration failed
2355     return (void *)-1;
2356   }
2357 
2358   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2359 }
2360 
2361 void os::signal_raise(int signal_number) {
2362   ::raise(signal_number);
2363 }
2364 
2365 // The following code is moved from os.cpp for making this
2366 // code platform specific, which it is by its very nature.
2367 
2368 // Will be modified when max signal is changed to be dynamic
2369 int os::sigexitnum_pd() {
2370   return NSIG;
2371 }
2372 
2373 // a counter for each possible signal value
2374 static volatile jint pending_signals[NSIG+1] = { 0 };
2375 
2376 // Linux(POSIX) specific hand shaking semaphore.
2377 static sem_t sig_sem;
2378 static Semaphore sr_semaphore;
2379 
2380 void os::signal_init_pd() {
2381   // Initialize signal structures
2382   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2383 
2384   // Initialize signal semaphore
2385   ::sem_init(&sig_sem, 0, 0);
2386 }
2387 
2388 void os::signal_notify(int sig) {
2389   Atomic::inc(&pending_signals[sig]);
2390   ::sem_post(&sig_sem);
2391 }
2392 
2393 static int check_pending_signals(bool wait) {
2394   Atomic::store(0, &sigint_count);
2395   for (;;) {
2396     for (int i = 0; i < NSIG + 1; i++) {
2397       jint n = pending_signals[i];
2398       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2399         return i;
2400       }
2401     }
2402     if (!wait) {
2403       return -1;
2404     }
2405     JavaThread *thread = JavaThread::current();
2406     ThreadBlockInVM tbivm(thread);
2407 
2408     bool threadIsSuspended;
2409     do {
2410       thread->set_suspend_equivalent();
2411       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2412       ::sem_wait(&sig_sem);
2413 
2414       // were we externally suspended while we were waiting?
2415       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2416       if (threadIsSuspended) {
2417         // The semaphore has been incremented, but while we were waiting
2418         // another thread suspended us. We don't want to continue running
2419         // while suspended because that would surprise the thread that
2420         // suspended us.
2421         ::sem_post(&sig_sem);
2422 
2423         thread->java_suspend_self();
2424       }
2425     } while (threadIsSuspended);
2426   }
2427 }
2428 
2429 int os::signal_lookup() {
2430   return check_pending_signals(false);
2431 }
2432 
2433 int os::signal_wait() {
2434   return check_pending_signals(true);
2435 }
2436 
2437 ////////////////////////////////////////////////////////////////////////////////
2438 // Virtual Memory
2439 
2440 int os::vm_page_size() {
2441   // Seems redundant as all get out
2442   assert(os::Linux::page_size() != -1, "must call os::init");
2443   return os::Linux::page_size();
2444 }
2445 
2446 // Solaris allocates memory by pages.
2447 int os::vm_allocation_granularity() {
2448   assert(os::Linux::page_size() != -1, "must call os::init");
2449   return os::Linux::page_size();
2450 }
2451 
2452 // Rationale behind this function:
2453 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2454 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2455 //  samples for JITted code. Here we create private executable mapping over the code cache
2456 //  and then we can use standard (well, almost, as mapping can change) way to provide
2457 //  info for the reporting script by storing timestamp and location of symbol
2458 void linux_wrap_code(char* base, size_t size) {
2459   static volatile jint cnt = 0;
2460 
2461   if (!UseOprofile) {
2462     return;
2463   }
2464 
2465   char buf[PATH_MAX+1];
2466   int num = Atomic::add(1, &cnt);
2467 
2468   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2469            os::get_temp_directory(), os::current_process_id(), num);
2470   unlink(buf);
2471 
2472   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2473 
2474   if (fd != -1) {
2475     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2476     if (rv != (off_t)-1) {
2477       if (::write(fd, "", 1) == 1) {
2478         mmap(base, size,
2479              PROT_READ|PROT_WRITE|PROT_EXEC,
2480              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2481       }
2482     }
2483     ::close(fd);
2484     unlink(buf);
2485   }
2486 }
2487 
2488 static bool recoverable_mmap_error(int err) {
2489   // See if the error is one we can let the caller handle. This
2490   // list of errno values comes from JBS-6843484. I can't find a
2491   // Linux man page that documents this specific set of errno
2492   // values so while this list currently matches Solaris, it may
2493   // change as we gain experience with this failure mode.
2494   switch (err) {
2495   case EBADF:
2496   case EINVAL:
2497   case ENOTSUP:
2498     // let the caller deal with these errors
2499     return true;
2500 
2501   default:
2502     // Any remaining errors on this OS can cause our reserved mapping
2503     // to be lost. That can cause confusion where different data
2504     // structures think they have the same memory mapped. The worst
2505     // scenario is if both the VM and a library think they have the
2506     // same memory mapped.
2507     return false;
2508   }
2509 }
2510 
2511 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2512                                     int err) {
2513   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2514           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2515           strerror(err), err);
2516 }
2517 
2518 static void warn_fail_commit_memory(char* addr, size_t size,
2519                                     size_t alignment_hint, bool exec,
2520                                     int err) {
2521   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2522           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2523           alignment_hint, exec, strerror(err), err);
2524 }
2525 
2526 // NOTE: Linux kernel does not really reserve the pages for us.
2527 //       All it does is to check if there are enough free pages
2528 //       left at the time of mmap(). This could be a potential
2529 //       problem.
2530 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2531   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2532   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2533                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2534   if (res != (uintptr_t) MAP_FAILED) {
2535     if (UseNUMAInterleaving) {
2536       numa_make_global(addr, size);
2537     }
2538     return 0;
2539   }
2540 
2541   int err = errno;  // save errno from mmap() call above
2542 
2543   if (!recoverable_mmap_error(err)) {
2544     warn_fail_commit_memory(addr, size, exec, err);
2545     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2546   }
2547 
2548   return err;
2549 }
2550 
2551 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2552   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2553 }
2554 
2555 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2556                                   const char* mesg) {
2557   assert(mesg != NULL, "mesg must be specified");
2558   int err = os::Linux::commit_memory_impl(addr, size, exec);
2559   if (err != 0) {
2560     // the caller wants all commit errors to exit with the specified mesg:
2561     warn_fail_commit_memory(addr, size, exec, err);
2562     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2563   }
2564 }
2565 
2566 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2567 #ifndef MAP_HUGETLB
2568   #define MAP_HUGETLB 0x40000
2569 #endif
2570 
2571 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2572 #ifndef MADV_HUGEPAGE
2573   #define MADV_HUGEPAGE 14
2574 #endif
2575 
2576 int os::Linux::commit_memory_impl(char* addr, size_t size,
2577                                   size_t alignment_hint, bool exec) {
2578   int err = os::Linux::commit_memory_impl(addr, size, exec);
2579   if (err == 0) {
2580     realign_memory(addr, size, alignment_hint);
2581   }
2582   return err;
2583 }
2584 
2585 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2586                           bool exec) {
2587   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2588 }
2589 
2590 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2591                                   size_t alignment_hint, bool exec,
2592                                   const char* mesg) {
2593   assert(mesg != NULL, "mesg must be specified");
2594   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2595   if (err != 0) {
2596     // the caller wants all commit errors to exit with the specified mesg:
2597     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2598     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2599   }
2600 }
2601 
2602 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2603   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2604     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2605     // be supported or the memory may already be backed by huge pages.
2606     ::madvise(addr, bytes, MADV_HUGEPAGE);
2607   }
2608 }
2609 
2610 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2611   // This method works by doing an mmap over an existing mmaping and effectively discarding
2612   // the existing pages. However it won't work for SHM-based large pages that cannot be
2613   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2614   // small pages on top of the SHM segment. This method always works for small pages, so we
2615   // allow that in any case.
2616   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2617     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2618   }
2619 }
2620 
2621 void os::numa_make_global(char *addr, size_t bytes) {
2622   Linux::numa_interleave_memory(addr, bytes);
2623 }
2624 
2625 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2626 // bind policy to MPOL_PREFERRED for the current thread.
2627 #define USE_MPOL_PREFERRED 0
2628 
2629 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2630   // To make NUMA and large pages more robust when both enabled, we need to ease
2631   // the requirements on where the memory should be allocated. MPOL_BIND is the
2632   // default policy and it will force memory to be allocated on the specified
2633   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2634   // the specified node, but will not force it. Using this policy will prevent
2635   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2636   // free large pages.
2637   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2638   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2639 }
2640 
2641 bool os::numa_topology_changed() { return false; }
2642 
2643 size_t os::numa_get_groups_num() {
2644   int max_node = Linux::numa_max_node();
2645   return max_node > 0 ? max_node + 1 : 1;
2646 }
2647 
2648 int os::numa_get_group_id() {
2649   int cpu_id = Linux::sched_getcpu();
2650   if (cpu_id != -1) {
2651     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2652     if (lgrp_id != -1) {
2653       return lgrp_id;
2654     }
2655   }
2656   return 0;
2657 }
2658 
2659 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2660   for (size_t i = 0; i < size; i++) {
2661     ids[i] = i;
2662   }
2663   return size;
2664 }
2665 
2666 bool os::get_page_info(char *start, page_info* info) {
2667   return false;
2668 }
2669 
2670 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2671                      page_info* page_found) {
2672   return end;
2673 }
2674 
2675 
2676 int os::Linux::sched_getcpu_syscall(void) {
2677   unsigned int cpu;
2678   int retval = -1;
2679 
2680 #if defined(IA32)
2681   #ifndef SYS_getcpu
2682     #define SYS_getcpu 318
2683   #endif
2684   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2685 #elif defined(AMD64)
2686 // Unfortunately we have to bring all these macros here from vsyscall.h
2687 // to be able to compile on old linuxes.
2688   #define __NR_vgetcpu 2
2689   #define VSYSCALL_START (-10UL << 20)
2690   #define VSYSCALL_SIZE 1024
2691   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2692   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2693   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2694   retval = vgetcpu(&cpu, NULL, NULL);
2695 #endif
2696 
2697   return (retval == -1) ? retval : cpu;
2698 }
2699 
2700 // Something to do with the numa-aware allocator needs these symbols
2701 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2702 extern "C" JNIEXPORT void numa_error(char *where) { }
2703 extern "C" JNIEXPORT int fork1() { return fork(); }
2704 
2705 
2706 // If we are running with libnuma version > 2, then we should
2707 // be trying to use symbols with versions 1.1
2708 // If we are running with earlier version, which did not have symbol versions,
2709 // we should use the base version.
2710 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2711   void *f = dlvsym(handle, name, "libnuma_1.1");
2712   if (f == NULL) {
2713     f = dlsym(handle, name);
2714   }
2715   return f;
2716 }
2717 
2718 bool os::Linux::libnuma_init() {
2719   // sched_getcpu() should be in libc.
2720   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2721                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2722 
2723   // If it's not, try a direct syscall.
2724   if (sched_getcpu() == -1) {
2725     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2726                                     (void*)&sched_getcpu_syscall));
2727   }
2728 
2729   if (sched_getcpu() != -1) { // Does it work?
2730     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2731     if (handle != NULL) {
2732       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2733                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2734       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2735                                        libnuma_dlsym(handle, "numa_max_node")));
2736       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2737                                         libnuma_dlsym(handle, "numa_available")));
2738       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2739                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2740       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2741                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2742       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2743                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2744 
2745 
2746       if (numa_available() != -1) {
2747         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2748         // Create a cpu -> node mapping
2749         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2750         rebuild_cpu_to_node_map();
2751         return true;
2752       }
2753     }
2754   }
2755   return false;
2756 }
2757 
2758 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2759 // The table is later used in get_node_by_cpu().
2760 void os::Linux::rebuild_cpu_to_node_map() {
2761   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2762                               // in libnuma (possible values are starting from 16,
2763                               // and continuing up with every other power of 2, but less
2764                               // than the maximum number of CPUs supported by kernel), and
2765                               // is a subject to change (in libnuma version 2 the requirements
2766                               // are more reasonable) we'll just hardcode the number they use
2767                               // in the library.
2768   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2769 
2770   size_t cpu_num = os::active_processor_count();
2771   size_t cpu_map_size = NCPUS / BitsPerCLong;
2772   size_t cpu_map_valid_size =
2773     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2774 
2775   cpu_to_node()->clear();
2776   cpu_to_node()->at_grow(cpu_num - 1);
2777   size_t node_num = numa_get_groups_num();
2778 
2779   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2780   for (size_t i = 0; i < node_num; i++) {
2781     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2782       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2783         if (cpu_map[j] != 0) {
2784           for (size_t k = 0; k < BitsPerCLong; k++) {
2785             if (cpu_map[j] & (1UL << k)) {
2786               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2787             }
2788           }
2789         }
2790       }
2791     }
2792   }
2793   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2794 }
2795 
2796 int os::Linux::get_node_by_cpu(int cpu_id) {
2797   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2798     return cpu_to_node()->at(cpu_id);
2799   }
2800   return -1;
2801 }
2802 
2803 GrowableArray<int>* os::Linux::_cpu_to_node;
2804 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2805 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2806 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2807 os::Linux::numa_available_func_t os::Linux::_numa_available;
2808 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2809 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2810 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2811 unsigned long* os::Linux::_numa_all_nodes;
2812 
2813 bool os::pd_uncommit_memory(char* addr, size_t size) {
2814   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2815                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2816   return res  != (uintptr_t) MAP_FAILED;
2817 }
2818 
2819 static address get_stack_commited_bottom(address bottom, size_t size) {
2820   address nbot = bottom;
2821   address ntop = bottom + size;
2822 
2823   size_t page_sz = os::vm_page_size();
2824   unsigned pages = size / page_sz;
2825 
2826   unsigned char vec[1];
2827   unsigned imin = 1, imax = pages + 1, imid;
2828   int mincore_return_value = 0;
2829 
2830   assert(imin <= imax, "Unexpected page size");
2831 
2832   while (imin < imax) {
2833     imid = (imax + imin) / 2;
2834     nbot = ntop - (imid * page_sz);
2835 
2836     // Use a trick with mincore to check whether the page is mapped or not.
2837     // mincore sets vec to 1 if page resides in memory and to 0 if page
2838     // is swapped output but if page we are asking for is unmapped
2839     // it returns -1,ENOMEM
2840     mincore_return_value = mincore(nbot, page_sz, vec);
2841 
2842     if (mincore_return_value == -1) {
2843       // Page is not mapped go up
2844       // to find first mapped page
2845       if (errno != EAGAIN) {
2846         assert(errno == ENOMEM, "Unexpected mincore errno");
2847         imax = imid;
2848       }
2849     } else {
2850       // Page is mapped go down
2851       // to find first not mapped page
2852       imin = imid + 1;
2853     }
2854   }
2855 
2856   nbot = nbot + page_sz;
2857 
2858   // Adjust stack bottom one page up if last checked page is not mapped
2859   if (mincore_return_value == -1) {
2860     nbot = nbot + page_sz;
2861   }
2862 
2863   return nbot;
2864 }
2865 
2866 
2867 // Linux uses a growable mapping for the stack, and if the mapping for
2868 // the stack guard pages is not removed when we detach a thread the
2869 // stack cannot grow beyond the pages where the stack guard was
2870 // mapped.  If at some point later in the process the stack expands to
2871 // that point, the Linux kernel cannot expand the stack any further
2872 // because the guard pages are in the way, and a segfault occurs.
2873 //
2874 // However, it's essential not to split the stack region by unmapping
2875 // a region (leaving a hole) that's already part of the stack mapping,
2876 // so if the stack mapping has already grown beyond the guard pages at
2877 // the time we create them, we have to truncate the stack mapping.
2878 // So, we need to know the extent of the stack mapping when
2879 // create_stack_guard_pages() is called.
2880 
2881 // We only need this for stacks that are growable: at the time of
2882 // writing thread stacks don't use growable mappings (i.e. those
2883 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2884 // only applies to the main thread.
2885 
2886 // If the (growable) stack mapping already extends beyond the point
2887 // where we're going to put our guard pages, truncate the mapping at
2888 // that point by munmap()ping it.  This ensures that when we later
2889 // munmap() the guard pages we don't leave a hole in the stack
2890 // mapping. This only affects the main/initial thread
2891 
2892 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2893   if (os::Linux::is_initial_thread()) {
2894     // As we manually grow stack up to bottom inside create_attached_thread(),
2895     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2896     // we don't need to do anything special.
2897     // Check it first, before calling heavy function.
2898     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2899     unsigned char vec[1];
2900 
2901     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2902       // Fallback to slow path on all errors, including EAGAIN
2903       stack_extent = (uintptr_t) get_stack_commited_bottom(
2904                                                            os::Linux::initial_thread_stack_bottom(),
2905                                                            (size_t)addr - stack_extent);
2906     }
2907 
2908     if (stack_extent < (uintptr_t)addr) {
2909       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2910     }
2911   }
2912 
2913   return os::commit_memory(addr, size, !ExecMem);
2914 }
2915 
2916 // If this is a growable mapping, remove the guard pages entirely by
2917 // munmap()ping them.  If not, just call uncommit_memory(). This only
2918 // affects the main/initial thread, but guard against future OS changes
2919 // It's safe to always unmap guard pages for initial thread because we
2920 // always place it right after end of the mapped region
2921 
2922 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2923   uintptr_t stack_extent, stack_base;
2924 
2925   if (os::Linux::is_initial_thread()) {
2926     return ::munmap(addr, size) == 0;
2927   }
2928 
2929   return os::uncommit_memory(addr, size);
2930 }
2931 
2932 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2933 // at 'requested_addr'. If there are existing memory mappings at the same
2934 // location, however, they will be overwritten. If 'fixed' is false,
2935 // 'requested_addr' is only treated as a hint, the return value may or
2936 // may not start from the requested address. Unlike Linux mmap(), this
2937 // function returns NULL to indicate failure.
2938 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2939   char * addr;
2940   int flags;
2941 
2942   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2943   if (fixed) {
2944     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2945     flags |= MAP_FIXED;
2946   }
2947 
2948   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2949   // touch an uncommitted page. Otherwise, the read/write might
2950   // succeed if we have enough swap space to back the physical page.
2951   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2952                        flags, -1, 0);
2953 
2954   return addr == MAP_FAILED ? NULL : addr;
2955 }
2956 
2957 static int anon_munmap(char * addr, size_t size) {
2958   return ::munmap(addr, size) == 0;
2959 }
2960 
2961 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2962                             size_t alignment_hint) {
2963   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2964 }
2965 
2966 bool os::pd_release_memory(char* addr, size_t size) {
2967   return anon_munmap(addr, size);
2968 }
2969 
2970 static bool linux_mprotect(char* addr, size_t size, int prot) {
2971   // Linux wants the mprotect address argument to be page aligned.
2972   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2973 
2974   // According to SUSv3, mprotect() should only be used with mappings
2975   // established by mmap(), and mmap() always maps whole pages. Unaligned
2976   // 'addr' likely indicates problem in the VM (e.g. trying to change
2977   // protection of malloc'ed or statically allocated memory). Check the
2978   // caller if you hit this assert.
2979   assert(addr == bottom, "sanity check");
2980 
2981   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2982   return ::mprotect(bottom, size, prot) == 0;
2983 }
2984 
2985 // Set protections specified
2986 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2987                         bool is_committed) {
2988   unsigned int p = 0;
2989   switch (prot) {
2990   case MEM_PROT_NONE: p = PROT_NONE; break;
2991   case MEM_PROT_READ: p = PROT_READ; break;
2992   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2993   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2994   default:
2995     ShouldNotReachHere();
2996   }
2997   // is_committed is unused.
2998   return linux_mprotect(addr, bytes, p);
2999 }
3000 
3001 bool os::guard_memory(char* addr, size_t size) {
3002   return linux_mprotect(addr, size, PROT_NONE);
3003 }
3004 
3005 bool os::unguard_memory(char* addr, size_t size) {
3006   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3007 }
3008 
3009 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3010                                                     size_t page_size) {
3011   bool result = false;
3012   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3013                  MAP_ANONYMOUS|MAP_PRIVATE,
3014                  -1, 0);
3015   if (p != MAP_FAILED) {
3016     void *aligned_p = align_ptr_up(p, page_size);
3017 
3018     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3019 
3020     munmap(p, page_size * 2);
3021   }
3022 
3023   if (warn && !result) {
3024     warning("TransparentHugePages is not supported by the operating system.");
3025   }
3026 
3027   return result;
3028 }
3029 
3030 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3031   bool result = false;
3032   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3033                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3034                  -1, 0);
3035 
3036   if (p != MAP_FAILED) {
3037     // We don't know if this really is a huge page or not.
3038     FILE *fp = fopen("/proc/self/maps", "r");
3039     if (fp) {
3040       while (!feof(fp)) {
3041         char chars[257];
3042         long x = 0;
3043         if (fgets(chars, sizeof(chars), fp)) {
3044           if (sscanf(chars, "%lx-%*x", &x) == 1
3045               && x == (long)p) {
3046             if (strstr (chars, "hugepage")) {
3047               result = true;
3048               break;
3049             }
3050           }
3051         }
3052       }
3053       fclose(fp);
3054     }
3055     munmap(p, page_size);
3056   }
3057 
3058   if (warn && !result) {
3059     warning("HugeTLBFS is not supported by the operating system.");
3060   }
3061 
3062   return result;
3063 }
3064 
3065 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3066 //
3067 // From the coredump_filter documentation:
3068 //
3069 // - (bit 0) anonymous private memory
3070 // - (bit 1) anonymous shared memory
3071 // - (bit 2) file-backed private memory
3072 // - (bit 3) file-backed shared memory
3073 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3074 //           effective only if the bit 2 is cleared)
3075 // - (bit 5) hugetlb private memory
3076 // - (bit 6) hugetlb shared memory
3077 //
3078 static void set_coredump_filter(void) {
3079   FILE *f;
3080   long cdm;
3081 
3082   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3083     return;
3084   }
3085 
3086   if (fscanf(f, "%lx", &cdm) != 1) {
3087     fclose(f);
3088     return;
3089   }
3090 
3091   rewind(f);
3092 
3093   if ((cdm & LARGEPAGES_BIT) == 0) {
3094     cdm |= LARGEPAGES_BIT;
3095     fprintf(f, "%#lx", cdm);
3096   }
3097 
3098   fclose(f);
3099 }
3100 
3101 // Large page support
3102 
3103 static size_t _large_page_size = 0;
3104 
3105 size_t os::Linux::find_large_page_size() {
3106   size_t large_page_size = 0;
3107 
3108   // large_page_size on Linux is used to round up heap size. x86 uses either
3109   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3110   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3111   // page as large as 256M.
3112   //
3113   // Here we try to figure out page size by parsing /proc/meminfo and looking
3114   // for a line with the following format:
3115   //    Hugepagesize:     2048 kB
3116   //
3117   // If we can't determine the value (e.g. /proc is not mounted, or the text
3118   // format has been changed), we'll use the largest page size supported by
3119   // the processor.
3120 
3121 #ifndef ZERO
3122   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3123                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3124 #endif // ZERO
3125 
3126   FILE *fp = fopen("/proc/meminfo", "r");
3127   if (fp) {
3128     while (!feof(fp)) {
3129       int x = 0;
3130       char buf[16];
3131       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3132         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3133           large_page_size = x * K;
3134           break;
3135         }
3136       } else {
3137         // skip to next line
3138         for (;;) {
3139           int ch = fgetc(fp);
3140           if (ch == EOF || ch == (int)'\n') break;
3141         }
3142       }
3143     }
3144     fclose(fp);
3145   }
3146 
3147   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3148     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3149             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3150             proper_unit_for_byte_size(large_page_size));
3151   }
3152 
3153   return large_page_size;
3154 }
3155 
3156 size_t os::Linux::setup_large_page_size() {
3157   _large_page_size = Linux::find_large_page_size();
3158   const size_t default_page_size = (size_t)Linux::page_size();
3159   if (_large_page_size > default_page_size) {
3160     _page_sizes[0] = _large_page_size;
3161     _page_sizes[1] = default_page_size;
3162     _page_sizes[2] = 0;
3163   }
3164 
3165   return _large_page_size;
3166 }
3167 
3168 bool os::Linux::setup_large_page_type(size_t page_size) {
3169   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3170       FLAG_IS_DEFAULT(UseSHM) &&
3171       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3172 
3173     // The type of large pages has not been specified by the user.
3174 
3175     // Try UseHugeTLBFS and then UseSHM.
3176     UseHugeTLBFS = UseSHM = true;
3177 
3178     // Don't try UseTransparentHugePages since there are known
3179     // performance issues with it turned on. This might change in the future.
3180     UseTransparentHugePages = false;
3181   }
3182 
3183   if (UseTransparentHugePages) {
3184     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3185     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3186       UseHugeTLBFS = false;
3187       UseSHM = false;
3188       return true;
3189     }
3190     UseTransparentHugePages = false;
3191   }
3192 
3193   if (UseHugeTLBFS) {
3194     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3195     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3196       UseSHM = false;
3197       return true;
3198     }
3199     UseHugeTLBFS = false;
3200   }
3201 
3202   return UseSHM;
3203 }
3204 
3205 void os::large_page_init() {
3206   if (!UseLargePages &&
3207       !UseTransparentHugePages &&
3208       !UseHugeTLBFS &&
3209       !UseSHM) {
3210     // Not using large pages.
3211     return;
3212   }
3213 
3214   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3215     // The user explicitly turned off large pages.
3216     // Ignore the rest of the large pages flags.
3217     UseTransparentHugePages = false;
3218     UseHugeTLBFS = false;
3219     UseSHM = false;
3220     return;
3221   }
3222 
3223   size_t large_page_size = Linux::setup_large_page_size();
3224   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3225 
3226   set_coredump_filter();
3227 }
3228 
3229 #ifndef SHM_HUGETLB
3230   #define SHM_HUGETLB 04000
3231 #endif
3232 
3233 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3234                                             char* req_addr, bool exec) {
3235   // "exec" is passed in but not used.  Creating the shared image for
3236   // the code cache doesn't have an SHM_X executable permission to check.
3237   assert(UseLargePages && UseSHM, "only for SHM large pages");
3238   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3239 
3240   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3241     return NULL; // Fallback to small pages.
3242   }
3243 
3244   key_t key = IPC_PRIVATE;
3245   char *addr;
3246 
3247   bool warn_on_failure = UseLargePages &&
3248                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3249                          !FLAG_IS_DEFAULT(UseSHM) ||
3250                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3251   char msg[128];
3252 
3253   // Create a large shared memory region to attach to based on size.
3254   // Currently, size is the total size of the heap
3255   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3256   if (shmid == -1) {
3257     // Possible reasons for shmget failure:
3258     // 1. shmmax is too small for Java heap.
3259     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3260     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3261     // 2. not enough large page memory.
3262     //    > check available large pages: cat /proc/meminfo
3263     //    > increase amount of large pages:
3264     //          echo new_value > /proc/sys/vm/nr_hugepages
3265     //      Note 1: different Linux may use different name for this property,
3266     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3267     //      Note 2: it's possible there's enough physical memory available but
3268     //            they are so fragmented after a long run that they can't
3269     //            coalesce into large pages. Try to reserve large pages when
3270     //            the system is still "fresh".
3271     if (warn_on_failure) {
3272       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3273       warning("%s", msg);
3274     }
3275     return NULL;
3276   }
3277 
3278   // attach to the region
3279   addr = (char*)shmat(shmid, req_addr, 0);
3280   int err = errno;
3281 
3282   // Remove shmid. If shmat() is successful, the actual shared memory segment
3283   // will be deleted when it's detached by shmdt() or when the process
3284   // terminates. If shmat() is not successful this will remove the shared
3285   // segment immediately.
3286   shmctl(shmid, IPC_RMID, NULL);
3287 
3288   if ((intptr_t)addr == -1) {
3289     if (warn_on_failure) {
3290       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3291       warning("%s", msg);
3292     }
3293     return NULL;
3294   }
3295 
3296   return addr;
3297 }
3298 
3299 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3300                                         int error) {
3301   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3302 
3303   bool warn_on_failure = UseLargePages &&
3304       (!FLAG_IS_DEFAULT(UseLargePages) ||
3305        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3306        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3307 
3308   if (warn_on_failure) {
3309     char msg[128];
3310     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3311                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3312     warning("%s", msg);
3313   }
3314 }
3315 
3316 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3317                                                         char* req_addr,
3318                                                         bool exec) {
3319   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3320   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3321   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3322 
3323   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3324   char* addr = (char*)::mmap(req_addr, bytes, prot,
3325                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3326                              -1, 0);
3327 
3328   if (addr == MAP_FAILED) {
3329     warn_on_large_pages_failure(req_addr, bytes, errno);
3330     return NULL;
3331   }
3332 
3333   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3334 
3335   return addr;
3336 }
3337 
3338 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3339 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3340 //   (req_addr != NULL) or with a given alignment.
3341 //  - bytes shall be a multiple of alignment.
3342 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3343 //  - alignment sets the alignment at which memory shall be allocated.
3344 //     It must be a multiple of allocation granularity.
3345 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3346 //  req_addr or NULL.
3347 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3348 
3349   size_t extra_size = bytes;
3350   if (req_addr == NULL && alignment > 0) {
3351     extra_size += alignment;
3352   }
3353 
3354   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3355     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3356     -1, 0);
3357   if (start == MAP_FAILED) {
3358     start = NULL;
3359   } else {
3360     if (req_addr != NULL) {
3361       if (start != req_addr) {
3362         ::munmap(start, extra_size);
3363         start = NULL;
3364       }
3365     } else {
3366       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3367       char* const end_aligned = start_aligned + bytes;
3368       char* const end = start + extra_size;
3369       if (start_aligned > start) {
3370         ::munmap(start, start_aligned - start);
3371       }
3372       if (end_aligned < end) {
3373         ::munmap(end_aligned, end - end_aligned);
3374       }
3375       start = start_aligned;
3376     }
3377   }
3378   return start;
3379 
3380 }
3381 
3382 // Reserve memory using mmap(MAP_HUGETLB).
3383 //  - bytes shall be a multiple of alignment.
3384 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3385 //  - alignment sets the alignment at which memory shall be allocated.
3386 //     It must be a multiple of allocation granularity.
3387 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3388 //  req_addr or NULL.
3389 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3390                                                          size_t alignment,
3391                                                          char* req_addr,
3392                                                          bool exec) {
3393   size_t large_page_size = os::large_page_size();
3394   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3395 
3396   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3397   assert(is_size_aligned(bytes, alignment), "Must be");
3398 
3399   // First reserve - but not commit - the address range in small pages.
3400   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3401 
3402   if (start == NULL) {
3403     return NULL;
3404   }
3405 
3406   assert(is_ptr_aligned(start, alignment), "Must be");
3407 
3408   char* end = start + bytes;
3409 
3410   // Find the regions of the allocated chunk that can be promoted to large pages.
3411   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3412   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3413 
3414   size_t lp_bytes = lp_end - lp_start;
3415 
3416   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3417 
3418   if (lp_bytes == 0) {
3419     // The mapped region doesn't even span the start and the end of a large page.
3420     // Fall back to allocate a non-special area.
3421     ::munmap(start, end - start);
3422     return NULL;
3423   }
3424 
3425   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3426 
3427   void* result;
3428 
3429   // Commit small-paged leading area.
3430   if (start != lp_start) {
3431     result = ::mmap(start, lp_start - start, prot,
3432                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3433                     -1, 0);
3434     if (result == MAP_FAILED) {
3435       ::munmap(lp_start, end - lp_start);
3436       return NULL;
3437     }
3438   }
3439 
3440   // Commit large-paged area.
3441   result = ::mmap(lp_start, lp_bytes, prot,
3442                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3443                   -1, 0);
3444   if (result == MAP_FAILED) {
3445     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3446     // If the mmap above fails, the large pages region will be unmapped and we
3447     // have regions before and after with small pages. Release these regions.
3448     //
3449     // |  mapped  |  unmapped  |  mapped  |
3450     // ^          ^            ^          ^
3451     // start      lp_start     lp_end     end
3452     //
3453     ::munmap(start, lp_start - start);
3454     ::munmap(lp_end, end - lp_end);
3455     return NULL;
3456   }
3457 
3458   // Commit small-paged trailing area.
3459   if (lp_end != end) {
3460     result = ::mmap(lp_end, end - lp_end, prot,
3461                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3462                     -1, 0);
3463     if (result == MAP_FAILED) {
3464       ::munmap(start, lp_end - start);
3465       return NULL;
3466     }
3467   }
3468 
3469   return start;
3470 }
3471 
3472 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3473                                                    size_t alignment,
3474                                                    char* req_addr,
3475                                                    bool exec) {
3476   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3477   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3478   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3479   assert(is_power_of_2(os::large_page_size()), "Must be");
3480   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3481 
3482   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3483     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3484   } else {
3485     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3486   }
3487 }
3488 
3489 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3490                                  char* req_addr, bool exec) {
3491   assert(UseLargePages, "only for large pages");
3492 
3493   char* addr;
3494   if (UseSHM) {
3495     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3496   } else {
3497     assert(UseHugeTLBFS, "must be");
3498     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3499   }
3500 
3501   if (addr != NULL) {
3502     if (UseNUMAInterleaving) {
3503       numa_make_global(addr, bytes);
3504     }
3505 
3506     // The memory is committed
3507     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3508   }
3509 
3510   return addr;
3511 }
3512 
3513 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3514   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3515   return shmdt(base) == 0;
3516 }
3517 
3518 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3519   return pd_release_memory(base, bytes);
3520 }
3521 
3522 bool os::release_memory_special(char* base, size_t bytes) {
3523   bool res;
3524   if (MemTracker::tracking_level() > NMT_minimal) {
3525     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3526     res = os::Linux::release_memory_special_impl(base, bytes);
3527     if (res) {
3528       tkr.record((address)base, bytes);
3529     }
3530 
3531   } else {
3532     res = os::Linux::release_memory_special_impl(base, bytes);
3533   }
3534   return res;
3535 }
3536 
3537 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3538   assert(UseLargePages, "only for large pages");
3539   bool res;
3540 
3541   if (UseSHM) {
3542     res = os::Linux::release_memory_special_shm(base, bytes);
3543   } else {
3544     assert(UseHugeTLBFS, "must be");
3545     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3546   }
3547   return res;
3548 }
3549 
3550 size_t os::large_page_size() {
3551   return _large_page_size;
3552 }
3553 
3554 // With SysV SHM the entire memory region must be allocated as shared
3555 // memory.
3556 // HugeTLBFS allows application to commit large page memory on demand.
3557 // However, when committing memory with HugeTLBFS fails, the region
3558 // that was supposed to be committed will lose the old reservation
3559 // and allow other threads to steal that memory region. Because of this
3560 // behavior we can't commit HugeTLBFS memory.
3561 bool os::can_commit_large_page_memory() {
3562   return UseTransparentHugePages;
3563 }
3564 
3565 bool os::can_execute_large_page_memory() {
3566   return UseTransparentHugePages || UseHugeTLBFS;
3567 }
3568 
3569 // Reserve memory at an arbitrary address, only if that area is
3570 // available (and not reserved for something else).
3571 
3572 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3573   const int max_tries = 10;
3574   char* base[max_tries];
3575   size_t size[max_tries];
3576   const size_t gap = 0x000000;
3577 
3578   // Assert only that the size is a multiple of the page size, since
3579   // that's all that mmap requires, and since that's all we really know
3580   // about at this low abstraction level.  If we need higher alignment,
3581   // we can either pass an alignment to this method or verify alignment
3582   // in one of the methods further up the call chain.  See bug 5044738.
3583   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3584 
3585   // Repeatedly allocate blocks until the block is allocated at the
3586   // right spot.
3587 
3588   // Linux mmap allows caller to pass an address as hint; give it a try first,
3589   // if kernel honors the hint then we can return immediately.
3590   char * addr = anon_mmap(requested_addr, bytes, false);
3591   if (addr == requested_addr) {
3592     return requested_addr;
3593   }
3594 
3595   if (addr != NULL) {
3596     // mmap() is successful but it fails to reserve at the requested address
3597     anon_munmap(addr, bytes);
3598   }
3599 
3600   int i;
3601   for (i = 0; i < max_tries; ++i) {
3602     base[i] = reserve_memory(bytes);
3603 
3604     if (base[i] != NULL) {
3605       // Is this the block we wanted?
3606       if (base[i] == requested_addr) {
3607         size[i] = bytes;
3608         break;
3609       }
3610 
3611       // Does this overlap the block we wanted? Give back the overlapped
3612       // parts and try again.
3613 
3614       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3615       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3616         unmap_memory(base[i], top_overlap);
3617         base[i] += top_overlap;
3618         size[i] = bytes - top_overlap;
3619       } else {
3620         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3621         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3622           unmap_memory(requested_addr, bottom_overlap);
3623           size[i] = bytes - bottom_overlap;
3624         } else {
3625           size[i] = bytes;
3626         }
3627       }
3628     }
3629   }
3630 
3631   // Give back the unused reserved pieces.
3632 
3633   for (int j = 0; j < i; ++j) {
3634     if (base[j] != NULL) {
3635       unmap_memory(base[j], size[j]);
3636     }
3637   }
3638 
3639   if (i < max_tries) {
3640     return requested_addr;
3641   } else {
3642     return NULL;
3643   }
3644 }
3645 
3646 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3647   return ::read(fd, buf, nBytes);
3648 }
3649 
3650 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3651   return ::pread(fd, buf, nBytes, offset);
3652 }
3653 
3654 // Short sleep, direct OS call.
3655 //
3656 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3657 // sched_yield(2) will actually give up the CPU:
3658 //
3659 //   * Alone on this pariticular CPU, keeps running.
3660 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3661 //     (pre 2.6.39).
3662 //
3663 // So calling this with 0 is an alternative.
3664 //
3665 void os::naked_short_sleep(jlong ms) {
3666   struct timespec req;
3667 
3668   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3669   req.tv_sec = 0;
3670   if (ms > 0) {
3671     req.tv_nsec = (ms % 1000) * 1000000;
3672   } else {
3673     req.tv_nsec = 1;
3674   }
3675 
3676   nanosleep(&req, NULL);
3677 
3678   return;
3679 }
3680 
3681 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3682 void os::infinite_sleep() {
3683   while (true) {    // sleep forever ...
3684     ::sleep(100);   // ... 100 seconds at a time
3685   }
3686 }
3687 
3688 // Used to convert frequent JVM_Yield() to nops
3689 bool os::dont_yield() {
3690   return DontYieldALot;
3691 }
3692 
3693 void os::naked_yield() {
3694   sched_yield();
3695 }
3696 
3697 ////////////////////////////////////////////////////////////////////////////////
3698 // thread priority support
3699 
3700 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3701 // only supports dynamic priority, static priority must be zero. For real-time
3702 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3703 // However, for large multi-threaded applications, SCHED_RR is not only slower
3704 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3705 // of 5 runs - Sep 2005).
3706 //
3707 // The following code actually changes the niceness of kernel-thread/LWP. It
3708 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3709 // not the entire user process, and user level threads are 1:1 mapped to kernel
3710 // threads. It has always been the case, but could change in the future. For
3711 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3712 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3713 
3714 int os::java_to_os_priority[CriticalPriority + 1] = {
3715   19,              // 0 Entry should never be used
3716 
3717    4,              // 1 MinPriority
3718    3,              // 2
3719    2,              // 3
3720 
3721    1,              // 4
3722    0,              // 5 NormPriority
3723   -1,              // 6
3724 
3725   -2,              // 7
3726   -3,              // 8
3727   -4,              // 9 NearMaxPriority
3728 
3729   -5,              // 10 MaxPriority
3730 
3731   -5               // 11 CriticalPriority
3732 };
3733 
3734 static int prio_init() {
3735   if (ThreadPriorityPolicy == 1) {
3736     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3737     // if effective uid is not root. Perhaps, a more elegant way of doing
3738     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3739     if (geteuid() != 0) {
3740       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3741         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3742       }
3743       ThreadPriorityPolicy = 0;
3744     }
3745   }
3746   if (UseCriticalJavaThreadPriority) {
3747     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3748   }
3749   return 0;
3750 }
3751 
3752 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3753   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3754 
3755   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3756   return (ret == 0) ? OS_OK : OS_ERR;
3757 }
3758 
3759 OSReturn os::get_native_priority(const Thread* const thread,
3760                                  int *priority_ptr) {
3761   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3762     *priority_ptr = java_to_os_priority[NormPriority];
3763     return OS_OK;
3764   }
3765 
3766   errno = 0;
3767   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3768   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3769 }
3770 
3771 // Hint to the underlying OS that a task switch would not be good.
3772 // Void return because it's a hint and can fail.
3773 void os::hint_no_preempt() {}
3774 
3775 ////////////////////////////////////////////////////////////////////////////////
3776 // suspend/resume support
3777 
3778 //  the low-level signal-based suspend/resume support is a remnant from the
3779 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3780 //  within hotspot. Now there is a single use-case for this:
3781 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3782 //      that runs in the watcher thread.
3783 //  The remaining code is greatly simplified from the more general suspension
3784 //  code that used to be used.
3785 //
3786 //  The protocol is quite simple:
3787 //  - suspend:
3788 //      - sends a signal to the target thread
3789 //      - polls the suspend state of the osthread using a yield loop
3790 //      - target thread signal handler (SR_handler) sets suspend state
3791 //        and blocks in sigsuspend until continued
3792 //  - resume:
3793 //      - sets target osthread state to continue
3794 //      - sends signal to end the sigsuspend loop in the SR_handler
3795 //
3796 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3797 
3798 static void resume_clear_context(OSThread *osthread) {
3799   osthread->set_ucontext(NULL);
3800   osthread->set_siginfo(NULL);
3801 }
3802 
3803 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3804                                  ucontext_t* context) {
3805   osthread->set_ucontext(context);
3806   osthread->set_siginfo(siginfo);
3807 }
3808 
3809 // Handler function invoked when a thread's execution is suspended or
3810 // resumed. We have to be careful that only async-safe functions are
3811 // called here (Note: most pthread functions are not async safe and
3812 // should be avoided.)
3813 //
3814 // Note: sigwait() is a more natural fit than sigsuspend() from an
3815 // interface point of view, but sigwait() prevents the signal hander
3816 // from being run. libpthread would get very confused by not having
3817 // its signal handlers run and prevents sigwait()'s use with the
3818 // mutex granting granting signal.
3819 //
3820 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3821 //
3822 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3823   // Save and restore errno to avoid confusing native code with EINTR
3824   // after sigsuspend.
3825   int old_errno = errno;
3826 
3827   Thread* thread = Thread::current();
3828   OSThread* osthread = thread->osthread();
3829   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3830 
3831   os::SuspendResume::State current = osthread->sr.state();
3832   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3833     suspend_save_context(osthread, siginfo, context);
3834 
3835     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3836     os::SuspendResume::State state = osthread->sr.suspended();
3837     if (state == os::SuspendResume::SR_SUSPENDED) {
3838       sigset_t suspend_set;  // signals for sigsuspend()
3839 
3840       // get current set of blocked signals and unblock resume signal
3841       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3842       sigdelset(&suspend_set, SR_signum);
3843 
3844       sr_semaphore.signal();
3845       // wait here until we are resumed
3846       while (1) {
3847         sigsuspend(&suspend_set);
3848 
3849         os::SuspendResume::State result = osthread->sr.running();
3850         if (result == os::SuspendResume::SR_RUNNING) {
3851           sr_semaphore.signal();
3852           break;
3853         }
3854       }
3855 
3856     } else if (state == os::SuspendResume::SR_RUNNING) {
3857       // request was cancelled, continue
3858     } else {
3859       ShouldNotReachHere();
3860     }
3861 
3862     resume_clear_context(osthread);
3863   } else if (current == os::SuspendResume::SR_RUNNING) {
3864     // request was cancelled, continue
3865   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3866     // ignore
3867   } else {
3868     // ignore
3869   }
3870 
3871   errno = old_errno;
3872 }
3873 
3874 
3875 static int SR_initialize() {
3876   struct sigaction act;
3877   char *s;
3878   // Get signal number to use for suspend/resume
3879   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3880     int sig = ::strtol(s, 0, 10);
3881     if (sig > 0 || sig < _NSIG) {
3882       SR_signum = sig;
3883     }
3884   }
3885 
3886   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3887          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3888 
3889   sigemptyset(&SR_sigset);
3890   sigaddset(&SR_sigset, SR_signum);
3891 
3892   // Set up signal handler for suspend/resume
3893   act.sa_flags = SA_RESTART|SA_SIGINFO;
3894   act.sa_handler = (void (*)(int)) SR_handler;
3895 
3896   // SR_signum is blocked by default.
3897   // 4528190 - We also need to block pthread restart signal (32 on all
3898   // supported Linux platforms). Note that LinuxThreads need to block
3899   // this signal for all threads to work properly. So we don't have
3900   // to use hard-coded signal number when setting up the mask.
3901   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3902 
3903   if (sigaction(SR_signum, &act, 0) == -1) {
3904     return -1;
3905   }
3906 
3907   // Save signal flag
3908   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3909   return 0;
3910 }
3911 
3912 static int sr_notify(OSThread* osthread) {
3913   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3914   assert_status(status == 0, status, "pthread_kill");
3915   return status;
3916 }
3917 
3918 // "Randomly" selected value for how long we want to spin
3919 // before bailing out on suspending a thread, also how often
3920 // we send a signal to a thread we want to resume
3921 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3922 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3923 
3924 // returns true on success and false on error - really an error is fatal
3925 // but this seems the normal response to library errors
3926 static bool do_suspend(OSThread* osthread) {
3927   assert(osthread->sr.is_running(), "thread should be running");
3928   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3929 
3930   // mark as suspended and send signal
3931   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3932     // failed to switch, state wasn't running?
3933     ShouldNotReachHere();
3934     return false;
3935   }
3936 
3937   if (sr_notify(osthread) != 0) {
3938     ShouldNotReachHere();
3939   }
3940 
3941   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3942   while (true) {
3943     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3944       break;
3945     } else {
3946       // timeout
3947       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3948       if (cancelled == os::SuspendResume::SR_RUNNING) {
3949         return false;
3950       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3951         // make sure that we consume the signal on the semaphore as well
3952         sr_semaphore.wait();
3953         break;
3954       } else {
3955         ShouldNotReachHere();
3956         return false;
3957       }
3958     }
3959   }
3960 
3961   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3962   return true;
3963 }
3964 
3965 static void do_resume(OSThread* osthread) {
3966   assert(osthread->sr.is_suspended(), "thread should be suspended");
3967   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3968 
3969   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3970     // failed to switch to WAKEUP_REQUEST
3971     ShouldNotReachHere();
3972     return;
3973   }
3974 
3975   while (true) {
3976     if (sr_notify(osthread) == 0) {
3977       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3978         if (osthread->sr.is_running()) {
3979           return;
3980         }
3981       }
3982     } else {
3983       ShouldNotReachHere();
3984     }
3985   }
3986 
3987   guarantee(osthread->sr.is_running(), "Must be running!");
3988 }
3989 
3990 ///////////////////////////////////////////////////////////////////////////////////
3991 // signal handling (except suspend/resume)
3992 
3993 // This routine may be used by user applications as a "hook" to catch signals.
3994 // The user-defined signal handler must pass unrecognized signals to this
3995 // routine, and if it returns true (non-zero), then the signal handler must
3996 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3997 // routine will never retun false (zero), but instead will execute a VM panic
3998 // routine kill the process.
3999 //
4000 // If this routine returns false, it is OK to call it again.  This allows
4001 // the user-defined signal handler to perform checks either before or after
4002 // the VM performs its own checks.  Naturally, the user code would be making
4003 // a serious error if it tried to handle an exception (such as a null check
4004 // or breakpoint) that the VM was generating for its own correct operation.
4005 //
4006 // This routine may recognize any of the following kinds of signals:
4007 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4008 // It should be consulted by handlers for any of those signals.
4009 //
4010 // The caller of this routine must pass in the three arguments supplied
4011 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4012 // field of the structure passed to sigaction().  This routine assumes that
4013 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4014 //
4015 // Note that the VM will print warnings if it detects conflicting signal
4016 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4017 //
4018 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4019                                                  siginfo_t* siginfo,
4020                                                  void* ucontext,
4021                                                  int abort_if_unrecognized);
4022 
4023 void signalHandler(int sig, siginfo_t* info, void* uc) {
4024   assert(info != NULL && uc != NULL, "it must be old kernel");
4025   int orig_errno = errno;  // Preserve errno value over signal handler.
4026   JVM_handle_linux_signal(sig, info, uc, true);
4027   errno = orig_errno;
4028 }
4029 
4030 
4031 // This boolean allows users to forward their own non-matching signals
4032 // to JVM_handle_linux_signal, harmlessly.
4033 bool os::Linux::signal_handlers_are_installed = false;
4034 
4035 // For signal-chaining
4036 struct sigaction os::Linux::sigact[MAXSIGNUM];
4037 unsigned int os::Linux::sigs = 0;
4038 bool os::Linux::libjsig_is_loaded = false;
4039 typedef struct sigaction *(*get_signal_t)(int);
4040 get_signal_t os::Linux::get_signal_action = NULL;
4041 
4042 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4043   struct sigaction *actp = NULL;
4044 
4045   if (libjsig_is_loaded) {
4046     // Retrieve the old signal handler from libjsig
4047     actp = (*get_signal_action)(sig);
4048   }
4049   if (actp == NULL) {
4050     // Retrieve the preinstalled signal handler from jvm
4051     actp = get_preinstalled_handler(sig);
4052   }
4053 
4054   return actp;
4055 }
4056 
4057 static bool call_chained_handler(struct sigaction *actp, int sig,
4058                                  siginfo_t *siginfo, void *context) {
4059   // Call the old signal handler
4060   if (actp->sa_handler == SIG_DFL) {
4061     // It's more reasonable to let jvm treat it as an unexpected exception
4062     // instead of taking the default action.
4063     return false;
4064   } else if (actp->sa_handler != SIG_IGN) {
4065     if ((actp->sa_flags & SA_NODEFER) == 0) {
4066       // automaticlly block the signal
4067       sigaddset(&(actp->sa_mask), sig);
4068     }
4069 
4070     sa_handler_t hand;
4071     sa_sigaction_t sa;
4072     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4073     // retrieve the chained handler
4074     if (siginfo_flag_set) {
4075       sa = actp->sa_sigaction;
4076     } else {
4077       hand = actp->sa_handler;
4078     }
4079 
4080     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4081       actp->sa_handler = SIG_DFL;
4082     }
4083 
4084     // try to honor the signal mask
4085     sigset_t oset;
4086     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4087 
4088     // call into the chained handler
4089     if (siginfo_flag_set) {
4090       (*sa)(sig, siginfo, context);
4091     } else {
4092       (*hand)(sig);
4093     }
4094 
4095     // restore the signal mask
4096     pthread_sigmask(SIG_SETMASK, &oset, 0);
4097   }
4098   // Tell jvm's signal handler the signal is taken care of.
4099   return true;
4100 }
4101 
4102 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4103   bool chained = false;
4104   // signal-chaining
4105   if (UseSignalChaining) {
4106     struct sigaction *actp = get_chained_signal_action(sig);
4107     if (actp != NULL) {
4108       chained = call_chained_handler(actp, sig, siginfo, context);
4109     }
4110   }
4111   return chained;
4112 }
4113 
4114 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4115   if ((((unsigned int)1 << sig) & sigs) != 0) {
4116     return &sigact[sig];
4117   }
4118   return NULL;
4119 }
4120 
4121 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4122   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4123   sigact[sig] = oldAct;
4124   sigs |= (unsigned int)1 << sig;
4125 }
4126 
4127 // for diagnostic
4128 int os::Linux::sigflags[MAXSIGNUM];
4129 
4130 int os::Linux::get_our_sigflags(int sig) {
4131   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4132   return sigflags[sig];
4133 }
4134 
4135 void os::Linux::set_our_sigflags(int sig, int flags) {
4136   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4137   sigflags[sig] = flags;
4138 }
4139 
4140 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4141   // Check for overwrite.
4142   struct sigaction oldAct;
4143   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4144 
4145   void* oldhand = oldAct.sa_sigaction
4146                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4147                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4148   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4149       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4150       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4151     if (AllowUserSignalHandlers || !set_installed) {
4152       // Do not overwrite; user takes responsibility to forward to us.
4153       return;
4154     } else if (UseSignalChaining) {
4155       // save the old handler in jvm
4156       save_preinstalled_handler(sig, oldAct);
4157       // libjsig also interposes the sigaction() call below and saves the
4158       // old sigaction on it own.
4159     } else {
4160       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4161                     "%#lx for signal %d.", (long)oldhand, sig));
4162     }
4163   }
4164 
4165   struct sigaction sigAct;
4166   sigfillset(&(sigAct.sa_mask));
4167   sigAct.sa_handler = SIG_DFL;
4168   if (!set_installed) {
4169     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4170   } else {
4171     sigAct.sa_sigaction = signalHandler;
4172     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4173   }
4174   // Save flags, which are set by ours
4175   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4176   sigflags[sig] = sigAct.sa_flags;
4177 
4178   int ret = sigaction(sig, &sigAct, &oldAct);
4179   assert(ret == 0, "check");
4180 
4181   void* oldhand2  = oldAct.sa_sigaction
4182                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4183                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4184   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4185 }
4186 
4187 // install signal handlers for signals that HotSpot needs to
4188 // handle in order to support Java-level exception handling.
4189 
4190 void os::Linux::install_signal_handlers() {
4191   if (!signal_handlers_are_installed) {
4192     signal_handlers_are_installed = true;
4193 
4194     // signal-chaining
4195     typedef void (*signal_setting_t)();
4196     signal_setting_t begin_signal_setting = NULL;
4197     signal_setting_t end_signal_setting = NULL;
4198     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4199                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4200     if (begin_signal_setting != NULL) {
4201       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4202                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4203       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4204                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4205       libjsig_is_loaded = true;
4206       assert(UseSignalChaining, "should enable signal-chaining");
4207     }
4208     if (libjsig_is_loaded) {
4209       // Tell libjsig jvm is setting signal handlers
4210       (*begin_signal_setting)();
4211     }
4212 
4213     set_signal_handler(SIGSEGV, true);
4214     set_signal_handler(SIGPIPE, true);
4215     set_signal_handler(SIGBUS, true);
4216     set_signal_handler(SIGILL, true);
4217     set_signal_handler(SIGFPE, true);
4218 #if defined(PPC64)
4219     set_signal_handler(SIGTRAP, true);
4220 #endif
4221     set_signal_handler(SIGXFSZ, true);
4222 
4223     if (libjsig_is_loaded) {
4224       // Tell libjsig jvm finishes setting signal handlers
4225       (*end_signal_setting)();
4226     }
4227 
4228     // We don't activate signal checker if libjsig is in place, we trust ourselves
4229     // and if UserSignalHandler is installed all bets are off.
4230     // Log that signal checking is off only if -verbose:jni is specified.
4231     if (CheckJNICalls) {
4232       if (libjsig_is_loaded) {
4233         if (PrintJNIResolving) {
4234           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4235         }
4236         check_signals = false;
4237       }
4238       if (AllowUserSignalHandlers) {
4239         if (PrintJNIResolving) {
4240           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4241         }
4242         check_signals = false;
4243       }
4244     }
4245   }
4246 }
4247 
4248 // This is the fastest way to get thread cpu time on Linux.
4249 // Returns cpu time (user+sys) for any thread, not only for current.
4250 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4251 // It might work on 2.6.10+ with a special kernel/glibc patch.
4252 // For reference, please, see IEEE Std 1003.1-2004:
4253 //   http://www.unix.org/single_unix_specification
4254 
4255 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4256   struct timespec tp;
4257   int rc = os::Linux::clock_gettime(clockid, &tp);
4258   assert(rc == 0, "clock_gettime is expected to return 0 code");
4259 
4260   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4261 }
4262 
4263 /////
4264 // glibc on Linux platform uses non-documented flag
4265 // to indicate, that some special sort of signal
4266 // trampoline is used.
4267 // We will never set this flag, and we should
4268 // ignore this flag in our diagnostic
4269 #ifdef SIGNIFICANT_SIGNAL_MASK
4270   #undef SIGNIFICANT_SIGNAL_MASK
4271 #endif
4272 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4273 
4274 static const char* get_signal_handler_name(address handler,
4275                                            char* buf, int buflen) {
4276   int offset;
4277   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4278   if (found) {
4279     // skip directory names
4280     const char *p1, *p2;
4281     p1 = buf;
4282     size_t len = strlen(os::file_separator());
4283     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4284     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4285   } else {
4286     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4287   }
4288   return buf;
4289 }
4290 
4291 static void print_signal_handler(outputStream* st, int sig,
4292                                  char* buf, size_t buflen) {
4293   struct sigaction sa;
4294 
4295   sigaction(sig, NULL, &sa);
4296 
4297   // See comment for SIGNIFICANT_SIGNAL_MASK define
4298   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4299 
4300   st->print("%s: ", os::exception_name(sig, buf, buflen));
4301 
4302   address handler = (sa.sa_flags & SA_SIGINFO)
4303     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4304     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4305 
4306   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4307     st->print("SIG_DFL");
4308   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4309     st->print("SIG_IGN");
4310   } else {
4311     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4312   }
4313 
4314   st->print(", sa_mask[0]=");
4315   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4316 
4317   address rh = VMError::get_resetted_sighandler(sig);
4318   // May be, handler was resetted by VMError?
4319   if (rh != NULL) {
4320     handler = rh;
4321     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4322   }
4323 
4324   st->print(", sa_flags=");
4325   os::Posix::print_sa_flags(st, sa.sa_flags);
4326 
4327   // Check: is it our handler?
4328   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4329       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4330     // It is our signal handler
4331     // check for flags, reset system-used one!
4332     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4333       st->print(
4334                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4335                 os::Linux::get_our_sigflags(sig));
4336     }
4337   }
4338   st->cr();
4339 }
4340 
4341 
4342 #define DO_SIGNAL_CHECK(sig)                      \
4343   do {                                            \
4344     if (!sigismember(&check_signal_done, sig)) {  \
4345       os::Linux::check_signal_handler(sig);       \
4346     }                                             \
4347   } while (0)
4348 
4349 // This method is a periodic task to check for misbehaving JNI applications
4350 // under CheckJNI, we can add any periodic checks here
4351 
4352 void os::run_periodic_checks() {
4353   if (check_signals == false) return;
4354 
4355   // SEGV and BUS if overridden could potentially prevent
4356   // generation of hs*.log in the event of a crash, debugging
4357   // such a case can be very challenging, so we absolutely
4358   // check the following for a good measure:
4359   DO_SIGNAL_CHECK(SIGSEGV);
4360   DO_SIGNAL_CHECK(SIGILL);
4361   DO_SIGNAL_CHECK(SIGFPE);
4362   DO_SIGNAL_CHECK(SIGBUS);
4363   DO_SIGNAL_CHECK(SIGPIPE);
4364   DO_SIGNAL_CHECK(SIGXFSZ);
4365 #if defined(PPC64)
4366   DO_SIGNAL_CHECK(SIGTRAP);
4367 #endif
4368 
4369   // ReduceSignalUsage allows the user to override these handlers
4370   // see comments at the very top and jvm_solaris.h
4371   if (!ReduceSignalUsage) {
4372     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4373     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4374     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4375     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4376   }
4377 
4378   DO_SIGNAL_CHECK(SR_signum);
4379   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4380 }
4381 
4382 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4383 
4384 static os_sigaction_t os_sigaction = NULL;
4385 
4386 void os::Linux::check_signal_handler(int sig) {
4387   char buf[O_BUFLEN];
4388   address jvmHandler = NULL;
4389 
4390 
4391   struct sigaction act;
4392   if (os_sigaction == NULL) {
4393     // only trust the default sigaction, in case it has been interposed
4394     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4395     if (os_sigaction == NULL) return;
4396   }
4397 
4398   os_sigaction(sig, (struct sigaction*)NULL, &act);
4399 
4400 
4401   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4402 
4403   address thisHandler = (act.sa_flags & SA_SIGINFO)
4404     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4405     : CAST_FROM_FN_PTR(address, act.sa_handler);
4406 
4407 
4408   switch (sig) {
4409   case SIGSEGV:
4410   case SIGBUS:
4411   case SIGFPE:
4412   case SIGPIPE:
4413   case SIGILL:
4414   case SIGXFSZ:
4415     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4416     break;
4417 
4418   case SHUTDOWN1_SIGNAL:
4419   case SHUTDOWN2_SIGNAL:
4420   case SHUTDOWN3_SIGNAL:
4421   case BREAK_SIGNAL:
4422     jvmHandler = (address)user_handler();
4423     break;
4424 
4425   case INTERRUPT_SIGNAL:
4426     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4427     break;
4428 
4429   default:
4430     if (sig == SR_signum) {
4431       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4432     } else {
4433       return;
4434     }
4435     break;
4436   }
4437 
4438   if (thisHandler != jvmHandler) {
4439     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4440     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4441     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4442     // No need to check this sig any longer
4443     sigaddset(&check_signal_done, sig);
4444     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4445     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4446       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4447                     exception_name(sig, buf, O_BUFLEN));
4448     }
4449   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4450     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4451     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4452     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4453     // No need to check this sig any longer
4454     sigaddset(&check_signal_done, sig);
4455   }
4456 
4457   // Dump all the signal
4458   if (sigismember(&check_signal_done, sig)) {
4459     print_signal_handlers(tty, buf, O_BUFLEN);
4460   }
4461 }
4462 
4463 extern void report_error(char* file_name, int line_no, char* title,
4464                          char* format, ...);
4465 
4466 extern bool signal_name(int signo, char* buf, size_t len);
4467 
4468 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4469   if (0 < exception_code && exception_code <= SIGRTMAX) {
4470     // signal
4471     if (!signal_name(exception_code, buf, size)) {
4472       jio_snprintf(buf, size, "SIG%d", exception_code);
4473     }
4474     return buf;
4475   } else {
4476     return NULL;
4477   }
4478 }
4479 
4480 // this is called _before_ the most of global arguments have been parsed
4481 void os::init(void) {
4482   char dummy;   // used to get a guess on initial stack address
4483 //  first_hrtime = gethrtime();
4484 
4485   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4486 
4487   init_random(1234567);
4488 
4489   ThreadCritical::initialize();
4490 
4491   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4492   if (Linux::page_size() == -1) {
4493     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4494                   strerror(errno)));
4495   }
4496   init_page_sizes((size_t) Linux::page_size());
4497 
4498   Linux::initialize_system_info();
4499 
4500   // main_thread points to the aboriginal thread
4501   Linux::_main_thread = pthread_self();
4502 
4503   Linux::clock_init();
4504   initial_time_count = javaTimeNanos();
4505 
4506   // pthread_condattr initialization for monotonic clock
4507   int status;
4508   pthread_condattr_t* _condattr = os::Linux::condAttr();
4509   if ((status = pthread_condattr_init(_condattr)) != 0) {
4510     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4511   }
4512   // Only set the clock if CLOCK_MONOTONIC is available
4513   if (os::supports_monotonic_clock()) {
4514     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4515       if (status == EINVAL) {
4516         warning("Unable to use monotonic clock with relative timed-waits" \
4517                 " - changes to the time-of-day clock may have adverse affects");
4518       } else {
4519         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4520       }
4521     }
4522   }
4523   // else it defaults to CLOCK_REALTIME
4524 
4525   // If the pagesize of the VM is greater than 8K determine the appropriate
4526   // number of initial guard pages.  The user can change this with the
4527   // command line arguments, if needed.
4528   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4529     StackYellowPages = 1;
4530     StackRedPages = 1;
4531     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4532   }
4533 
4534   // retrieve entry point for pthread_setname_np
4535   Linux::_pthread_setname_np =
4536     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4537 
4538 }
4539 
4540 // To install functions for atexit system call
4541 extern "C" {
4542   static void perfMemory_exit_helper() {
4543     perfMemory_exit();
4544   }
4545 }
4546 
4547 // this is called _after_ the global arguments have been parsed
4548 jint os::init_2(void) {
4549   Linux::fast_thread_clock_init();
4550 
4551   // Allocate a single page and mark it as readable for safepoint polling
4552   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4553   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4554 
4555   os::set_polling_page(polling_page);
4556 
4557 #ifndef PRODUCT
4558   if (Verbose && PrintMiscellaneous) {
4559     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4560                (intptr_t)polling_page);
4561   }
4562 #endif
4563 
4564   if (!UseMembar) {
4565     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4566     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4567     os::set_memory_serialize_page(mem_serialize_page);
4568 
4569 #ifndef PRODUCT
4570     if (Verbose && PrintMiscellaneous) {
4571       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4572                  (intptr_t)mem_serialize_page);
4573     }
4574 #endif
4575   }
4576 
4577   // initialize suspend/resume support - must do this before signal_sets_init()
4578   if (SR_initialize() != 0) {
4579     perror("SR_initialize failed");
4580     return JNI_ERR;
4581   }
4582 
4583   Linux::signal_sets_init();
4584   Linux::install_signal_handlers();
4585 
4586   // Check minimum allowable stack size for thread creation and to initialize
4587   // the java system classes, including StackOverflowError - depends on page
4588   // size.  Add a page for compiler2 recursion in main thread.
4589   // Add in 2*BytesPerWord times page size to account for VM stack during
4590   // class initialization depending on 32 or 64 bit VM.
4591   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4592                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4593                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4594 
4595   size_t threadStackSizeInBytes = ThreadStackSize * K;
4596   if (threadStackSizeInBytes != 0 &&
4597       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4598     tty->print_cr("\nThe stack size specified is too small, "
4599                   "Specify at least %dk",
4600                   os::Linux::min_stack_allowed/ K);
4601     return JNI_ERR;
4602   }
4603 
4604   // Make the stack size a multiple of the page size so that
4605   // the yellow/red zones can be guarded.
4606   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4607                                                 vm_page_size()));
4608 
4609   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4610 
4611 #if defined(IA32)
4612   workaround_expand_exec_shield_cs_limit();
4613 #endif
4614 
4615   Linux::libpthread_init();
4616   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4617     tty->print_cr("[HotSpot is running with %s, %s]\n",
4618                   Linux::glibc_version(), Linux::libpthread_version());
4619   }
4620 
4621   if (UseNUMA) {
4622     if (!Linux::libnuma_init()) {
4623       UseNUMA = false;
4624     } else {
4625       if ((Linux::numa_max_node() < 1)) {
4626         // There's only one node(they start from 0), disable NUMA.
4627         UseNUMA = false;
4628       }
4629     }
4630     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4631     // we can make the adaptive lgrp chunk resizing work. If the user specified
4632     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4633     // disable adaptive resizing.
4634     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4635       if (FLAG_IS_DEFAULT(UseNUMA)) {
4636         UseNUMA = false;
4637       } else {
4638         if (FLAG_IS_DEFAULT(UseLargePages) &&
4639             FLAG_IS_DEFAULT(UseSHM) &&
4640             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4641           UseLargePages = false;
4642         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4643           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4644           UseAdaptiveSizePolicy = false;
4645           UseAdaptiveNUMAChunkSizing = false;
4646         }
4647       }
4648     }
4649     if (!UseNUMA && ForceNUMA) {
4650       UseNUMA = true;
4651     }
4652   }
4653 
4654   if (MaxFDLimit) {
4655     // set the number of file descriptors to max. print out error
4656     // if getrlimit/setrlimit fails but continue regardless.
4657     struct rlimit nbr_files;
4658     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4659     if (status != 0) {
4660       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4661         perror("os::init_2 getrlimit failed");
4662       }
4663     } else {
4664       nbr_files.rlim_cur = nbr_files.rlim_max;
4665       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4666       if (status != 0) {
4667         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4668           perror("os::init_2 setrlimit failed");
4669         }
4670       }
4671     }
4672   }
4673 
4674   // Initialize lock used to serialize thread creation (see os::create_thread)
4675   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4676 
4677   // at-exit methods are called in the reverse order of their registration.
4678   // atexit functions are called on return from main or as a result of a
4679   // call to exit(3C). There can be only 32 of these functions registered
4680   // and atexit() does not set errno.
4681 
4682   if (PerfAllowAtExitRegistration) {
4683     // only register atexit functions if PerfAllowAtExitRegistration is set.
4684     // atexit functions can be delayed until process exit time, which
4685     // can be problematic for embedded VM situations. Embedded VMs should
4686     // call DestroyJavaVM() to assure that VM resources are released.
4687 
4688     // note: perfMemory_exit_helper atexit function may be removed in
4689     // the future if the appropriate cleanup code can be added to the
4690     // VM_Exit VMOperation's doit method.
4691     if (atexit(perfMemory_exit_helper) != 0) {
4692       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4693     }
4694   }
4695 
4696   // initialize thread priority policy
4697   prio_init();
4698 
4699   return JNI_OK;
4700 }
4701 
4702 // Mark the polling page as unreadable
4703 void os::make_polling_page_unreadable(void) {
4704   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4705     fatal("Could not disable polling page");
4706   }
4707 }
4708 
4709 // Mark the polling page as readable
4710 void os::make_polling_page_readable(void) {
4711   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4712     fatal("Could not enable polling page");
4713   }
4714 }
4715 
4716 int os::active_processor_count() {
4717   // Linux doesn't yet have a (official) notion of processor sets,
4718   // so just return the number of online processors.
4719   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4720   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4721   return online_cpus;
4722 }
4723 
4724 void os::set_native_thread_name(const char *name) {
4725   if (Linux::_pthread_setname_np) {
4726     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4727     snprintf(buf, sizeof(buf), "%s", name);
4728     buf[sizeof(buf) - 1] = '\0';
4729     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4730     // ERANGE should not happen; all other errors should just be ignored.
4731     assert(rc != ERANGE, "pthread_setname_np failed");
4732   }
4733 }
4734 
4735 bool os::distribute_processes(uint length, uint* distribution) {
4736   // Not yet implemented.
4737   return false;
4738 }
4739 
4740 bool os::bind_to_processor(uint processor_id) {
4741   // Not yet implemented.
4742   return false;
4743 }
4744 
4745 ///
4746 
4747 void os::SuspendedThreadTask::internal_do_task() {
4748   if (do_suspend(_thread->osthread())) {
4749     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4750     do_task(context);
4751     do_resume(_thread->osthread());
4752   }
4753 }
4754 
4755 class PcFetcher : public os::SuspendedThreadTask {
4756  public:
4757   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4758   ExtendedPC result();
4759  protected:
4760   void do_task(const os::SuspendedThreadTaskContext& context);
4761  private:
4762   ExtendedPC _epc;
4763 };
4764 
4765 ExtendedPC PcFetcher::result() {
4766   guarantee(is_done(), "task is not done yet.");
4767   return _epc;
4768 }
4769 
4770 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4771   Thread* thread = context.thread();
4772   OSThread* osthread = thread->osthread();
4773   if (osthread->ucontext() != NULL) {
4774     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4775   } else {
4776     // NULL context is unexpected, double-check this is the VMThread
4777     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4778   }
4779 }
4780 
4781 // Suspends the target using the signal mechanism and then grabs the PC before
4782 // resuming the target. Used by the flat-profiler only
4783 ExtendedPC os::get_thread_pc(Thread* thread) {
4784   // Make sure that it is called by the watcher for the VMThread
4785   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4786   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4787 
4788   PcFetcher fetcher(thread);
4789   fetcher.run();
4790   return fetcher.result();
4791 }
4792 
4793 ////////////////////////////////////////////////////////////////////////////////
4794 // debug support
4795 
4796 bool os::find(address addr, outputStream* st) {
4797   Dl_info dlinfo;
4798   memset(&dlinfo, 0, sizeof(dlinfo));
4799   if (dladdr(addr, &dlinfo) != 0) {
4800     st->print(PTR_FORMAT ": ", addr);
4801     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4802       st->print("%s+%#x", dlinfo.dli_sname,
4803                 addr - (intptr_t)dlinfo.dli_saddr);
4804     } else if (dlinfo.dli_fbase != NULL) {
4805       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4806     } else {
4807       st->print("<absolute address>");
4808     }
4809     if (dlinfo.dli_fname != NULL) {
4810       st->print(" in %s", dlinfo.dli_fname);
4811     }
4812     if (dlinfo.dli_fbase != NULL) {
4813       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4814     }
4815     st->cr();
4816 
4817     if (Verbose) {
4818       // decode some bytes around the PC
4819       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4820       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4821       address       lowest = (address) dlinfo.dli_sname;
4822       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4823       if (begin < lowest)  begin = lowest;
4824       Dl_info dlinfo2;
4825       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4826           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4827         end = (address) dlinfo2.dli_saddr;
4828       }
4829       Disassembler::decode(begin, end, st);
4830     }
4831     return true;
4832   }
4833   return false;
4834 }
4835 
4836 ////////////////////////////////////////////////////////////////////////////////
4837 // misc
4838 
4839 // This does not do anything on Linux. This is basically a hook for being
4840 // able to use structured exception handling (thread-local exception filters)
4841 // on, e.g., Win32.
4842 void
4843 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4844                          JavaCallArguments* args, Thread* thread) {
4845   f(value, method, args, thread);
4846 }
4847 
4848 void os::print_statistics() {
4849 }
4850 
4851 int os::message_box(const char* title, const char* message) {
4852   int i;
4853   fdStream err(defaultStream::error_fd());
4854   for (i = 0; i < 78; i++) err.print_raw("=");
4855   err.cr();
4856   err.print_raw_cr(title);
4857   for (i = 0; i < 78; i++) err.print_raw("-");
4858   err.cr();
4859   err.print_raw_cr(message);
4860   for (i = 0; i < 78; i++) err.print_raw("=");
4861   err.cr();
4862 
4863   char buf[16];
4864   // Prevent process from exiting upon "read error" without consuming all CPU
4865   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4866 
4867   return buf[0] == 'y' || buf[0] == 'Y';
4868 }
4869 
4870 int os::stat(const char *path, struct stat *sbuf) {
4871   char pathbuf[MAX_PATH];
4872   if (strlen(path) > MAX_PATH - 1) {
4873     errno = ENAMETOOLONG;
4874     return -1;
4875   }
4876   os::native_path(strcpy(pathbuf, path));
4877   return ::stat(pathbuf, sbuf);
4878 }
4879 
4880 bool os::check_heap(bool force) {
4881   return true;
4882 }
4883 
4884 // Is a (classpath) directory empty?
4885 bool os::dir_is_empty(const char* path) {
4886   DIR *dir = NULL;
4887   struct dirent *ptr;
4888 
4889   dir = opendir(path);
4890   if (dir == NULL) return true;
4891 
4892   // Scan the directory
4893   bool result = true;
4894   char buf[sizeof(struct dirent) + MAX_PATH];
4895   while (result && (ptr = ::readdir(dir)) != NULL) {
4896     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4897       result = false;
4898     }
4899   }
4900   closedir(dir);
4901   return result;
4902 }
4903 
4904 // This code originates from JDK's sysOpen and open64_w
4905 // from src/solaris/hpi/src/system_md.c
4906 
4907 int os::open(const char *path, int oflag, int mode) {
4908   if (strlen(path) > MAX_PATH - 1) {
4909     errno = ENAMETOOLONG;
4910     return -1;
4911   }
4912 
4913   // All file descriptors that are opened in the Java process and not
4914   // specifically destined for a subprocess should have the close-on-exec
4915   // flag set.  If we don't set it, then careless 3rd party native code
4916   // might fork and exec without closing all appropriate file descriptors
4917   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
4918   // turn might:
4919   //
4920   // - cause end-of-file to fail to be detected on some file
4921   //   descriptors, resulting in mysterious hangs, or
4922   //
4923   // - might cause an fopen in the subprocess to fail on a system
4924   //   suffering from bug 1085341.
4925   //
4926   // (Yes, the default setting of the close-on-exec flag is a Unix
4927   // design flaw)
4928   //
4929   // See:
4930   // 1085341: 32-bit stdio routines should support file descriptors >255
4931   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4932   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4933   //
4934   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
4935   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
4936   // because it saves a system call and removes a small window where the flag
4937   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
4938   // and we fall back to using FD_CLOEXEC (see below).
4939 #ifdef O_CLOEXEC
4940   oflag |= O_CLOEXEC;
4941 #endif
4942 
4943   int fd = ::open64(path, oflag, mode);
4944   if (fd == -1) return -1;
4945 
4946   //If the open succeeded, the file might still be a directory
4947   {
4948     struct stat64 buf64;
4949     int ret = ::fstat64(fd, &buf64);
4950     int st_mode = buf64.st_mode;
4951 
4952     if (ret != -1) {
4953       if ((st_mode & S_IFMT) == S_IFDIR) {
4954         errno = EISDIR;
4955         ::close(fd);
4956         return -1;
4957       }
4958     } else {
4959       ::close(fd);
4960       return -1;
4961     }
4962   }
4963 
4964 #ifdef FD_CLOEXEC
4965   // Validate that the use of the O_CLOEXEC flag on open above worked.
4966   // With recent kernels, we will perform this check exactly once.
4967   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
4968   if (!O_CLOEXEC_is_known_to_work) {
4969     int flags = ::fcntl(fd, F_GETFD);
4970     if (flags != -1) {
4971       if ((flags & FD_CLOEXEC) != 0)
4972         O_CLOEXEC_is_known_to_work = 1;
4973       else
4974         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4975     }
4976   }
4977 #endif
4978 
4979   return fd;
4980 }
4981 
4982 
4983 // create binary file, rewriting existing file if required
4984 int os::create_binary_file(const char* path, bool rewrite_existing) {
4985   int oflags = O_WRONLY | O_CREAT;
4986   if (!rewrite_existing) {
4987     oflags |= O_EXCL;
4988   }
4989   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4990 }
4991 
4992 // return current position of file pointer
4993 jlong os::current_file_offset(int fd) {
4994   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4995 }
4996 
4997 // move file pointer to the specified offset
4998 jlong os::seek_to_file_offset(int fd, jlong offset) {
4999   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5000 }
5001 
5002 // This code originates from JDK's sysAvailable
5003 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5004 
5005 int os::available(int fd, jlong *bytes) {
5006   jlong cur, end;
5007   int mode;
5008   struct stat64 buf64;
5009 
5010   if (::fstat64(fd, &buf64) >= 0) {
5011     mode = buf64.st_mode;
5012     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5013       // XXX: is the following call interruptible? If so, this might
5014       // need to go through the INTERRUPT_IO() wrapper as for other
5015       // blocking, interruptible calls in this file.
5016       int n;
5017       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5018         *bytes = n;
5019         return 1;
5020       }
5021     }
5022   }
5023   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5024     return 0;
5025   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5026     return 0;
5027   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5028     return 0;
5029   }
5030   *bytes = end - cur;
5031   return 1;
5032 }
5033 
5034 // Map a block of memory.
5035 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5036                         char *addr, size_t bytes, bool read_only,
5037                         bool allow_exec) {
5038   int prot;
5039   int flags = MAP_PRIVATE;
5040 
5041   if (read_only) {
5042     prot = PROT_READ;
5043   } else {
5044     prot = PROT_READ | PROT_WRITE;
5045   }
5046 
5047   if (allow_exec) {
5048     prot |= PROT_EXEC;
5049   }
5050 
5051   if (addr != NULL) {
5052     flags |= MAP_FIXED;
5053   }
5054 
5055   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5056                                      fd, file_offset);
5057   if (mapped_address == MAP_FAILED) {
5058     return NULL;
5059   }
5060   return mapped_address;
5061 }
5062 
5063 
5064 // Remap a block of memory.
5065 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5066                           char *addr, size_t bytes, bool read_only,
5067                           bool allow_exec) {
5068   // same as map_memory() on this OS
5069   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5070                         allow_exec);
5071 }
5072 
5073 
5074 // Unmap a block of memory.
5075 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5076   return munmap(addr, bytes) == 0;
5077 }
5078 
5079 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5080 
5081 static clockid_t thread_cpu_clockid(Thread* thread) {
5082   pthread_t tid = thread->osthread()->pthread_id();
5083   clockid_t clockid;
5084 
5085   // Get thread clockid
5086   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5087   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5088   return clockid;
5089 }
5090 
5091 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5092 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5093 // of a thread.
5094 //
5095 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5096 // the fast estimate available on the platform.
5097 
5098 jlong os::current_thread_cpu_time() {
5099   if (os::Linux::supports_fast_thread_cpu_time()) {
5100     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5101   } else {
5102     // return user + sys since the cost is the same
5103     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5104   }
5105 }
5106 
5107 jlong os::thread_cpu_time(Thread* thread) {
5108   // consistent with what current_thread_cpu_time() returns
5109   if (os::Linux::supports_fast_thread_cpu_time()) {
5110     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5111   } else {
5112     return slow_thread_cpu_time(thread, true /* user + sys */);
5113   }
5114 }
5115 
5116 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5117   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5118     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5119   } else {
5120     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5121   }
5122 }
5123 
5124 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5125   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5126     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5127   } else {
5128     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5129   }
5130 }
5131 
5132 //  -1 on error.
5133 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5134   pid_t  tid = thread->osthread()->thread_id();
5135   char *s;
5136   char stat[2048];
5137   int statlen;
5138   char proc_name[64];
5139   int count;
5140   long sys_time, user_time;
5141   char cdummy;
5142   int idummy;
5143   long ldummy;
5144   FILE *fp;
5145 
5146   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5147   fp = fopen(proc_name, "r");
5148   if (fp == NULL) return -1;
5149   statlen = fread(stat, 1, 2047, fp);
5150   stat[statlen] = '\0';
5151   fclose(fp);
5152 
5153   // Skip pid and the command string. Note that we could be dealing with
5154   // weird command names, e.g. user could decide to rename java launcher
5155   // to "java 1.4.2 :)", then the stat file would look like
5156   //                1234 (java 1.4.2 :)) R ... ...
5157   // We don't really need to know the command string, just find the last
5158   // occurrence of ")" and then start parsing from there. See bug 4726580.
5159   s = strrchr(stat, ')');
5160   if (s == NULL) return -1;
5161 
5162   // Skip blank chars
5163   do { s++; } while (s && isspace(*s));
5164 
5165   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5166                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5167                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5168                  &user_time, &sys_time);
5169   if (count != 13) return -1;
5170   if (user_sys_cpu_time) {
5171     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5172   } else {
5173     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5174   }
5175 }
5176 
5177 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5178   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5179   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5180   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5181   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5182 }
5183 
5184 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5185   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5186   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5187   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5188   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5189 }
5190 
5191 bool os::is_thread_cpu_time_supported() {
5192   return true;
5193 }
5194 
5195 // System loadavg support.  Returns -1 if load average cannot be obtained.
5196 // Linux doesn't yet have a (official) notion of processor sets,
5197 // so just return the system wide load average.
5198 int os::loadavg(double loadavg[], int nelem) {
5199   return ::getloadavg(loadavg, nelem);
5200 }
5201 
5202 void os::pause() {
5203   char filename[MAX_PATH];
5204   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5205     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5206   } else {
5207     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5208   }
5209 
5210   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5211   if (fd != -1) {
5212     struct stat buf;
5213     ::close(fd);
5214     while (::stat(filename, &buf) == 0) {
5215       (void)::poll(NULL, 0, 100);
5216     }
5217   } else {
5218     jio_fprintf(stderr,
5219                 "Could not open pause file '%s', continuing immediately.\n", filename);
5220   }
5221 }
5222 
5223 
5224 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5225 // comment paragraphs are worth repeating here:
5226 //
5227 // Assumption:
5228 //    Only one parker can exist on an event, which is why we allocate
5229 //    them per-thread. Multiple unparkers can coexist.
5230 //
5231 // _Event serves as a restricted-range semaphore.
5232 //   -1 : thread is blocked, i.e. there is a waiter
5233 //    0 : neutral: thread is running or ready,
5234 //        could have been signaled after a wait started
5235 //    1 : signaled - thread is running or ready
5236 //
5237 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5238 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5239 // For specifics regarding the bug see GLIBC BUGID 261237 :
5240 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5241 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5242 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5243 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5244 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5245 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5246 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5247 // of libpthread avoids the problem, but isn't practical.
5248 //
5249 // Possible remedies:
5250 //
5251 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5252 //      This is palliative and probabilistic, however.  If the thread is preempted
5253 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5254 //      than the minimum period may have passed, and the abstime may be stale (in the
5255 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5256 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5257 //
5258 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5259 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5260 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5261 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5262 //      thread.
5263 //
5264 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5265 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5266 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5267 //      This also works well.  In fact it avoids kernel-level scalability impediments
5268 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5269 //      timers in a graceful fashion.
5270 //
5271 // 4.   When the abstime value is in the past it appears that control returns
5272 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5273 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5274 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5275 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5276 //      It may be possible to avoid reinitialization by checking the return
5277 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5278 //      condvar we must establish the invariant that cond_signal() is only called
5279 //      within critical sections protected by the adjunct mutex.  This prevents
5280 //      cond_signal() from "seeing" a condvar that's in the midst of being
5281 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5282 //      desirable signal-after-unlock optimization that avoids futile context switching.
5283 //
5284 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5285 //      structure when a condvar is used or initialized.  cond_destroy()  would
5286 //      release the helper structure.  Our reinitialize-after-timedwait fix
5287 //      put excessive stress on malloc/free and locks protecting the c-heap.
5288 //
5289 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5290 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5291 // and only enabling the work-around for vulnerable environments.
5292 
5293 // utility to compute the abstime argument to timedwait:
5294 // millis is the relative timeout time
5295 // abstime will be the absolute timeout time
5296 // TODO: replace compute_abstime() with unpackTime()
5297 
5298 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5299   if (millis < 0)  millis = 0;
5300 
5301   jlong seconds = millis / 1000;
5302   millis %= 1000;
5303   if (seconds > 50000000) { // see man cond_timedwait(3T)
5304     seconds = 50000000;
5305   }
5306 
5307   if (os::supports_monotonic_clock()) {
5308     struct timespec now;
5309     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5310     assert_status(status == 0, status, "clock_gettime");
5311     abstime->tv_sec = now.tv_sec  + seconds;
5312     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5313     if (nanos >= NANOSECS_PER_SEC) {
5314       abstime->tv_sec += 1;
5315       nanos -= NANOSECS_PER_SEC;
5316     }
5317     abstime->tv_nsec = nanos;
5318   } else {
5319     struct timeval now;
5320     int status = gettimeofday(&now, NULL);
5321     assert(status == 0, "gettimeofday");
5322     abstime->tv_sec = now.tv_sec  + seconds;
5323     long usec = now.tv_usec + millis * 1000;
5324     if (usec >= 1000000) {
5325       abstime->tv_sec += 1;
5326       usec -= 1000000;
5327     }
5328     abstime->tv_nsec = usec * 1000;
5329   }
5330   return abstime;
5331 }
5332 
5333 void os::PlatformEvent::park() {       // AKA "down()"
5334   // Transitions for _Event:
5335   //   -1 => -1 : illegal
5336   //    1 =>  0 : pass - return immediately
5337   //    0 => -1 : block; then set _Event to 0 before returning
5338 
5339   // Invariant: Only the thread associated with the Event/PlatformEvent
5340   // may call park().
5341   // TODO: assert that _Assoc != NULL or _Assoc == Self
5342   assert(_nParked == 0, "invariant");
5343 
5344   int v;
5345   for (;;) {
5346     v = _Event;
5347     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5348   }
5349   guarantee(v >= 0, "invariant");
5350   if (v == 0) {
5351     // Do this the hard way by blocking ...
5352     int status = pthread_mutex_lock(_mutex);
5353     assert_status(status == 0, status, "mutex_lock");
5354     guarantee(_nParked == 0, "invariant");
5355     ++_nParked;
5356     while (_Event < 0) {
5357       status = pthread_cond_wait(_cond, _mutex);
5358       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5359       // Treat this the same as if the wait was interrupted
5360       if (status == ETIME) { status = EINTR; }
5361       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5362     }
5363     --_nParked;
5364 
5365     _Event = 0;
5366     status = pthread_mutex_unlock(_mutex);
5367     assert_status(status == 0, status, "mutex_unlock");
5368     // Paranoia to ensure our locked and lock-free paths interact
5369     // correctly with each other.
5370     OrderAccess::fence();
5371   }
5372   guarantee(_Event >= 0, "invariant");
5373 }
5374 
5375 int os::PlatformEvent::park(jlong millis) {
5376   // Transitions for _Event:
5377   //   -1 => -1 : illegal
5378   //    1 =>  0 : pass - return immediately
5379   //    0 => -1 : block; then set _Event to 0 before returning
5380 
5381   guarantee(_nParked == 0, "invariant");
5382 
5383   int v;
5384   for (;;) {
5385     v = _Event;
5386     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5387   }
5388   guarantee(v >= 0, "invariant");
5389   if (v != 0) return OS_OK;
5390 
5391   // We do this the hard way, by blocking the thread.
5392   // Consider enforcing a minimum timeout value.
5393   struct timespec abst;
5394   compute_abstime(&abst, millis);
5395 
5396   int ret = OS_TIMEOUT;
5397   int status = pthread_mutex_lock(_mutex);
5398   assert_status(status == 0, status, "mutex_lock");
5399   guarantee(_nParked == 0, "invariant");
5400   ++_nParked;
5401 
5402   // Object.wait(timo) will return because of
5403   // (a) notification
5404   // (b) timeout
5405   // (c) thread.interrupt
5406   //
5407   // Thread.interrupt and object.notify{All} both call Event::set.
5408   // That is, we treat thread.interrupt as a special case of notification.
5409   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5410   // We assume all ETIME returns are valid.
5411   //
5412   // TODO: properly differentiate simultaneous notify+interrupt.
5413   // In that case, we should propagate the notify to another waiter.
5414 
5415   while (_Event < 0) {
5416     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5417     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5418       pthread_cond_destroy(_cond);
5419       pthread_cond_init(_cond, os::Linux::condAttr());
5420     }
5421     assert_status(status == 0 || status == EINTR ||
5422                   status == ETIME || status == ETIMEDOUT,
5423                   status, "cond_timedwait");
5424     if (!FilterSpuriousWakeups) break;                 // previous semantics
5425     if (status == ETIME || status == ETIMEDOUT) break;
5426     // We consume and ignore EINTR and spurious wakeups.
5427   }
5428   --_nParked;
5429   if (_Event >= 0) {
5430     ret = OS_OK;
5431   }
5432   _Event = 0;
5433   status = pthread_mutex_unlock(_mutex);
5434   assert_status(status == 0, status, "mutex_unlock");
5435   assert(_nParked == 0, "invariant");
5436   // Paranoia to ensure our locked and lock-free paths interact
5437   // correctly with each other.
5438   OrderAccess::fence();
5439   return ret;
5440 }
5441 
5442 void os::PlatformEvent::unpark() {
5443   // Transitions for _Event:
5444   //    0 => 1 : just return
5445   //    1 => 1 : just return
5446   //   -1 => either 0 or 1; must signal target thread
5447   //         That is, we can safely transition _Event from -1 to either
5448   //         0 or 1.
5449   // See also: "Semaphores in Plan 9" by Mullender & Cox
5450   //
5451   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5452   // that it will take two back-to-back park() calls for the owning
5453   // thread to block. This has the benefit of forcing a spurious return
5454   // from the first park() call after an unpark() call which will help
5455   // shake out uses of park() and unpark() without condition variables.
5456 
5457   if (Atomic::xchg(1, &_Event) >= 0) return;
5458 
5459   // Wait for the thread associated with the event to vacate
5460   int status = pthread_mutex_lock(_mutex);
5461   assert_status(status == 0, status, "mutex_lock");
5462   int AnyWaiters = _nParked;
5463   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5464   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5465     AnyWaiters = 0;
5466     pthread_cond_signal(_cond);
5467   }
5468   status = pthread_mutex_unlock(_mutex);
5469   assert_status(status == 0, status, "mutex_unlock");
5470   if (AnyWaiters != 0) {
5471     // Note that we signal() *after* dropping the lock for "immortal" Events.
5472     // This is safe and avoids a common class of  futile wakeups.  In rare
5473     // circumstances this can cause a thread to return prematurely from
5474     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5475     // will simply re-test the condition and re-park itself.
5476     // This provides particular benefit if the underlying platform does not
5477     // provide wait morphing.
5478     status = pthread_cond_signal(_cond);
5479     assert_status(status == 0, status, "cond_signal");
5480   }
5481 }
5482 
5483 
5484 // JSR166
5485 // -------------------------------------------------------
5486 
5487 // The solaris and linux implementations of park/unpark are fairly
5488 // conservative for now, but can be improved. They currently use a
5489 // mutex/condvar pair, plus a a count.
5490 // Park decrements count if > 0, else does a condvar wait.  Unpark
5491 // sets count to 1 and signals condvar.  Only one thread ever waits
5492 // on the condvar. Contention seen when trying to park implies that someone
5493 // is unparking you, so don't wait. And spurious returns are fine, so there
5494 // is no need to track notifications.
5495 
5496 // This code is common to linux and solaris and will be moved to a
5497 // common place in dolphin.
5498 //
5499 // The passed in time value is either a relative time in nanoseconds
5500 // or an absolute time in milliseconds. Either way it has to be unpacked
5501 // into suitable seconds and nanoseconds components and stored in the
5502 // given timespec structure.
5503 // Given time is a 64-bit value and the time_t used in the timespec is only
5504 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5505 // overflow if times way in the future are given. Further on Solaris versions
5506 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5507 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5508 // As it will be 28 years before "now + 100000000" will overflow we can
5509 // ignore overflow and just impose a hard-limit on seconds using the value
5510 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5511 // years from "now".
5512 
5513 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5514   assert(time > 0, "convertTime");
5515   time_t max_secs = 0;
5516 
5517   if (!os::supports_monotonic_clock() || isAbsolute) {
5518     struct timeval now;
5519     int status = gettimeofday(&now, NULL);
5520     assert(status == 0, "gettimeofday");
5521 
5522     max_secs = now.tv_sec + MAX_SECS;
5523 
5524     if (isAbsolute) {
5525       jlong secs = time / 1000;
5526       if (secs > max_secs) {
5527         absTime->tv_sec = max_secs;
5528       } else {
5529         absTime->tv_sec = secs;
5530       }
5531       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5532     } else {
5533       jlong secs = time / NANOSECS_PER_SEC;
5534       if (secs >= MAX_SECS) {
5535         absTime->tv_sec = max_secs;
5536         absTime->tv_nsec = 0;
5537       } else {
5538         absTime->tv_sec = now.tv_sec + secs;
5539         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5540         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5541           absTime->tv_nsec -= NANOSECS_PER_SEC;
5542           ++absTime->tv_sec; // note: this must be <= max_secs
5543         }
5544       }
5545     }
5546   } else {
5547     // must be relative using monotonic clock
5548     struct timespec now;
5549     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5550     assert_status(status == 0, status, "clock_gettime");
5551     max_secs = now.tv_sec + MAX_SECS;
5552     jlong secs = time / NANOSECS_PER_SEC;
5553     if (secs >= MAX_SECS) {
5554       absTime->tv_sec = max_secs;
5555       absTime->tv_nsec = 0;
5556     } else {
5557       absTime->tv_sec = now.tv_sec + secs;
5558       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5559       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5560         absTime->tv_nsec -= NANOSECS_PER_SEC;
5561         ++absTime->tv_sec; // note: this must be <= max_secs
5562       }
5563     }
5564   }
5565   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5566   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5567   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5568   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5569 }
5570 
5571 void Parker::park(bool isAbsolute, jlong time) {
5572   // Ideally we'd do something useful while spinning, such
5573   // as calling unpackTime().
5574 
5575   // Optional fast-path check:
5576   // Return immediately if a permit is available.
5577   // We depend on Atomic::xchg() having full barrier semantics
5578   // since we are doing a lock-free update to _counter.
5579   if (Atomic::xchg(0, &_counter) > 0) return;
5580 
5581   Thread* thread = Thread::current();
5582   assert(thread->is_Java_thread(), "Must be JavaThread");
5583   JavaThread *jt = (JavaThread *)thread;
5584 
5585   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5586   // Check interrupt before trying to wait
5587   if (Thread::is_interrupted(thread, false)) {
5588     return;
5589   }
5590 
5591   // Next, demultiplex/decode time arguments
5592   timespec absTime;
5593   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5594     return;
5595   }
5596   if (time > 0) {
5597     unpackTime(&absTime, isAbsolute, time);
5598   }
5599 
5600 
5601   // Enter safepoint region
5602   // Beware of deadlocks such as 6317397.
5603   // The per-thread Parker:: mutex is a classic leaf-lock.
5604   // In particular a thread must never block on the Threads_lock while
5605   // holding the Parker:: mutex.  If safepoints are pending both the
5606   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5607   ThreadBlockInVM tbivm(jt);
5608 
5609   // Don't wait if cannot get lock since interference arises from
5610   // unblocking.  Also. check interrupt before trying wait
5611   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5612     return;
5613   }
5614 
5615   int status;
5616   if (_counter > 0)  { // no wait needed
5617     _counter = 0;
5618     status = pthread_mutex_unlock(_mutex);
5619     assert(status == 0, "invariant");
5620     // Paranoia to ensure our locked and lock-free paths interact
5621     // correctly with each other and Java-level accesses.
5622     OrderAccess::fence();
5623     return;
5624   }
5625 
5626 #ifdef ASSERT
5627   // Don't catch signals while blocked; let the running threads have the signals.
5628   // (This allows a debugger to break into the running thread.)
5629   sigset_t oldsigs;
5630   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5631   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5632 #endif
5633 
5634   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5635   jt->set_suspend_equivalent();
5636   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5637 
5638   assert(_cur_index == -1, "invariant");
5639   if (time == 0) {
5640     _cur_index = REL_INDEX; // arbitrary choice when not timed
5641     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5642   } else {
5643     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5644     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5645     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5646       pthread_cond_destroy(&_cond[_cur_index]);
5647       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5648     }
5649   }
5650   _cur_index = -1;
5651   assert_status(status == 0 || status == EINTR ||
5652                 status == ETIME || status == ETIMEDOUT,
5653                 status, "cond_timedwait");
5654 
5655 #ifdef ASSERT
5656   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5657 #endif
5658 
5659   _counter = 0;
5660   status = pthread_mutex_unlock(_mutex);
5661   assert_status(status == 0, status, "invariant");
5662   // Paranoia to ensure our locked and lock-free paths interact
5663   // correctly with each other and Java-level accesses.
5664   OrderAccess::fence();
5665 
5666   // If externally suspended while waiting, re-suspend
5667   if (jt->handle_special_suspend_equivalent_condition()) {
5668     jt->java_suspend_self();
5669   }
5670 }
5671 
5672 void Parker::unpark() {
5673   int status = pthread_mutex_lock(_mutex);
5674   assert(status == 0, "invariant");
5675   const int s = _counter;
5676   _counter = 1;
5677   if (s < 1) {
5678     // thread might be parked
5679     if (_cur_index != -1) {
5680       // thread is definitely parked
5681       if (WorkAroundNPTLTimedWaitHang) {
5682         status = pthread_cond_signal(&_cond[_cur_index]);
5683         assert(status == 0, "invariant");
5684         status = pthread_mutex_unlock(_mutex);
5685         assert(status == 0, "invariant");
5686       } else {
5687         status = pthread_mutex_unlock(_mutex);
5688         assert(status == 0, "invariant");
5689         status = pthread_cond_signal(&_cond[_cur_index]);
5690         assert(status == 0, "invariant");
5691       }
5692     } else {
5693       pthread_mutex_unlock(_mutex);
5694       assert(status == 0, "invariant");
5695     }
5696   } else {
5697     pthread_mutex_unlock(_mutex);
5698     assert(status == 0, "invariant");
5699   }
5700 }
5701 
5702 
5703 extern char** environ;
5704 
5705 // Run the specified command in a separate process. Return its exit value,
5706 // or -1 on failure (e.g. can't fork a new process).
5707 // Unlike system(), this function can be called from signal handler. It
5708 // doesn't block SIGINT et al.
5709 int os::fork_and_exec(char* cmd) {
5710   const char * argv[4] = {"sh", "-c", cmd, NULL};
5711 
5712   pid_t pid = fork();
5713 
5714   if (pid < 0) {
5715     // fork failed
5716     return -1;
5717 
5718   } else if (pid == 0) {
5719     // child process
5720 
5721     execve("/bin/sh", (char* const*)argv, environ);
5722 
5723     // execve failed
5724     _exit(-1);
5725 
5726   } else  {
5727     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5728     // care about the actual exit code, for now.
5729 
5730     int status;
5731 
5732     // Wait for the child process to exit.  This returns immediately if
5733     // the child has already exited. */
5734     while (waitpid(pid, &status, 0) < 0) {
5735       switch (errno) {
5736       case ECHILD: return 0;
5737       case EINTR: break;
5738       default: return -1;
5739       }
5740     }
5741 
5742     if (WIFEXITED(status)) {
5743       // The child exited normally; get its exit code.
5744       return WEXITSTATUS(status);
5745     } else if (WIFSIGNALED(status)) {
5746       // The child exited because of a signal
5747       // The best value to return is 0x80 + signal number,
5748       // because that is what all Unix shells do, and because
5749       // it allows callers to distinguish between process exit and
5750       // process death by signal.
5751       return 0x80 + WTERMSIG(status);
5752     } else {
5753       // Unknown exit code; pass it through
5754       return status;
5755     }
5756   }
5757 }
5758 
5759 // is_headless_jre()
5760 //
5761 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5762 // in order to report if we are running in a headless jre
5763 //
5764 // Since JDK8 xawt/libmawt.so was moved into the same directory
5765 // as libawt.so, and renamed libawt_xawt.so
5766 //
5767 bool os::is_headless_jre() {
5768   struct stat statbuf;
5769   char buf[MAXPATHLEN];
5770   char libmawtpath[MAXPATHLEN];
5771   const char *xawtstr  = "/xawt/libmawt.so";
5772   const char *new_xawtstr = "/libawt_xawt.so";
5773   char *p;
5774 
5775   // Get path to libjvm.so
5776   os::jvm_path(buf, sizeof(buf));
5777 
5778   // Get rid of libjvm.so
5779   p = strrchr(buf, '/');
5780   if (p == NULL) {
5781     return false;
5782   } else {
5783     *p = '\0';
5784   }
5785 
5786   // Get rid of client or server
5787   p = strrchr(buf, '/');
5788   if (p == NULL) {
5789     return false;
5790   } else {
5791     *p = '\0';
5792   }
5793 
5794   // check xawt/libmawt.so
5795   strcpy(libmawtpath, buf);
5796   strcat(libmawtpath, xawtstr);
5797   if (::stat(libmawtpath, &statbuf) == 0) return false;
5798 
5799   // check libawt_xawt.so
5800   strcpy(libmawtpath, buf);
5801   strcat(libmawtpath, new_xawtstr);
5802   if (::stat(libmawtpath, &statbuf) == 0) return false;
5803 
5804   return true;
5805 }
5806 
5807 // Get the default path to the core file
5808 // Returns the length of the string
5809 int os::get_core_path(char* buffer, size_t bufferSize) {
5810   /*
5811    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5812    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5813    */
5814   const int core_pattern_len = 129;
5815   char core_pattern[core_pattern_len] = {0};
5816 
5817   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5818   if (core_pattern_file != -1) {
5819     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5820     ::close(core_pattern_file);
5821 
5822     if (ret > 0) {
5823       char *last_char = core_pattern + strlen(core_pattern) - 1;
5824 
5825       if (*last_char == '\n') {
5826         *last_char = '\0';
5827       }
5828     }
5829   }
5830 
5831   if (strlen(core_pattern) == 0) {
5832     return -1;
5833   }
5834 
5835   char *pid_pos = strstr(core_pattern, "%p");
5836   int written;
5837 
5838   if (core_pattern[0] == '/') {
5839     written = jio_snprintf(buffer, bufferSize, core_pattern);
5840   } else {
5841     char cwd[PATH_MAX];
5842 
5843     const char* p = get_current_directory(cwd, PATH_MAX);
5844     if (p == NULL) {
5845       return -1;
5846     }
5847 
5848     if (core_pattern[0] == '|') {
5849       written = jio_snprintf(buffer, bufferSize,
5850                         "\"%s\" (or dumping to %s/core.%d)",
5851                                      &core_pattern[1], p, current_process_id());
5852     } else {
5853       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5854     }
5855   }
5856 
5857   if (written < 0) {
5858     return -1;
5859   }
5860 
5861   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5862     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5863 
5864     if (core_uses_pid_file != -1) {
5865       char core_uses_pid = 0;
5866       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5867       ::close(core_uses_pid_file);
5868 
5869       if (core_uses_pid == '1') {
5870         jio_snprintf(buffer + written, bufferSize - written,
5871                                           ".%d", current_process_id());
5872       }
5873     }
5874   }
5875 
5876   return strlen(buffer);
5877 }
5878 
5879 /////////////// Unit tests ///////////////
5880 
5881 #ifndef PRODUCT
5882 
5883 #define test_log(...)              \
5884   do {                             \
5885     if (VerboseInternalVMTests) {  \
5886       tty->print_cr(__VA_ARGS__);  \
5887       tty->flush();                \
5888     }                              \
5889   } while (false)
5890 
5891 class TestReserveMemorySpecial : AllStatic {
5892  public:
5893   static void small_page_write(void* addr, size_t size) {
5894     size_t page_size = os::vm_page_size();
5895 
5896     char* end = (char*)addr + size;
5897     for (char* p = (char*)addr; p < end; p += page_size) {
5898       *p = 1;
5899     }
5900   }
5901 
5902   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5903     if (!UseHugeTLBFS) {
5904       return;
5905     }
5906 
5907     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5908 
5909     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5910 
5911     if (addr != NULL) {
5912       small_page_write(addr, size);
5913 
5914       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5915     }
5916   }
5917 
5918   static void test_reserve_memory_special_huge_tlbfs_only() {
5919     if (!UseHugeTLBFS) {
5920       return;
5921     }
5922 
5923     size_t lp = os::large_page_size();
5924 
5925     for (size_t size = lp; size <= lp * 10; size += lp) {
5926       test_reserve_memory_special_huge_tlbfs_only(size);
5927     }
5928   }
5929 
5930   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5931     size_t lp = os::large_page_size();
5932     size_t ag = os::vm_allocation_granularity();
5933 
5934     // sizes to test
5935     const size_t sizes[] = {
5936       lp, lp + ag, lp + lp / 2, lp * 2,
5937       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5938       lp * 10, lp * 10 + lp / 2
5939     };
5940     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5941 
5942     // For each size/alignment combination, we test three scenarios:
5943     // 1) with req_addr == NULL
5944     // 2) with a non-null req_addr at which we expect to successfully allocate
5945     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5946     //    expect the allocation to either fail or to ignore req_addr
5947 
5948     // Pre-allocate two areas; they shall be as large as the largest allocation
5949     //  and aligned to the largest alignment we will be testing.
5950     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5951     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5952       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5953       -1, 0);
5954     assert(mapping1 != MAP_FAILED, "should work");
5955 
5956     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5957       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5958       -1, 0);
5959     assert(mapping2 != MAP_FAILED, "should work");
5960 
5961     // Unmap the first mapping, but leave the second mapping intact: the first
5962     // mapping will serve as a value for a "good" req_addr (case 2). The second
5963     // mapping, still intact, as "bad" req_addr (case 3).
5964     ::munmap(mapping1, mapping_size);
5965 
5966     // Case 1
5967     test_log("%s, req_addr NULL:", __FUNCTION__);
5968     test_log("size            align           result");
5969 
5970     for (int i = 0; i < num_sizes; i++) {
5971       const size_t size = sizes[i];
5972       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
5973         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5974         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5975             size, alignment, p, (p != NULL ? "" : "(failed)"));
5976         if (p != NULL) {
5977           assert(is_ptr_aligned(p, alignment), "must be");
5978           small_page_write(p, size);
5979           os::Linux::release_memory_special_huge_tlbfs(p, size);
5980         }
5981       }
5982     }
5983 
5984     // Case 2
5985     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5986     test_log("size            align           req_addr         result");
5987 
5988     for (int i = 0; i < num_sizes; i++) {
5989       const size_t size = sizes[i];
5990       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
5991         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
5992         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5993         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5994             size, alignment, req_addr, p,
5995             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5996         if (p != NULL) {
5997           assert(p == req_addr, "must be");
5998           small_page_write(p, size);
5999           os::Linux::release_memory_special_huge_tlbfs(p, size);
6000         }
6001       }
6002     }
6003 
6004     // Case 3
6005     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6006     test_log("size            align           req_addr         result");
6007 
6008     for (int i = 0; i < num_sizes; i++) {
6009       const size_t size = sizes[i];
6010       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6011         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6012         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6013         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6014             size, alignment, req_addr, p,
6015             ((p != NULL ? "" : "(failed)")));
6016         // as the area around req_addr contains already existing mappings, the API should always
6017         // return NULL (as per contract, it cannot return another address)
6018         assert(p == NULL, "must be");
6019       }
6020     }
6021 
6022     ::munmap(mapping2, mapping_size);
6023 
6024   }
6025 
6026   static void test_reserve_memory_special_huge_tlbfs() {
6027     if (!UseHugeTLBFS) {
6028       return;
6029     }
6030 
6031     test_reserve_memory_special_huge_tlbfs_only();
6032     test_reserve_memory_special_huge_tlbfs_mixed();
6033   }
6034 
6035   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6036     if (!UseSHM) {
6037       return;
6038     }
6039 
6040     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6041 
6042     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6043 
6044     if (addr != NULL) {
6045       assert(is_ptr_aligned(addr, alignment), "Check");
6046       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6047 
6048       small_page_write(addr, size);
6049 
6050       os::Linux::release_memory_special_shm(addr, size);
6051     }
6052   }
6053 
6054   static void test_reserve_memory_special_shm() {
6055     size_t lp = os::large_page_size();
6056     size_t ag = os::vm_allocation_granularity();
6057 
6058     for (size_t size = ag; size < lp * 3; size += ag) {
6059       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6060         test_reserve_memory_special_shm(size, alignment);
6061       }
6062     }
6063   }
6064 
6065   static void test() {
6066     test_reserve_memory_special_huge_tlbfs();
6067     test_reserve_memory_special_shm();
6068   }
6069 };
6070 
6071 void TestReserveMemorySpecial_test() {
6072   TestReserveMemorySpecial::test();
6073 }
6074 
6075 #endif