1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_solaris.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_solaris.hpp"
  40 #include "os_solaris.inline.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "runtime/vm_version.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/vmError.hpp"
  72 
  73 // put OS-includes here
  74 # include <dlfcn.h>
  75 # include <errno.h>
  76 # include <exception>
  77 # include <link.h>
  78 # include <poll.h>
  79 # include <pthread.h>
  80 # include <pwd.h>
  81 # include <schedctl.h>
  82 # include <setjmp.h>
  83 # include <signal.h>
  84 # include <stdio.h>
  85 # include <alloca.h>
  86 # include <sys/filio.h>
  87 # include <sys/ipc.h>
  88 # include <sys/lwp.h>
  89 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  90 # include <sys/mman.h>
  91 # include <sys/processor.h>
  92 # include <sys/procset.h>
  93 # include <sys/pset.h>
  94 # include <sys/resource.h>
  95 # include <sys/shm.h>
  96 # include <sys/socket.h>
  97 # include <sys/stat.h>
  98 # include <sys/systeminfo.h>
  99 # include <sys/time.h>
 100 # include <sys/times.h>
 101 # include <sys/types.h>
 102 # include <sys/wait.h>
 103 # include <sys/utsname.h>
 104 # include <thread.h>
 105 # include <unistd.h>
 106 # include <sys/priocntl.h>
 107 # include <sys/rtpriocntl.h>
 108 # include <sys/tspriocntl.h>
 109 # include <sys/iapriocntl.h>
 110 # include <sys/fxpriocntl.h>
 111 # include <sys/loadavg.h>
 112 # include <string.h>
 113 # include <stdio.h>
 114 
 115 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 116 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 117 
 118 #define MAX_PATH (2 * K)
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 
 124 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 125 // compile on older systems without this header file.
 126 
 127 #ifndef MADV_ACCESS_LWP
 128   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 129 #endif
 130 #ifndef MADV_ACCESS_MANY
 131   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 132 #endif
 133 
 134 #ifndef LGRP_RSRC_CPU
 135   #define LGRP_RSRC_CPU      0       /* CPU resources */
 136 #endif
 137 #ifndef LGRP_RSRC_MEM
 138   #define LGRP_RSRC_MEM      1       /* memory resources */
 139 #endif
 140 
 141 // Values for ThreadPriorityPolicy == 1
 142 int prio_policy1[CriticalPriority+1] = {
 143   -99999,  0, 16,  32,  48,  64,
 144           80, 96, 112, 124, 127, 127 };
 145 
 146 // System parameters used internally
 147 static clock_t clock_tics_per_sec = 100;
 148 
 149 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 150 static bool enabled_extended_FILE_stdio = false;
 151 
 152 // For diagnostics to print a message once. see run_periodic_checks
 153 static bool check_addr0_done = false;
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 158 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 159 
 160 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 161 
 162 
 163 // "default" initializers for missing libc APIs
 164 extern "C" {
 165   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 166   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 167 
 168   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 169   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 170 }
 171 
 172 // "default" initializers for pthread-based synchronization
 173 extern "C" {
 174   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 175   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 176 }
 177 
 178 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 179 
 180 static inline size_t adjust_stack_size(address base, size_t size) {
 181   if ((ssize_t)size < 0) {
 182     // 4759953: Compensate for ridiculous stack size.
 183     size = max_intx;
 184   }
 185   if (size > (size_t)base) {
 186     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 187     size = (size_t)base;
 188   }
 189   return size;
 190 }
 191 
 192 static inline stack_t get_stack_info() {
 193   stack_t st;
 194   int retval = thr_stksegment(&st);
 195   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 196   assert(retval == 0, "incorrect return value from thr_stksegment");
 197   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 198   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 199   return st;
 200 }
 201 
 202 address os::current_stack_base() {
 203   int r = thr_main();
 204   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 205   bool is_primordial_thread = r;
 206 
 207   // Workaround 4352906, avoid calls to thr_stksegment by
 208   // thr_main after the first one (it looks like we trash
 209   // some data, causing the value for ss_sp to be incorrect).
 210   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 211     stack_t st = get_stack_info();
 212     if (is_primordial_thread) {
 213       // cache initial value of stack base
 214       os::Solaris::_main_stack_base = (address)st.ss_sp;
 215     }
 216     return (address)st.ss_sp;
 217   } else {
 218     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 219     return os::Solaris::_main_stack_base;
 220   }
 221 }
 222 
 223 size_t os::current_stack_size() {
 224   size_t size;
 225 
 226   int r = thr_main();
 227   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 228   if (!r) {
 229     size = get_stack_info().ss_size;
 230   } else {
 231     struct rlimit limits;
 232     getrlimit(RLIMIT_STACK, &limits);
 233     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 234   }
 235   // base may not be page aligned
 236   address base = current_stack_base();
 237   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
 238   return (size_t)(base - bottom);
 239 }
 240 
 241 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 242   return localtime_r(clock, res);
 243 }
 244 
 245 void os::Solaris::try_enable_extended_io() {
 246   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 247 
 248   if (!UseExtendedFileIO) {
 249     return;
 250   }
 251 
 252   enable_extended_FILE_stdio_t enabler =
 253     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 254                                          "enable_extended_FILE_stdio");
 255   if (enabler) {
 256     enabler(-1, -1);
 257   }
 258 }
 259 
 260 static int _processors_online = 0;
 261 
 262 jint os::Solaris::_os_thread_limit = 0;
 263 volatile jint os::Solaris::_os_thread_count = 0;
 264 
 265 julong os::available_memory() {
 266   return Solaris::available_memory();
 267 }
 268 
 269 julong os::Solaris::available_memory() {
 270   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 271 }
 272 
 273 julong os::Solaris::_physical_memory = 0;
 274 
 275 julong os::physical_memory() {
 276   return Solaris::physical_memory();
 277 }
 278 
 279 static hrtime_t first_hrtime = 0;
 280 static const hrtime_t hrtime_hz = 1000*1000*1000;
 281 static volatile hrtime_t max_hrtime = 0;
 282 
 283 
 284 void os::Solaris::initialize_system_info() {
 285   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 286   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 287   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 288                                      (julong)sysconf(_SC_PAGESIZE);
 289 }
 290 
 291 int os::active_processor_count() {
 292   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 293   pid_t pid = getpid();
 294   psetid_t pset = PS_NONE;
 295   // Are we running in a processor set or is there any processor set around?
 296   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 297     uint_t pset_cpus;
 298     // Query the number of cpus available to us.
 299     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 300       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 301       _processors_online = pset_cpus;
 302       return pset_cpus;
 303     }
 304   }
 305   // Otherwise return number of online cpus
 306   return online_cpus;
 307 }
 308 
 309 static bool find_processors_in_pset(psetid_t        pset,
 310                                     processorid_t** id_array,
 311                                     uint_t*         id_length) {
 312   bool result = false;
 313   // Find the number of processors in the processor set.
 314   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 315     // Make up an array to hold their ids.
 316     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 317     // Fill in the array with their processor ids.
 318     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 319       result = true;
 320     }
 321   }
 322   return result;
 323 }
 324 
 325 // Callers of find_processors_online() must tolerate imprecise results --
 326 // the system configuration can change asynchronously because of DR
 327 // or explicit psradm operations.
 328 //
 329 // We also need to take care that the loop (below) terminates as the
 330 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 331 // request and the loop that builds the list of processor ids.   Unfortunately
 332 // there's no reliable way to determine the maximum valid processor id,
 333 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 334 // man pages, which claim the processor id set is "sparse, but
 335 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 336 // exit the loop.
 337 //
 338 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 339 // not available on S8.0.
 340 
 341 static bool find_processors_online(processorid_t** id_array,
 342                                    uint*           id_length) {
 343   const processorid_t MAX_PROCESSOR_ID = 100000;
 344   // Find the number of processors online.
 345   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 346   // Make up an array to hold their ids.
 347   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 348   // Processors need not be numbered consecutively.
 349   long found = 0;
 350   processorid_t next = 0;
 351   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 352     processor_info_t info;
 353     if (processor_info(next, &info) == 0) {
 354       // NB, PI_NOINTR processors are effectively online ...
 355       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 356         (*id_array)[found] = next;
 357         found += 1;
 358       }
 359     }
 360     next += 1;
 361   }
 362   if (found < *id_length) {
 363     // The loop above didn't identify the expected number of processors.
 364     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 365     // and re-running the loop, above, but there's no guarantee of progress
 366     // if the system configuration is in flux.  Instead, we just return what
 367     // we've got.  Note that in the worst case find_processors_online() could
 368     // return an empty set.  (As a fall-back in the case of the empty set we
 369     // could just return the ID of the current processor).
 370     *id_length = found;
 371   }
 372 
 373   return true;
 374 }
 375 
 376 static bool assign_distribution(processorid_t* id_array,
 377                                 uint           id_length,
 378                                 uint*          distribution,
 379                                 uint           distribution_length) {
 380   // We assume we can assign processorid_t's to uint's.
 381   assert(sizeof(processorid_t) == sizeof(uint),
 382          "can't convert processorid_t to uint");
 383   // Quick check to see if we won't succeed.
 384   if (id_length < distribution_length) {
 385     return false;
 386   }
 387   // Assign processor ids to the distribution.
 388   // Try to shuffle processors to distribute work across boards,
 389   // assuming 4 processors per board.
 390   const uint processors_per_board = ProcessDistributionStride;
 391   // Find the maximum processor id.
 392   processorid_t max_id = 0;
 393   for (uint m = 0; m < id_length; m += 1) {
 394     max_id = MAX2(max_id, id_array[m]);
 395   }
 396   // The next id, to limit loops.
 397   const processorid_t limit_id = max_id + 1;
 398   // Make up markers for available processors.
 399   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 400   for (uint c = 0; c < limit_id; c += 1) {
 401     available_id[c] = false;
 402   }
 403   for (uint a = 0; a < id_length; a += 1) {
 404     available_id[id_array[a]] = true;
 405   }
 406   // Step by "boards", then by "slot", copying to "assigned".
 407   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 408   //                remembering which processors have been assigned by
 409   //                previous calls, etc., so as to distribute several
 410   //                independent calls of this method.  What we'd like is
 411   //                It would be nice to have an API that let us ask
 412   //                how many processes are bound to a processor,
 413   //                but we don't have that, either.
 414   //                In the short term, "board" is static so that
 415   //                subsequent distributions don't all start at board 0.
 416   static uint board = 0;
 417   uint assigned = 0;
 418   // Until we've found enough processors ....
 419   while (assigned < distribution_length) {
 420     // ... find the next available processor in the board.
 421     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 422       uint try_id = board * processors_per_board + slot;
 423       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 424         distribution[assigned] = try_id;
 425         available_id[try_id] = false;
 426         assigned += 1;
 427         break;
 428       }
 429     }
 430     board += 1;
 431     if (board * processors_per_board + 0 >= limit_id) {
 432       board = 0;
 433     }
 434   }
 435   if (available_id != NULL) {
 436     FREE_C_HEAP_ARRAY(bool, available_id);
 437   }
 438   return true;
 439 }
 440 
 441 void os::set_native_thread_name(const char *name) {
 442   // Not yet implemented.
 443   return;
 444 }
 445 
 446 bool os::distribute_processes(uint length, uint* distribution) {
 447   bool result = false;
 448   // Find the processor id's of all the available CPUs.
 449   processorid_t* id_array  = NULL;
 450   uint           id_length = 0;
 451   // There are some races between querying information and using it,
 452   // since processor sets can change dynamically.
 453   psetid_t pset = PS_NONE;
 454   // Are we running in a processor set?
 455   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 456     result = find_processors_in_pset(pset, &id_array, &id_length);
 457   } else {
 458     result = find_processors_online(&id_array, &id_length);
 459   }
 460   if (result == true) {
 461     if (id_length >= length) {
 462       result = assign_distribution(id_array, id_length, distribution, length);
 463     } else {
 464       result = false;
 465     }
 466   }
 467   if (id_array != NULL) {
 468     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 469   }
 470   return result;
 471 }
 472 
 473 bool os::bind_to_processor(uint processor_id) {
 474   // We assume that a processorid_t can be stored in a uint.
 475   assert(sizeof(uint) == sizeof(processorid_t),
 476          "can't convert uint to processorid_t");
 477   int bind_result =
 478     processor_bind(P_LWPID,                       // bind LWP.
 479                    P_MYID,                        // bind current LWP.
 480                    (processorid_t) processor_id,  // id.
 481                    NULL);                         // don't return old binding.
 482   return (bind_result == 0);
 483 }
 484 
 485 // Return true if user is running as root.
 486 
 487 bool os::have_special_privileges() {
 488   static bool init = false;
 489   static bool privileges = false;
 490   if (!init) {
 491     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 492     init = true;
 493   }
 494   return privileges;
 495 }
 496 
 497 
 498 void os::init_system_properties_values() {
 499   // The next steps are taken in the product version:
 500   //
 501   // Obtain the JAVA_HOME value from the location of libjvm.so.
 502   // This library should be located at:
 503   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 504   //
 505   // If "/jre/lib/" appears at the right place in the path, then we
 506   // assume libjvm.so is installed in a JDK and we use this path.
 507   //
 508   // Otherwise exit with message: "Could not create the Java virtual machine."
 509   //
 510   // The following extra steps are taken in the debugging version:
 511   //
 512   // If "/jre/lib/" does NOT appear at the right place in the path
 513   // instead of exit check for $JAVA_HOME environment variable.
 514   //
 515   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 516   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 517   // it looks like libjvm.so is installed there
 518   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 519   //
 520   // Otherwise exit.
 521   //
 522   // Important note: if the location of libjvm.so changes this
 523   // code needs to be changed accordingly.
 524 
 525 // Base path of extensions installed on the system.
 526 #define SYS_EXT_DIR     "/usr/jdk/packages"
 527 #define EXTENSIONS_DIR  "/lib/ext"
 528 
 529   char cpu_arch[12];
 530   // Buffer that fits several sprintfs.
 531   // Note that the space for the colon and the trailing null are provided
 532   // by the nulls included by the sizeof operator.
 533   const size_t bufsize =
 534     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 535          sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
 536          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 537   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 538 
 539   // sysclasspath, java_home, dll_dir
 540   {
 541     char *pslash;
 542     os::jvm_path(buf, bufsize);
 543 
 544     // Found the full path to libjvm.so.
 545     // Now cut the path to <java_home>/jre if we can.
 546     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 547     pslash = strrchr(buf, '/');
 548     if (pslash != NULL) {
 549       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 550     }
 551     Arguments::set_dll_dir(buf);
 552 
 553     if (pslash != NULL) {
 554       pslash = strrchr(buf, '/');
 555       if (pslash != NULL) {
 556         *pslash = '\0';          // Get rid of /<arch>.
 557         pslash = strrchr(buf, '/');
 558         if (pslash != NULL) {
 559           *pslash = '\0';        // Get rid of /lib.
 560         }
 561       }
 562     }
 563     Arguments::set_java_home(buf);
 564     set_boot_path('/', ':');
 565   }
 566 
 567   // Where to look for native libraries.
 568   {
 569     // Use dlinfo() to determine the correct java.library.path.
 570     //
 571     // If we're launched by the Java launcher, and the user
 572     // does not set java.library.path explicitly on the commandline,
 573     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 574     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 575     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 576     // /usr/lib), which is exactly what we want.
 577     //
 578     // If the user does set java.library.path, it completely
 579     // overwrites this setting, and always has.
 580     //
 581     // If we're not launched by the Java launcher, we may
 582     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 583     // settings.  Again, dlinfo does exactly what we want.
 584 
 585     Dl_serinfo     info_sz, *info = &info_sz;
 586     Dl_serpath     *path;
 587     char           *library_path;
 588     char           *common_path = buf;
 589 
 590     // Determine search path count and required buffer size.
 591     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 592       FREE_C_HEAP_ARRAY(char, buf);
 593       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 594     }
 595 
 596     // Allocate new buffer and initialize.
 597     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 598     info->dls_size = info_sz.dls_size;
 599     info->dls_cnt = info_sz.dls_cnt;
 600 
 601     // Obtain search path information.
 602     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 603       FREE_C_HEAP_ARRAY(char, buf);
 604       FREE_C_HEAP_ARRAY(char, info);
 605       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 606     }
 607 
 608     path = &info->dls_serpath[0];
 609 
 610     // Note: Due to a legacy implementation, most of the library path
 611     // is set in the launcher. This was to accomodate linking restrictions
 612     // on legacy Solaris implementations (which are no longer supported).
 613     // Eventually, all the library path setting will be done here.
 614     //
 615     // However, to prevent the proliferation of improperly built native
 616     // libraries, the new path component /usr/jdk/packages is added here.
 617 
 618     // Determine the actual CPU architecture.
 619     sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
 620 #ifdef _LP64
 621     // If we are a 64-bit vm, perform the following translations:
 622     //   sparc   -> sparcv9
 623     //   i386    -> amd64
 624     if (strcmp(cpu_arch, "sparc") == 0) {
 625       strcat(cpu_arch, "v9");
 626     } else if (strcmp(cpu_arch, "i386") == 0) {
 627       strcpy(cpu_arch, "amd64");
 628     }
 629 #endif
 630 
 631     // Construct the invariant part of ld_library_path.
 632     sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
 633 
 634     // Struct size is more than sufficient for the path components obtained
 635     // through the dlinfo() call, so only add additional space for the path
 636     // components explicitly added here.
 637     size_t library_path_size = info->dls_size + strlen(common_path);
 638     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 639     library_path[0] = '\0';
 640 
 641     // Construct the desired Java library path from the linker's library
 642     // search path.
 643     //
 644     // For compatibility, it is optimal that we insert the additional path
 645     // components specific to the Java VM after those components specified
 646     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 647     // infrastructure.
 648     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 649       strcpy(library_path, common_path);
 650     } else {
 651       int inserted = 0;
 652       int i;
 653       for (i = 0; i < info->dls_cnt; i++, path++) {
 654         uint_t flags = path->dls_flags & LA_SER_MASK;
 655         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 656           strcat(library_path, common_path);
 657           strcat(library_path, os::path_separator());
 658           inserted = 1;
 659         }
 660         strcat(library_path, path->dls_name);
 661         strcat(library_path, os::path_separator());
 662       }
 663       // Eliminate trailing path separator.
 664       library_path[strlen(library_path)-1] = '\0';
 665     }
 666 
 667     // happens before argument parsing - can't use a trace flag
 668     // tty->print_raw("init_system_properties_values: native lib path: ");
 669     // tty->print_raw_cr(library_path);
 670 
 671     // Callee copies into its own buffer.
 672     Arguments::set_library_path(library_path);
 673 
 674     FREE_C_HEAP_ARRAY(char, library_path);
 675     FREE_C_HEAP_ARRAY(char, info);
 676   }
 677 
 678   // Extensions directories.
 679   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 680   Arguments::set_ext_dirs(buf);
 681 
 682   FREE_C_HEAP_ARRAY(char, buf);
 683 
 684 #undef SYS_EXT_DIR
 685 #undef EXTENSIONS_DIR
 686 }
 687 
 688 void os::breakpoint() {
 689   BREAKPOINT;
 690 }
 691 
 692 bool os::obsolete_option(const JavaVMOption *option) {
 693   if (!strncmp(option->optionString, "-Xt", 3)) {
 694     return true;
 695   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
 696     return true;
 697   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
 698     return true;
 699   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
 700     return true;
 701   }
 702   return false;
 703 }
 704 
 705 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 706   address  stackStart  = (address)thread->stack_base();
 707   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 708   if (sp < stackStart && sp >= stackEnd) return true;
 709   return false;
 710 }
 711 
 712 extern "C" void breakpoint() {
 713   // use debugger to set breakpoint here
 714 }
 715 
 716 static thread_t main_thread;
 717 
 718 // Thread start routine for all new Java threads
 719 extern "C" void* java_start(void* thread_addr) {
 720   // Try to randomize the cache line index of hot stack frames.
 721   // This helps when threads of the same stack traces evict each other's
 722   // cache lines. The threads can be either from the same JVM instance, or
 723   // from different JVM instances. The benefit is especially true for
 724   // processors with hyperthreading technology.
 725   static int counter = 0;
 726   int pid = os::current_process_id();
 727   alloca(((pid ^ counter++) & 7) * 128);
 728 
 729   int prio;
 730   Thread* thread = (Thread*)thread_addr;
 731 
 732   thread->initialize_thread_current();
 733 
 734   OSThread* osthr = thread->osthread();
 735 
 736   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 737   thread->_schedctl = (void *) schedctl_init();
 738 
 739   if (UseNUMA) {
 740     int lgrp_id = os::numa_get_group_id();
 741     if (lgrp_id != -1) {
 742       thread->set_lgrp_id(lgrp_id);
 743     }
 744   }
 745 
 746   // If the creator called set priority before we started,
 747   // we need to call set_native_priority now that we have an lwp.
 748   // We used to get the priority from thr_getprio (we called
 749   // thr_setprio way back in create_thread) and pass it to
 750   // set_native_priority, but Solaris scales the priority
 751   // in java_to_os_priority, so when we read it back here,
 752   // we pass trash to set_native_priority instead of what's
 753   // in java_to_os_priority. So we save the native priority
 754   // in the osThread and recall it here.
 755 
 756   if (osthr->thread_id() != -1) {
 757     if (UseThreadPriorities) {
 758       int prio = osthr->native_priority();
 759       if (ThreadPriorityVerbose) {
 760         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 761                       INTPTR_FORMAT ", setting priority: %d\n",
 762                       osthr->thread_id(), osthr->lwp_id(), prio);
 763       }
 764       os::set_native_priority(thread, prio);
 765     }
 766   } else if (ThreadPriorityVerbose) {
 767     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 768   }
 769 
 770   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 771 
 772   // initialize signal mask for this thread
 773   os::Solaris::hotspot_sigmask(thread);
 774 
 775   thread->run();
 776 
 777   // One less thread is executing
 778   // When the VMThread gets here, the main thread may have already exited
 779   // which frees the CodeHeap containing the Atomic::dec code
 780   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 781     Atomic::dec(&os::Solaris::_os_thread_count);
 782   }
 783 
 784   if (UseDetachedThreads) {
 785     thr_exit(NULL);
 786     ShouldNotReachHere();
 787   }
 788   return NULL;
 789 }
 790 
 791 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 792   // Allocate the OSThread object
 793   OSThread* osthread = new OSThread(NULL, NULL);
 794   if (osthread == NULL) return NULL;
 795 
 796   // Store info on the Solaris thread into the OSThread
 797   osthread->set_thread_id(thread_id);
 798   osthread->set_lwp_id(_lwp_self());
 799   thread->_schedctl = (void *) schedctl_init();
 800 
 801   if (UseNUMA) {
 802     int lgrp_id = os::numa_get_group_id();
 803     if (lgrp_id != -1) {
 804       thread->set_lgrp_id(lgrp_id);
 805     }
 806   }
 807 
 808   if (ThreadPriorityVerbose) {
 809     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 810                   osthread->thread_id(), osthread->lwp_id());
 811   }
 812 
 813   // Initial thread state is INITIALIZED, not SUSPENDED
 814   osthread->set_state(INITIALIZED);
 815 
 816   return osthread;
 817 }
 818 
 819 void os::Solaris::hotspot_sigmask(Thread* thread) {
 820   //Save caller's signal mask
 821   sigset_t sigmask;
 822   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 823   OSThread *osthread = thread->osthread();
 824   osthread->set_caller_sigmask(sigmask);
 825 
 826   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 827   if (!ReduceSignalUsage) {
 828     if (thread->is_VM_thread()) {
 829       // Only the VM thread handles BREAK_SIGNAL ...
 830       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 831     } else {
 832       // ... all other threads block BREAK_SIGNAL
 833       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 834       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 835     }
 836   }
 837 }
 838 
 839 bool os::create_attached_thread(JavaThread* thread) {
 840 #ifdef ASSERT
 841   thread->verify_not_published();
 842 #endif
 843   OSThread* osthread = create_os_thread(thread, thr_self());
 844   if (osthread == NULL) {
 845     return false;
 846   }
 847 
 848   // Initial thread state is RUNNABLE
 849   osthread->set_state(RUNNABLE);
 850   thread->set_osthread(osthread);
 851 
 852   // initialize signal mask for this thread
 853   // and save the caller's signal mask
 854   os::Solaris::hotspot_sigmask(thread);
 855 
 856   return true;
 857 }
 858 
 859 bool os::create_main_thread(JavaThread* thread) {
 860 #ifdef ASSERT
 861   thread->verify_not_published();
 862 #endif
 863   if (_starting_thread == NULL) {
 864     _starting_thread = create_os_thread(thread, main_thread);
 865     if (_starting_thread == NULL) {
 866       return false;
 867     }
 868   }
 869 
 870   // The primodial thread is runnable from the start
 871   _starting_thread->set_state(RUNNABLE);
 872 
 873   thread->set_osthread(_starting_thread);
 874 
 875   // initialize signal mask for this thread
 876   // and save the caller's signal mask
 877   os::Solaris::hotspot_sigmask(thread);
 878 
 879   return true;
 880 }
 881 
 882 
 883 bool os::create_thread(Thread* thread, ThreadType thr_type,
 884                        size_t stack_size) {
 885   // Allocate the OSThread object
 886   OSThread* osthread = new OSThread(NULL, NULL);
 887   if (osthread == NULL) {
 888     return false;
 889   }
 890 
 891   if (ThreadPriorityVerbose) {
 892     char *thrtyp;
 893     switch (thr_type) {
 894     case vm_thread:
 895       thrtyp = (char *)"vm";
 896       break;
 897     case cgc_thread:
 898       thrtyp = (char *)"cgc";
 899       break;
 900     case pgc_thread:
 901       thrtyp = (char *)"pgc";
 902       break;
 903     case java_thread:
 904       thrtyp = (char *)"java";
 905       break;
 906     case compiler_thread:
 907       thrtyp = (char *)"compiler";
 908       break;
 909     case watcher_thread:
 910       thrtyp = (char *)"watcher";
 911       break;
 912     default:
 913       thrtyp = (char *)"unknown";
 914       break;
 915     }
 916     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 917   }
 918 
 919   // Calculate stack size if it's not specified by caller.
 920   if (stack_size == 0) {
 921     // The default stack size 1M (2M for LP64).
 922     stack_size = (BytesPerWord >> 2) * K * K;
 923 
 924     switch (thr_type) {
 925     case os::java_thread:
 926       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 927       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
 928       break;
 929     case os::compiler_thread:
 930       if (CompilerThreadStackSize > 0) {
 931         stack_size = (size_t)(CompilerThreadStackSize * K);
 932         break;
 933       } // else fall through:
 934         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 935     case os::vm_thread:
 936     case os::pgc_thread:
 937     case os::cgc_thread:
 938     case os::watcher_thread:
 939       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 940       break;
 941     }
 942   }
 943   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
 944 
 945   // Initial state is ALLOCATED but not INITIALIZED
 946   osthread->set_state(ALLOCATED);
 947 
 948   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 949     // We got lots of threads. Check if we still have some address space left.
 950     // Need to be at least 5Mb of unreserved address space. We do check by
 951     // trying to reserve some.
 952     const size_t VirtualMemoryBangSize = 20*K*K;
 953     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 954     if (mem == NULL) {
 955       delete osthread;
 956       return false;
 957     } else {
 958       // Release the memory again
 959       os::release_memory(mem, VirtualMemoryBangSize);
 960     }
 961   }
 962 
 963   // Setup osthread because the child thread may need it.
 964   thread->set_osthread(osthread);
 965 
 966   // Create the Solaris thread
 967   thread_t tid = 0;
 968   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 969   int      status;
 970 
 971   // Mark that we don't have an lwp or thread id yet.
 972   // In case we attempt to set the priority before the thread starts.
 973   osthread->set_lwp_id(-1);
 974   osthread->set_thread_id(-1);
 975 
 976   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
 977   if (status != 0) {
 978     if (PrintMiscellaneous && (Verbose || WizardMode)) {
 979       perror("os::create_thread");
 980     }
 981     thread->set_osthread(NULL);
 982     // Need to clean up stuff we've allocated so far
 983     delete osthread;
 984     return false;
 985   }
 986 
 987   Atomic::inc(&os::Solaris::_os_thread_count);
 988 
 989   // Store info on the Solaris thread into the OSThread
 990   osthread->set_thread_id(tid);
 991 
 992   // Remember that we created this thread so we can set priority on it
 993   osthread->set_vm_created();
 994 
 995   // Initial thread state is INITIALIZED, not SUSPENDED
 996   osthread->set_state(INITIALIZED);
 997 
 998   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 999   return true;
1000 }
1001 
1002 // defined for >= Solaris 10. This allows builds on earlier versions
1003 // of Solaris to take advantage of the newly reserved Solaris JVM signals.
1004 // With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1005 // was SIGJVM1.
1006 //
1007 #if !defined(SIGJVM1)
1008   #define SIGJVM1 39
1009   #define SIGJVM2 40
1010 #endif
1011 
1012 debug_only(static bool signal_sets_initialized = false);
1013 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1014 
1015 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1016 
1017 bool os::Solaris::is_sig_ignored(int sig) {
1018   struct sigaction oact;
1019   sigaction(sig, (struct sigaction*)NULL, &oact);
1020   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1021                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1022   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1023     return true;
1024   } else {
1025     return false;
1026   }
1027 }
1028 
1029 // Note: SIGRTMIN is a macro that calls sysconf() so it will
1030 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1031 static bool isJVM1available() {
1032   return SIGJVM1 < SIGRTMIN;
1033 }
1034 
1035 void os::Solaris::signal_sets_init() {
1036   // Should also have an assertion stating we are still single-threaded.
1037   assert(!signal_sets_initialized, "Already initialized");
1038   // Fill in signals that are necessarily unblocked for all threads in
1039   // the VM. Currently, we unblock the following signals:
1040   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1041   //                         by -Xrs (=ReduceSignalUsage));
1042   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1043   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1044   // the dispositions or masks wrt these signals.
1045   // Programs embedding the VM that want to use the above signals for their
1046   // own purposes must, at this time, use the "-Xrs" option to prevent
1047   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1048   // (See bug 4345157, and other related bugs).
1049   // In reality, though, unblocking these signals is really a nop, since
1050   // these signals are not blocked by default.
1051   sigemptyset(&unblocked_sigs);
1052   sigemptyset(&allowdebug_blocked_sigs);
1053   sigaddset(&unblocked_sigs, SIGILL);
1054   sigaddset(&unblocked_sigs, SIGSEGV);
1055   sigaddset(&unblocked_sigs, SIGBUS);
1056   sigaddset(&unblocked_sigs, SIGFPE);
1057 
1058   // Always true on Solaris 10+
1059   guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1060   os::Solaris::set_SIGasync(SIGJVM2);
1061 
1062   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1063 
1064   if (!ReduceSignalUsage) {
1065     if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1066       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1067       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1068     }
1069     if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1070       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1071       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1072     }
1073     if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1074       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1075       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1076     }
1077   }
1078   // Fill in signals that are blocked by all but the VM thread.
1079   sigemptyset(&vm_sigs);
1080   if (!ReduceSignalUsage) {
1081     sigaddset(&vm_sigs, BREAK_SIGNAL);
1082   }
1083   debug_only(signal_sets_initialized = true);
1084 
1085   // For diagnostics only used in run_periodic_checks
1086   sigemptyset(&check_signal_done);
1087 }
1088 
1089 // These are signals that are unblocked while a thread is running Java.
1090 // (For some reason, they get blocked by default.)
1091 sigset_t* os::Solaris::unblocked_signals() {
1092   assert(signal_sets_initialized, "Not initialized");
1093   return &unblocked_sigs;
1094 }
1095 
1096 // These are the signals that are blocked while a (non-VM) thread is
1097 // running Java. Only the VM thread handles these signals.
1098 sigset_t* os::Solaris::vm_signals() {
1099   assert(signal_sets_initialized, "Not initialized");
1100   return &vm_sigs;
1101 }
1102 
1103 // These are signals that are blocked during cond_wait to allow debugger in
1104 sigset_t* os::Solaris::allowdebug_blocked_signals() {
1105   assert(signal_sets_initialized, "Not initialized");
1106   return &allowdebug_blocked_sigs;
1107 }
1108 
1109 
1110 void _handle_uncaught_cxx_exception() {
1111   VMError::report_and_die("An uncaught C++ exception");
1112 }
1113 
1114 
1115 // First crack at OS-specific initialization, from inside the new thread.
1116 void os::initialize_thread(Thread* thr) {
1117   int r = thr_main();
1118   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1119   if (r) {
1120     JavaThread* jt = (JavaThread *)thr;
1121     assert(jt != NULL, "Sanity check");
1122     size_t stack_size;
1123     address base = jt->stack_base();
1124     if (Arguments::created_by_java_launcher()) {
1125       // Use 2MB to allow for Solaris 7 64 bit mode.
1126       stack_size = JavaThread::stack_size_at_create() == 0
1127         ? 2048*K : JavaThread::stack_size_at_create();
1128 
1129       // There are rare cases when we may have already used more than
1130       // the basic stack size allotment before this method is invoked.
1131       // Attempt to allow for a normally sized java_stack.
1132       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1133       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1134     } else {
1135       // 6269555: If we were not created by a Java launcher, i.e. if we are
1136       // running embedded in a native application, treat the primordial thread
1137       // as much like a native attached thread as possible.  This means using
1138       // the current stack size from thr_stksegment(), unless it is too large
1139       // to reliably setup guard pages.  A reasonable max size is 8MB.
1140       size_t current_size = current_stack_size();
1141       // This should never happen, but just in case....
1142       if (current_size == 0) current_size = 2 * K * K;
1143       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1144     }
1145     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1146     stack_size = (size_t)(base - bottom);
1147 
1148     assert(stack_size > 0, "Stack size calculation problem");
1149 
1150     if (stack_size > jt->stack_size()) {
1151 #ifndef PRODUCT
1152       struct rlimit limits;
1153       getrlimit(RLIMIT_STACK, &limits);
1154       size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1155       assert(size >= jt->stack_size(), "Stack size problem in main thread");
1156 #endif
1157       tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1158                     "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1159                     "See limit(1) to increase the stack size limit.",
1160                     stack_size / K, jt->stack_size() / K);
1161       vm_exit(1);
1162     }
1163     assert(jt->stack_size() >= stack_size,
1164            "Attempt to map more stack than was allocated");
1165     jt->set_stack_size(stack_size);
1166   }
1167 
1168   // With the T2 libthread (T1 is no longer supported) threads are always bound
1169   // and we use stackbanging in all cases.
1170 
1171   os::Solaris::init_thread_fpu_state();
1172   std::set_terminate(_handle_uncaught_cxx_exception);
1173 }
1174 
1175 
1176 
1177 // Free Solaris resources related to the OSThread
1178 void os::free_thread(OSThread* osthread) {
1179   assert(osthread != NULL, "os::free_thread but osthread not set");
1180 
1181 
1182   // We are told to free resources of the argument thread,
1183   // but we can only really operate on the current thread.
1184   // The main thread must take the VMThread down synchronously
1185   // before the main thread exits and frees up CodeHeap
1186   guarantee((Thread::current()->osthread() == osthread
1187              || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1188   if (Thread::current()->osthread() == osthread) {
1189     // Restore caller's signal mask
1190     sigset_t sigmask = osthread->caller_sigmask();
1191     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1192   }
1193   delete osthread;
1194 }
1195 
1196 void os::pd_start_thread(Thread* thread) {
1197   int status = thr_continue(thread->osthread()->thread_id());
1198   assert_status(status == 0, status, "thr_continue failed");
1199 }
1200 
1201 
1202 intx os::current_thread_id() {
1203   return (intx)thr_self();
1204 }
1205 
1206 static pid_t _initial_pid = 0;
1207 
1208 int os::current_process_id() {
1209   return (int)(_initial_pid ? _initial_pid : getpid());
1210 }
1211 
1212 // gethrtime() should be monotonic according to the documentation,
1213 // but some virtualized platforms are known to break this guarantee.
1214 // getTimeNanos() must be guaranteed not to move backwards, so we
1215 // are forced to add a check here.
1216 inline hrtime_t getTimeNanos() {
1217   const hrtime_t now = gethrtime();
1218   const hrtime_t prev = max_hrtime;
1219   if (now <= prev) {
1220     return prev;   // same or retrograde time;
1221   }
1222   const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1223   assert(obsv >= prev, "invariant");   // Monotonicity
1224   // If the CAS succeeded then we're done and return "now".
1225   // If the CAS failed and the observed value "obsv" is >= now then
1226   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1227   // some other thread raced this thread and installed a new value, in which case
1228   // we could either (a) retry the entire operation, (b) retry trying to install now
1229   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1230   // we might discard a higher "now" value in deference to a slightly lower but freshly
1231   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1232   // to (a) or (b) -- and greatly reduces coherence traffic.
1233   // We might also condition (c) on the magnitude of the delta between obsv and now.
1234   // Avoiding excessive CAS operations to hot RW locations is critical.
1235   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1236   return (prev == obsv) ? now : obsv;
1237 }
1238 
1239 // Time since start-up in seconds to a fine granularity.
1240 // Used by VMSelfDestructTimer and the MemProfiler.
1241 double os::elapsedTime() {
1242   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1243 }
1244 
1245 jlong os::elapsed_counter() {
1246   return (jlong)(getTimeNanos() - first_hrtime);
1247 }
1248 
1249 jlong os::elapsed_frequency() {
1250   return hrtime_hz;
1251 }
1252 
1253 // Return the real, user, and system times in seconds from an
1254 // arbitrary fixed point in the past.
1255 bool os::getTimesSecs(double* process_real_time,
1256                       double* process_user_time,
1257                       double* process_system_time) {
1258   struct tms ticks;
1259   clock_t real_ticks = times(&ticks);
1260 
1261   if (real_ticks == (clock_t) (-1)) {
1262     return false;
1263   } else {
1264     double ticks_per_second = (double) clock_tics_per_sec;
1265     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1266     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1267     // For consistency return the real time from getTimeNanos()
1268     // converted to seconds.
1269     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1270 
1271     return true;
1272   }
1273 }
1274 
1275 bool os::supports_vtime() { return true; }
1276 
1277 bool os::enable_vtime() {
1278   int fd = ::open("/proc/self/ctl", O_WRONLY);
1279   if (fd == -1) {
1280     return false;
1281   }
1282 
1283   long cmd[] = { PCSET, PR_MSACCT };
1284   int res = ::write(fd, cmd, sizeof(long) * 2);
1285   ::close(fd);
1286   if (res != sizeof(long) * 2) {
1287     return false;
1288   }
1289   return true;
1290 }
1291 
1292 bool os::vtime_enabled() {
1293   int fd = ::open("/proc/self/status", O_RDONLY);
1294   if (fd == -1) {
1295     return false;
1296   }
1297 
1298   pstatus_t status;
1299   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1300   ::close(fd);
1301   if (res != sizeof(pstatus_t)) {
1302     return false;
1303   }
1304   return status.pr_flags & PR_MSACCT;
1305 }
1306 
1307 double os::elapsedVTime() {
1308   return (double)gethrvtime() / (double)hrtime_hz;
1309 }
1310 
1311 // Used internally for comparisons only
1312 // getTimeMillis guaranteed to not move backwards on Solaris
1313 jlong getTimeMillis() {
1314   jlong nanotime = getTimeNanos();
1315   return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1316 }
1317 
1318 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1319 jlong os::javaTimeMillis() {
1320   timeval t;
1321   if (gettimeofday(&t, NULL) == -1) {
1322     fatal("os::javaTimeMillis: gettimeofday (%s)", strerror(errno));
1323   }
1324   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1325 }
1326 
1327 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1328   timeval t;
1329   if (gettimeofday(&t, NULL) == -1) {
1330     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", strerror(errno));
1331   }
1332   seconds = jlong(t.tv_sec);
1333   nanos = jlong(t.tv_usec) * 1000;
1334 }
1335 
1336 
1337 jlong os::javaTimeNanos() {
1338   return (jlong)getTimeNanos();
1339 }
1340 
1341 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1342   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1343   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1344   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1345   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1346 }
1347 
1348 char * os::local_time_string(char *buf, size_t buflen) {
1349   struct tm t;
1350   time_t long_time;
1351   time(&long_time);
1352   localtime_r(&long_time, &t);
1353   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1354                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1355                t.tm_hour, t.tm_min, t.tm_sec);
1356   return buf;
1357 }
1358 
1359 // Note: os::shutdown() might be called very early during initialization, or
1360 // called from signal handler. Before adding something to os::shutdown(), make
1361 // sure it is async-safe and can handle partially initialized VM.
1362 void os::shutdown() {
1363 
1364   // allow PerfMemory to attempt cleanup of any persistent resources
1365   perfMemory_exit();
1366 
1367   // needs to remove object in file system
1368   AttachListener::abort();
1369 
1370   // flush buffered output, finish log files
1371   ostream_abort();
1372 
1373   // Check for abort hook
1374   abort_hook_t abort_hook = Arguments::abort_hook();
1375   if (abort_hook != NULL) {
1376     abort_hook();
1377   }
1378 }
1379 
1380 // Note: os::abort() might be called very early during initialization, or
1381 // called from signal handler. Before adding something to os::abort(), make
1382 // sure it is async-safe and can handle partially initialized VM.
1383 void os::abort(bool dump_core, void* siginfo, const void* context) {
1384   os::shutdown();
1385   if (dump_core) {
1386 #ifndef PRODUCT
1387     fdStream out(defaultStream::output_fd());
1388     out.print_raw("Current thread is ");
1389     char buf[16];
1390     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1391     out.print_raw_cr(buf);
1392     out.print_raw_cr("Dumping core ...");
1393 #endif
1394     ::abort(); // dump core (for debugging)
1395   }
1396 
1397   ::exit(1);
1398 }
1399 
1400 // Die immediately, no exit hook, no abort hook, no cleanup.
1401 void os::die() {
1402   ::abort(); // dump core (for debugging)
1403 }
1404 
1405 // DLL functions
1406 
1407 const char* os::dll_file_extension() { return ".so"; }
1408 
1409 // This must be hard coded because it's the system's temporary
1410 // directory not the java application's temp directory, ala java.io.tmpdir.
1411 const char* os::get_temp_directory() { return "/tmp"; }
1412 
1413 static bool file_exists(const char* filename) {
1414   struct stat statbuf;
1415   if (filename == NULL || strlen(filename) == 0) {
1416     return false;
1417   }
1418   return os::stat(filename, &statbuf) == 0;
1419 }
1420 
1421 bool os::dll_build_name(char* buffer, size_t buflen,
1422                         const char* pname, const char* fname) {
1423   bool retval = false;
1424   const size_t pnamelen = pname ? strlen(pname) : 0;
1425 
1426   // Return error on buffer overflow.
1427   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1428     return retval;
1429   }
1430 
1431   if (pnamelen == 0) {
1432     snprintf(buffer, buflen, "lib%s.so", fname);
1433     retval = true;
1434   } else if (strchr(pname, *os::path_separator()) != NULL) {
1435     int n;
1436     char** pelements = split_path(pname, &n);
1437     if (pelements == NULL) {
1438       return false;
1439     }
1440     for (int i = 0; i < n; i++) {
1441       // really shouldn't be NULL but what the heck, check can't hurt
1442       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1443         continue; // skip the empty path values
1444       }
1445       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1446       if (file_exists(buffer)) {
1447         retval = true;
1448         break;
1449       }
1450     }
1451     // release the storage
1452     for (int i = 0; i < n; i++) {
1453       if (pelements[i] != NULL) {
1454         FREE_C_HEAP_ARRAY(char, pelements[i]);
1455       }
1456     }
1457     if (pelements != NULL) {
1458       FREE_C_HEAP_ARRAY(char*, pelements);
1459     }
1460   } else {
1461     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1462     retval = true;
1463   }
1464   return retval;
1465 }
1466 
1467 // check if addr is inside libjvm.so
1468 bool os::address_is_in_vm(address addr) {
1469   static address libjvm_base_addr;
1470   Dl_info dlinfo;
1471 
1472   if (libjvm_base_addr == NULL) {
1473     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1474       libjvm_base_addr = (address)dlinfo.dli_fbase;
1475     }
1476     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1477   }
1478 
1479   if (dladdr((void *)addr, &dlinfo) != 0) {
1480     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1481   }
1482 
1483   return false;
1484 }
1485 
1486 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1487 static dladdr1_func_type dladdr1_func = NULL;
1488 
1489 bool os::dll_address_to_function_name(address addr, char *buf,
1490                                       int buflen, int * offset,
1491                                       bool demangle) {
1492   // buf is not optional, but offset is optional
1493   assert(buf != NULL, "sanity check");
1494 
1495   Dl_info dlinfo;
1496 
1497   // dladdr1_func was initialized in os::init()
1498   if (dladdr1_func != NULL) {
1499     // yes, we have dladdr1
1500 
1501     // Support for dladdr1 is checked at runtime; it may be
1502     // available even if the vm is built on a machine that does
1503     // not have dladdr1 support.  Make sure there is a value for
1504     // RTLD_DL_SYMENT.
1505 #ifndef RTLD_DL_SYMENT
1506   #define RTLD_DL_SYMENT 1
1507 #endif
1508 #ifdef _LP64
1509     Elf64_Sym * info;
1510 #else
1511     Elf32_Sym * info;
1512 #endif
1513     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1514                      RTLD_DL_SYMENT) != 0) {
1515       // see if we have a matching symbol that covers our address
1516       if (dlinfo.dli_saddr != NULL &&
1517           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1518         if (dlinfo.dli_sname != NULL) {
1519           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1520             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1521           }
1522           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1523           return true;
1524         }
1525       }
1526       // no matching symbol so try for just file info
1527       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1528         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1529                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1530           return true;
1531         }
1532       }
1533     }
1534     buf[0] = '\0';
1535     if (offset != NULL) *offset  = -1;
1536     return false;
1537   }
1538 
1539   // no, only dladdr is available
1540   if (dladdr((void *)addr, &dlinfo) != 0) {
1541     // see if we have a matching symbol
1542     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1543       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1544         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1545       }
1546       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1547       return true;
1548     }
1549     // no matching symbol so try for just file info
1550     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1551       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1552                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1553         return true;
1554       }
1555     }
1556   }
1557   buf[0] = '\0';
1558   if (offset != NULL) *offset  = -1;
1559   return false;
1560 }
1561 
1562 bool os::dll_address_to_library_name(address addr, char* buf,
1563                                      int buflen, int* offset) {
1564   // buf is not optional, but offset is optional
1565   assert(buf != NULL, "sanity check");
1566 
1567   Dl_info dlinfo;
1568 
1569   if (dladdr((void*)addr, &dlinfo) != 0) {
1570     if (dlinfo.dli_fname != NULL) {
1571       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1572     }
1573     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1574       *offset = addr - (address)dlinfo.dli_fbase;
1575     }
1576     return true;
1577   }
1578 
1579   buf[0] = '\0';
1580   if (offset) *offset = -1;
1581   return false;
1582 }
1583 
1584 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1585   Dl_info dli;
1586   // Sanity check?
1587   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1588       dli.dli_fname == NULL) {
1589     return 1;
1590   }
1591 
1592   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1593   if (handle == NULL) {
1594     return 1;
1595   }
1596 
1597   Link_map *map;
1598   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1599   if (map == NULL) {
1600     dlclose(handle);
1601     return 1;
1602   }
1603 
1604   while (map->l_prev != NULL) {
1605     map = map->l_prev;
1606   }
1607 
1608   while (map != NULL) {
1609     // Iterate through all map entries and call callback with fields of interest
1610     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1611       dlclose(handle);
1612       return 1;
1613     }
1614     map = map->l_next;
1615   }
1616 
1617   dlclose(handle);
1618   return 0;
1619 }
1620 
1621 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1622   outputStream * out = (outputStream *) param;
1623   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1624   return 0;
1625 }
1626 
1627 void os::print_dll_info(outputStream * st) {
1628   st->print_cr("Dynamic libraries:"); st->flush();
1629   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1630     st->print_cr("Error: Cannot print dynamic libraries.");
1631   }
1632 }
1633 
1634 // Loads .dll/.so and
1635 // in case of error it checks if .dll/.so was built for the
1636 // same architecture as Hotspot is running on
1637 
1638 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1639   void * result= ::dlopen(filename, RTLD_LAZY);
1640   if (result != NULL) {
1641     // Successful loading
1642     return result;
1643   }
1644 
1645   Elf32_Ehdr elf_head;
1646 
1647   // Read system error message into ebuf
1648   // It may or may not be overwritten below
1649   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1650   ebuf[ebuflen-1]='\0';
1651   int diag_msg_max_length=ebuflen-strlen(ebuf);
1652   char* diag_msg_buf=ebuf+strlen(ebuf);
1653 
1654   if (diag_msg_max_length==0) {
1655     // No more space in ebuf for additional diagnostics message
1656     return NULL;
1657   }
1658 
1659 
1660   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1661 
1662   if (file_descriptor < 0) {
1663     // Can't open library, report dlerror() message
1664     return NULL;
1665   }
1666 
1667   bool failed_to_read_elf_head=
1668     (sizeof(elf_head)!=
1669      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1670 
1671   ::close(file_descriptor);
1672   if (failed_to_read_elf_head) {
1673     // file i/o error - report dlerror() msg
1674     return NULL;
1675   }
1676 
1677   typedef struct {
1678     Elf32_Half  code;         // Actual value as defined in elf.h
1679     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1680     char        elf_class;    // 32 or 64 bit
1681     char        endianess;    // MSB or LSB
1682     char*       name;         // String representation
1683   } arch_t;
1684 
1685   static const arch_t arch_array[]={
1686     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1687     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1688     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1689     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1690     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1691     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1692     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1693     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1694     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1695     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1696   };
1697 
1698 #if  (defined IA32)
1699   static  Elf32_Half running_arch_code=EM_386;
1700 #elif   (defined AMD64)
1701   static  Elf32_Half running_arch_code=EM_X86_64;
1702 #elif  (defined IA64)
1703   static  Elf32_Half running_arch_code=EM_IA_64;
1704 #elif  (defined __sparc) && (defined _LP64)
1705   static  Elf32_Half running_arch_code=EM_SPARCV9;
1706 #elif  (defined __sparc) && (!defined _LP64)
1707   static  Elf32_Half running_arch_code=EM_SPARC;
1708 #elif  (defined __powerpc64__)
1709   static  Elf32_Half running_arch_code=EM_PPC64;
1710 #elif  (defined __powerpc__)
1711   static  Elf32_Half running_arch_code=EM_PPC;
1712 #elif (defined ARM)
1713   static  Elf32_Half running_arch_code=EM_ARM;
1714 #else
1715   #error Method os::dll_load requires that one of following is defined:\
1716        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1717 #endif
1718 
1719   // Identify compatability class for VM's architecture and library's architecture
1720   // Obtain string descriptions for architectures
1721 
1722   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1723   int running_arch_index=-1;
1724 
1725   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1726     if (running_arch_code == arch_array[i].code) {
1727       running_arch_index    = i;
1728     }
1729     if (lib_arch.code == arch_array[i].code) {
1730       lib_arch.compat_class = arch_array[i].compat_class;
1731       lib_arch.name         = arch_array[i].name;
1732     }
1733   }
1734 
1735   assert(running_arch_index != -1,
1736          "Didn't find running architecture code (running_arch_code) in arch_array");
1737   if (running_arch_index == -1) {
1738     // Even though running architecture detection failed
1739     // we may still continue with reporting dlerror() message
1740     return NULL;
1741   }
1742 
1743   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1744     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1745     return NULL;
1746   }
1747 
1748   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1749     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1750     return NULL;
1751   }
1752 
1753   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1754     if (lib_arch.name!=NULL) {
1755       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1756                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1757                  lib_arch.name, arch_array[running_arch_index].name);
1758     } else {
1759       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1760                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1761                  lib_arch.code,
1762                  arch_array[running_arch_index].name);
1763     }
1764   }
1765 
1766   return NULL;
1767 }
1768 
1769 void* os::dll_lookup(void* handle, const char* name) {
1770   return dlsym(handle, name);
1771 }
1772 
1773 void* os::get_default_process_handle() {
1774   return (void*)::dlopen(NULL, RTLD_LAZY);
1775 }
1776 
1777 int os::stat(const char *path, struct stat *sbuf) {
1778   char pathbuf[MAX_PATH];
1779   if (strlen(path) > MAX_PATH - 1) {
1780     errno = ENAMETOOLONG;
1781     return -1;
1782   }
1783   os::native_path(strcpy(pathbuf, path));
1784   return ::stat(pathbuf, sbuf);
1785 }
1786 
1787 static bool _print_ascii_file(const char* filename, outputStream* st) {
1788   int fd = ::open(filename, O_RDONLY);
1789   if (fd == -1) {
1790     return false;
1791   }
1792 
1793   char buf[32];
1794   int bytes;
1795   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1796     st->print_raw(buf, bytes);
1797   }
1798 
1799   ::close(fd);
1800 
1801   return true;
1802 }
1803 
1804 void os::print_os_info_brief(outputStream* st) {
1805   os::Solaris::print_distro_info(st);
1806 
1807   os::Posix::print_uname_info(st);
1808 
1809   os::Solaris::print_libversion_info(st);
1810 }
1811 
1812 void os::print_os_info(outputStream* st) {
1813   st->print("OS:");
1814 
1815   os::Solaris::print_distro_info(st);
1816 
1817   os::Posix::print_uname_info(st);
1818 
1819   os::Solaris::print_libversion_info(st);
1820 
1821   os::Posix::print_rlimit_info(st);
1822 
1823   os::Posix::print_load_average(st);
1824 }
1825 
1826 void os::Solaris::print_distro_info(outputStream* st) {
1827   if (!_print_ascii_file("/etc/release", st)) {
1828     st->print("Solaris");
1829   }
1830   st->cr();
1831 }
1832 
1833 void os::get_summary_os_info(char* buf, size_t buflen) {
1834   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1835   FILE* fp = fopen("/etc/release", "r");
1836   if (fp != NULL) {
1837     char tmp[256];
1838     // Only get the first line and chop out everything but the os name.
1839     if (fgets(tmp, sizeof(tmp), fp)) {
1840       char* ptr = tmp;
1841       // skip past whitespace characters
1842       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1843       if (*ptr != '\0') {
1844         char* nl = strchr(ptr, '\n');
1845         if (nl != NULL) *nl = '\0';
1846         strncpy(buf, ptr, buflen);
1847       }
1848     }
1849     fclose(fp);
1850   }
1851 }
1852 
1853 void os::Solaris::print_libversion_info(outputStream* st) {
1854   st->print("  (T2 libthread)");
1855   st->cr();
1856 }
1857 
1858 static bool check_addr0(outputStream* st) {
1859   jboolean status = false;
1860   int fd = ::open("/proc/self/map",O_RDONLY);
1861   if (fd >= 0) {
1862     prmap_t p;
1863     while (::read(fd, &p, sizeof(p)) > 0) {
1864       if (p.pr_vaddr == 0x0) {
1865         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
1866         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
1867         st->print("Access:");
1868         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
1869         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
1870         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
1871         st->cr();
1872         status = true;
1873       }
1874     }
1875     ::close(fd);
1876   }
1877   return status;
1878 }
1879 
1880 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1881   // Get MHz with system call. We don't seem to already have this.
1882   processor_info_t stats;
1883   processorid_t id = getcpuid();
1884   int clock = 0;
1885   if (processor_info(id, &stats) != -1) {
1886     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1887   }
1888 #ifdef AMD64
1889   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1890 #else
1891   // must be sparc
1892   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1893 #endif
1894 }
1895 
1896 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1897   // Nothing to do for now.
1898 }
1899 
1900 void os::print_memory_info(outputStream* st) {
1901   st->print("Memory:");
1902   st->print(" %dk page", os::vm_page_size()>>10);
1903   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1904   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1905   st->cr();
1906   (void) check_addr0(st);
1907 }
1908 
1909 // Moved from whole group, because we need them here for diagnostic
1910 // prints.
1911 #define OLDMAXSIGNUM 32
1912 static int Maxsignum = 0;
1913 static int *ourSigFlags = NULL;
1914 
1915 int os::Solaris::get_our_sigflags(int sig) {
1916   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1917   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1918   return ourSigFlags[sig];
1919 }
1920 
1921 void os::Solaris::set_our_sigflags(int sig, int flags) {
1922   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1923   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1924   ourSigFlags[sig] = flags;
1925 }
1926 
1927 
1928 static const char* get_signal_handler_name(address handler,
1929                                            char* buf, int buflen) {
1930   int offset;
1931   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1932   if (found) {
1933     // skip directory names
1934     const char *p1, *p2;
1935     p1 = buf;
1936     size_t len = strlen(os::file_separator());
1937     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1938     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1939   } else {
1940     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1941   }
1942   return buf;
1943 }
1944 
1945 static void print_signal_handler(outputStream* st, int sig,
1946                                  char* buf, size_t buflen) {
1947   struct sigaction sa;
1948 
1949   sigaction(sig, NULL, &sa);
1950 
1951   st->print("%s: ", os::exception_name(sig, buf, buflen));
1952 
1953   address handler = (sa.sa_flags & SA_SIGINFO)
1954                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1955                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1956 
1957   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1958     st->print("SIG_DFL");
1959   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1960     st->print("SIG_IGN");
1961   } else {
1962     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1963   }
1964 
1965   st->print(", sa_mask[0]=");
1966   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1967 
1968   address rh = VMError::get_resetted_sighandler(sig);
1969   // May be, handler was resetted by VMError?
1970   if (rh != NULL) {
1971     handler = rh;
1972     sa.sa_flags = VMError::get_resetted_sigflags(sig);
1973   }
1974 
1975   st->print(", sa_flags=");
1976   os::Posix::print_sa_flags(st, sa.sa_flags);
1977 
1978   // Check: is it our handler?
1979   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1980     // It is our signal handler
1981     // check for flags
1982     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1983       st->print(
1984                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1985                 os::Solaris::get_our_sigflags(sig));
1986     }
1987   }
1988   st->cr();
1989 }
1990 
1991 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1992   st->print_cr("Signal Handlers:");
1993   print_signal_handler(st, SIGSEGV, buf, buflen);
1994   print_signal_handler(st, SIGBUS , buf, buflen);
1995   print_signal_handler(st, SIGFPE , buf, buflen);
1996   print_signal_handler(st, SIGPIPE, buf, buflen);
1997   print_signal_handler(st, SIGXFSZ, buf, buflen);
1998   print_signal_handler(st, SIGILL , buf, buflen);
1999   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2000   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2001   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2002   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2003   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2004   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2005 }
2006 
2007 static char saved_jvm_path[MAXPATHLEN] = { 0 };
2008 
2009 // Find the full path to the current module, libjvm.so
2010 void os::jvm_path(char *buf, jint buflen) {
2011   // Error checking.
2012   if (buflen < MAXPATHLEN) {
2013     assert(false, "must use a large-enough buffer");
2014     buf[0] = '\0';
2015     return;
2016   }
2017   // Lazy resolve the path to current module.
2018   if (saved_jvm_path[0] != 0) {
2019     strcpy(buf, saved_jvm_path);
2020     return;
2021   }
2022 
2023   Dl_info dlinfo;
2024   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2025   assert(ret != 0, "cannot locate libjvm");
2026   if (ret != 0 && dlinfo.dli_fname != NULL) {
2027     realpath((char *)dlinfo.dli_fname, buf);
2028   } else {
2029     buf[0] = '\0';
2030     return;
2031   }
2032 
2033   if (Arguments::sun_java_launcher_is_altjvm()) {
2034     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2035     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2036     // If "/jre/lib/" appears at the right place in the string, then
2037     // assume we are installed in a JDK and we're done.  Otherwise, check
2038     // for a JAVA_HOME environment variable and fix up the path so it
2039     // looks like libjvm.so is installed there (append a fake suffix
2040     // hotspot/libjvm.so).
2041     const char *p = buf + strlen(buf) - 1;
2042     for (int count = 0; p > buf && count < 5; ++count) {
2043       for (--p; p > buf && *p != '/'; --p)
2044         /* empty */ ;
2045     }
2046 
2047     if (strncmp(p, "/jre/lib/", 9) != 0) {
2048       // Look for JAVA_HOME in the environment.
2049       char* java_home_var = ::getenv("JAVA_HOME");
2050       if (java_home_var != NULL && java_home_var[0] != 0) {
2051         char cpu_arch[12];
2052         char* jrelib_p;
2053         int   len;
2054         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2055 #ifdef _LP64
2056         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2057         if (strcmp(cpu_arch, "sparc") == 0) {
2058           strcat(cpu_arch, "v9");
2059         } else if (strcmp(cpu_arch, "i386") == 0) {
2060           strcpy(cpu_arch, "amd64");
2061         }
2062 #endif
2063         // Check the current module name "libjvm.so".
2064         p = strrchr(buf, '/');
2065         assert(strstr(p, "/libjvm") == p, "invalid library name");
2066 
2067         realpath(java_home_var, buf);
2068         // determine if this is a legacy image or modules image
2069         // modules image doesn't have "jre" subdirectory
2070         len = strlen(buf);
2071         assert(len < buflen, "Ran out of buffer space");
2072         jrelib_p = buf + len;
2073         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2074         if (0 != access(buf, F_OK)) {
2075           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2076         }
2077 
2078         if (0 == access(buf, F_OK)) {
2079           // Use current module name "libjvm.so"
2080           len = strlen(buf);
2081           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2082         } else {
2083           // Go back to path of .so
2084           realpath((char *)dlinfo.dli_fname, buf);
2085         }
2086       }
2087     }
2088   }
2089 
2090   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2091   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2092 }
2093 
2094 
2095 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2096   // no prefix required, not even "_"
2097 }
2098 
2099 
2100 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2101   // no suffix required
2102 }
2103 
2104 // This method is a copy of JDK's sysGetLastErrorString
2105 // from src/solaris/hpi/src/system_md.c
2106 
2107 size_t os::lasterror(char *buf, size_t len) {
2108   if (errno == 0)  return 0;
2109 
2110   const char *s = ::strerror(errno);
2111   size_t n = ::strlen(s);
2112   if (n >= len) {
2113     n = len - 1;
2114   }
2115   ::strncpy(buf, s, n);
2116   buf[n] = '\0';
2117   return n;
2118 }
2119 
2120 
2121 // sun.misc.Signal
2122 
2123 extern "C" {
2124   static void UserHandler(int sig, void *siginfo, void *context) {
2125     // Ctrl-C is pressed during error reporting, likely because the error
2126     // handler fails to abort. Let VM die immediately.
2127     if (sig == SIGINT && is_error_reported()) {
2128       os::die();
2129     }
2130 
2131     os::signal_notify(sig);
2132     // We do not need to reinstate the signal handler each time...
2133   }
2134 }
2135 
2136 void* os::user_handler() {
2137   return CAST_FROM_FN_PTR(void*, UserHandler);
2138 }
2139 
2140 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2141   struct timespec ts;
2142   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2143 
2144   return ts;
2145 }
2146 
2147 extern "C" {
2148   typedef void (*sa_handler_t)(int);
2149   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2150 }
2151 
2152 void* os::signal(int signal_number, void* handler) {
2153   struct sigaction sigAct, oldSigAct;
2154   sigfillset(&(sigAct.sa_mask));
2155   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2156   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2157 
2158   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2159     // -1 means registration failed
2160     return (void *)-1;
2161   }
2162 
2163   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2164 }
2165 
2166 void os::signal_raise(int signal_number) {
2167   raise(signal_number);
2168 }
2169 
2170 // The following code is moved from os.cpp for making this
2171 // code platform specific, which it is by its very nature.
2172 
2173 // a counter for each possible signal value
2174 static int Sigexit = 0;
2175 static int Maxlibjsigsigs;
2176 static jint *pending_signals = NULL;
2177 static int *preinstalled_sigs = NULL;
2178 static struct sigaction *chainedsigactions = NULL;
2179 static sema_t sig_sem;
2180 typedef int (*version_getting_t)();
2181 version_getting_t os::Solaris::get_libjsig_version = NULL;
2182 static int libjsigversion = NULL;
2183 
2184 int os::sigexitnum_pd() {
2185   assert(Sigexit > 0, "signal memory not yet initialized");
2186   return Sigexit;
2187 }
2188 
2189 void os::Solaris::init_signal_mem() {
2190   // Initialize signal structures
2191   Maxsignum = SIGRTMAX;
2192   Sigexit = Maxsignum+1;
2193   assert(Maxsignum >0, "Unable to obtain max signal number");
2194 
2195   Maxlibjsigsigs = Maxsignum;
2196 
2197   // pending_signals has one int per signal
2198   // The additional signal is for SIGEXIT - exit signal to signal_thread
2199   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2200   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2201 
2202   if (UseSignalChaining) {
2203     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2204                                                    * (Maxsignum + 1), mtInternal);
2205     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2206     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2207     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2208   }
2209   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2210   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2211 }
2212 
2213 void os::signal_init_pd() {
2214   int ret;
2215 
2216   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2217   assert(ret == 0, "sema_init() failed");
2218 }
2219 
2220 void os::signal_notify(int signal_number) {
2221   int ret;
2222 
2223   Atomic::inc(&pending_signals[signal_number]);
2224   ret = ::sema_post(&sig_sem);
2225   assert(ret == 0, "sema_post() failed");
2226 }
2227 
2228 static int check_pending_signals(bool wait_for_signal) {
2229   int ret;
2230   while (true) {
2231     for (int i = 0; i < Sigexit + 1; i++) {
2232       jint n = pending_signals[i];
2233       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2234         return i;
2235       }
2236     }
2237     if (!wait_for_signal) {
2238       return -1;
2239     }
2240     JavaThread *thread = JavaThread::current();
2241     ThreadBlockInVM tbivm(thread);
2242 
2243     bool threadIsSuspended;
2244     do {
2245       thread->set_suspend_equivalent();
2246       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2247       while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2248         ;
2249       assert(ret == 0, "sema_wait() failed");
2250 
2251       // were we externally suspended while we were waiting?
2252       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2253       if (threadIsSuspended) {
2254         // The semaphore has been incremented, but while we were waiting
2255         // another thread suspended us. We don't want to continue running
2256         // while suspended because that would surprise the thread that
2257         // suspended us.
2258         ret = ::sema_post(&sig_sem);
2259         assert(ret == 0, "sema_post() failed");
2260 
2261         thread->java_suspend_self();
2262       }
2263     } while (threadIsSuspended);
2264   }
2265 }
2266 
2267 int os::signal_lookup() {
2268   return check_pending_signals(false);
2269 }
2270 
2271 int os::signal_wait() {
2272   return check_pending_signals(true);
2273 }
2274 
2275 ////////////////////////////////////////////////////////////////////////////////
2276 // Virtual Memory
2277 
2278 static int page_size = -1;
2279 
2280 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2281 // clear this var if support is not available.
2282 static bool has_map_align = true;
2283 
2284 int os::vm_page_size() {
2285   assert(page_size != -1, "must call os::init");
2286   return page_size;
2287 }
2288 
2289 // Solaris allocates memory by pages.
2290 int os::vm_allocation_granularity() {
2291   assert(page_size != -1, "must call os::init");
2292   return page_size;
2293 }
2294 
2295 static bool recoverable_mmap_error(int err) {
2296   // See if the error is one we can let the caller handle. This
2297   // list of errno values comes from the Solaris mmap(2) man page.
2298   switch (err) {
2299   case EBADF:
2300   case EINVAL:
2301   case ENOTSUP:
2302     // let the caller deal with these errors
2303     return true;
2304 
2305   default:
2306     // Any remaining errors on this OS can cause our reserved mapping
2307     // to be lost. That can cause confusion where different data
2308     // structures think they have the same memory mapped. The worst
2309     // scenario is if both the VM and a library think they have the
2310     // same memory mapped.
2311     return false;
2312   }
2313 }
2314 
2315 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2316                                     int err) {
2317   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2318           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2319           strerror(err), err);
2320 }
2321 
2322 static void warn_fail_commit_memory(char* addr, size_t bytes,
2323                                     size_t alignment_hint, bool exec,
2324                                     int err) {
2325   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2326           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2327           alignment_hint, exec, strerror(err), err);
2328 }
2329 
2330 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2331   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2332   size_t size = bytes;
2333   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2334   if (res != NULL) {
2335     if (UseNUMAInterleaving) {
2336       numa_make_global(addr, bytes);
2337     }
2338     return 0;
2339   }
2340 
2341   int err = errno;  // save errno from mmap() call in mmap_chunk()
2342 
2343   if (!recoverable_mmap_error(err)) {
2344     warn_fail_commit_memory(addr, bytes, exec, err);
2345     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2346   }
2347 
2348   return err;
2349 }
2350 
2351 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2352   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2353 }
2354 
2355 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2356                                   const char* mesg) {
2357   assert(mesg != NULL, "mesg must be specified");
2358   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2359   if (err != 0) {
2360     // the caller wants all commit errors to exit with the specified mesg:
2361     warn_fail_commit_memory(addr, bytes, exec, err);
2362     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2363   }
2364 }
2365 
2366 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2367   assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2368          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2369          alignment, (size_t) vm_page_size());
2370 
2371   for (int i = 0; _page_sizes[i] != 0; i++) {
2372     if (is_size_aligned(alignment, _page_sizes[i])) {
2373       return _page_sizes[i];
2374     }
2375   }
2376 
2377   return (size_t) vm_page_size();
2378 }
2379 
2380 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2381                                     size_t alignment_hint, bool exec) {
2382   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2383   if (err == 0 && UseLargePages && alignment_hint > 0) {
2384     assert(is_size_aligned(bytes, alignment_hint),
2385            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2386 
2387     // The syscall memcntl requires an exact page size (see man memcntl for details).
2388     size_t page_size = page_size_for_alignment(alignment_hint);
2389     if (page_size > (size_t) vm_page_size()) {
2390       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2391     }
2392   }
2393   return err;
2394 }
2395 
2396 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2397                           bool exec) {
2398   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2399 }
2400 
2401 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2402                                   size_t alignment_hint, bool exec,
2403                                   const char* mesg) {
2404   assert(mesg != NULL, "mesg must be specified");
2405   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2406   if (err != 0) {
2407     // the caller wants all commit errors to exit with the specified mesg:
2408     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2409     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2410   }
2411 }
2412 
2413 // Uncommit the pages in a specified region.
2414 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2415   if (madvise(addr, bytes, MADV_FREE) < 0) {
2416     debug_only(warning("MADV_FREE failed."));
2417     return;
2418   }
2419 }
2420 
2421 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2422   return os::commit_memory(addr, size, !ExecMem);
2423 }
2424 
2425 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2426   return os::uncommit_memory(addr, size);
2427 }
2428 
2429 // Change the page size in a given range.
2430 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2431   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2432   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2433   if (UseLargePages) {
2434     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2435     if (page_size > (size_t) vm_page_size()) {
2436       Solaris::setup_large_pages(addr, bytes, page_size);
2437     }
2438   }
2439 }
2440 
2441 // Tell the OS to make the range local to the first-touching LWP
2442 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2443   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2444   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2445     debug_only(warning("MADV_ACCESS_LWP failed."));
2446   }
2447 }
2448 
2449 // Tell the OS that this range would be accessed from different LWPs.
2450 void os::numa_make_global(char *addr, size_t bytes) {
2451   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2452   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2453     debug_only(warning("MADV_ACCESS_MANY failed."));
2454   }
2455 }
2456 
2457 // Get the number of the locality groups.
2458 size_t os::numa_get_groups_num() {
2459   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2460   return n != -1 ? n : 1;
2461 }
2462 
2463 // Get a list of leaf locality groups. A leaf lgroup is group that
2464 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2465 // board. An LWP is assigned to one of these groups upon creation.
2466 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2467   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2468     ids[0] = 0;
2469     return 1;
2470   }
2471   int result_size = 0, top = 1, bottom = 0, cur = 0;
2472   for (int k = 0; k < size; k++) {
2473     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2474                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2475     if (r == -1) {
2476       ids[0] = 0;
2477       return 1;
2478     }
2479     if (!r) {
2480       // That's a leaf node.
2481       assert(bottom <= cur, "Sanity check");
2482       // Check if the node has memory
2483       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2484                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2485         ids[bottom++] = ids[cur];
2486       }
2487     }
2488     top += r;
2489     cur++;
2490   }
2491   if (bottom == 0) {
2492     // Handle a situation, when the OS reports no memory available.
2493     // Assume UMA architecture.
2494     ids[0] = 0;
2495     return 1;
2496   }
2497   return bottom;
2498 }
2499 
2500 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2501 bool os::numa_topology_changed() {
2502   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2503   if (is_stale != -1 && is_stale) {
2504     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2505     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2506     assert(c != 0, "Failure to initialize LGRP API");
2507     Solaris::set_lgrp_cookie(c);
2508     return true;
2509   }
2510   return false;
2511 }
2512 
2513 // Get the group id of the current LWP.
2514 int os::numa_get_group_id() {
2515   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2516   if (lgrp_id == -1) {
2517     return 0;
2518   }
2519   const int size = os::numa_get_groups_num();
2520   int *ids = (int*)alloca(size * sizeof(int));
2521 
2522   // Get the ids of all lgroups with memory; r is the count.
2523   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2524                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2525   if (r <= 0) {
2526     return 0;
2527   }
2528   return ids[os::random() % r];
2529 }
2530 
2531 // Request information about the page.
2532 bool os::get_page_info(char *start, page_info* info) {
2533   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2534   uint64_t addr = (uintptr_t)start;
2535   uint64_t outdata[2];
2536   uint_t validity = 0;
2537 
2538   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2539     return false;
2540   }
2541 
2542   info->size = 0;
2543   info->lgrp_id = -1;
2544 
2545   if ((validity & 1) != 0) {
2546     if ((validity & 2) != 0) {
2547       info->lgrp_id = outdata[0];
2548     }
2549     if ((validity & 4) != 0) {
2550       info->size = outdata[1];
2551     }
2552     return true;
2553   }
2554   return false;
2555 }
2556 
2557 // Scan the pages from start to end until a page different than
2558 // the one described in the info parameter is encountered.
2559 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2560                      page_info* page_found) {
2561   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2562   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2563   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2564   uint_t validity[MAX_MEMINFO_CNT];
2565 
2566   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2567   uint64_t p = (uint64_t)start;
2568   while (p < (uint64_t)end) {
2569     addrs[0] = p;
2570     size_t addrs_count = 1;
2571     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2572       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2573       addrs_count++;
2574     }
2575 
2576     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2577       return NULL;
2578     }
2579 
2580     size_t i = 0;
2581     for (; i < addrs_count; i++) {
2582       if ((validity[i] & 1) != 0) {
2583         if ((validity[i] & 4) != 0) {
2584           if (outdata[types * i + 1] != page_expected->size) {
2585             break;
2586           }
2587         } else if (page_expected->size != 0) {
2588           break;
2589         }
2590 
2591         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2592           if (outdata[types * i] != page_expected->lgrp_id) {
2593             break;
2594           }
2595         }
2596       } else {
2597         return NULL;
2598       }
2599     }
2600 
2601     if (i < addrs_count) {
2602       if ((validity[i] & 2) != 0) {
2603         page_found->lgrp_id = outdata[types * i];
2604       } else {
2605         page_found->lgrp_id = -1;
2606       }
2607       if ((validity[i] & 4) != 0) {
2608         page_found->size = outdata[types * i + 1];
2609       } else {
2610         page_found->size = 0;
2611       }
2612       return (char*)addrs[i];
2613     }
2614 
2615     p = addrs[addrs_count - 1] + page_size;
2616   }
2617   return end;
2618 }
2619 
2620 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2621   size_t size = bytes;
2622   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2623   // uncommitted page. Otherwise, the read/write might succeed if we
2624   // have enough swap space to back the physical page.
2625   return
2626     NULL != Solaris::mmap_chunk(addr, size,
2627                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2628                                 PROT_NONE);
2629 }
2630 
2631 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2632   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2633 
2634   if (b == MAP_FAILED) {
2635     return NULL;
2636   }
2637   return b;
2638 }
2639 
2640 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2641                              size_t alignment_hint, bool fixed) {
2642   char* addr = requested_addr;
2643   int flags = MAP_PRIVATE | MAP_NORESERVE;
2644 
2645   assert(!(fixed && (alignment_hint > 0)),
2646          "alignment hint meaningless with fixed mmap");
2647 
2648   if (fixed) {
2649     flags |= MAP_FIXED;
2650   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2651     flags |= MAP_ALIGN;
2652     addr = (char*) alignment_hint;
2653   }
2654 
2655   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2656   // uncommitted page. Otherwise, the read/write might succeed if we
2657   // have enough swap space to back the physical page.
2658   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2659 }
2660 
2661 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2662                             size_t alignment_hint) {
2663   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2664                                   (requested_addr != NULL));
2665 
2666   guarantee(requested_addr == NULL || requested_addr == addr,
2667             "OS failed to return requested mmap address.");
2668   return addr;
2669 }
2670 
2671 // Reserve memory at an arbitrary address, only if that area is
2672 // available (and not reserved for something else).
2673 
2674 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2675   const int max_tries = 10;
2676   char* base[max_tries];
2677   size_t size[max_tries];
2678 
2679   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2680   // is dependent on the requested size and the MMU.  Our initial gap
2681   // value here is just a guess and will be corrected later.
2682   bool had_top_overlap = false;
2683   bool have_adjusted_gap = false;
2684   size_t gap = 0x400000;
2685 
2686   // Assert only that the size is a multiple of the page size, since
2687   // that's all that mmap requires, and since that's all we really know
2688   // about at this low abstraction level.  If we need higher alignment,
2689   // we can either pass an alignment to this method or verify alignment
2690   // in one of the methods further up the call chain.  See bug 5044738.
2691   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2692 
2693   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2694   // Give it a try, if the kernel honors the hint we can return immediately.
2695   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2696 
2697   volatile int err = errno;
2698   if (addr == requested_addr) {
2699     return addr;
2700   } else if (addr != NULL) {
2701     pd_unmap_memory(addr, bytes);
2702   }
2703 
2704   if (PrintMiscellaneous && Verbose) {
2705     char buf[256];
2706     buf[0] = '\0';
2707     if (addr == NULL) {
2708       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
2709     }
2710     warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2711             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2712             "%s", bytes, requested_addr, addr, buf);
2713   }
2714 
2715   // Address hint method didn't work.  Fall back to the old method.
2716   // In theory, once SNV becomes our oldest supported platform, this
2717   // code will no longer be needed.
2718   //
2719   // Repeatedly allocate blocks until the block is allocated at the
2720   // right spot. Give up after max_tries.
2721   int i;
2722   for (i = 0; i < max_tries; ++i) {
2723     base[i] = reserve_memory(bytes);
2724 
2725     if (base[i] != NULL) {
2726       // Is this the block we wanted?
2727       if (base[i] == requested_addr) {
2728         size[i] = bytes;
2729         break;
2730       }
2731 
2732       // check that the gap value is right
2733       if (had_top_overlap && !have_adjusted_gap) {
2734         size_t actual_gap = base[i-1] - base[i] - bytes;
2735         if (gap != actual_gap) {
2736           // adjust the gap value and retry the last 2 allocations
2737           assert(i > 0, "gap adjustment code problem");
2738           have_adjusted_gap = true;  // adjust the gap only once, just in case
2739           gap = actual_gap;
2740           if (PrintMiscellaneous && Verbose) {
2741             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2742           }
2743           unmap_memory(base[i], bytes);
2744           unmap_memory(base[i-1], size[i-1]);
2745           i-=2;
2746           continue;
2747         }
2748       }
2749 
2750       // Does this overlap the block we wanted? Give back the overlapped
2751       // parts and try again.
2752       //
2753       // There is still a bug in this code: if top_overlap == bytes,
2754       // the overlap is offset from requested region by the value of gap.
2755       // In this case giving back the overlapped part will not work,
2756       // because we'll give back the entire block at base[i] and
2757       // therefore the subsequent allocation will not generate a new gap.
2758       // This could be fixed with a new algorithm that used larger
2759       // or variable size chunks to find the requested region -
2760       // but such a change would introduce additional complications.
2761       // It's rare enough that the planets align for this bug,
2762       // so we'll just wait for a fix for 6204603/5003415 which
2763       // will provide a mmap flag to allow us to avoid this business.
2764 
2765       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2766       if (top_overlap >= 0 && top_overlap < bytes) {
2767         had_top_overlap = true;
2768         unmap_memory(base[i], top_overlap);
2769         base[i] += top_overlap;
2770         size[i] = bytes - top_overlap;
2771       } else {
2772         size_t bottom_overlap = base[i] + bytes - requested_addr;
2773         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2774           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
2775             warning("attempt_reserve_memory_at: possible alignment bug");
2776           }
2777           unmap_memory(requested_addr, bottom_overlap);
2778           size[i] = bytes - bottom_overlap;
2779         } else {
2780           size[i] = bytes;
2781         }
2782       }
2783     }
2784   }
2785 
2786   // Give back the unused reserved pieces.
2787 
2788   for (int j = 0; j < i; ++j) {
2789     if (base[j] != NULL) {
2790       unmap_memory(base[j], size[j]);
2791     }
2792   }
2793 
2794   return (i < max_tries) ? requested_addr : NULL;
2795 }
2796 
2797 bool os::pd_release_memory(char* addr, size_t bytes) {
2798   size_t size = bytes;
2799   return munmap(addr, size) == 0;
2800 }
2801 
2802 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2803   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2804          "addr must be page aligned");
2805   int retVal = mprotect(addr, bytes, prot);
2806   return retVal == 0;
2807 }
2808 
2809 // Protect memory (Used to pass readonly pages through
2810 // JNI GetArray<type>Elements with empty arrays.)
2811 // Also, used for serialization page and for compressed oops null pointer
2812 // checking.
2813 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2814                         bool is_committed) {
2815   unsigned int p = 0;
2816   switch (prot) {
2817   case MEM_PROT_NONE: p = PROT_NONE; break;
2818   case MEM_PROT_READ: p = PROT_READ; break;
2819   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2820   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2821   default:
2822     ShouldNotReachHere();
2823   }
2824   // is_committed is unused.
2825   return solaris_mprotect(addr, bytes, p);
2826 }
2827 
2828 // guard_memory and unguard_memory only happens within stack guard pages.
2829 // Since ISM pertains only to the heap, guard and unguard memory should not
2830 /// happen with an ISM region.
2831 bool os::guard_memory(char* addr, size_t bytes) {
2832   return solaris_mprotect(addr, bytes, PROT_NONE);
2833 }
2834 
2835 bool os::unguard_memory(char* addr, size_t bytes) {
2836   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2837 }
2838 
2839 // Large page support
2840 static size_t _large_page_size = 0;
2841 
2842 // Insertion sort for small arrays (descending order).
2843 static void insertion_sort_descending(size_t* array, int len) {
2844   for (int i = 0; i < len; i++) {
2845     size_t val = array[i];
2846     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2847       size_t tmp = array[key];
2848       array[key] = array[key - 1];
2849       array[key - 1] = tmp;
2850     }
2851   }
2852 }
2853 
2854 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2855   const unsigned int usable_count = VM_Version::page_size_count();
2856   if (usable_count == 1) {
2857     return false;
2858   }
2859 
2860   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2861   // build platform, getpagesizes() (without the '2') can be called directly.
2862   typedef int (*gps_t)(size_t[], int);
2863   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2864   if (gps_func == NULL) {
2865     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2866     if (gps_func == NULL) {
2867       if (warn) {
2868         warning("MPSS is not supported by the operating system.");
2869       }
2870       return false;
2871     }
2872   }
2873 
2874   // Fill the array of page sizes.
2875   int n = (*gps_func)(_page_sizes, page_sizes_max);
2876   assert(n > 0, "Solaris bug?");
2877 
2878   if (n == page_sizes_max) {
2879     // Add a sentinel value (necessary only if the array was completely filled
2880     // since it is static (zeroed at initialization)).
2881     _page_sizes[--n] = 0;
2882     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2883   }
2884   assert(_page_sizes[n] == 0, "missing sentinel");
2885   trace_page_sizes("available page sizes", _page_sizes, n);
2886 
2887   if (n == 1) return false;     // Only one page size available.
2888 
2889   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2890   // select up to usable_count elements.  First sort the array, find the first
2891   // acceptable value, then copy the usable sizes to the top of the array and
2892   // trim the rest.  Make sure to include the default page size :-).
2893   //
2894   // A better policy could get rid of the 4M limit by taking the sizes of the
2895   // important VM memory regions (java heap and possibly the code cache) into
2896   // account.
2897   insertion_sort_descending(_page_sizes, n);
2898   const size_t size_limit =
2899     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2900   int beg;
2901   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2902   const int end = MIN2((int)usable_count, n) - 1;
2903   for (int cur = 0; cur < end; ++cur, ++beg) {
2904     _page_sizes[cur] = _page_sizes[beg];
2905   }
2906   _page_sizes[end] = vm_page_size();
2907   _page_sizes[end + 1] = 0;
2908 
2909   if (_page_sizes[end] > _page_sizes[end - 1]) {
2910     // Default page size is not the smallest; sort again.
2911     insertion_sort_descending(_page_sizes, end + 1);
2912   }
2913   *page_size = _page_sizes[0];
2914 
2915   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2916   return true;
2917 }
2918 
2919 void os::large_page_init() {
2920   if (UseLargePages) {
2921     // print a warning if any large page related flag is specified on command line
2922     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2923                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2924 
2925     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2926   }
2927 }
2928 
2929 bool os::Solaris::is_valid_page_size(size_t bytes) {
2930   for (int i = 0; _page_sizes[i] != 0; i++) {
2931     if (_page_sizes[i] == bytes) {
2932       return true;
2933     }
2934   }
2935   return false;
2936 }
2937 
2938 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2939   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2940   assert(is_ptr_aligned((void*) start, align),
2941          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2942   assert(is_size_aligned(bytes, align),
2943          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2944 
2945   // Signal to OS that we want large pages for addresses
2946   // from addr, addr + bytes
2947   struct memcntl_mha mpss_struct;
2948   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2949   mpss_struct.mha_pagesize = align;
2950   mpss_struct.mha_flags = 0;
2951   // Upon successful completion, memcntl() returns 0
2952   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2953     debug_only(warning("Attempt to use MPSS failed."));
2954     return false;
2955   }
2956   return true;
2957 }
2958 
2959 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2960   fatal("os::reserve_memory_special should not be called on Solaris.");
2961   return NULL;
2962 }
2963 
2964 bool os::release_memory_special(char* base, size_t bytes) {
2965   fatal("os::release_memory_special should not be called on Solaris.");
2966   return false;
2967 }
2968 
2969 size_t os::large_page_size() {
2970   return _large_page_size;
2971 }
2972 
2973 // MPSS allows application to commit large page memory on demand; with ISM
2974 // the entire memory region must be allocated as shared memory.
2975 bool os::can_commit_large_page_memory() {
2976   return true;
2977 }
2978 
2979 bool os::can_execute_large_page_memory() {
2980   return true;
2981 }
2982 
2983 // Read calls from inside the vm need to perform state transitions
2984 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2985   size_t res;
2986   JavaThread* thread = (JavaThread*)Thread::current();
2987   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2988   ThreadBlockInVM tbiv(thread);
2989   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2990   return res;
2991 }
2992 
2993 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2994   size_t res;
2995   JavaThread* thread = (JavaThread*)Thread::current();
2996   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2997   ThreadBlockInVM tbiv(thread);
2998   RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
2999   return res;
3000 }
3001 
3002 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3003   size_t res;
3004   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3005          "Assumed _thread_in_native");
3006   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3007   return res;
3008 }
3009 
3010 void os::naked_short_sleep(jlong ms) {
3011   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3012 
3013   // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3014   // Solaris requires -lrt for this.
3015   usleep((ms * 1000));
3016 
3017   return;
3018 }
3019 
3020 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3021 void os::infinite_sleep() {
3022   while (true) {    // sleep forever ...
3023     ::sleep(100);   // ... 100 seconds at a time
3024   }
3025 }
3026 
3027 // Used to convert frequent JVM_Yield() to nops
3028 bool os::dont_yield() {
3029   if (DontYieldALot) {
3030     static hrtime_t last_time = 0;
3031     hrtime_t diff = getTimeNanos() - last_time;
3032 
3033     if (diff < DontYieldALotInterval * 1000000) {
3034       return true;
3035     }
3036 
3037     last_time += diff;
3038 
3039     return false;
3040   } else {
3041     return false;
3042   }
3043 }
3044 
3045 // Note that yield semantics are defined by the scheduling class to which
3046 // the thread currently belongs.  Typically, yield will _not yield to
3047 // other equal or higher priority threads that reside on the dispatch queues
3048 // of other CPUs.
3049 
3050 void os::naked_yield() {
3051   thr_yield();
3052 }
3053 
3054 // Interface for setting lwp priorities.  If we are using T2 libthread,
3055 // which forces the use of BoundThreads or we manually set UseBoundThreads,
3056 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
3057 // function is meaningless in this mode so we must adjust the real lwp's priority
3058 // The routines below implement the getting and setting of lwp priorities.
3059 //
3060 // Note: T2 is now the only supported libthread. UseBoundThreads flag is
3061 //       being deprecated and all threads are now BoundThreads
3062 //
3063 // Note: There are three priority scales used on Solaris.  Java priotities
3064 //       which range from 1 to 10, libthread "thr_setprio" scale which range
3065 //       from 0 to 127, and the current scheduling class of the process we
3066 //       are running in.  This is typically from -60 to +60.
3067 //       The setting of the lwp priorities in done after a call to thr_setprio
3068 //       so Java priorities are mapped to libthread priorities and we map from
3069 //       the latter to lwp priorities.  We don't keep priorities stored in
3070 //       Java priorities since some of our worker threads want to set priorities
3071 //       higher than all Java threads.
3072 //
3073 // For related information:
3074 // (1)  man -s 2 priocntl
3075 // (2)  man -s 4 priocntl
3076 // (3)  man dispadmin
3077 // =    librt.so
3078 // =    libthread/common/rtsched.c - thrp_setlwpprio().
3079 // =    ps -cL <pid> ... to validate priority.
3080 // =    sched_get_priority_min and _max
3081 //              pthread_create
3082 //              sched_setparam
3083 //              pthread_setschedparam
3084 //
3085 // Assumptions:
3086 // +    We assume that all threads in the process belong to the same
3087 //              scheduling class.   IE. an homogenous process.
3088 // +    Must be root or in IA group to change change "interactive" attribute.
3089 //              Priocntl() will fail silently.  The only indication of failure is when
3090 //              we read-back the value and notice that it hasn't changed.
3091 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
3092 // +    For RT, change timeslice as well.  Invariant:
3093 //              constant "priority integral"
3094 //              Konst == TimeSlice * (60-Priority)
3095 //              Given a priority, compute appropriate timeslice.
3096 // +    Higher numerical values have higher priority.
3097 
3098 // sched class attributes
3099 typedef struct {
3100   int   schedPolicy;              // classID
3101   int   maxPrio;
3102   int   minPrio;
3103 } SchedInfo;
3104 
3105 
3106 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3107 
3108 #ifdef ASSERT
3109 static int  ReadBackValidate = 1;
3110 #endif
3111 static int  myClass     = 0;
3112 static int  myMin       = 0;
3113 static int  myMax       = 0;
3114 static int  myCur       = 0;
3115 static bool priocntl_enable = false;
3116 
3117 static const int criticalPrio = FXCriticalPriority;
3118 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3119 
3120 
3121 // lwp_priocntl_init
3122 //
3123 // Try to determine the priority scale for our process.
3124 //
3125 // Return errno or 0 if OK.
3126 //
3127 static int lwp_priocntl_init() {
3128   int rslt;
3129   pcinfo_t ClassInfo;
3130   pcparms_t ParmInfo;
3131   int i;
3132 
3133   if (!UseThreadPriorities) return 0;
3134 
3135   // If ThreadPriorityPolicy is 1, switch tables
3136   if (ThreadPriorityPolicy == 1) {
3137     for (i = 0; i < CriticalPriority+1; i++)
3138       os::java_to_os_priority[i] = prio_policy1[i];
3139   }
3140   if (UseCriticalJavaThreadPriority) {
3141     // MaxPriority always maps to the FX scheduling class and criticalPrio.
3142     // See set_native_priority() and set_lwp_class_and_priority().
3143     // Save original MaxPriority mapping in case attempt to
3144     // use critical priority fails.
3145     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3146     // Set negative to distinguish from other priorities
3147     os::java_to_os_priority[MaxPriority] = -criticalPrio;
3148   }
3149 
3150   // Get IDs for a set of well-known scheduling classes.
3151   // TODO-FIXME: GETCLINFO returns the current # of classes in the
3152   // the system.  We should have a loop that iterates over the
3153   // classID values, which are known to be "small" integers.
3154 
3155   strcpy(ClassInfo.pc_clname, "TS");
3156   ClassInfo.pc_cid = -1;
3157   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3158   if (rslt < 0) return errno;
3159   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3160   tsLimits.schedPolicy = ClassInfo.pc_cid;
3161   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3162   tsLimits.minPrio = -tsLimits.maxPrio;
3163 
3164   strcpy(ClassInfo.pc_clname, "IA");
3165   ClassInfo.pc_cid = -1;
3166   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3167   if (rslt < 0) return errno;
3168   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3169   iaLimits.schedPolicy = ClassInfo.pc_cid;
3170   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3171   iaLimits.minPrio = -iaLimits.maxPrio;
3172 
3173   strcpy(ClassInfo.pc_clname, "RT");
3174   ClassInfo.pc_cid = -1;
3175   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3176   if (rslt < 0) return errno;
3177   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3178   rtLimits.schedPolicy = ClassInfo.pc_cid;
3179   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3180   rtLimits.minPrio = 0;
3181 
3182   strcpy(ClassInfo.pc_clname, "FX");
3183   ClassInfo.pc_cid = -1;
3184   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3185   if (rslt < 0) return errno;
3186   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3187   fxLimits.schedPolicy = ClassInfo.pc_cid;
3188   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3189   fxLimits.minPrio = 0;
3190 
3191   // Query our "current" scheduling class.
3192   // This will normally be IA, TS or, rarely, FX or RT.
3193   memset(&ParmInfo, 0, sizeof(ParmInfo));
3194   ParmInfo.pc_cid = PC_CLNULL;
3195   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3196   if (rslt < 0) return errno;
3197   myClass = ParmInfo.pc_cid;
3198 
3199   // We now know our scheduling classId, get specific information
3200   // about the class.
3201   ClassInfo.pc_cid = myClass;
3202   ClassInfo.pc_clname[0] = 0;
3203   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3204   if (rslt < 0) return errno;
3205 
3206   if (ThreadPriorityVerbose) {
3207     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3208   }
3209 
3210   memset(&ParmInfo, 0, sizeof(pcparms_t));
3211   ParmInfo.pc_cid = PC_CLNULL;
3212   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3213   if (rslt < 0) return errno;
3214 
3215   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3216     myMin = rtLimits.minPrio;
3217     myMax = rtLimits.maxPrio;
3218   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3219     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3220     myMin = iaLimits.minPrio;
3221     myMax = iaLimits.maxPrio;
3222     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3223   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3224     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3225     myMin = tsLimits.minPrio;
3226     myMax = tsLimits.maxPrio;
3227     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3228   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3229     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3230     myMin = fxLimits.minPrio;
3231     myMax = fxLimits.maxPrio;
3232     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3233   } else {
3234     // No clue - punt
3235     if (ThreadPriorityVerbose) {
3236       tty->print_cr("Unknown scheduling class: %s ... \n",
3237                     ClassInfo.pc_clname);
3238     }
3239     return EINVAL;      // no clue, punt
3240   }
3241 
3242   if (ThreadPriorityVerbose) {
3243     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3244   }
3245 
3246   priocntl_enable = true;  // Enable changing priorities
3247   return 0;
3248 }
3249 
3250 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3251 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3252 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3253 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3254 
3255 
3256 // scale_to_lwp_priority
3257 //
3258 // Convert from the libthread "thr_setprio" scale to our current
3259 // lwp scheduling class scale.
3260 //
3261 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3262   int v;
3263 
3264   if (x == 127) return rMax;            // avoid round-down
3265   v = (((x*(rMax-rMin)))/128)+rMin;
3266   return v;
3267 }
3268 
3269 
3270 // set_lwp_class_and_priority
3271 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3272                                int newPrio, int new_class, bool scale) {
3273   int rslt;
3274   int Actual, Expected, prv;
3275   pcparms_t ParmInfo;                   // for GET-SET
3276 #ifdef ASSERT
3277   pcparms_t ReadBack;                   // for readback
3278 #endif
3279 
3280   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3281   // Query current values.
3282   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3283   // Cache "pcparms_t" in global ParmCache.
3284   // TODO: elide set-to-same-value
3285 
3286   // If something went wrong on init, don't change priorities.
3287   if (!priocntl_enable) {
3288     if (ThreadPriorityVerbose) {
3289       tty->print_cr("Trying to set priority but init failed, ignoring");
3290     }
3291     return EINVAL;
3292   }
3293 
3294   // If lwp hasn't started yet, just return
3295   // the _start routine will call us again.
3296   if (lwpid <= 0) {
3297     if (ThreadPriorityVerbose) {
3298       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3299                     INTPTR_FORMAT " to %d, lwpid not set",
3300                     ThreadID, newPrio);
3301     }
3302     return 0;
3303   }
3304 
3305   if (ThreadPriorityVerbose) {
3306     tty->print_cr ("set_lwp_class_and_priority("
3307                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3308                    ThreadID, lwpid, newPrio);
3309   }
3310 
3311   memset(&ParmInfo, 0, sizeof(pcparms_t));
3312   ParmInfo.pc_cid = PC_CLNULL;
3313   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3314   if (rslt < 0) return errno;
3315 
3316   int cur_class = ParmInfo.pc_cid;
3317   ParmInfo.pc_cid = (id_t)new_class;
3318 
3319   if (new_class == rtLimits.schedPolicy) {
3320     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3321     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3322                                                        rtLimits.maxPrio, newPrio)
3323                                : newPrio;
3324     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3325     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3326     if (ThreadPriorityVerbose) {
3327       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3328     }
3329   } else if (new_class == iaLimits.schedPolicy) {
3330     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3331     int maxClamped     = MIN2(iaLimits.maxPrio,
3332                               cur_class == new_class
3333                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3334     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3335                                                        maxClamped, newPrio)
3336                                : newPrio;
3337     iaInfo->ia_uprilim = cur_class == new_class
3338                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3339     iaInfo->ia_mode    = IA_NOCHANGE;
3340     if (ThreadPriorityVerbose) {
3341       tty->print_cr("IA: [%d...%d] %d->%d\n",
3342                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3343     }
3344   } else if (new_class == tsLimits.schedPolicy) {
3345     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3346     int maxClamped     = MIN2(tsLimits.maxPrio,
3347                               cur_class == new_class
3348                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3349     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3350                                                        maxClamped, newPrio)
3351                                : newPrio;
3352     tsInfo->ts_uprilim = cur_class == new_class
3353                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3354     if (ThreadPriorityVerbose) {
3355       tty->print_cr("TS: [%d...%d] %d->%d\n",
3356                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3357     }
3358   } else if (new_class == fxLimits.schedPolicy) {
3359     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3360     int maxClamped     = MIN2(fxLimits.maxPrio,
3361                               cur_class == new_class
3362                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3363     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3364                                                        maxClamped, newPrio)
3365                                : newPrio;
3366     fxInfo->fx_uprilim = cur_class == new_class
3367                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3368     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3369     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3370     if (ThreadPriorityVerbose) {
3371       tty->print_cr("FX: [%d...%d] %d->%d\n",
3372                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3373     }
3374   } else {
3375     if (ThreadPriorityVerbose) {
3376       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3377     }
3378     return EINVAL;    // no clue, punt
3379   }
3380 
3381   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3382   if (ThreadPriorityVerbose && rslt) {
3383     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3384   }
3385   if (rslt < 0) return errno;
3386 
3387 #ifdef ASSERT
3388   // Sanity check: read back what we just attempted to set.
3389   // In theory it could have changed in the interim ...
3390   //
3391   // The priocntl system call is tricky.
3392   // Sometimes it'll validate the priority value argument and
3393   // return EINVAL if unhappy.  At other times it fails silently.
3394   // Readbacks are prudent.
3395 
3396   if (!ReadBackValidate) return 0;
3397 
3398   memset(&ReadBack, 0, sizeof(pcparms_t));
3399   ReadBack.pc_cid = PC_CLNULL;
3400   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3401   assert(rslt >= 0, "priocntl failed");
3402   Actual = Expected = 0xBAD;
3403   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3404   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3405     Actual   = RTPRI(ReadBack)->rt_pri;
3406     Expected = RTPRI(ParmInfo)->rt_pri;
3407   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3408     Actual   = IAPRI(ReadBack)->ia_upri;
3409     Expected = IAPRI(ParmInfo)->ia_upri;
3410   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3411     Actual   = TSPRI(ReadBack)->ts_upri;
3412     Expected = TSPRI(ParmInfo)->ts_upri;
3413   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3414     Actual   = FXPRI(ReadBack)->fx_upri;
3415     Expected = FXPRI(ParmInfo)->fx_upri;
3416   } else {
3417     if (ThreadPriorityVerbose) {
3418       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3419                     ParmInfo.pc_cid);
3420     }
3421   }
3422 
3423   if (Actual != Expected) {
3424     if (ThreadPriorityVerbose) {
3425       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3426                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3427     }
3428   }
3429 #endif
3430 
3431   return 0;
3432 }
3433 
3434 // Solaris only gives access to 128 real priorities at a time,
3435 // so we expand Java's ten to fill this range.  This would be better
3436 // if we dynamically adjusted relative priorities.
3437 //
3438 // The ThreadPriorityPolicy option allows us to select 2 different
3439 // priority scales.
3440 //
3441 // ThreadPriorityPolicy=0
3442 // Since the Solaris' default priority is MaximumPriority, we do not
3443 // set a priority lower than Max unless a priority lower than
3444 // NormPriority is requested.
3445 //
3446 // ThreadPriorityPolicy=1
3447 // This mode causes the priority table to get filled with
3448 // linear values.  NormPriority get's mapped to 50% of the
3449 // Maximum priority an so on.  This will cause VM threads
3450 // to get unfair treatment against other Solaris processes
3451 // which do not explicitly alter their thread priorities.
3452 
3453 int os::java_to_os_priority[CriticalPriority + 1] = {
3454   -99999,         // 0 Entry should never be used
3455 
3456   0,              // 1 MinPriority
3457   32,             // 2
3458   64,             // 3
3459 
3460   96,             // 4
3461   127,            // 5 NormPriority
3462   127,            // 6
3463 
3464   127,            // 7
3465   127,            // 8
3466   127,            // 9 NearMaxPriority
3467 
3468   127,            // 10 MaxPriority
3469 
3470   -criticalPrio   // 11 CriticalPriority
3471 };
3472 
3473 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3474   OSThread* osthread = thread->osthread();
3475 
3476   // Save requested priority in case the thread hasn't been started
3477   osthread->set_native_priority(newpri);
3478 
3479   // Check for critical priority request
3480   bool fxcritical = false;
3481   if (newpri == -criticalPrio) {
3482     fxcritical = true;
3483     newpri = criticalPrio;
3484   }
3485 
3486   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3487   if (!UseThreadPriorities) return OS_OK;
3488 
3489   int status = 0;
3490 
3491   if (!fxcritical) {
3492     // Use thr_setprio only if we have a priority that thr_setprio understands
3493     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3494   }
3495 
3496   int lwp_status =
3497           set_lwp_class_and_priority(osthread->thread_id(),
3498                                      osthread->lwp_id(),
3499                                      newpri,
3500                                      fxcritical ? fxLimits.schedPolicy : myClass,
3501                                      !fxcritical);
3502   if (lwp_status != 0 && fxcritical) {
3503     // Try again, this time without changing the scheduling class
3504     newpri = java_MaxPriority_to_os_priority;
3505     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3506                                             osthread->lwp_id(),
3507                                             newpri, myClass, false);
3508   }
3509   status |= lwp_status;
3510   return (status == 0) ? OS_OK : OS_ERR;
3511 }
3512 
3513 
3514 OSReturn os::get_native_priority(const Thread* const thread,
3515                                  int *priority_ptr) {
3516   int p;
3517   if (!UseThreadPriorities) {
3518     *priority_ptr = NormalPriority;
3519     return OS_OK;
3520   }
3521   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3522   if (status != 0) {
3523     return OS_ERR;
3524   }
3525   *priority_ptr = p;
3526   return OS_OK;
3527 }
3528 
3529 
3530 // Hint to the underlying OS that a task switch would not be good.
3531 // Void return because it's a hint and can fail.
3532 void os::hint_no_preempt() {
3533   schedctl_start(schedctl_init());
3534 }
3535 
3536 static void resume_clear_context(OSThread *osthread) {
3537   osthread->set_ucontext(NULL);
3538 }
3539 
3540 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3541   osthread->set_ucontext(context);
3542 }
3543 
3544 static PosixSemaphore sr_semaphore;
3545 
3546 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3547   // Save and restore errno to avoid confusing native code with EINTR
3548   // after sigsuspend.
3549   int old_errno = errno;
3550 
3551   OSThread* osthread = thread->osthread();
3552   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3553 
3554   os::SuspendResume::State current = osthread->sr.state();
3555   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3556     suspend_save_context(osthread, uc);
3557 
3558     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3559     os::SuspendResume::State state = osthread->sr.suspended();
3560     if (state == os::SuspendResume::SR_SUSPENDED) {
3561       sigset_t suspend_set;  // signals for sigsuspend()
3562 
3563       // get current set of blocked signals and unblock resume signal
3564       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3565       sigdelset(&suspend_set, os::Solaris::SIGasync());
3566 
3567       sr_semaphore.signal();
3568       // wait here until we are resumed
3569       while (1) {
3570         sigsuspend(&suspend_set);
3571 
3572         os::SuspendResume::State result = osthread->sr.running();
3573         if (result == os::SuspendResume::SR_RUNNING) {
3574           sr_semaphore.signal();
3575           break;
3576         }
3577       }
3578 
3579     } else if (state == os::SuspendResume::SR_RUNNING) {
3580       // request was cancelled, continue
3581     } else {
3582       ShouldNotReachHere();
3583     }
3584 
3585     resume_clear_context(osthread);
3586   } else if (current == os::SuspendResume::SR_RUNNING) {
3587     // request was cancelled, continue
3588   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3589     // ignore
3590   } else {
3591     // ignore
3592   }
3593 
3594   errno = old_errno;
3595 }
3596 
3597 void os::print_statistics() {
3598 }
3599 
3600 bool os::message_box(const char* title, const char* message) {
3601   int i;
3602   fdStream err(defaultStream::error_fd());
3603   for (i = 0; i < 78; i++) err.print_raw("=");
3604   err.cr();
3605   err.print_raw_cr(title);
3606   for (i = 0; i < 78; i++) err.print_raw("-");
3607   err.cr();
3608   err.print_raw_cr(message);
3609   for (i = 0; i < 78; i++) err.print_raw("=");
3610   err.cr();
3611 
3612   char buf[16];
3613   // Prevent process from exiting upon "read error" without consuming all CPU
3614   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3615 
3616   return buf[0] == 'y' || buf[0] == 'Y';
3617 }
3618 
3619 static int sr_notify(OSThread* osthread) {
3620   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3621   assert_status(status == 0, status, "thr_kill");
3622   return status;
3623 }
3624 
3625 // "Randomly" selected value for how long we want to spin
3626 // before bailing out on suspending a thread, also how often
3627 // we send a signal to a thread we want to resume
3628 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3629 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3630 
3631 static bool do_suspend(OSThread* osthread) {
3632   assert(osthread->sr.is_running(), "thread should be running");
3633   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3634 
3635   // mark as suspended and send signal
3636   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3637     // failed to switch, state wasn't running?
3638     ShouldNotReachHere();
3639     return false;
3640   }
3641 
3642   if (sr_notify(osthread) != 0) {
3643     ShouldNotReachHere();
3644   }
3645 
3646   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3647   while (true) {
3648     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3649       break;
3650     } else {
3651       // timeout
3652       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3653       if (cancelled == os::SuspendResume::SR_RUNNING) {
3654         return false;
3655       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3656         // make sure that we consume the signal on the semaphore as well
3657         sr_semaphore.wait();
3658         break;
3659       } else {
3660         ShouldNotReachHere();
3661         return false;
3662       }
3663     }
3664   }
3665 
3666   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3667   return true;
3668 }
3669 
3670 static void do_resume(OSThread* osthread) {
3671   assert(osthread->sr.is_suspended(), "thread should be suspended");
3672   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3673 
3674   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3675     // failed to switch to WAKEUP_REQUEST
3676     ShouldNotReachHere();
3677     return;
3678   }
3679 
3680   while (true) {
3681     if (sr_notify(osthread) == 0) {
3682       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3683         if (osthread->sr.is_running()) {
3684           return;
3685         }
3686       }
3687     } else {
3688       ShouldNotReachHere();
3689     }
3690   }
3691 
3692   guarantee(osthread->sr.is_running(), "Must be running!");
3693 }
3694 
3695 void os::SuspendedThreadTask::internal_do_task() {
3696   if (do_suspend(_thread->osthread())) {
3697     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3698     do_task(context);
3699     do_resume(_thread->osthread());
3700   }
3701 }
3702 
3703 class PcFetcher : public os::SuspendedThreadTask {
3704  public:
3705   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3706   ExtendedPC result();
3707  protected:
3708   void do_task(const os::SuspendedThreadTaskContext& context);
3709  private:
3710   ExtendedPC _epc;
3711 };
3712 
3713 ExtendedPC PcFetcher::result() {
3714   guarantee(is_done(), "task is not done yet.");
3715   return _epc;
3716 }
3717 
3718 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3719   Thread* thread = context.thread();
3720   OSThread* osthread = thread->osthread();
3721   if (osthread->ucontext() != NULL) {
3722     _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3723   } else {
3724     // NULL context is unexpected, double-check this is the VMThread
3725     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3726   }
3727 }
3728 
3729 // A lightweight implementation that does not suspend the target thread and
3730 // thus returns only a hint. Used for profiling only!
3731 ExtendedPC os::get_thread_pc(Thread* thread) {
3732   // Make sure that it is called by the watcher and the Threads lock is owned.
3733   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3734   // For now, is only used to profile the VM Thread
3735   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3736   PcFetcher fetcher(thread);
3737   fetcher.run();
3738   return fetcher.result();
3739 }
3740 
3741 
3742 // This does not do anything on Solaris. This is basically a hook for being
3743 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3744 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3745                               const methodHandle& method, JavaCallArguments* args,
3746                               Thread* thread) {
3747   f(value, method, args, thread);
3748 }
3749 
3750 // This routine may be used by user applications as a "hook" to catch signals.
3751 // The user-defined signal handler must pass unrecognized signals to this
3752 // routine, and if it returns true (non-zero), then the signal handler must
3753 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3754 // routine will never retun false (zero), but instead will execute a VM panic
3755 // routine kill the process.
3756 //
3757 // If this routine returns false, it is OK to call it again.  This allows
3758 // the user-defined signal handler to perform checks either before or after
3759 // the VM performs its own checks.  Naturally, the user code would be making
3760 // a serious error if it tried to handle an exception (such as a null check
3761 // or breakpoint) that the VM was generating for its own correct operation.
3762 //
3763 // This routine may recognize any of the following kinds of signals:
3764 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3765 // os::Solaris::SIGasync
3766 // It should be consulted by handlers for any of those signals.
3767 //
3768 // The caller of this routine must pass in the three arguments supplied
3769 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3770 // field of the structure passed to sigaction().  This routine assumes that
3771 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3772 //
3773 // Note that the VM will print warnings if it detects conflicting signal
3774 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3775 //
3776 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3777                                                    siginfo_t* siginfo,
3778                                                    void* ucontext,
3779                                                    int abort_if_unrecognized);
3780 
3781 
3782 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3783   int orig_errno = errno;  // Preserve errno value over signal handler.
3784   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3785   errno = orig_errno;
3786 }
3787 
3788 // This boolean allows users to forward their own non-matching signals
3789 // to JVM_handle_solaris_signal, harmlessly.
3790 bool os::Solaris::signal_handlers_are_installed = false;
3791 
3792 // For signal-chaining
3793 bool os::Solaris::libjsig_is_loaded = false;
3794 typedef struct sigaction *(*get_signal_t)(int);
3795 get_signal_t os::Solaris::get_signal_action = NULL;
3796 
3797 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3798   struct sigaction *actp = NULL;
3799 
3800   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3801     // Retrieve the old signal handler from libjsig
3802     actp = (*get_signal_action)(sig);
3803   }
3804   if (actp == NULL) {
3805     // Retrieve the preinstalled signal handler from jvm
3806     actp = get_preinstalled_handler(sig);
3807   }
3808 
3809   return actp;
3810 }
3811 
3812 static bool call_chained_handler(struct sigaction *actp, int sig,
3813                                  siginfo_t *siginfo, void *context) {
3814   // Call the old signal handler
3815   if (actp->sa_handler == SIG_DFL) {
3816     // It's more reasonable to let jvm treat it as an unexpected exception
3817     // instead of taking the default action.
3818     return false;
3819   } else if (actp->sa_handler != SIG_IGN) {
3820     if ((actp->sa_flags & SA_NODEFER) == 0) {
3821       // automaticlly block the signal
3822       sigaddset(&(actp->sa_mask), sig);
3823     }
3824 
3825     sa_handler_t hand;
3826     sa_sigaction_t sa;
3827     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3828     // retrieve the chained handler
3829     if (siginfo_flag_set) {
3830       sa = actp->sa_sigaction;
3831     } else {
3832       hand = actp->sa_handler;
3833     }
3834 
3835     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3836       actp->sa_handler = SIG_DFL;
3837     }
3838 
3839     // try to honor the signal mask
3840     sigset_t oset;
3841     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3842 
3843     // call into the chained handler
3844     if (siginfo_flag_set) {
3845       (*sa)(sig, siginfo, context);
3846     } else {
3847       (*hand)(sig);
3848     }
3849 
3850     // restore the signal mask
3851     pthread_sigmask(SIG_SETMASK, &oset, 0);
3852   }
3853   // Tell jvm's signal handler the signal is taken care of.
3854   return true;
3855 }
3856 
3857 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3858   bool chained = false;
3859   // signal-chaining
3860   if (UseSignalChaining) {
3861     struct sigaction *actp = get_chained_signal_action(sig);
3862     if (actp != NULL) {
3863       chained = call_chained_handler(actp, sig, siginfo, context);
3864     }
3865   }
3866   return chained;
3867 }
3868 
3869 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3870   assert((chainedsigactions != (struct sigaction *)NULL) &&
3871          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3872   if (preinstalled_sigs[sig] != 0) {
3873     return &chainedsigactions[sig];
3874   }
3875   return NULL;
3876 }
3877 
3878 void os::Solaris::save_preinstalled_handler(int sig,
3879                                             struct sigaction& oldAct) {
3880   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3881   assert((chainedsigactions != (struct sigaction *)NULL) &&
3882          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3883   chainedsigactions[sig] = oldAct;
3884   preinstalled_sigs[sig] = 1;
3885 }
3886 
3887 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3888                                      bool oktochain) {
3889   // Check for overwrite.
3890   struct sigaction oldAct;
3891   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3892   void* oldhand =
3893       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3894                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3895   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3896       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3897       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3898     if (AllowUserSignalHandlers || !set_installed) {
3899       // Do not overwrite; user takes responsibility to forward to us.
3900       return;
3901     } else if (UseSignalChaining) {
3902       if (oktochain) {
3903         // save the old handler in jvm
3904         save_preinstalled_handler(sig, oldAct);
3905       } else {
3906         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3907       }
3908       // libjsig also interposes the sigaction() call below and saves the
3909       // old sigaction on it own.
3910     } else {
3911       fatal("Encountered unexpected pre-existing sigaction handler "
3912             "%#lx for signal %d.", (long)oldhand, sig);
3913     }
3914   }
3915 
3916   struct sigaction sigAct;
3917   sigfillset(&(sigAct.sa_mask));
3918   sigAct.sa_handler = SIG_DFL;
3919 
3920   sigAct.sa_sigaction = signalHandler;
3921   // Handle SIGSEGV on alternate signal stack if
3922   // not using stack banging
3923   if (!UseStackBanging && sig == SIGSEGV) {
3924     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3925   } else {
3926     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3927   }
3928   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3929 
3930   sigaction(sig, &sigAct, &oldAct);
3931 
3932   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3933                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3934   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3935 }
3936 
3937 
3938 #define DO_SIGNAL_CHECK(sig)                      \
3939   do {                                            \
3940     if (!sigismember(&check_signal_done, sig)) {  \
3941       os::Solaris::check_signal_handler(sig);     \
3942     }                                             \
3943   } while (0)
3944 
3945 // This method is a periodic task to check for misbehaving JNI applications
3946 // under CheckJNI, we can add any periodic checks here
3947 
3948 void os::run_periodic_checks() {
3949   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3950   // thereby preventing a NULL checks.
3951   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3952 
3953   if (check_signals == false) return;
3954 
3955   // SEGV and BUS if overridden could potentially prevent
3956   // generation of hs*.log in the event of a crash, debugging
3957   // such a case can be very challenging, so we absolutely
3958   // check for the following for a good measure:
3959   DO_SIGNAL_CHECK(SIGSEGV);
3960   DO_SIGNAL_CHECK(SIGILL);
3961   DO_SIGNAL_CHECK(SIGFPE);
3962   DO_SIGNAL_CHECK(SIGBUS);
3963   DO_SIGNAL_CHECK(SIGPIPE);
3964   DO_SIGNAL_CHECK(SIGXFSZ);
3965 
3966   // ReduceSignalUsage allows the user to override these handlers
3967   // see comments at the very top and jvm_solaris.h
3968   if (!ReduceSignalUsage) {
3969     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3970     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3971     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3972     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3973   }
3974 
3975   // See comments above for using JVM1/JVM2
3976   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
3977 
3978 }
3979 
3980 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3981 
3982 static os_sigaction_t os_sigaction = NULL;
3983 
3984 void os::Solaris::check_signal_handler(int sig) {
3985   char buf[O_BUFLEN];
3986   address jvmHandler = NULL;
3987 
3988   struct sigaction act;
3989   if (os_sigaction == NULL) {
3990     // only trust the default sigaction, in case it has been interposed
3991     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3992     if (os_sigaction == NULL) return;
3993   }
3994 
3995   os_sigaction(sig, (struct sigaction*)NULL, &act);
3996 
3997   address thisHandler = (act.sa_flags & SA_SIGINFO)
3998     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3999     : CAST_FROM_FN_PTR(address, act.sa_handler);
4000 
4001 
4002   switch (sig) {
4003   case SIGSEGV:
4004   case SIGBUS:
4005   case SIGFPE:
4006   case SIGPIPE:
4007   case SIGXFSZ:
4008   case SIGILL:
4009     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4010     break;
4011 
4012   case SHUTDOWN1_SIGNAL:
4013   case SHUTDOWN2_SIGNAL:
4014   case SHUTDOWN3_SIGNAL:
4015   case BREAK_SIGNAL:
4016     jvmHandler = (address)user_handler();
4017     break;
4018 
4019   default:
4020     int asynsig = os::Solaris::SIGasync();
4021 
4022     if (sig == asynsig) {
4023       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4024     } else {
4025       return;
4026     }
4027     break;
4028   }
4029 
4030 
4031   if (thisHandler != jvmHandler) {
4032     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4033     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4034     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4035     // No need to check this sig any longer
4036     sigaddset(&check_signal_done, sig);
4037     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4038     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4039       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4040                     exception_name(sig, buf, O_BUFLEN));
4041     }
4042   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4043     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4044     tty->print("expected:");
4045     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4046     tty->cr();
4047     tty->print("  found:");
4048     os::Posix::print_sa_flags(tty, act.sa_flags);
4049     tty->cr();
4050     // No need to check this sig any longer
4051     sigaddset(&check_signal_done, sig);
4052   }
4053 
4054   // Print all the signal handler state
4055   if (sigismember(&check_signal_done, sig)) {
4056     print_signal_handlers(tty, buf, O_BUFLEN);
4057   }
4058 
4059 }
4060 
4061 void os::Solaris::install_signal_handlers() {
4062   bool libjsigdone = false;
4063   signal_handlers_are_installed = true;
4064 
4065   // signal-chaining
4066   typedef void (*signal_setting_t)();
4067   signal_setting_t begin_signal_setting = NULL;
4068   signal_setting_t end_signal_setting = NULL;
4069   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4070                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4071   if (begin_signal_setting != NULL) {
4072     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4073                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4074     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4075                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4076     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4077                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4078     libjsig_is_loaded = true;
4079     if (os::Solaris::get_libjsig_version != NULL) {
4080       libjsigversion =  (*os::Solaris::get_libjsig_version)();
4081     }
4082     assert(UseSignalChaining, "should enable signal-chaining");
4083   }
4084   if (libjsig_is_loaded) {
4085     // Tell libjsig jvm is setting signal handlers
4086     (*begin_signal_setting)();
4087   }
4088 
4089   set_signal_handler(SIGSEGV, true, true);
4090   set_signal_handler(SIGPIPE, true, true);
4091   set_signal_handler(SIGXFSZ, true, true);
4092   set_signal_handler(SIGBUS, true, true);
4093   set_signal_handler(SIGILL, true, true);
4094   set_signal_handler(SIGFPE, true, true);
4095 
4096 
4097   if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4098     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4099     // can not register overridable signals which might be > 32
4100     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4101       // Tell libjsig jvm has finished setting signal handlers
4102       (*end_signal_setting)();
4103       libjsigdone = true;
4104     }
4105   }
4106 
4107   set_signal_handler(os::Solaris::SIGasync(), true, true);
4108 
4109   if (libjsig_is_loaded && !libjsigdone) {
4110     // Tell libjsig jvm finishes setting signal handlers
4111     (*end_signal_setting)();
4112   }
4113 
4114   // We don't activate signal checker if libjsig is in place, we trust ourselves
4115   // and if UserSignalHandler is installed all bets are off.
4116   // Log that signal checking is off only if -verbose:jni is specified.
4117   if (CheckJNICalls) {
4118     if (libjsig_is_loaded) {
4119       if (PrintJNIResolving) {
4120         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4121       }
4122       check_signals = false;
4123     }
4124     if (AllowUserSignalHandlers) {
4125       if (PrintJNIResolving) {
4126         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4127       }
4128       check_signals = false;
4129     }
4130   }
4131 }
4132 
4133 
4134 void report_error(const char* file_name, int line_no, const char* title,
4135                   const char* format, ...);
4136 
4137 // (Static) wrapper for getisax(2) call.
4138 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4139 
4140 // (Static) wrappers for the liblgrp API
4141 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4142 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4143 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4144 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4145 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4146 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4147 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4148 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4149 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4150 
4151 // (Static) wrapper for meminfo() call.
4152 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4153 
4154 static address resolve_symbol_lazy(const char* name) {
4155   address addr = (address) dlsym(RTLD_DEFAULT, name);
4156   if (addr == NULL) {
4157     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4158     addr = (address) dlsym(RTLD_NEXT, name);
4159   }
4160   return addr;
4161 }
4162 
4163 static address resolve_symbol(const char* name) {
4164   address addr = resolve_symbol_lazy(name);
4165   if (addr == NULL) {
4166     fatal(dlerror());
4167   }
4168   return addr;
4169 }
4170 
4171 void os::Solaris::libthread_init() {
4172   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4173 
4174   lwp_priocntl_init();
4175 
4176   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4177   if (func == NULL) {
4178     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4179     // Guarantee that this VM is running on an new enough OS (5.6 or
4180     // later) that it will have a new enough libthread.so.
4181     guarantee(func != NULL, "libthread.so is too old.");
4182   }
4183 
4184   int size;
4185   void (*handler_info_func)(address *, int *);
4186   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4187   handler_info_func(&handler_start, &size);
4188   handler_end = handler_start + size;
4189 }
4190 
4191 
4192 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4193 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4194 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4195 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4196 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4197 int os::Solaris::_mutex_scope = USYNC_THREAD;
4198 
4199 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4200 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4201 int_fnP_cond_tP os::Solaris::_cond_signal;
4202 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4203 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4204 int_fnP_cond_tP os::Solaris::_cond_destroy;
4205 int os::Solaris::_cond_scope = USYNC_THREAD;
4206 
4207 void os::Solaris::synchronization_init() {
4208   if (UseLWPSynchronization) {
4209     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4210     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4211     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4212     os::Solaris::set_mutex_init(lwp_mutex_init);
4213     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4214     os::Solaris::set_mutex_scope(USYNC_THREAD);
4215 
4216     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4217     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4218     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4219     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4220     os::Solaris::set_cond_init(lwp_cond_init);
4221     os::Solaris::set_cond_destroy(lwp_cond_destroy);
4222     os::Solaris::set_cond_scope(USYNC_THREAD);
4223   } else {
4224     os::Solaris::set_mutex_scope(USYNC_THREAD);
4225     os::Solaris::set_cond_scope(USYNC_THREAD);
4226 
4227     if (UsePthreads) {
4228       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4229       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4230       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4231       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4232       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4233 
4234       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4235       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4236       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4237       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4238       os::Solaris::set_cond_init(pthread_cond_default_init);
4239       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4240     } else {
4241       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4242       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4243       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4244       os::Solaris::set_mutex_init(::mutex_init);
4245       os::Solaris::set_mutex_destroy(::mutex_destroy);
4246 
4247       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4248       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4249       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4250       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4251       os::Solaris::set_cond_init(::cond_init);
4252       os::Solaris::set_cond_destroy(::cond_destroy);
4253     }
4254   }
4255 }
4256 
4257 bool os::Solaris::liblgrp_init() {
4258   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4259   if (handle != NULL) {
4260     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4261     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4262     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4263     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4264     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4265     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4266     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4267     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4268                                                       dlsym(handle, "lgrp_cookie_stale")));
4269 
4270     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4271     set_lgrp_cookie(c);
4272     return true;
4273   }
4274   return false;
4275 }
4276 
4277 void os::Solaris::misc_sym_init() {
4278   address func;
4279 
4280   // getisax
4281   func = resolve_symbol_lazy("getisax");
4282   if (func != NULL) {
4283     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4284   }
4285 
4286   // meminfo
4287   func = resolve_symbol_lazy("meminfo");
4288   if (func != NULL) {
4289     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4290   }
4291 }
4292 
4293 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4294   assert(_getisax != NULL, "_getisax not set");
4295   return _getisax(array, n);
4296 }
4297 
4298 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4299 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4300 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4301 
4302 void init_pset_getloadavg_ptr(void) {
4303   pset_getloadavg_ptr =
4304     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4305   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4306     warning("pset_getloadavg function not found");
4307   }
4308 }
4309 
4310 int os::Solaris::_dev_zero_fd = -1;
4311 
4312 // this is called _before_ the global arguments have been parsed
4313 void os::init(void) {
4314   _initial_pid = getpid();
4315 
4316   max_hrtime = first_hrtime = gethrtime();
4317 
4318   init_random(1234567);
4319 
4320   page_size = sysconf(_SC_PAGESIZE);
4321   if (page_size == -1) {
4322     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", strerror(errno));
4323   }
4324   init_page_sizes((size_t) page_size);
4325 
4326   Solaris::initialize_system_info();
4327 
4328   // Initialize misc. symbols as soon as possible, so we can use them
4329   // if we need them.
4330   Solaris::misc_sym_init();
4331 
4332   int fd = ::open("/dev/zero", O_RDWR);
4333   if (fd < 0) {
4334     fatal("os::init: cannot open /dev/zero (%s)", strerror(errno));
4335   } else {
4336     Solaris::set_dev_zero_fd(fd);
4337 
4338     // Close on exec, child won't inherit.
4339     fcntl(fd, F_SETFD, FD_CLOEXEC);
4340   }
4341 
4342   clock_tics_per_sec = CLK_TCK;
4343 
4344   // check if dladdr1() exists; dladdr1 can provide more information than
4345   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4346   // and is available on linker patches for 5.7 and 5.8.
4347   // libdl.so must have been loaded, this call is just an entry lookup
4348   void * hdl = dlopen("libdl.so", RTLD_NOW);
4349   if (hdl) {
4350     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4351   }
4352 
4353   // (Solaris only) this switches to calls that actually do locking.
4354   ThreadCritical::initialize();
4355 
4356   main_thread = thr_self();
4357 
4358   // Constant minimum stack size allowed. It must be at least
4359   // the minimum of what the OS supports (thr_min_stack()), and
4360   // enough to allow the thread to get to user bytecode execution.
4361   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4362 }
4363 
4364 // To install functions for atexit system call
4365 extern "C" {
4366   static void perfMemory_exit_helper() {
4367     perfMemory_exit();
4368   }
4369 }
4370 
4371 // this is called _after_ the global arguments have been parsed
4372 jint os::init_2(void) {
4373   // try to enable extended file IO ASAP, see 6431278
4374   os::Solaris::try_enable_extended_io();
4375 
4376   // Allocate a single page and mark it as readable for safepoint polling.  Also
4377   // use this first mmap call to check support for MAP_ALIGN.
4378   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4379                                                       page_size,
4380                                                       MAP_PRIVATE | MAP_ALIGN,
4381                                                       PROT_READ);
4382   if (polling_page == NULL) {
4383     has_map_align = false;
4384     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4385                                                 PROT_READ);
4386   }
4387 
4388   os::set_polling_page(polling_page);
4389 
4390 #ifndef PRODUCT
4391   if (Verbose && PrintMiscellaneous) {
4392     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4393                (intptr_t)polling_page);
4394   }
4395 #endif
4396 
4397   if (!UseMembar) {
4398     address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4399     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4400     os::set_memory_serialize_page(mem_serialize_page);
4401 
4402 #ifndef PRODUCT
4403     if (Verbose && PrintMiscellaneous) {
4404       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4405                  (intptr_t)mem_serialize_page);
4406     }
4407 #endif
4408   }
4409 
4410   // Check minimum allowable stack size for thread creation and to initialize
4411   // the java system classes, including StackOverflowError - depends on page
4412   // size.  Add a page for compiler2 recursion in main thread.
4413   // Add in 2*BytesPerWord times page size to account for VM stack during
4414   // class initialization depending on 32 or 64 bit VM.
4415   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4416                                         JavaThread::stack_guard_zone_size() +
4417                                         JavaThread::stack_shadow_zone_size() +
4418                                         (2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4419 
4420   size_t threadStackSizeInBytes = ThreadStackSize * K;
4421   if (threadStackSizeInBytes != 0 &&
4422       threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4423     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4424                   os::Solaris::min_stack_allowed/K);
4425     return JNI_ERR;
4426   }
4427 
4428   // For 64kbps there will be a 64kb page size, which makes
4429   // the usable default stack size quite a bit less.  Increase the
4430   // stack for 64kb (or any > than 8kb) pages, this increases
4431   // virtual memory fragmentation (since we're not creating the
4432   // stack on a power of 2 boundary.  The real fix for this
4433   // should be to fix the guard page mechanism.
4434 
4435   if (vm_page_size() > 8*K) {
4436     threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4437        ? threadStackSizeInBytes +
4438          JavaThread::stack_red_zone_size() +
4439          JavaThread::stack_yellow_zone_size()
4440        : 0;
4441     ThreadStackSize = threadStackSizeInBytes/K;
4442   }
4443 
4444   // Make the stack size a multiple of the page size so that
4445   // the yellow/red zones can be guarded.
4446   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4447                                                 vm_page_size()));
4448 
4449   Solaris::libthread_init();
4450 
4451   if (UseNUMA) {
4452     if (!Solaris::liblgrp_init()) {
4453       UseNUMA = false;
4454     } else {
4455       size_t lgrp_limit = os::numa_get_groups_num();
4456       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4457       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4458       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4459       if (lgrp_num < 2) {
4460         // There's only one locality group, disable NUMA.
4461         UseNUMA = false;
4462       }
4463     }
4464     if (!UseNUMA && ForceNUMA) {
4465       UseNUMA = true;
4466     }
4467   }
4468 
4469   Solaris::signal_sets_init();
4470   Solaris::init_signal_mem();
4471   Solaris::install_signal_handlers();
4472 
4473   if (libjsigversion < JSIG_VERSION_1_4_1) {
4474     Maxlibjsigsigs = OLDMAXSIGNUM;
4475   }
4476 
4477   // initialize synchronization primitives to use either thread or
4478   // lwp synchronization (controlled by UseLWPSynchronization)
4479   Solaris::synchronization_init();
4480 
4481   if (MaxFDLimit) {
4482     // set the number of file descriptors to max. print out error
4483     // if getrlimit/setrlimit fails but continue regardless.
4484     struct rlimit nbr_files;
4485     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4486     if (status != 0) {
4487       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4488         perror("os::init_2 getrlimit failed");
4489       }
4490     } else {
4491       nbr_files.rlim_cur = nbr_files.rlim_max;
4492       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4493       if (status != 0) {
4494         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4495           perror("os::init_2 setrlimit failed");
4496         }
4497       }
4498     }
4499   }
4500 
4501   // Calculate theoretical max. size of Threads to guard gainst
4502   // artifical out-of-memory situations, where all available address-
4503   // space has been reserved by thread stacks. Default stack size is 1Mb.
4504   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4505     JavaThread::stack_size_at_create() : (1*K*K);
4506   assert(pre_thread_stack_size != 0, "Must have a stack");
4507   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4508   // we should start doing Virtual Memory banging. Currently when the threads will
4509   // have used all but 200Mb of space.
4510   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4511   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4512 
4513   // at-exit methods are called in the reverse order of their registration.
4514   // In Solaris 7 and earlier, atexit functions are called on return from
4515   // main or as a result of a call to exit(3C). There can be only 32 of
4516   // these functions registered and atexit() does not set errno. In Solaris
4517   // 8 and later, there is no limit to the number of functions registered
4518   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4519   // functions are called upon dlclose(3DL) in addition to return from main
4520   // and exit(3C).
4521 
4522   if (PerfAllowAtExitRegistration) {
4523     // only register atexit functions if PerfAllowAtExitRegistration is set.
4524     // atexit functions can be delayed until process exit time, which
4525     // can be problematic for embedded VM situations. Embedded VMs should
4526     // call DestroyJavaVM() to assure that VM resources are released.
4527 
4528     // note: perfMemory_exit_helper atexit function may be removed in
4529     // the future if the appropriate cleanup code can be added to the
4530     // VM_Exit VMOperation's doit method.
4531     if (atexit(perfMemory_exit_helper) != 0) {
4532       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4533     }
4534   }
4535 
4536   // Init pset_loadavg function pointer
4537   init_pset_getloadavg_ptr();
4538 
4539   return JNI_OK;
4540 }
4541 
4542 // Mark the polling page as unreadable
4543 void os::make_polling_page_unreadable(void) {
4544   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4545     fatal("Could not disable polling page");
4546   }
4547 }
4548 
4549 // Mark the polling page as readable
4550 void os::make_polling_page_readable(void) {
4551   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4552     fatal("Could not enable polling page");
4553   }
4554 }
4555 
4556 // OS interface.
4557 
4558 bool os::check_heap(bool force) { return true; }
4559 
4560 // Is a (classpath) directory empty?
4561 bool os::dir_is_empty(const char* path) {
4562   DIR *dir = NULL;
4563   struct dirent *ptr;
4564 
4565   dir = opendir(path);
4566   if (dir == NULL) return true;
4567 
4568   // Scan the directory
4569   bool result = true;
4570   char buf[sizeof(struct dirent) + MAX_PATH];
4571   struct dirent *dbuf = (struct dirent *) buf;
4572   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4573     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4574       result = false;
4575     }
4576   }
4577   closedir(dir);
4578   return result;
4579 }
4580 
4581 // This code originates from JDK's sysOpen and open64_w
4582 // from src/solaris/hpi/src/system_md.c
4583 
4584 int os::open(const char *path, int oflag, int mode) {
4585   if (strlen(path) > MAX_PATH - 1) {
4586     errno = ENAMETOOLONG;
4587     return -1;
4588   }
4589   int fd;
4590 
4591   fd = ::open64(path, oflag, mode);
4592   if (fd == -1) return -1;
4593 
4594   // If the open succeeded, the file might still be a directory
4595   {
4596     struct stat64 buf64;
4597     int ret = ::fstat64(fd, &buf64);
4598     int st_mode = buf64.st_mode;
4599 
4600     if (ret != -1) {
4601       if ((st_mode & S_IFMT) == S_IFDIR) {
4602         errno = EISDIR;
4603         ::close(fd);
4604         return -1;
4605       }
4606     } else {
4607       ::close(fd);
4608       return -1;
4609     }
4610   }
4611 
4612   // 32-bit Solaris systems suffer from:
4613   //
4614   // - an historical default soft limit of 256 per-process file
4615   //   descriptors that is too low for many Java programs.
4616   //
4617   // - a design flaw where file descriptors created using stdio
4618   //   fopen must be less than 256, _even_ when the first limit above
4619   //   has been raised.  This can cause calls to fopen (but not calls to
4620   //   open, for example) to fail mysteriously, perhaps in 3rd party
4621   //   native code (although the JDK itself uses fopen).  One can hardly
4622   //   criticize them for using this most standard of all functions.
4623   //
4624   // We attempt to make everything work anyways by:
4625   //
4626   // - raising the soft limit on per-process file descriptors beyond
4627   //   256
4628   //
4629   // - As of Solaris 10u4, we can request that Solaris raise the 256
4630   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4631   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4632   //
4633   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4634   //   workaround the bug by remapping non-stdio file descriptors below
4635   //   256 to ones beyond 256, which is done below.
4636   //
4637   // See:
4638   // 1085341: 32-bit stdio routines should support file descriptors >255
4639   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4640   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4641   //          enable_extended_FILE_stdio() in VM initialisation
4642   // Giri Mandalika's blog
4643   // http://technopark02.blogspot.com/2005_05_01_archive.html
4644   //
4645 #ifndef  _LP64
4646   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4647     int newfd = ::fcntl(fd, F_DUPFD, 256);
4648     if (newfd != -1) {
4649       ::close(fd);
4650       fd = newfd;
4651     }
4652   }
4653 #endif // 32-bit Solaris
4654 
4655   // All file descriptors that are opened in the JVM and not
4656   // specifically destined for a subprocess should have the
4657   // close-on-exec flag set.  If we don't set it, then careless 3rd
4658   // party native code might fork and exec without closing all
4659   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4660   // UNIXProcess.c), and this in turn might:
4661   //
4662   // - cause end-of-file to fail to be detected on some file
4663   //   descriptors, resulting in mysterious hangs, or
4664   //
4665   // - might cause an fopen in the subprocess to fail on a system
4666   //   suffering from bug 1085341.
4667   //
4668   // (Yes, the default setting of the close-on-exec flag is a Unix
4669   // design flaw)
4670   //
4671   // See:
4672   // 1085341: 32-bit stdio routines should support file descriptors >255
4673   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4674   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4675   //
4676 #ifdef FD_CLOEXEC
4677   {
4678     int flags = ::fcntl(fd, F_GETFD);
4679     if (flags != -1) {
4680       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4681     }
4682   }
4683 #endif
4684 
4685   return fd;
4686 }
4687 
4688 // create binary file, rewriting existing file if required
4689 int os::create_binary_file(const char* path, bool rewrite_existing) {
4690   int oflags = O_WRONLY | O_CREAT;
4691   if (!rewrite_existing) {
4692     oflags |= O_EXCL;
4693   }
4694   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4695 }
4696 
4697 // return current position of file pointer
4698 jlong os::current_file_offset(int fd) {
4699   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4700 }
4701 
4702 // move file pointer to the specified offset
4703 jlong os::seek_to_file_offset(int fd, jlong offset) {
4704   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4705 }
4706 
4707 jlong os::lseek(int fd, jlong offset, int whence) {
4708   return (jlong) ::lseek64(fd, offset, whence);
4709 }
4710 
4711 char * os::native_path(char *path) {
4712   return path;
4713 }
4714 
4715 int os::ftruncate(int fd, jlong length) {
4716   return ::ftruncate64(fd, length);
4717 }
4718 
4719 int os::fsync(int fd)  {
4720   RESTARTABLE_RETURN_INT(::fsync(fd));
4721 }
4722 
4723 int os::available(int fd, jlong *bytes) {
4724   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4725          "Assumed _thread_in_native");
4726   jlong cur, end;
4727   int mode;
4728   struct stat64 buf64;
4729 
4730   if (::fstat64(fd, &buf64) >= 0) {
4731     mode = buf64.st_mode;
4732     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4733       int n,ioctl_return;
4734 
4735       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4736       if (ioctl_return>= 0) {
4737         *bytes = n;
4738         return 1;
4739       }
4740     }
4741   }
4742   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4743     return 0;
4744   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4745     return 0;
4746   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4747     return 0;
4748   }
4749   *bytes = end - cur;
4750   return 1;
4751 }
4752 
4753 // Map a block of memory.
4754 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4755                         char *addr, size_t bytes, bool read_only,
4756                         bool allow_exec) {
4757   int prot;
4758   int flags;
4759 
4760   if (read_only) {
4761     prot = PROT_READ;
4762     flags = MAP_SHARED;
4763   } else {
4764     prot = PROT_READ | PROT_WRITE;
4765     flags = MAP_PRIVATE;
4766   }
4767 
4768   if (allow_exec) {
4769     prot |= PROT_EXEC;
4770   }
4771 
4772   if (addr != NULL) {
4773     flags |= MAP_FIXED;
4774   }
4775 
4776   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4777                                      fd, file_offset);
4778   if (mapped_address == MAP_FAILED) {
4779     return NULL;
4780   }
4781   return mapped_address;
4782 }
4783 
4784 
4785 // Remap a block of memory.
4786 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4787                           char *addr, size_t bytes, bool read_only,
4788                           bool allow_exec) {
4789   // same as map_memory() on this OS
4790   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4791                         allow_exec);
4792 }
4793 
4794 
4795 // Unmap a block of memory.
4796 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4797   return munmap(addr, bytes) == 0;
4798 }
4799 
4800 void os::pause() {
4801   char filename[MAX_PATH];
4802   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4803     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4804   } else {
4805     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4806   }
4807 
4808   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4809   if (fd != -1) {
4810     struct stat buf;
4811     ::close(fd);
4812     while (::stat(filename, &buf) == 0) {
4813       (void)::poll(NULL, 0, 100);
4814     }
4815   } else {
4816     jio_fprintf(stderr,
4817                 "Could not open pause file '%s', continuing immediately.\n", filename);
4818   }
4819 }
4820 
4821 #ifndef PRODUCT
4822 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4823 // Turn this on if you need to trace synch operations.
4824 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4825 // and call record_synch_enable and record_synch_disable
4826 // around the computation of interest.
4827 
4828 void record_synch(char* name, bool returning);  // defined below
4829 
4830 class RecordSynch {
4831   char* _name;
4832  public:
4833   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4834   ~RecordSynch()                       { record_synch(_name, true); }
4835 };
4836 
4837 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4838 extern "C" ret name params {                                    \
4839   typedef ret name##_t params;                                  \
4840   static name##_t* implem = NULL;                               \
4841   static int callcount = 0;                                     \
4842   if (implem == NULL) {                                         \
4843     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4844     if (implem == NULL)  fatal(dlerror());                      \
4845   }                                                             \
4846   ++callcount;                                                  \
4847   RecordSynch _rs(#name);                                       \
4848   inner;                                                        \
4849   return implem args;                                           \
4850 }
4851 // in dbx, examine callcounts this way:
4852 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4853 
4854 #define CHECK_POINTER_OK(p) \
4855   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4856 #define CHECK_MU \
4857   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4858 #define CHECK_CV \
4859   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4860 #define CHECK_P(p) \
4861   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4862 
4863 #define CHECK_MUTEX(mutex_op) \
4864   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4865 
4866 CHECK_MUTEX(   mutex_lock)
4867 CHECK_MUTEX(  _mutex_lock)
4868 CHECK_MUTEX( mutex_unlock)
4869 CHECK_MUTEX(_mutex_unlock)
4870 CHECK_MUTEX( mutex_trylock)
4871 CHECK_MUTEX(_mutex_trylock)
4872 
4873 #define CHECK_COND(cond_op) \
4874   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4875 
4876 CHECK_COND( cond_wait);
4877 CHECK_COND(_cond_wait);
4878 CHECK_COND(_cond_wait_cancel);
4879 
4880 #define CHECK_COND2(cond_op) \
4881   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4882 
4883 CHECK_COND2( cond_timedwait);
4884 CHECK_COND2(_cond_timedwait);
4885 CHECK_COND2(_cond_timedwait_cancel);
4886 
4887 // do the _lwp_* versions too
4888 #define mutex_t lwp_mutex_t
4889 #define cond_t  lwp_cond_t
4890 CHECK_MUTEX(  _lwp_mutex_lock)
4891 CHECK_MUTEX(  _lwp_mutex_unlock)
4892 CHECK_MUTEX(  _lwp_mutex_trylock)
4893 CHECK_MUTEX( __lwp_mutex_lock)
4894 CHECK_MUTEX( __lwp_mutex_unlock)
4895 CHECK_MUTEX( __lwp_mutex_trylock)
4896 CHECK_MUTEX(___lwp_mutex_lock)
4897 CHECK_MUTEX(___lwp_mutex_unlock)
4898 
4899 CHECK_COND(  _lwp_cond_wait);
4900 CHECK_COND( __lwp_cond_wait);
4901 CHECK_COND(___lwp_cond_wait);
4902 
4903 CHECK_COND2(  _lwp_cond_timedwait);
4904 CHECK_COND2( __lwp_cond_timedwait);
4905 #undef mutex_t
4906 #undef cond_t
4907 
4908 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4909 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4910 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4911 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4912 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4913 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4914 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4915 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4916 
4917 
4918 // recording machinery:
4919 
4920 enum { RECORD_SYNCH_LIMIT = 200 };
4921 char* record_synch_name[RECORD_SYNCH_LIMIT];
4922 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4923 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4924 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4925 int record_synch_count = 0;
4926 bool record_synch_enabled = false;
4927 
4928 // in dbx, examine recorded data this way:
4929 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4930 
4931 void record_synch(char* name, bool returning) {
4932   if (record_synch_enabled) {
4933     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4934       record_synch_name[record_synch_count] = name;
4935       record_synch_returning[record_synch_count] = returning;
4936       record_synch_thread[record_synch_count] = thr_self();
4937       record_synch_arg0ptr[record_synch_count] = &name;
4938       record_synch_count++;
4939     }
4940     // put more checking code here:
4941     // ...
4942   }
4943 }
4944 
4945 void record_synch_enable() {
4946   // start collecting trace data, if not already doing so
4947   if (!record_synch_enabled)  record_synch_count = 0;
4948   record_synch_enabled = true;
4949 }
4950 
4951 void record_synch_disable() {
4952   // stop collecting trace data
4953   record_synch_enabled = false;
4954 }
4955 
4956 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4957 #endif // PRODUCT
4958 
4959 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4960 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4961                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4962 
4963 
4964 // JVMTI & JVM monitoring and management support
4965 // The thread_cpu_time() and current_thread_cpu_time() are only
4966 // supported if is_thread_cpu_time_supported() returns true.
4967 // They are not supported on Solaris T1.
4968 
4969 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4970 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4971 // of a thread.
4972 //
4973 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4974 // returns the fast estimate available on the platform.
4975 
4976 // hrtime_t gethrvtime() return value includes
4977 // user time but does not include system time
4978 jlong os::current_thread_cpu_time() {
4979   return (jlong) gethrvtime();
4980 }
4981 
4982 jlong os::thread_cpu_time(Thread *thread) {
4983   // return user level CPU time only to be consistent with
4984   // what current_thread_cpu_time returns.
4985   // thread_cpu_time_info() must be changed if this changes
4986   return os::thread_cpu_time(thread, false /* user time only */);
4987 }
4988 
4989 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4990   if (user_sys_cpu_time) {
4991     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4992   } else {
4993     return os::current_thread_cpu_time();
4994   }
4995 }
4996 
4997 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4998   char proc_name[64];
4999   int count;
5000   prusage_t prusage;
5001   jlong lwp_time;
5002   int fd;
5003 
5004   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5005           getpid(),
5006           thread->osthread()->lwp_id());
5007   fd = ::open(proc_name, O_RDONLY);
5008   if (fd == -1) return -1;
5009 
5010   do {
5011     count = ::pread(fd,
5012                     (void *)&prusage.pr_utime,
5013                     thr_time_size,
5014                     thr_time_off);
5015   } while (count < 0 && errno == EINTR);
5016   ::close(fd);
5017   if (count < 0) return -1;
5018 
5019   if (user_sys_cpu_time) {
5020     // user + system CPU time
5021     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5022                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5023                  (jlong)prusage.pr_stime.tv_nsec +
5024                  (jlong)prusage.pr_utime.tv_nsec;
5025   } else {
5026     // user level CPU time only
5027     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5028                 (jlong)prusage.pr_utime.tv_nsec;
5029   }
5030 
5031   return (lwp_time);
5032 }
5033 
5034 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5035   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5036   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5037   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5038   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5039 }
5040 
5041 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5042   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5043   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5044   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5045   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5046 }
5047 
5048 bool os::is_thread_cpu_time_supported() {
5049   return true;
5050 }
5051 
5052 // System loadavg support.  Returns -1 if load average cannot be obtained.
5053 // Return the load average for our processor set if the primitive exists
5054 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
5055 int os::loadavg(double loadavg[], int nelem) {
5056   if (pset_getloadavg_ptr != NULL) {
5057     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5058   } else {
5059     return ::getloadavg(loadavg, nelem);
5060   }
5061 }
5062 
5063 //---------------------------------------------------------------------------------
5064 
5065 bool os::find(address addr, outputStream* st) {
5066   Dl_info dlinfo;
5067   memset(&dlinfo, 0, sizeof(dlinfo));
5068   if (dladdr(addr, &dlinfo) != 0) {
5069     st->print(PTR_FORMAT ": ", addr);
5070     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5071       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5072     } else if (dlinfo.dli_fbase != NULL) {
5073       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5074     } else {
5075       st->print("<absolute address>");
5076     }
5077     if (dlinfo.dli_fname != NULL) {
5078       st->print(" in %s", dlinfo.dli_fname);
5079     }
5080     if (dlinfo.dli_fbase != NULL) {
5081       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5082     }
5083     st->cr();
5084 
5085     if (Verbose) {
5086       // decode some bytes around the PC
5087       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5088       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5089       address       lowest = (address) dlinfo.dli_sname;
5090       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5091       if (begin < lowest)  begin = lowest;
5092       Dl_info dlinfo2;
5093       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5094           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5095         end = (address) dlinfo2.dli_saddr;
5096       }
5097       Disassembler::decode(begin, end, st);
5098     }
5099     return true;
5100   }
5101   return false;
5102 }
5103 
5104 // Following function has been added to support HotSparc's libjvm.so running
5105 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5106 // src/solaris/hpi/native_threads in the EVM codebase.
5107 //
5108 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5109 // libraries and should thus be removed. We will leave it behind for a while
5110 // until we no longer want to able to run on top of 1.3.0 Solaris production
5111 // JDK. See 4341971.
5112 
5113 #define STACK_SLACK 0x800
5114 
5115 extern "C" {
5116   intptr_t sysThreadAvailableStackWithSlack() {
5117     stack_t st;
5118     intptr_t retval, stack_top;
5119     retval = thr_stksegment(&st);
5120     assert(retval == 0, "incorrect return value from thr_stksegment");
5121     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5122     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5123     stack_top=(intptr_t)st.ss_sp-st.ss_size;
5124     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5125   }
5126 }
5127 
5128 // ObjectMonitor park-unpark infrastructure ...
5129 //
5130 // We implement Solaris and Linux PlatformEvents with the
5131 // obvious condvar-mutex-flag triple.
5132 // Another alternative that works quite well is pipes:
5133 // Each PlatformEvent consists of a pipe-pair.
5134 // The thread associated with the PlatformEvent
5135 // calls park(), which reads from the input end of the pipe.
5136 // Unpark() writes into the other end of the pipe.
5137 // The write-side of the pipe must be set NDELAY.
5138 // Unfortunately pipes consume a large # of handles.
5139 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
5140 // Using pipes for the 1st few threads might be workable, however.
5141 //
5142 // park() is permitted to return spuriously.
5143 // Callers of park() should wrap the call to park() in
5144 // an appropriate loop.  A litmus test for the correct
5145 // usage of park is the following: if park() were modified
5146 // to immediately return 0 your code should still work,
5147 // albeit degenerating to a spin loop.
5148 //
5149 // In a sense, park()-unpark() just provides more polite spinning
5150 // and polling with the key difference over naive spinning being
5151 // that a parked thread needs to be explicitly unparked() in order
5152 // to wake up and to poll the underlying condition.
5153 //
5154 // Assumption:
5155 //    Only one parker can exist on an event, which is why we allocate
5156 //    them per-thread. Multiple unparkers can coexist.
5157 //
5158 // _Event transitions in park()
5159 //   -1 => -1 : illegal
5160 //    1 =>  0 : pass - return immediately
5161 //    0 => -1 : block; then set _Event to 0 before returning
5162 //
5163 // _Event transitions in unpark()
5164 //    0 => 1 : just return
5165 //    1 => 1 : just return
5166 //   -1 => either 0 or 1; must signal target thread
5167 //         That is, we can safely transition _Event from -1 to either
5168 //         0 or 1.
5169 //
5170 // _Event serves as a restricted-range semaphore.
5171 //   -1 : thread is blocked, i.e. there is a waiter
5172 //    0 : neutral: thread is running or ready,
5173 //        could have been signaled after a wait started
5174 //    1 : signaled - thread is running or ready
5175 //
5176 // Another possible encoding of _Event would be with
5177 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5178 //
5179 // TODO-FIXME: add DTRACE probes for:
5180 // 1.   Tx parks
5181 // 2.   Ty unparks Tx
5182 // 3.   Tx resumes from park
5183 
5184 
5185 // value determined through experimentation
5186 #define ROUNDINGFIX 11
5187 
5188 // utility to compute the abstime argument to timedwait.
5189 // TODO-FIXME: switch from compute_abstime() to unpackTime().
5190 
5191 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5192   // millis is the relative timeout time
5193   // abstime will be the absolute timeout time
5194   if (millis < 0)  millis = 0;
5195   struct timeval now;
5196   int status = gettimeofday(&now, NULL);
5197   assert(status == 0, "gettimeofday");
5198   jlong seconds = millis / 1000;
5199   jlong max_wait_period;
5200 
5201   if (UseLWPSynchronization) {
5202     // forward port of fix for 4275818 (not sleeping long enough)
5203     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5204     // _lwp_cond_timedwait() used a round_down algorithm rather
5205     // than a round_up. For millis less than our roundfactor
5206     // it rounded down to 0 which doesn't meet the spec.
5207     // For millis > roundfactor we may return a bit sooner, but
5208     // since we can not accurately identify the patch level and
5209     // this has already been fixed in Solaris 9 and 8 we will
5210     // leave it alone rather than always rounding down.
5211 
5212     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5213     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5214     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5215     max_wait_period = 21000000;
5216   } else {
5217     max_wait_period = 50000000;
5218   }
5219   millis %= 1000;
5220   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5221     seconds = max_wait_period;
5222   }
5223   abstime->tv_sec = now.tv_sec  + seconds;
5224   long       usec = now.tv_usec + millis * 1000;
5225   if (usec >= 1000000) {
5226     abstime->tv_sec += 1;
5227     usec -= 1000000;
5228   }
5229   abstime->tv_nsec = usec * 1000;
5230   return abstime;
5231 }
5232 
5233 void os::PlatformEvent::park() {           // AKA: down()
5234   // Transitions for _Event:
5235   //   -1 => -1 : illegal
5236   //    1 =>  0 : pass - return immediately
5237   //    0 => -1 : block; then set _Event to 0 before returning
5238 
5239   // Invariant: Only the thread associated with the Event/PlatformEvent
5240   // may call park().
5241   assert(_nParked == 0, "invariant");
5242 
5243   int v;
5244   for (;;) {
5245     v = _Event;
5246     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5247   }
5248   guarantee(v >= 0, "invariant");
5249   if (v == 0) {
5250     // Do this the hard way by blocking ...
5251     // See http://monaco.sfbay/detail.jsf?cr=5094058.
5252     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5253     // Only for SPARC >= V8PlusA
5254 #if defined(__sparc) && defined(COMPILER2)
5255     if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5256 #endif
5257     int status = os::Solaris::mutex_lock(_mutex);
5258     assert_status(status == 0, status, "mutex_lock");
5259     guarantee(_nParked == 0, "invariant");
5260     ++_nParked;
5261     while (_Event < 0) {
5262       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5263       // Treat this the same as if the wait was interrupted
5264       // With usr/lib/lwp going to kernel, always handle ETIME
5265       status = os::Solaris::cond_wait(_cond, _mutex);
5266       if (status == ETIME) status = EINTR;
5267       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5268     }
5269     --_nParked;
5270     _Event = 0;
5271     status = os::Solaris::mutex_unlock(_mutex);
5272     assert_status(status == 0, status, "mutex_unlock");
5273     // Paranoia to ensure our locked and lock-free paths interact
5274     // correctly with each other.
5275     OrderAccess::fence();
5276   }
5277 }
5278 
5279 int os::PlatformEvent::park(jlong millis) {
5280   // Transitions for _Event:
5281   //   -1 => -1 : illegal
5282   //    1 =>  0 : pass - return immediately
5283   //    0 => -1 : block; then set _Event to 0 before returning
5284 
5285   guarantee(_nParked == 0, "invariant");
5286   int v;
5287   for (;;) {
5288     v = _Event;
5289     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5290   }
5291   guarantee(v >= 0, "invariant");
5292   if (v != 0) return OS_OK;
5293 
5294   int ret = OS_TIMEOUT;
5295   timestruc_t abst;
5296   compute_abstime(&abst, millis);
5297 
5298   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5299   // For Solaris SPARC set fprs.FEF=0 prior to parking.
5300   // Only for SPARC >= V8PlusA
5301 #if defined(__sparc) && defined(COMPILER2)
5302   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5303 #endif
5304   int status = os::Solaris::mutex_lock(_mutex);
5305   assert_status(status == 0, status, "mutex_lock");
5306   guarantee(_nParked == 0, "invariant");
5307   ++_nParked;
5308   while (_Event < 0) {
5309     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5310     assert_status(status == 0 || status == EINTR ||
5311                   status == ETIME || status == ETIMEDOUT,
5312                   status, "cond_timedwait");
5313     if (!FilterSpuriousWakeups) break;                // previous semantics
5314     if (status == ETIME || status == ETIMEDOUT) break;
5315     // We consume and ignore EINTR and spurious wakeups.
5316   }
5317   --_nParked;
5318   if (_Event >= 0) ret = OS_OK;
5319   _Event = 0;
5320   status = os::Solaris::mutex_unlock(_mutex);
5321   assert_status(status == 0, status, "mutex_unlock");
5322   // Paranoia to ensure our locked and lock-free paths interact
5323   // correctly with each other.
5324   OrderAccess::fence();
5325   return ret;
5326 }
5327 
5328 void os::PlatformEvent::unpark() {
5329   // Transitions for _Event:
5330   //    0 => 1 : just return
5331   //    1 => 1 : just return
5332   //   -1 => either 0 or 1; must signal target thread
5333   //         That is, we can safely transition _Event from -1 to either
5334   //         0 or 1.
5335   // See also: "Semaphores in Plan 9" by Mullender & Cox
5336   //
5337   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5338   // that it will take two back-to-back park() calls for the owning
5339   // thread to block. This has the benefit of forcing a spurious return
5340   // from the first park() call after an unpark() call which will help
5341   // shake out uses of park() and unpark() without condition variables.
5342 
5343   if (Atomic::xchg(1, &_Event) >= 0) return;
5344 
5345   // If the thread associated with the event was parked, wake it.
5346   // Wait for the thread assoc with the PlatformEvent to vacate.
5347   int status = os::Solaris::mutex_lock(_mutex);
5348   assert_status(status == 0, status, "mutex_lock");
5349   int AnyWaiters = _nParked;
5350   status = os::Solaris::mutex_unlock(_mutex);
5351   assert_status(status == 0, status, "mutex_unlock");
5352   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5353   if (AnyWaiters != 0) {
5354     // Note that we signal() *after* dropping the lock for "immortal" Events.
5355     // This is safe and avoids a common class of  futile wakeups.  In rare
5356     // circumstances this can cause a thread to return prematurely from
5357     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5358     // will simply re-test the condition and re-park itself.
5359     // This provides particular benefit if the underlying platform does not
5360     // provide wait morphing.
5361     status = os::Solaris::cond_signal(_cond);
5362     assert_status(status == 0, status, "cond_signal");
5363   }
5364 }
5365 
5366 // JSR166
5367 // -------------------------------------------------------
5368 
5369 // The solaris and linux implementations of park/unpark are fairly
5370 // conservative for now, but can be improved. They currently use a
5371 // mutex/condvar pair, plus _counter.
5372 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5373 // sets count to 1 and signals condvar.  Only one thread ever waits
5374 // on the condvar. Contention seen when trying to park implies that someone
5375 // is unparking you, so don't wait. And spurious returns are fine, so there
5376 // is no need to track notifications.
5377 
5378 #define MAX_SECS 100000000
5379 
5380 // This code is common to linux and solaris and will be moved to a
5381 // common place in dolphin.
5382 //
5383 // The passed in time value is either a relative time in nanoseconds
5384 // or an absolute time in milliseconds. Either way it has to be unpacked
5385 // into suitable seconds and nanoseconds components and stored in the
5386 // given timespec structure.
5387 // Given time is a 64-bit value and the time_t used in the timespec is only
5388 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5389 // overflow if times way in the future are given. Further on Solaris versions
5390 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5391 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5392 // As it will be 28 years before "now + 100000000" will overflow we can
5393 // ignore overflow and just impose a hard-limit on seconds using the value
5394 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5395 // years from "now".
5396 //
5397 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5398   assert(time > 0, "convertTime");
5399 
5400   struct timeval now;
5401   int status = gettimeofday(&now, NULL);
5402   assert(status == 0, "gettimeofday");
5403 
5404   time_t max_secs = now.tv_sec + MAX_SECS;
5405 
5406   if (isAbsolute) {
5407     jlong secs = time / 1000;
5408     if (secs > max_secs) {
5409       absTime->tv_sec = max_secs;
5410     } else {
5411       absTime->tv_sec = secs;
5412     }
5413     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5414   } else {
5415     jlong secs = time / NANOSECS_PER_SEC;
5416     if (secs >= MAX_SECS) {
5417       absTime->tv_sec = max_secs;
5418       absTime->tv_nsec = 0;
5419     } else {
5420       absTime->tv_sec = now.tv_sec + secs;
5421       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5422       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5423         absTime->tv_nsec -= NANOSECS_PER_SEC;
5424         ++absTime->tv_sec; // note: this must be <= max_secs
5425       }
5426     }
5427   }
5428   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5429   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5430   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5431   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5432 }
5433 
5434 void Parker::park(bool isAbsolute, jlong time) {
5435   // Ideally we'd do something useful while spinning, such
5436   // as calling unpackTime().
5437 
5438   // Optional fast-path check:
5439   // Return immediately if a permit is available.
5440   // We depend on Atomic::xchg() having full barrier semantics
5441   // since we are doing a lock-free update to _counter.
5442   if (Atomic::xchg(0, &_counter) > 0) return;
5443 
5444   // Optional fast-exit: Check interrupt before trying to wait
5445   Thread* thread = Thread::current();
5446   assert(thread->is_Java_thread(), "Must be JavaThread");
5447   JavaThread *jt = (JavaThread *)thread;
5448   if (Thread::is_interrupted(thread, false)) {
5449     return;
5450   }
5451 
5452   // First, demultiplex/decode time arguments
5453   timespec absTime;
5454   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5455     return;
5456   }
5457   if (time > 0) {
5458     // Warning: this code might be exposed to the old Solaris time
5459     // round-down bugs.  Grep "roundingFix" for details.
5460     unpackTime(&absTime, isAbsolute, time);
5461   }
5462 
5463   // Enter safepoint region
5464   // Beware of deadlocks such as 6317397.
5465   // The per-thread Parker:: _mutex is a classic leaf-lock.
5466   // In particular a thread must never block on the Threads_lock while
5467   // holding the Parker:: mutex.  If safepoints are pending both the
5468   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5469   ThreadBlockInVM tbivm(jt);
5470 
5471   // Don't wait if cannot get lock since interference arises from
5472   // unblocking.  Also. check interrupt before trying wait
5473   if (Thread::is_interrupted(thread, false) ||
5474       os::Solaris::mutex_trylock(_mutex) != 0) {
5475     return;
5476   }
5477 
5478   int status;
5479 
5480   if (_counter > 0)  { // no wait needed
5481     _counter = 0;
5482     status = os::Solaris::mutex_unlock(_mutex);
5483     assert(status == 0, "invariant");
5484     // Paranoia to ensure our locked and lock-free paths interact
5485     // correctly with each other and Java-level accesses.
5486     OrderAccess::fence();
5487     return;
5488   }
5489 
5490 #ifdef ASSERT
5491   // Don't catch signals while blocked; let the running threads have the signals.
5492   // (This allows a debugger to break into the running thread.)
5493   sigset_t oldsigs;
5494   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5495   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5496 #endif
5497 
5498   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5499   jt->set_suspend_equivalent();
5500   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5501 
5502   // Do this the hard way by blocking ...
5503   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5504   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5505   // Only for SPARC >= V8PlusA
5506 #if defined(__sparc) && defined(COMPILER2)
5507   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5508 #endif
5509 
5510   if (time == 0) {
5511     status = os::Solaris::cond_wait(_cond, _mutex);
5512   } else {
5513     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5514   }
5515   // Note that an untimed cond_wait() can sometimes return ETIME on older
5516   // versions of the Solaris.
5517   assert_status(status == 0 || status == EINTR ||
5518                 status == ETIME || status == ETIMEDOUT,
5519                 status, "cond_timedwait");
5520 
5521 #ifdef ASSERT
5522   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5523 #endif
5524   _counter = 0;
5525   status = os::Solaris::mutex_unlock(_mutex);
5526   assert_status(status == 0, status, "mutex_unlock");
5527   // Paranoia to ensure our locked and lock-free paths interact
5528   // correctly with each other and Java-level accesses.
5529   OrderAccess::fence();
5530 
5531   // If externally suspended while waiting, re-suspend
5532   if (jt->handle_special_suspend_equivalent_condition()) {
5533     jt->java_suspend_self();
5534   }
5535 }
5536 
5537 void Parker::unpark() {
5538   int status = os::Solaris::mutex_lock(_mutex);
5539   assert(status == 0, "invariant");
5540   const int s = _counter;
5541   _counter = 1;
5542   status = os::Solaris::mutex_unlock(_mutex);
5543   assert(status == 0, "invariant");
5544 
5545   if (s < 1) {
5546     status = os::Solaris::cond_signal(_cond);
5547     assert(status == 0, "invariant");
5548   }
5549 }
5550 
5551 extern char** environ;
5552 
5553 // Run the specified command in a separate process. Return its exit value,
5554 // or -1 on failure (e.g. can't fork a new process).
5555 // Unlike system(), this function can be called from signal handler. It
5556 // doesn't block SIGINT et al.
5557 int os::fork_and_exec(char* cmd) {
5558   char * argv[4];
5559   argv[0] = (char *)"sh";
5560   argv[1] = (char *)"-c";
5561   argv[2] = cmd;
5562   argv[3] = NULL;
5563 
5564   // fork is async-safe, fork1 is not so can't use in signal handler
5565   pid_t pid;
5566   Thread* t = Thread::current_or_null_safe();
5567   if (t != NULL && t->is_inside_signal_handler()) {
5568     pid = fork();
5569   } else {
5570     pid = fork1();
5571   }
5572 
5573   if (pid < 0) {
5574     // fork failed
5575     warning("fork failed: %s", strerror(errno));
5576     return -1;
5577 
5578   } else if (pid == 0) {
5579     // child process
5580 
5581     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5582     execve("/usr/bin/sh", argv, environ);
5583 
5584     // execve failed
5585     _exit(-1);
5586 
5587   } else  {
5588     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5589     // care about the actual exit code, for now.
5590 
5591     int status;
5592 
5593     // Wait for the child process to exit.  This returns immediately if
5594     // the child has already exited. */
5595     while (waitpid(pid, &status, 0) < 0) {
5596       switch (errno) {
5597       case ECHILD: return 0;
5598       case EINTR: break;
5599       default: return -1;
5600       }
5601     }
5602 
5603     if (WIFEXITED(status)) {
5604       // The child exited normally; get its exit code.
5605       return WEXITSTATUS(status);
5606     } else if (WIFSIGNALED(status)) {
5607       // The child exited because of a signal
5608       // The best value to return is 0x80 + signal number,
5609       // because that is what all Unix shells do, and because
5610       // it allows callers to distinguish between process exit and
5611       // process death by signal.
5612       return 0x80 + WTERMSIG(status);
5613     } else {
5614       // Unknown exit code; pass it through
5615       return status;
5616     }
5617   }
5618 }
5619 
5620 // is_headless_jre()
5621 //
5622 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5623 // in order to report if we are running in a headless jre
5624 //
5625 // Since JDK8 xawt/libmawt.so was moved into the same directory
5626 // as libawt.so, and renamed libawt_xawt.so
5627 //
5628 bool os::is_headless_jre() {
5629   struct stat statbuf;
5630   char buf[MAXPATHLEN];
5631   char libmawtpath[MAXPATHLEN];
5632   const char *xawtstr  = "/xawt/libmawt.so";
5633   const char *new_xawtstr = "/libawt_xawt.so";
5634   char *p;
5635 
5636   // Get path to libjvm.so
5637   os::jvm_path(buf, sizeof(buf));
5638 
5639   // Get rid of libjvm.so
5640   p = strrchr(buf, '/');
5641   if (p == NULL) {
5642     return false;
5643   } else {
5644     *p = '\0';
5645   }
5646 
5647   // Get rid of client or server
5648   p = strrchr(buf, '/');
5649   if (p == NULL) {
5650     return false;
5651   } else {
5652     *p = '\0';
5653   }
5654 
5655   // check xawt/libmawt.so
5656   strcpy(libmawtpath, buf);
5657   strcat(libmawtpath, xawtstr);
5658   if (::stat(libmawtpath, &statbuf) == 0) return false;
5659 
5660   // check libawt_xawt.so
5661   strcpy(libmawtpath, buf);
5662   strcat(libmawtpath, new_xawtstr);
5663   if (::stat(libmawtpath, &statbuf) == 0) return false;
5664 
5665   return true;
5666 }
5667 
5668 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5669   size_t res;
5670   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5671   return res;
5672 }
5673 
5674 int os::close(int fd) {
5675   return ::close(fd);
5676 }
5677 
5678 int os::socket_close(int fd) {
5679   return ::close(fd);
5680 }
5681 
5682 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5683   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5684          "Assumed _thread_in_native");
5685   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5686 }
5687 
5688 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5689   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5690          "Assumed _thread_in_native");
5691   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5692 }
5693 
5694 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5695   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5696 }
5697 
5698 // As both poll and select can be interrupted by signals, we have to be
5699 // prepared to restart the system call after updating the timeout, unless
5700 // a poll() is done with timeout == -1, in which case we repeat with this
5701 // "wait forever" value.
5702 
5703 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5704   int _result;
5705   _result = ::connect(fd, him, len);
5706 
5707   // On Solaris, when a connect() call is interrupted, the connection
5708   // can be established asynchronously (see 6343810). Subsequent calls
5709   // to connect() must check the errno value which has the semantic
5710   // described below (copied from the connect() man page). Handling
5711   // of asynchronously established connections is required for both
5712   // blocking and non-blocking sockets.
5713   //     EINTR            The  connection  attempt  was   interrupted
5714   //                      before  any data arrived by the delivery of
5715   //                      a signal. The connection, however, will  be
5716   //                      established asynchronously.
5717   //
5718   //     EINPROGRESS      The socket is non-blocking, and the connec-
5719   //                      tion  cannot  be completed immediately.
5720   //
5721   //     EALREADY         The socket is non-blocking,  and a previous
5722   //                      connection  attempt  has  not yet been com-
5723   //                      pleted.
5724   //
5725   //     EISCONN          The socket is already connected.
5726   if (_result == OS_ERR && errno == EINTR) {
5727     // restarting a connect() changes its errno semantics
5728     RESTARTABLE(::connect(fd, him, len), _result);
5729     // undo these changes
5730     if (_result == OS_ERR) {
5731       if (errno == EALREADY) {
5732         errno = EINPROGRESS; // fall through
5733       } else if (errno == EISCONN) {
5734         errno = 0;
5735         return OS_OK;
5736       }
5737     }
5738   }
5739   return _result;
5740 }
5741 
5742 // Get the default path to the core file
5743 // Returns the length of the string
5744 int os::get_core_path(char* buffer, size_t bufferSize) {
5745   const char* p = get_current_directory(buffer, bufferSize);
5746 
5747   if (p == NULL) {
5748     assert(p != NULL, "failed to get current directory");
5749     return 0;
5750   }
5751 
5752   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5753                                               p, current_process_id());
5754 
5755   return strlen(buffer);
5756 }
5757 
5758 #ifndef PRODUCT
5759 void TestReserveMemorySpecial_test() {
5760   // No tests available for this platform
5761 }
5762 #endif
5763 
5764 bool os::start_debugging(char *buf, int buflen) {
5765   int len = (int)strlen(buf);
5766   char *p = &buf[len];
5767 
5768   jio_snprintf(p, buflen-len,
5769                "\n\n"
5770                "Do you want to debug the problem?\n\n"
5771                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5772                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5773                "Otherwise, press RETURN to abort...",
5774                os::current_process_id(), os::current_thread_id());
5775 
5776   bool yes = os::message_box("Unexpected Error", buf);
5777 
5778   if (yes) {
5779     // yes, user asked VM to launch debugger
5780     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5781 
5782     os::fork_and_exec(buf);
5783     yes = false;
5784   }
5785   return yes;
5786 }