/* * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2018, SAP and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/metaspace/metaspaceCommon.hpp" #include "memory/metaspace/virtualSpaceNode.hpp" #include "utilities/debug.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/ostream.hpp" namespace metaspace { DEBUG_ONLY(internal_statistics_t g_internal_statistics;) // Print a size, in words, scaled. void print_scaled_words(outputStream* st, size_t word_size, size_t scale, int width) { print_human_readable_size(st, word_size * sizeof(MetaWord), scale, width); } // Convenience helper: prints a size value and a percentage. void print_scaled_words_and_percentage(outputStream* st, size_t word_size, size_t compare_word_size, size_t scale, int width) { print_scaled_words(st, word_size, scale, width); st->print(" ("); print_percentage(st, compare_word_size, word_size); st->print(")"); } // Print a human readable size. // byte_size: size, in bytes, to be printed. // scale: one of 1 (byte-wise printing), sizeof(word) (word-size printing), K, M, G (scaled by KB, MB, GB respectively, // or 0, which means the best scale is choosen dynamically. // width: printing width. void print_human_readable_size(outputStream* st, size_t byte_size, size_t scale, int width) { if (scale == 0) { // Dynamic mode. Choose scale for this value. if (byte_size == 0) { // Zero values are printed as bytes. scale = 1; } else { if (byte_size >= G) { scale = G; } else if (byte_size >= M) { scale = M; } else if (byte_size >= K) { scale = K; } else { scale = 1; } } return print_human_readable_size(st, byte_size, scale, width); } #ifdef ASSERT assert(scale == 1 || scale == BytesPerWord || scale == K || scale == M || scale == G, "Invalid scale"); // Special case: printing wordsize should only be done with word-sized values if (scale == BytesPerWord) { assert(byte_size % BytesPerWord == 0, "not word sized"); } #endif if (scale == 1) { st->print("%*" PRIuPTR " bytes", width, byte_size); } else if (scale == BytesPerWord) { st->print("%*" PRIuPTR " words", width, byte_size / BytesPerWord); } else { const char* display_unit = ""; switch(scale) { case 1: display_unit = "bytes"; break; case BytesPerWord: display_unit = "words"; break; case K: display_unit = "KB"; break; case M: display_unit = "MB"; break; case G: display_unit = "GB"; break; default: ShouldNotReachHere(); } float display_value = (float) byte_size / scale; // Since we use width to display a number with two trailing digits, increase it a bit. width += 3; // Prevent very small but non-null values showing up as 0.00. if (byte_size > 0 && display_value < 0.01f) { st->print("%*s %s", width, "<0.01", display_unit); } else { st->print("%*.2f %s", width, display_value, display_unit); } } } // Prints a percentage value. Values smaller than 1% but not 0 are displayed as "<1%", values // larger than 99% but not 100% are displayed as ">100%". void print_percentage(outputStream* st, size_t total, size_t part) { if (total == 0) { st->print(" ?%%"); } else if (part == 0) { st->print(" 0%%"); } else if (part == total) { st->print("100%%"); } else { // Note: clearly print very-small-but-not-0% and very-large-but-not-100% percentages. float p = ((float)part / total) * 100.0f; if (p < 1.0f) { st->print(" <1%%"); } else if (p > 99.0f){ st->print(">99%%"); } else { st->print("%3.0f%%", p); } } } // Returns size of this chunk type. size_t get_size_for_nonhumongous_chunktype(ChunkIndex chunktype, bool is_class) { assert(is_valid_nonhumongous_chunktype(chunktype), "invalid chunk type."); size_t size = 0; if (is_class) { switch(chunktype) { case SpecializedIndex: size = ClassSpecializedChunk; break; case SmallIndex: size = ClassSmallChunk; break; case MediumIndex: size = ClassMediumChunk; break; default: ShouldNotReachHere(); } } else { switch(chunktype) { case SpecializedIndex: size = SpecializedChunk; break; case SmallIndex: size = SmallChunk; break; case MediumIndex: size = MediumChunk; break; default: ShouldNotReachHere(); } } return size; } ChunkIndex get_chunk_type_by_size(size_t size, bool is_class) { if (is_class) { if (size == ClassSpecializedChunk) { return SpecializedIndex; } else if (size == ClassSmallChunk) { return SmallIndex; } else if (size == ClassMediumChunk) { return MediumIndex; } else if (size > ClassMediumChunk) { // A valid humongous chunk size is a multiple of the smallest chunk size. assert(is_aligned(size, ClassSpecializedChunk), "Invalid chunk size"); return HumongousIndex; } } else { if (size == SpecializedChunk) { return SpecializedIndex; } else if (size == SmallChunk) { return SmallIndex; } else if (size == MediumChunk) { return MediumIndex; } else if (size > MediumChunk) { // A valid humongous chunk size is a multiple of the smallest chunk size. assert(is_aligned(size, SpecializedChunk), "Invalid chunk size"); return HumongousIndex; } } ShouldNotReachHere(); return (ChunkIndex)-1; } ChunkIndex next_chunk_index(ChunkIndex i) { assert(i < NumberOfInUseLists, "Out of bound"); return (ChunkIndex) (i+1); } ChunkIndex prev_chunk_index(ChunkIndex i) { assert(i > ZeroIndex, "Out of bound"); return (ChunkIndex) (i-1); } } // namespace metaspace