1 /*
   2  * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2018, SAP.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef SHARE_MEMORY_METASPACE_OCCUPANCYMAP_HPP_
  27 #define SHARE_MEMORY_METASPACE_OCCUPANCYMAP_HPP_
  28 
  29 #include "memory/allocation.hpp"
  30 #include "utilities/debug.hpp"
  31 #include "utilities/globalDefinitions.hpp"
  32 
  33 
  34 namespace metaspace {
  35 
  36 class Metachunk;
  37 
  38 // Helper for Occupancy Bitmap. A type trait to give an all-bits-are-one-unsigned constant.
  39 template <typename T> struct all_ones  { static const T value; };
  40 template <> struct all_ones <uint64_t> { static const uint64_t value = 0xFFFFFFFFFFFFFFFFULL; };
  41 template <> struct all_ones <uint32_t> { static const uint32_t value = 0xFFFFFFFF; };
  42 
  43 // The OccupancyMap is a bitmap which, for a given VirtualSpaceNode,
  44 // keeps information about
  45 // - where a chunk starts
  46 // - whether a chunk is in-use or free
  47 // A bit in this bitmap represents one range of memory in the smallest
  48 // chunk size (SpecializedChunk or ClassSpecializedChunk).
  49 class OccupancyMap : public CHeapObj<mtInternal> {
  50 
  51   // The address range this map covers.
  52   const MetaWord* const _reference_address;
  53   const size_t _word_size;
  54 
  55   // The word size of a specialized chunk, aka the number of words one
  56   // bit in this map represents.
  57   const size_t _smallest_chunk_word_size;
  58 
  59   // map data
  60   // Data are organized in two bit layers:
  61   // The first layer is the chunk-start-map. Here, a bit is set to mark
  62   // the corresponding region as the head of a chunk.
  63   // The second layer is the in-use-map. Here, a set bit indicates that
  64   // the corresponding belongs to a chunk which is in use.
  65   uint8_t* _map[2];
  66 
  67   enum { layer_chunk_start_map = 0, layer_in_use_map = 1 };
  68 
  69   // length, in bytes, of bitmap data
  70   size_t _map_size;
  71 
  72   // Returns true if bit at position pos at bit-layer layer is set.
  73   bool get_bit_at_position(unsigned pos, unsigned layer) const {
  74     assert(layer == 0 || layer == 1, "Invalid layer %d", layer);
  75     const unsigned byteoffset = pos / 8;
  76     assert(byteoffset < _map_size,
  77            "invalid byte offset (%u), map size is " SIZE_FORMAT ".", byteoffset, _map_size);
  78     const unsigned mask = 1 << (pos % 8);
  79     return (_map[layer][byteoffset] & mask) > 0;
  80   }
  81 
  82   // Changes bit at position pos at bit-layer layer to value v.
  83   void set_bit_at_position(unsigned pos, unsigned layer, bool v) {
  84     assert(layer == 0 || layer == 1, "Invalid layer %d", layer);
  85     const unsigned byteoffset = pos / 8;
  86     assert(byteoffset < _map_size,
  87            "invalid byte offset (%u), map size is " SIZE_FORMAT ".", byteoffset, _map_size);
  88     const unsigned mask = 1 << (pos % 8);
  89     if (v) {
  90       _map[layer][byteoffset] |= mask;
  91     } else {
  92       _map[layer][byteoffset] &= ~mask;
  93     }
  94   }
  95 
  96   // Optimized case of is_any_bit_set_in_region for 32/64bit aligned access:
  97   // pos is 32/64 aligned and num_bits is 32/64.
  98   // This is the typical case when coalescing to medium chunks, whose size is
  99   // 32 or 64 times the specialized chunk size (depending on class or non class
 100   // case), so they occupy 64 bits which should be 64bit aligned, because
 101   // chunks are chunk-size aligned.
 102   template <typename T>
 103   bool is_any_bit_set_in_region_3264(unsigned pos, unsigned num_bits, unsigned layer) const {
 104     assert(_map_size > 0, "not initialized");
 105     assert(layer == 0 || layer == 1, "Invalid layer %d.", layer);
 106     assert(pos % (sizeof(T) * 8) == 0, "Bit position must be aligned (%u).", pos);
 107     assert(num_bits == (sizeof(T) * 8), "Number of bits incorrect (%u).", num_bits);
 108     const size_t byteoffset = pos / 8;
 109     assert(byteoffset <= (_map_size - sizeof(T)),
 110            "Invalid byte offset (" SIZE_FORMAT "), map size is " SIZE_FORMAT ".", byteoffset, _map_size);
 111     const T w = *(T*)(_map[layer] + byteoffset);
 112     return w > 0 ? true : false;
 113   }
 114 
 115   // Returns true if any bit in region [pos1, pos1 + num_bits) is set in bit-layer layer.
 116   bool is_any_bit_set_in_region(unsigned pos, unsigned num_bits, unsigned layer) const {
 117     if (pos % 32 == 0 && num_bits == 32) {
 118       return is_any_bit_set_in_region_3264<uint32_t>(pos, num_bits, layer);
 119     } else if (pos % 64 == 0 && num_bits == 64) {
 120       return is_any_bit_set_in_region_3264<uint64_t>(pos, num_bits, layer);
 121     } else {
 122       for (unsigned n = 0; n < num_bits; n ++) {
 123         if (get_bit_at_position(pos + n, layer)) {
 124           return true;
 125         }
 126       }
 127     }
 128     return false;
 129   }
 130 
 131   // Returns true if any bit in region [p, p+word_size) is set in bit-layer layer.
 132   bool is_any_bit_set_in_region(MetaWord* p, size_t word_size, unsigned layer) const {
 133     assert(word_size % _smallest_chunk_word_size == 0,
 134         "Region size " SIZE_FORMAT " not a multiple of smallest chunk size.", word_size);
 135     const unsigned pos = get_bitpos_for_address(p);
 136     const unsigned num_bits = (unsigned) (word_size / _smallest_chunk_word_size);
 137     return is_any_bit_set_in_region(pos, num_bits, layer);
 138   }
 139 
 140   // Optimized case of set_bits_of_region for 32/64bit aligned access:
 141   // pos is 32/64 aligned and num_bits is 32/64.
 142   // This is the typical case when coalescing to medium chunks, whose size
 143   // is 32 or 64 times the specialized chunk size (depending on class or non
 144   // class case), so they occupy 64 bits which should be 64bit aligned,
 145   // because chunks are chunk-size aligned.
 146   template <typename T>
 147   void set_bits_of_region_T(unsigned pos, unsigned num_bits, unsigned layer, bool v) {
 148     assert(pos % (sizeof(T) * 8) == 0, "Bit position must be aligned to %u (%u).",
 149            (unsigned)(sizeof(T) * 8), pos);
 150     assert(num_bits == (sizeof(T) * 8), "Number of bits incorrect (%u), expected %u.",
 151            num_bits, (unsigned)(sizeof(T) * 8));
 152     const size_t byteoffset = pos / 8;
 153     assert(byteoffset <= (_map_size - sizeof(T)),
 154            "invalid byte offset (" SIZE_FORMAT "), map size is " SIZE_FORMAT ".", byteoffset, _map_size);
 155     T* const pw = (T*)(_map[layer] + byteoffset);
 156     *pw = v ? all_ones<T>::value : (T) 0;
 157   }
 158 
 159   // Set all bits in a region starting at pos to a value.
 160   void set_bits_of_region(unsigned pos, unsigned num_bits, unsigned layer, bool v) {
 161     assert(_map_size > 0, "not initialized");
 162     assert(layer == 0 || layer == 1, "Invalid layer %d.", layer);
 163     if (pos % 32 == 0 && num_bits == 32) {
 164       set_bits_of_region_T<uint32_t>(pos, num_bits, layer, v);
 165     } else if (pos % 64 == 0 && num_bits == 64) {
 166       set_bits_of_region_T<uint64_t>(pos, num_bits, layer, v);
 167     } else {
 168       for (unsigned n = 0; n < num_bits; n ++) {
 169         set_bit_at_position(pos + n, layer, v);
 170       }
 171     }
 172   }
 173 
 174   // Helper: sets all bits in a region [p, p+word_size).
 175   void set_bits_of_region(MetaWord* p, size_t word_size, unsigned layer, bool v) {
 176     assert(word_size % _smallest_chunk_word_size == 0,
 177         "Region size " SIZE_FORMAT " not a multiple of smallest chunk size.", word_size);
 178     const unsigned pos = get_bitpos_for_address(p);
 179     const unsigned num_bits = (unsigned) (word_size / _smallest_chunk_word_size);
 180     set_bits_of_region(pos, num_bits, layer, v);
 181   }
 182 
 183   // Helper: given an address, return the bit position representing that address.
 184   unsigned get_bitpos_for_address(const MetaWord* p) const {
 185     assert(_reference_address != NULL, "not initialized");
 186     assert(p >= _reference_address && p < _reference_address + _word_size,
 187            "Address %p out of range for occupancy map [%p..%p).",
 188             p, _reference_address, _reference_address + _word_size);
 189     assert(is_aligned(p, _smallest_chunk_word_size * sizeof(MetaWord)),
 190            "Address not aligned (%p).", p);
 191     const ptrdiff_t d = (p - _reference_address) / _smallest_chunk_word_size;
 192     assert(d >= 0 && (size_t)d < _map_size * 8, "Sanity.");
 193     return (unsigned) d;
 194   }
 195 
 196  public:
 197 
 198   OccupancyMap(const MetaWord* reference_address, size_t word_size, size_t smallest_chunk_word_size);
 199   ~OccupancyMap();
 200 
 201   // Returns true if at address x a chunk is starting.
 202   bool chunk_starts_at_address(MetaWord* p) const {
 203     const unsigned pos = get_bitpos_for_address(p);
 204     return get_bit_at_position(pos, layer_chunk_start_map);
 205   }
 206 
 207   void set_chunk_starts_at_address(MetaWord* p, bool v) {
 208     const unsigned pos = get_bitpos_for_address(p);
 209     set_bit_at_position(pos, layer_chunk_start_map, v);
 210   }
 211 
 212   // Removes all chunk-start-bits inside a region, typically as a
 213   // result of a chunk merge.
 214   void wipe_chunk_start_bits_in_region(MetaWord* p, size_t word_size) {
 215     set_bits_of_region(p, word_size, layer_chunk_start_map, false);
 216   }
 217 
 218   // Returns true if there are life (in use) chunks in the region limited
 219   // by [p, p+word_size).
 220   bool is_region_in_use(MetaWord* p, size_t word_size) const {
 221     return is_any_bit_set_in_region(p, word_size, layer_in_use_map);
 222   }
 223 
 224   // Marks the region starting at p with the size word_size as in use
 225   // or free, depending on v.
 226   void set_region_in_use(MetaWord* p, size_t word_size, bool v) {
 227     set_bits_of_region(p, word_size, layer_in_use_map, v);
 228   }
 229 
 230   // Verify occupancy map for the address range [from, to).
 231   // We need to tell it the address range, because the memory the
 232   // occupancy map is covering may not be fully comitted yet.
 233   DEBUG_ONLY(void verify(MetaWord* from, MetaWord* to);)
 234 
 235   // Verify that a given chunk is correctly accounted for in the bitmap.
 236   DEBUG_ONLY(void verify_for_chunk(Metachunk* chunk);)
 237 
 238 };
 239 
 240 } // namespace metaspace
 241 
 242 #endif /* SHARE_MEMORY_METASPACE_OCCUPANCYMAP_HPP_ */
 243