1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "logging/logStream.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/symbol.hpp"
  43 #include "runtime/atomic.hpp"
  44 #include "runtime/compilationPolicy.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/frame.inline.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/orderAccess.inline.hpp"
  50 #include "runtime/osThread.hpp"
  51 #include "runtime/safepoint.hpp"
  52 #include "runtime/signature.hpp"
  53 #include "runtime/stubCodeGenerator.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/sweeper.hpp"
  56 #include "runtime/synchronizer.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/timerTrace.hpp"
  59 #include "services/runtimeService.hpp"
  60 #include "trace/tracing.hpp"
  61 #include "trace/traceMacros.hpp"
  62 #include "utilities/events.hpp"
  63 #include "utilities/macros.hpp"
  64 #if INCLUDE_ALL_GCS
  65 #include "gc/cms/concurrentMarkSweepThread.hpp"
  66 #include "gc/g1/suspendibleThreadSet.hpp"
  67 #endif // INCLUDE_ALL_GCS
  68 #ifdef COMPILER1
  69 #include "c1/c1_globals.hpp"
  70 #endif
  71 
  72 // --------------------------------------------------------------------------------------------------
  73 // Implementation of Safepoint begin/end
  74 
  75 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  76 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  77 volatile int SafepointSynchronize::_safepoint_counter = 0;
  78 int SafepointSynchronize::_current_jni_active_count = 0;
  79 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  80 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  81 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  82 static bool timeout_error_printed = false;
  83 
  84 // Roll all threads forward to a safepoint and suspend them all
  85 void SafepointSynchronize::begin() {
  86   EventSafepointBegin begin_event;
  87   Thread* myThread = Thread::current();
  88   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  89 
  90   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  91     _safepoint_begin_time = os::javaTimeNanos();
  92     _ts_of_current_safepoint = tty->time_stamp().seconds();
  93   }
  94 
  95 #if INCLUDE_ALL_GCS
  96   if (UseConcMarkSweepGC) {
  97     // In the future we should investigate whether CMS can use the
  98     // more-general mechanism below.  DLD (01/05).
  99     ConcurrentMarkSweepThread::synchronize(false);
 100   } else if (UseG1GC) {
 101     SuspendibleThreadSet::synchronize();
 102   }
 103 #endif // INCLUDE_ALL_GCS
 104 
 105   // By getting the Threads_lock, we assure that no threads are about to start or
 106   // exit. It is released again in SafepointSynchronize::end().
 107   Threads_lock->lock();
 108 
 109   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 110 
 111   int nof_threads = Threads::number_of_threads();
 112 
 113   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 114 
 115   RuntimeService::record_safepoint_begin();
 116 
 117   MutexLocker mu(Safepoint_lock);
 118 
 119   // Reset the count of active JNI critical threads
 120   _current_jni_active_count = 0;
 121 
 122   // Set number of threads to wait for, before we initiate the callbacks
 123   _waiting_to_block = nof_threads;
 124   TryingToBlock     = 0 ;
 125   int still_running = nof_threads;
 126 
 127   // Save the starting time, so that it can be compared to see if this has taken
 128   // too long to complete.
 129   jlong safepoint_limit_time = 0;
 130   timeout_error_printed = false;
 131 
 132   // PrintSafepointStatisticsTimeout can be specified separately. When
 133   // specified, PrintSafepointStatistics will be set to true in
 134   // deferred_initialize_stat method. The initialization has to be done
 135   // early enough to avoid any races. See bug 6880029 for details.
 136   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 137     deferred_initialize_stat();
 138   }
 139 
 140   // Begin the process of bringing the system to a safepoint.
 141   // Java threads can be in several different states and are
 142   // stopped by different mechanisms:
 143   //
 144   //  1. Running interpreted
 145   //     The interpreter dispatch table is changed to force it to
 146   //     check for a safepoint condition between bytecodes.
 147   //  2. Running in native code
 148   //     When returning from the native code, a Java thread must check
 149   //     the safepoint _state to see if we must block.  If the
 150   //     VM thread sees a Java thread in native, it does
 151   //     not wait for this thread to block.  The order of the memory
 152   //     writes and reads of both the safepoint state and the Java
 153   //     threads state is critical.  In order to guarantee that the
 154   //     memory writes are serialized with respect to each other,
 155   //     the VM thread issues a memory barrier instruction
 156   //     (on MP systems).  In order to avoid the overhead of issuing
 157   //     a memory barrier for each Java thread making native calls, each Java
 158   //     thread performs a write to a single memory page after changing
 159   //     the thread state.  The VM thread performs a sequence of
 160   //     mprotect OS calls which forces all previous writes from all
 161   //     Java threads to be serialized.  This is done in the
 162   //     os::serialize_thread_states() call.  This has proven to be
 163   //     much more efficient than executing a membar instruction
 164   //     on every call to native code.
 165   //  3. Running compiled Code
 166   //     Compiled code reads a global (Safepoint Polling) page that
 167   //     is set to fault if we are trying to get to a safepoint.
 168   //  4. Blocked
 169   //     A thread which is blocked will not be allowed to return from the
 170   //     block condition until the safepoint operation is complete.
 171   //  5. In VM or Transitioning between states
 172   //     If a Java thread is currently running in the VM or transitioning
 173   //     between states, the safepointing code will wait for the thread to
 174   //     block itself when it attempts transitions to a new state.
 175   //
 176   {
 177     EventSafepointStateSynchronization sync_event;
 178     int initial_running = 0;
 179 
 180     _state            = _synchronizing;
 181     OrderAccess::fence();
 182 
 183     // Flush all thread states to memory
 184     if (!UseMembar) {
 185       os::serialize_thread_states();
 186     }
 187 
 188     // Make interpreter safepoint aware
 189     Interpreter::notice_safepoints();
 190 
 191     if (DeferPollingPageLoopCount < 0) {
 192       // Make polling safepoint aware
 193       guarantee (PageArmed == 0, "invariant") ;
 194       PageArmed = 1 ;
 195       os::make_polling_page_unreadable();
 196     }
 197 
 198     // Consider using active_processor_count() ... but that call is expensive.
 199     int ncpus = os::processor_count() ;
 200 
 201 #ifdef ASSERT
 202     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 203       assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 204       // Clear the visited flag to ensure that the critical counts are collected properly.
 205       cur->set_visited_for_critical_count(false);
 206     }
 207 #endif // ASSERT
 208 
 209     if (SafepointTimeout)
 210       safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 211 
 212     // Iterate through all threads until it have been determined how to stop them all at a safepoint
 213     unsigned int iterations = 0;
 214     int steps = 0 ;
 215     while(still_running > 0) {
 216       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 217         assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 218         ThreadSafepointState *cur_state = cur->safepoint_state();
 219         if (cur_state->is_running()) {
 220           cur_state->examine_state_of_thread();
 221           if (!cur_state->is_running()) {
 222             still_running--;
 223             // consider adjusting steps downward:
 224             //   steps = 0
 225             //   steps -= NNN
 226             //   steps >>= 1
 227             //   steps = MIN(steps, 2000-100)
 228             //   if (iterations != 0) steps -= NNN
 229           }
 230           LogTarget(Trace, safepoint) lt;
 231           if (lt.is_enabled()) {
 232             ResourceMark rm;
 233             LogStream ls(lt);
 234             cur_state->print_on(&ls);
 235           }
 236         }
 237       }
 238 
 239       if (iterations == 0) {
 240         initial_running = still_running;
 241         if (PrintSafepointStatistics) {
 242           begin_statistics(nof_threads, still_running);
 243         }
 244       }
 245 
 246       if (still_running > 0) {
 247         // Check for if it takes to long
 248         if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 249           print_safepoint_timeout(_spinning_timeout);
 250         }
 251 
 252         // Spin to avoid context switching.
 253         // There's a tension between allowing the mutators to run (and rendezvous)
 254         // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 255         // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 256         // spinning by the VM thread on a saturated system can increase rendezvous latency.
 257         // Blocking or yielding incur their own penalties in the form of context switching
 258         // and the resultant loss of $ residency.
 259         //
 260         // Further complicating matters is that yield() does not work as naively expected
 261         // on many platforms -- yield() does not guarantee that any other ready threads
 262         // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 263         // nakes_short_sleep() is implemented as a short unconditional sleep.
 264         // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 265         // can actually increase the time it takes the VM thread to detect that a system-wide
 266         // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 267         // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 268         // In that case the mutators will be stalled waiting for the safepoint to complete and the
 269         // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 270         // will eventually wake up and detect that all mutators are safe, at which point
 271         // we'll again make progress.
 272         //
 273         // Beware too that that the VMThread typically runs at elevated priority.
 274         // Its default priority is higher than the default mutator priority.
 275         // Obviously, this complicates spinning.
 276         //
 277         // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 278         // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 279         //
 280         // See the comments in synchronizer.cpp for additional remarks on spinning.
 281         //
 282         // In the future we might:
 283         // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 284         //    This is tricky as the path used by a thread exiting the JVM (say on
 285         //    on JNI call-out) simply stores into its state field.  The burden
 286         //    is placed on the VM thread, which must poll (spin).
 287         // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 288         //    we might aggressively scan the stacks of threads that are already safe.
 289         // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 290         //    If all the mutators are ONPROC there's no reason to sleep or yield.
 291         // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 292         // 5. Check system saturation.  If the system is not fully saturated then
 293         //    simply spin and avoid sleep/yield.
 294         // 6. As still-running mutators rendezvous they could unpark the sleeping
 295         //    VMthread.  This works well for still-running mutators that become
 296         //    safe.  The VMthread must still poll for mutators that call-out.
 297         // 7. Drive the policy on time-since-begin instead of iterations.
 298         // 8. Consider making the spin duration a function of the # of CPUs:
 299         //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 300         //    Alternately, instead of counting iterations of the outer loop
 301         //    we could count the # of threads visited in the inner loop, above.
 302         // 9. On windows consider using the return value from SwitchThreadTo()
 303         //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 304 
 305         if (int(iterations) == DeferPollingPageLoopCount) {
 306           guarantee (PageArmed == 0, "invariant") ;
 307           PageArmed = 1 ;
 308           os::make_polling_page_unreadable();
 309         }
 310 
 311         // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 312         // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 313         ++steps ;
 314         if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 315           SpinPause() ;     // MP-Polite spin
 316         } else
 317           if (steps < DeferThrSuspendLoopCount) {
 318             os::naked_yield() ;
 319           } else {
 320             os::naked_short_sleep(1);
 321           }
 322 
 323         iterations ++ ;
 324       }
 325       assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 326     }
 327     assert(still_running == 0, "sanity check");
 328 
 329     if (PrintSafepointStatistics) {
 330       update_statistics_on_spin_end();
 331     }
 332 
 333     if (sync_event.should_commit()) {
 334       sync_event.set_safepointId(safepoint_counter());
 335       sync_event.set_initialThreadCount(initial_running);
 336       sync_event.set_runningThreadCount(_waiting_to_block);
 337       sync_event.set_iterations(iterations);
 338       sync_event.commit();
 339     }
 340   } //EventSafepointStateSync
 341 
 342   // wait until all threads are stopped
 343   {
 344     EventSafepointWaitBlocked wait_blocked_event;
 345     int initial_waiting_to_block = _waiting_to_block;
 346 
 347     while (_waiting_to_block > 0) {
 348       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 349       if (!SafepointTimeout || timeout_error_printed) {
 350         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 351       } else {
 352         // Compute remaining time
 353         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 354 
 355         // If there is no remaining time, then there is an error
 356         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 357           print_safepoint_timeout(_blocking_timeout);
 358         }
 359       }
 360     }
 361     assert(_waiting_to_block == 0, "sanity check");
 362 
 363 #ifndef PRODUCT
 364     if (SafepointTimeout) {
 365       jlong current_time = os::javaTimeNanos();
 366       if (safepoint_limit_time < current_time) {
 367         tty->print_cr("# SafepointSynchronize: Finished after "
 368                       INT64_FORMAT_W(6) " ms",
 369                       ((current_time - safepoint_limit_time) / MICROUNITS +
 370                        (jlong)SafepointTimeoutDelay));
 371       }
 372     }
 373 #endif
 374 
 375     assert((_safepoint_counter & 0x1) == 0, "must be even");
 376     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 377     _safepoint_counter ++;
 378 
 379     // Record state
 380     _state = _synchronized;
 381 
 382     OrderAccess::fence();
 383 
 384     if (wait_blocked_event.should_commit()) {
 385       wait_blocked_event.set_safepointId(safepoint_counter());
 386       wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
 387       wait_blocked_event.commit();
 388     }
 389   } // EventSafepointWaitBlocked
 390 
 391 #ifdef ASSERT
 392   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 393     // make sure all the threads were visited
 394     assert(cur->was_visited_for_critical_count(), "missed a thread");
 395   }
 396 #endif // ASSERT
 397 
 398   // Update the count of active JNI critical regions
 399   GCLocker::set_jni_lock_count(_current_jni_active_count);
 400 
 401   if (log_is_enabled(Debug, safepoint)) {
 402     log_debug(safepoint)("Entering safepoint region: %s", VMThread::vm_safepoint_description());
 403   }
 404 
 405   RuntimeService::record_safepoint_synchronized();
 406   if (PrintSafepointStatistics) {
 407     update_statistics_on_sync_end(os::javaTimeNanos());
 408   }
 409 
 410   // Call stuff that needs to be run when a safepoint is just about to be completed
 411   {
 412     EventSafepointCleanup cleanup_event;
 413     do_cleanup_tasks();
 414     if (cleanup_event.should_commit()) {
 415       cleanup_event.set_safepointId(safepoint_counter());
 416       cleanup_event.commit();
 417     }
 418   }
 419 
 420   if (PrintSafepointStatistics) {
 421     // Record how much time spend on the above cleanup tasks
 422     update_statistics_on_cleanup_end(os::javaTimeNanos());
 423   }
 424   if (begin_event.should_commit()) {
 425     begin_event.set_safepointId(safepoint_counter());
 426     begin_event.set_totalThreadCount(nof_threads);
 427     begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
 428     begin_event.commit();
 429   }
 430 }
 431 
 432 // Wake up all threads, so they are ready to resume execution after the safepoint
 433 // operation has been carried out
 434 void SafepointSynchronize::end() {
 435   EventSafepointEnd event;
 436   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 437 
 438   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 439   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 440   _safepoint_counter ++;
 441   // memory fence isn't required here since an odd _safepoint_counter
 442   // value can do no harm and a fence is issued below anyway.
 443 
 444   DEBUG_ONLY(Thread* myThread = Thread::current();)
 445   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 446 
 447   if (PrintSafepointStatistics) {
 448     end_statistics(os::javaTimeNanos());
 449   }
 450 
 451 #ifdef ASSERT
 452   // A pending_exception cannot be installed during a safepoint.  The threads
 453   // may install an async exception after they come back from a safepoint into
 454   // pending_exception after they unblock.  But that should happen later.
 455   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 456     assert (!(cur->has_pending_exception() &&
 457               cur->safepoint_state()->is_at_poll_safepoint()),
 458             "safepoint installed a pending exception");
 459   }
 460 #endif // ASSERT
 461 
 462   if (PageArmed) {
 463     // Make polling safepoint aware
 464     os::make_polling_page_readable();
 465     PageArmed = 0 ;
 466   }
 467 
 468   // Remove safepoint check from interpreter
 469   Interpreter::ignore_safepoints();
 470 
 471   {
 472     MutexLocker mu(Safepoint_lock);
 473 
 474     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 475 
 476     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 477     // when they get restarted.
 478     _state = _not_synchronized;
 479     OrderAccess::fence();
 480 
 481     log_debug(safepoint)("Leaving safepoint region");
 482 
 483     // Start suspended threads
 484     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 485       // A problem occurring on Solaris is when attempting to restart threads
 486       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 487       // to the next one (since it has been running the longest).  We then have
 488       // to wait for a cpu to become available before we can continue restarting
 489       // threads.
 490       // FIXME: This causes the performance of the VM to degrade when active and with
 491       // large numbers of threads.  Apparently this is due to the synchronous nature
 492       // of suspending threads.
 493       //
 494       // TODO-FIXME: the comments above are vestigial and no longer apply.
 495       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 496       if (VMThreadHintNoPreempt) {
 497         os::hint_no_preempt();
 498       }
 499       ThreadSafepointState* cur_state = current->safepoint_state();
 500       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 501       cur_state->restart();
 502       assert(cur_state->is_running(), "safepoint state has not been reset");
 503     }
 504 
 505     RuntimeService::record_safepoint_end();
 506 
 507     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 508     // blocked in signal_thread_blocked
 509     Threads_lock->unlock();
 510 
 511   }
 512 #if INCLUDE_ALL_GCS
 513   // If there are any concurrent GC threads resume them.
 514   if (UseConcMarkSweepGC) {
 515     ConcurrentMarkSweepThread::desynchronize(false);
 516   } else if (UseG1GC) {
 517     SuspendibleThreadSet::desynchronize();
 518   }
 519 #endif // INCLUDE_ALL_GCS
 520   // record this time so VMThread can keep track how much time has elapsed
 521   // since last safepoint.
 522   _end_of_last_safepoint = os::javaTimeMillis();
 523 
 524   if (event.should_commit()) {
 525     event.set_safepointId(safepoint_id);
 526     event.commit();
 527   }
 528 }
 529 
 530 bool SafepointSynchronize::is_cleanup_needed() {
 531   // Need a safepoint if there are many monitors to deflate.
 532   if (ObjectSynchronizer::is_cleanup_needed()) return true;
 533   // Need a safepoint if some inline cache buffers is non-empty
 534   if (!InlineCacheBuffer::is_empty()) return true;
 535   return false;
 536 }
 537 
 538 static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
 539   if (event.should_commit()) {
 540     event.set_safepointId(SafepointSynchronize::safepoint_counter());
 541     event.set_name(name);
 542     event.commit();
 543   }
 544 }
 545 
 546 // Various cleaning tasks that should be done periodically at safepoints
 547 void SafepointSynchronize::do_cleanup_tasks() {
 548   {
 549     const char* name = "deflating idle monitors";
 550     EventSafepointCleanupTask event;
 551     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 552     ObjectSynchronizer::deflate_idle_monitors();
 553     event_safepoint_cleanup_task_commit(event, name);
 554   }
 555 
 556   {
 557     const char* name = "updating inline caches";
 558     EventSafepointCleanupTask event;
 559     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 560     InlineCacheBuffer::update_inline_caches();
 561     event_safepoint_cleanup_task_commit(event, name);
 562   }
 563   {
 564     const char* name = "compilation policy safepoint handler";
 565     EventSafepointCleanupTask event;
 566     TraceTime timer("compilation policy safepoint handler", TRACETIME_LOG(Info, safepoint, cleanup));
 567     CompilationPolicy::policy()->do_safepoint_work();
 568     event_safepoint_cleanup_task_commit(event, name);
 569   }
 570 
 571   {
 572     const char* name = "mark nmethods";
 573     EventSafepointCleanupTask event;
 574     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 575     NMethodSweeper::mark_active_nmethods();
 576     event_safepoint_cleanup_task_commit(event, name);
 577   }
 578 
 579   if (SymbolTable::needs_rehashing()) {
 580     const char* name = "rehashing symbol table";
 581     EventSafepointCleanupTask event;
 582     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 583     SymbolTable::rehash_table();
 584     event_safepoint_cleanup_task_commit(event, name);
 585   }
 586 
 587   if (StringTable::needs_rehashing()) {
 588     const char* name = "rehashing string table";
 589     EventSafepointCleanupTask event;
 590     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 591     StringTable::rehash_table();
 592     event_safepoint_cleanup_task_commit(event, name);
 593   }
 594 
 595   {
 596     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 597     // make sure concurrent sweep is done
 598     const char* name = "purging class loader data graph";
 599     EventSafepointCleanupTask event;
 600     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 601     ClassLoaderDataGraph::purge_if_needed();
 602     event_safepoint_cleanup_task_commit(event, name);
 603   }
 604 }
 605 
 606 
 607 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 608   switch(state) {
 609   case _thread_in_native:
 610     // native threads are safe if they have no java stack or have walkable stack
 611     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 612 
 613    // blocked threads should have already have walkable stack
 614   case _thread_blocked:
 615     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 616     return true;
 617 
 618   default:
 619     return false;
 620   }
 621 }
 622 
 623 
 624 // See if the thread is running inside a lazy critical native and
 625 // update the thread critical count if so.  Also set a suspend flag to
 626 // cause the native wrapper to return into the JVM to do the unlock
 627 // once the native finishes.
 628 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 629   if (state == _thread_in_native &&
 630       thread->has_last_Java_frame() &&
 631       thread->frame_anchor()->walkable()) {
 632     // This thread might be in a critical native nmethod so look at
 633     // the top of the stack and increment the critical count if it
 634     // is.
 635     frame wrapper_frame = thread->last_frame();
 636     CodeBlob* stub_cb = wrapper_frame.cb();
 637     if (stub_cb != NULL &&
 638         stub_cb->is_nmethod() &&
 639         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 640       // A thread could potentially be in a critical native across
 641       // more than one safepoint, so only update the critical state on
 642       // the first one.  When it returns it will perform the unlock.
 643       if (!thread->do_critical_native_unlock()) {
 644 #ifdef ASSERT
 645         if (!thread->in_critical()) {
 646           GCLocker::increment_debug_jni_lock_count();
 647         }
 648 #endif
 649         thread->enter_critical();
 650         // Make sure the native wrapper calls back on return to
 651         // perform the needed critical unlock.
 652         thread->set_critical_native_unlock();
 653       }
 654     }
 655   }
 656 }
 657 
 658 
 659 
 660 // -------------------------------------------------------------------------------------------------------
 661 // Implementation of Safepoint callback point
 662 
 663 void SafepointSynchronize::block(JavaThread *thread) {
 664   assert(thread != NULL, "thread must be set");
 665   assert(thread->is_Java_thread(), "not a Java thread");
 666 
 667   // Threads shouldn't block if they are in the middle of printing, but...
 668   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 669 
 670   // Only bail from the block() call if the thread is gone from the
 671   // thread list; starting to exit should still block.
 672   if (thread->is_terminated()) {
 673      // block current thread if we come here from native code when VM is gone
 674      thread->block_if_vm_exited();
 675 
 676      // otherwise do nothing
 677      return;
 678   }
 679 
 680   JavaThreadState state = thread->thread_state();
 681   thread->frame_anchor()->make_walkable(thread);
 682 
 683   // Check that we have a valid thread_state at this point
 684   switch(state) {
 685     case _thread_in_vm_trans:
 686     case _thread_in_Java:        // From compiled code
 687 
 688       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 689       // we pretend we are still in the VM.
 690       thread->set_thread_state(_thread_in_vm);
 691 
 692       if (is_synchronizing()) {
 693          Atomic::inc (&TryingToBlock) ;
 694       }
 695 
 696       // We will always be holding the Safepoint_lock when we are examine the state
 697       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 698       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 699       Safepoint_lock->lock_without_safepoint_check();
 700       if (is_synchronizing()) {
 701         // Decrement the number of threads to wait for and signal vm thread
 702         assert(_waiting_to_block > 0, "sanity check");
 703         _waiting_to_block--;
 704         thread->safepoint_state()->set_has_called_back(true);
 705 
 706         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 707         if (thread->in_critical()) {
 708           // Notice that this thread is in a critical section
 709           increment_jni_active_count();
 710         }
 711 
 712         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 713         if (_waiting_to_block == 0) {
 714           Safepoint_lock->notify_all();
 715         }
 716       }
 717 
 718       // We transition the thread to state _thread_blocked here, but
 719       // we can't do our usual check for external suspension and then
 720       // self-suspend after the lock_without_safepoint_check() call
 721       // below because we are often called during transitions while
 722       // we hold different locks. That would leave us suspended while
 723       // holding a resource which results in deadlocks.
 724       thread->set_thread_state(_thread_blocked);
 725       Safepoint_lock->unlock();
 726 
 727       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 728       // the entire safepoint, the threads will all line up here during the safepoint.
 729       Threads_lock->lock_without_safepoint_check();
 730       // restore original state. This is important if the thread comes from compiled code, so it
 731       // will continue to execute with the _thread_in_Java state.
 732       thread->set_thread_state(state);
 733       Threads_lock->unlock();
 734       break;
 735 
 736     case _thread_in_native_trans:
 737     case _thread_blocked_trans:
 738     case _thread_new_trans:
 739       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 740         thread->print_thread_state();
 741         fatal("Deadlock in safepoint code.  "
 742               "Should have called back to the VM before blocking.");
 743       }
 744 
 745       // We transition the thread to state _thread_blocked here, but
 746       // we can't do our usual check for external suspension and then
 747       // self-suspend after the lock_without_safepoint_check() call
 748       // below because we are often called during transitions while
 749       // we hold different locks. That would leave us suspended while
 750       // holding a resource which results in deadlocks.
 751       thread->set_thread_state(_thread_blocked);
 752 
 753       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 754       // the safepoint code might still be waiting for it to block. We need to change the state here,
 755       // so it can see that it is at a safepoint.
 756 
 757       // Block until the safepoint operation is completed.
 758       Threads_lock->lock_without_safepoint_check();
 759 
 760       // Restore state
 761       thread->set_thread_state(state);
 762 
 763       Threads_lock->unlock();
 764       break;
 765 
 766     default:
 767      fatal("Illegal threadstate encountered: %d", state);
 768   }
 769 
 770   // Check for pending. async. exceptions or suspends - except if the
 771   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 772   // is called last since it grabs a lock and we only want to do that when
 773   // we must.
 774   //
 775   // Note: we never deliver an async exception at a polling point as the
 776   // compiler may not have an exception handler for it. The polling
 777   // code will notice the async and deoptimize and the exception will
 778   // be delivered. (Polling at a return point is ok though). Sure is
 779   // a lot of bother for a deprecated feature...
 780   //
 781   // We don't deliver an async exception if the thread state is
 782   // _thread_in_native_trans so JNI functions won't be called with
 783   // a surprising pending exception. If the thread state is going back to java,
 784   // async exception is checked in check_special_condition_for_native_trans().
 785 
 786   if (state != _thread_blocked_trans &&
 787       state != _thread_in_vm_trans &&
 788       thread->has_special_runtime_exit_condition()) {
 789     thread->handle_special_runtime_exit_condition(
 790       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 791   }
 792 }
 793 
 794 // ------------------------------------------------------------------------------------------------------
 795 // Exception handlers
 796 
 797 
 798 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 799   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 800   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 801   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 802 
 803   if (ShowSafepointMsgs) {
 804     tty->print("handle_polling_page_exception: ");
 805   }
 806 
 807   if (PrintSafepointStatistics) {
 808     inc_page_trap_count();
 809   }
 810 
 811   ThreadSafepointState* state = thread->safepoint_state();
 812 
 813   state->handle_polling_page_exception();
 814 }
 815 
 816 
 817 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 818   if (!timeout_error_printed) {
 819     timeout_error_printed = true;
 820     // Print out the thread info which didn't reach the safepoint for debugging
 821     // purposes (useful when there are lots of threads in the debugger).
 822     tty->cr();
 823     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 824     if (reason ==  _spinning_timeout) {
 825       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 826     } else if (reason == _blocking_timeout) {
 827       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 828     }
 829 
 830     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 831     ThreadSafepointState *cur_state;
 832     ResourceMark rm;
 833     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 834         cur_thread = cur_thread->next()) {
 835       cur_state = cur_thread->safepoint_state();
 836 
 837       if (cur_thread->thread_state() != _thread_blocked &&
 838           ((reason == _spinning_timeout && cur_state->is_running()) ||
 839            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 840         tty->print("# ");
 841         cur_thread->print();
 842         tty->cr();
 843       }
 844     }
 845     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 846   }
 847 
 848   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 849   // ShowMessageBoxOnError.
 850   if (DieOnSafepointTimeout) {
 851     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 852           SafepointTimeoutDelay, VMThread::vm_safepoint_description());
 853   }
 854 }
 855 
 856 
 857 // -------------------------------------------------------------------------------------------------------
 858 // Implementation of ThreadSafepointState
 859 
 860 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 861   _thread = thread;
 862   _type   = _running;
 863   _has_called_back = false;
 864   _at_poll_safepoint = false;
 865 }
 866 
 867 void ThreadSafepointState::create(JavaThread *thread) {
 868   ThreadSafepointState *state = new ThreadSafepointState(thread);
 869   thread->set_safepoint_state(state);
 870 }
 871 
 872 void ThreadSafepointState::destroy(JavaThread *thread) {
 873   if (thread->safepoint_state()) {
 874     delete(thread->safepoint_state());
 875     thread->set_safepoint_state(NULL);
 876   }
 877 }
 878 
 879 void ThreadSafepointState::examine_state_of_thread() {
 880   assert(is_running(), "better be running or just have hit safepoint poll");
 881 
 882   JavaThreadState state = _thread->thread_state();
 883 
 884   // Save the state at the start of safepoint processing.
 885   _orig_thread_state = state;
 886 
 887   // Check for a thread that is suspended. Note that thread resume tries
 888   // to grab the Threads_lock which we own here, so a thread cannot be
 889   // resumed during safepoint synchronization.
 890 
 891   // We check to see if this thread is suspended without locking to
 892   // avoid deadlocking with a third thread that is waiting for this
 893   // thread to be suspended. The third thread can notice the safepoint
 894   // that we're trying to start at the beginning of its SR_lock->wait()
 895   // call. If that happens, then the third thread will block on the
 896   // safepoint while still holding the underlying SR_lock. We won't be
 897   // able to get the SR_lock and we'll deadlock.
 898   //
 899   // We don't need to grab the SR_lock here for two reasons:
 900   // 1) The suspend flags are both volatile and are set with an
 901   //    Atomic::cmpxchg() call so we should see the suspended
 902   //    state right away.
 903   // 2) We're being called from the safepoint polling loop; if
 904   //    we don't see the suspended state on this iteration, then
 905   //    we'll come around again.
 906   //
 907   bool is_suspended = _thread->is_ext_suspended();
 908   if (is_suspended) {
 909     roll_forward(_at_safepoint);
 910     return;
 911   }
 912 
 913   // Some JavaThread states have an initial safepoint state of
 914   // running, but are actually at a safepoint. We will happily
 915   // agree and update the safepoint state here.
 916   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 917     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 918     roll_forward(_at_safepoint);
 919     return;
 920   }
 921 
 922   if (state == _thread_in_vm) {
 923     roll_forward(_call_back);
 924     return;
 925   }
 926 
 927   // All other thread states will continue to run until they
 928   // transition and self-block in state _blocked
 929   // Safepoint polling in compiled code causes the Java threads to do the same.
 930   // Note: new threads may require a malloc so they must be allowed to finish
 931 
 932   assert(is_running(), "examine_state_of_thread on non-running thread");
 933   return;
 934 }
 935 
 936 // Returns true is thread could not be rolled forward at present position.
 937 void ThreadSafepointState::roll_forward(suspend_type type) {
 938   _type = type;
 939 
 940   switch(_type) {
 941     case _at_safepoint:
 942       SafepointSynchronize::signal_thread_at_safepoint();
 943       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
 944       if (_thread->in_critical()) {
 945         // Notice that this thread is in a critical section
 946         SafepointSynchronize::increment_jni_active_count();
 947       }
 948       break;
 949 
 950     case _call_back:
 951       set_has_called_back(false);
 952       break;
 953 
 954     case _running:
 955     default:
 956       ShouldNotReachHere();
 957   }
 958 }
 959 
 960 void ThreadSafepointState::restart() {
 961   switch(type()) {
 962     case _at_safepoint:
 963     case _call_back:
 964       break;
 965 
 966     case _running:
 967     default:
 968        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
 969                      p2i(_thread), _type);
 970        _thread->print();
 971       ShouldNotReachHere();
 972   }
 973   _type = _running;
 974   set_has_called_back(false);
 975 }
 976 
 977 
 978 void ThreadSafepointState::print_on(outputStream *st) const {
 979   const char *s = NULL;
 980 
 981   switch(_type) {
 982     case _running                : s = "_running";              break;
 983     case _at_safepoint           : s = "_at_safepoint";         break;
 984     case _call_back              : s = "_call_back";            break;
 985     default:
 986       ShouldNotReachHere();
 987   }
 988 
 989   st->print_cr("Thread: " INTPTR_FORMAT
 990               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
 991                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
 992                _at_poll_safepoint);
 993 
 994   _thread->print_thread_state_on(st);
 995 }
 996 
 997 // ---------------------------------------------------------------------------------------------------------------------
 998 
 999 // Block the thread at the safepoint poll or poll return.
1000 void ThreadSafepointState::handle_polling_page_exception() {
1001 
1002   // Check state.  block() will set thread state to thread_in_vm which will
1003   // cause the safepoint state _type to become _call_back.
1004   assert(type() == ThreadSafepointState::_running,
1005          "polling page exception on thread not running state");
1006 
1007   // Step 1: Find the nmethod from the return address
1008   if (ShowSafepointMsgs && Verbose) {
1009     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
1010   }
1011   address real_return_addr = thread()->saved_exception_pc();
1012 
1013   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1014   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1015   CompiledMethod* nm = (CompiledMethod*)cb;
1016 
1017   // Find frame of caller
1018   frame stub_fr = thread()->last_frame();
1019   CodeBlob* stub_cb = stub_fr.cb();
1020   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1021   RegisterMap map(thread(), true);
1022   frame caller_fr = stub_fr.sender(&map);
1023 
1024   // Should only be poll_return or poll
1025   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1026 
1027   // This is a poll immediately before a return. The exception handling code
1028   // has already had the effect of causing the return to occur, so the execution
1029   // will continue immediately after the call. In addition, the oopmap at the
1030   // return point does not mark the return value as an oop (if it is), so
1031   // it needs a handle here to be updated.
1032   if( nm->is_at_poll_return(real_return_addr) ) {
1033     // See if return type is an oop.
1034     bool return_oop = nm->method()->is_returning_oop();
1035     Handle return_value;
1036     if (return_oop) {
1037       // The oop result has been saved on the stack together with all
1038       // the other registers. In order to preserve it over GCs we need
1039       // to keep it in a handle.
1040       oop result = caller_fr.saved_oop_result(&map);
1041       assert(result == NULL || result->is_oop(), "must be oop");
1042       return_value = Handle(thread(), result);
1043       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1044     }
1045 
1046     // Block the thread
1047     SafepointSynchronize::block(thread());
1048 
1049     // restore oop result, if any
1050     if (return_oop) {
1051       caller_fr.set_saved_oop_result(&map, return_value());
1052     }
1053   }
1054 
1055   // This is a safepoint poll. Verify the return address and block.
1056   else {
1057     set_at_poll_safepoint(true);
1058 
1059     // verify the blob built the "return address" correctly
1060     assert(real_return_addr == caller_fr.pc(), "must match");
1061 
1062     // Block the thread
1063     SafepointSynchronize::block(thread());
1064     set_at_poll_safepoint(false);
1065 
1066     // If we have a pending async exception deoptimize the frame
1067     // as otherwise we may never deliver it.
1068     if (thread()->has_async_condition()) {
1069       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1070       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1071     }
1072 
1073     // If an exception has been installed we must check for a pending deoptimization
1074     // Deoptimize frame if exception has been thrown.
1075 
1076     if (thread()->has_pending_exception() ) {
1077       RegisterMap map(thread(), true);
1078       frame caller_fr = stub_fr.sender(&map);
1079       if (caller_fr.is_deoptimized_frame()) {
1080         // The exception patch will destroy registers that are still
1081         // live and will be needed during deoptimization. Defer the
1082         // Async exception should have deferred the exception until the
1083         // next safepoint which will be detected when we get into
1084         // the interpreter so if we have an exception now things
1085         // are messed up.
1086 
1087         fatal("Exception installed and deoptimization is pending");
1088       }
1089     }
1090   }
1091 }
1092 
1093 
1094 //
1095 //                     Statistics & Instrumentations
1096 //
1097 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1098 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1099 int    SafepointSynchronize::_cur_stat_index = 0;
1100 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1101 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1102 jlong  SafepointSynchronize::_max_sync_time = 0;
1103 jlong  SafepointSynchronize::_max_vmop_time = 0;
1104 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1105 
1106 static jlong  cleanup_end_time = 0;
1107 static bool   need_to_track_page_armed_status = false;
1108 static bool   init_done = false;
1109 
1110 // Helper method to print the header.
1111 static void print_header() {
1112   // The number of spaces is significant here, and should match the format
1113   // specifiers in print_statistics().
1114 
1115   tty->print("          vmop                            "
1116              "[ threads:    total initially_running wait_to_block ]"
1117              "[ time:    spin   block    sync cleanup    vmop ] ");
1118 
1119   // no page armed status printed out if it is always armed.
1120   if (need_to_track_page_armed_status) {
1121     tty->print("page_armed ");
1122   }
1123 
1124   tty->print_cr("page_trap_count");
1125 }
1126 
1127 void SafepointSynchronize::deferred_initialize_stat() {
1128   if (init_done) return;
1129 
1130   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1131   // be printed right away, in which case, _safepoint_stats will regress to
1132   // a single element array. Otherwise, it is a circular ring buffer with default
1133   // size of PrintSafepointStatisticsCount.
1134   int stats_array_size;
1135   if (PrintSafepointStatisticsTimeout > 0) {
1136     stats_array_size = 1;
1137     PrintSafepointStatistics = true;
1138   } else {
1139     stats_array_size = PrintSafepointStatisticsCount;
1140   }
1141   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1142                                                  * sizeof(SafepointStats), mtInternal);
1143   guarantee(_safepoint_stats != NULL,
1144             "not enough memory for safepoint instrumentation data");
1145 
1146   if (DeferPollingPageLoopCount >= 0) {
1147     need_to_track_page_armed_status = true;
1148   }
1149   init_done = true;
1150 }
1151 
1152 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1153   assert(init_done, "safepoint statistics array hasn't been initialized");
1154   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1155 
1156   spstat->_time_stamp = _ts_of_current_safepoint;
1157 
1158   VM_Operation *op = VMThread::vm_operation();
1159   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1160   if (op != NULL) {
1161     _safepoint_reasons[spstat->_vmop_type]++;
1162   }
1163 
1164   spstat->_nof_total_threads = nof_threads;
1165   spstat->_nof_initial_running_threads = nof_running;
1166   spstat->_nof_threads_hit_page_trap = 0;
1167 
1168   // Records the start time of spinning. The real time spent on spinning
1169   // will be adjusted when spin is done. Same trick is applied for time
1170   // spent on waiting for threads to block.
1171   if (nof_running != 0) {
1172     spstat->_time_to_spin = os::javaTimeNanos();
1173   }  else {
1174     spstat->_time_to_spin = 0;
1175   }
1176 }
1177 
1178 void SafepointSynchronize::update_statistics_on_spin_end() {
1179   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1180 
1181   jlong cur_time = os::javaTimeNanos();
1182 
1183   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1184   if (spstat->_nof_initial_running_threads != 0) {
1185     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1186   }
1187 
1188   if (need_to_track_page_armed_status) {
1189     spstat->_page_armed = (PageArmed == 1);
1190   }
1191 
1192   // Records the start time of waiting for to block. Updated when block is done.
1193   if (_waiting_to_block != 0) {
1194     spstat->_time_to_wait_to_block = cur_time;
1195   } else {
1196     spstat->_time_to_wait_to_block = 0;
1197   }
1198 }
1199 
1200 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1201   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1202 
1203   if (spstat->_nof_threads_wait_to_block != 0) {
1204     spstat->_time_to_wait_to_block = end_time -
1205       spstat->_time_to_wait_to_block;
1206   }
1207 
1208   // Records the end time of sync which will be used to calculate the total
1209   // vm operation time. Again, the real time spending in syncing will be deducted
1210   // from the start of the sync time later when end_statistics is called.
1211   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1212   if (spstat->_time_to_sync > _max_sync_time) {
1213     _max_sync_time = spstat->_time_to_sync;
1214   }
1215 
1216   spstat->_time_to_do_cleanups = end_time;
1217 }
1218 
1219 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1220   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1221 
1222   // Record how long spent in cleanup tasks.
1223   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1224 
1225   cleanup_end_time = end_time;
1226 }
1227 
1228 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1229   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1230 
1231   // Update the vm operation time.
1232   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1233   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1234     _max_vmop_time = spstat->_time_to_exec_vmop;
1235   }
1236   // Only the sync time longer than the specified
1237   // PrintSafepointStatisticsTimeout will be printed out right away.
1238   // By default, it is -1 meaning all samples will be put into the list.
1239   if ( PrintSafepointStatisticsTimeout > 0) {
1240     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1241       print_statistics();
1242     }
1243   } else {
1244     // The safepoint statistics will be printed out when the _safepoin_stats
1245     // array fills up.
1246     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1247       print_statistics();
1248       _cur_stat_index = 0;
1249     } else {
1250       _cur_stat_index++;
1251     }
1252   }
1253 }
1254 
1255 void SafepointSynchronize::print_statistics() {
1256   for (int index = 0; index <= _cur_stat_index; index++) {
1257     if (index % 30 == 0) {
1258       print_header();
1259     }
1260     SafepointStats* sstats = &_safepoint_stats[index];
1261     tty->print("%8.3f: ", sstats->_time_stamp);
1262     tty->print("%-30s  [          "
1263                INT32_FORMAT_W(8) " " INT32_FORMAT_W(17) " " INT32_FORMAT_W(13) " "
1264                "]",
1265                (sstats->_vmop_type == -1 ? "no vm operation" : VM_Operation::name(sstats->_vmop_type)),
1266                sstats->_nof_total_threads,
1267                sstats->_nof_initial_running_threads,
1268                sstats->_nof_threads_wait_to_block);
1269     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1270     tty->print("[       "
1271                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1272                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1273                INT64_FORMAT_W(7) " ] ",
1274                sstats->_time_to_spin / MICROUNITS,
1275                sstats->_time_to_wait_to_block / MICROUNITS,
1276                sstats->_time_to_sync / MICROUNITS,
1277                sstats->_time_to_do_cleanups / MICROUNITS,
1278                sstats->_time_to_exec_vmop / MICROUNITS);
1279 
1280     if (need_to_track_page_armed_status) {
1281       tty->print(INT32_FORMAT_W(10) " ", sstats->_page_armed);
1282     }
1283     tty->print_cr(INT32_FORMAT_W(15) " ", sstats->_nof_threads_hit_page_trap);
1284   }
1285 }
1286 
1287 // This method will be called when VM exits. It will first call
1288 // print_statistics to print out the rest of the sampling.  Then
1289 // it tries to summarize the sampling.
1290 void SafepointSynchronize::print_stat_on_exit() {
1291   if (_safepoint_stats == NULL) return;
1292 
1293   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1294 
1295   // During VM exit, end_statistics may not get called and in that
1296   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1297   // don't print it out.
1298   // Approximate the vm op time.
1299   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1300     os::javaTimeNanos() - cleanup_end_time;
1301 
1302   if ( PrintSafepointStatisticsTimeout < 0 ||
1303        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1304     print_statistics();
1305   }
1306   tty->cr();
1307 
1308   // Print out polling page sampling status.
1309   if (!need_to_track_page_armed_status) {
1310     tty->print_cr("Polling page always armed");
1311   } else {
1312     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1313                   DeferPollingPageLoopCount);
1314   }
1315 
1316   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1317     if (_safepoint_reasons[index] != 0) {
1318       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1319                     _safepoint_reasons[index]);
1320     }
1321   }
1322 
1323   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1324                 _coalesced_vmop_count);
1325   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1326                 _max_sync_time / MICROUNITS);
1327   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1328                 INT64_FORMAT_W(5) " ms",
1329                 _max_vmop_time / MICROUNITS);
1330 }
1331 
1332 // ------------------------------------------------------------------------------------------------
1333 // Non-product code
1334 
1335 #ifndef PRODUCT
1336 
1337 void SafepointSynchronize::print_state() {
1338   if (_state == _not_synchronized) {
1339     tty->print_cr("not synchronized");
1340   } else if (_state == _synchronizing || _state == _synchronized) {
1341     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1342                   "synchronized");
1343 
1344     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1345        cur->safepoint_state()->print();
1346     }
1347   }
1348 }
1349 
1350 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1351   if (ShowSafepointMsgs) {
1352     va_list ap;
1353     va_start(ap, format);
1354     tty->vprint_cr(format, ap);
1355     va_end(ap);
1356   }
1357 }
1358 
1359 #endif // !PRODUCT