1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "prims/resolvedMethodTable.hpp"
  78 #include "runtime/atomic.hpp"
  79 #include "runtime/init.hpp"
  80 #include "runtime/orderAccess.inline.hpp"
  81 #include "runtime/vmThread.hpp"
  82 #include "utilities/globalDefinitions.hpp"
  83 #include "utilities/stack.inline.hpp"
  84 
  85 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  86 
  87 // INVARIANTS/NOTES
  88 //
  89 // All allocation activity covered by the G1CollectedHeap interface is
  90 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  91 // and allocate_new_tlab, which are the "entry" points to the
  92 // allocation code from the rest of the JVM.  (Note that this does not
  93 // apply to TLAB allocation, which is not part of this interface: it
  94 // is done by clients of this interface.)
  95 
  96 // Local to this file.
  97 
  98 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  99   bool _concurrent;
 100 public:
 101   RefineCardTableEntryClosure() : _concurrent(true) { }
 102 
 103   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 104     G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i);
 105 
 106     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 107       // Caller will actually yield.
 108       return false;
 109     }
 110     // Otherwise, we finished successfully; return true.
 111     return true;
 112   }
 113 
 114   void set_concurrent(bool b) { _concurrent = b; }
 115 };
 116 
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 119  private:
 120   size_t _num_dirtied;
 121   G1CollectedHeap* _g1h;
 122   G1SATBCardTableLoggingModRefBS* _g1_bs;
 123 
 124   HeapRegion* region_for_card(jbyte* card_ptr) const {
 125     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 126   }
 127 
 128   bool will_become_free(HeapRegion* hr) const {
 129     // A region will be freed by free_collection_set if the region is in the
 130     // collection set and has not had an evacuation failure.
 131     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 132   }
 133 
 134  public:
 135   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 136     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 137 
 138   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 139     HeapRegion* hr = region_for_card(card_ptr);
 140 
 141     // Should only dirty cards in regions that won't be freed.
 142     if (!will_become_free(hr)) {
 143       *card_ptr = CardTableModRefBS::dirty_card_val();
 144       _num_dirtied++;
 145     }
 146 
 147     return true;
 148   }
 149 
 150   size_t num_dirtied()   const { return _num_dirtied; }
 151 };
 152 
 153 
 154 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 155   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 156 }
 157 
 158 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 159   // The from card cache is not the memory that is actually committed. So we cannot
 160   // take advantage of the zero_filled parameter.
 161   reset_from_card_cache(start_idx, num_regions);
 162 }
 163 
 164 // Returns true if the reference points to an object that
 165 // can move in an incremental collection.
 166 bool G1CollectedHeap::is_scavengable(const void* p) {
 167   HeapRegion* hr = heap_region_containing(p);
 168   return !hr->is_pinned();
 169 }
 170 
 171 // Private methods.
 172 
 173 HeapRegion*
 174 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 175   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 176   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 177     if (!_secondary_free_list.is_empty()) {
 178       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 179                                       "secondary_free_list has %u entries",
 180                                       _secondary_free_list.length());
 181       // It looks as if there are free regions available on the
 182       // secondary_free_list. Let's move them to the free_list and try
 183       // again to allocate from it.
 184       append_secondary_free_list();
 185 
 186       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 187              "empty we should have moved at least one entry to the free_list");
 188       HeapRegion* res = _hrm.allocate_free_region(is_old);
 189       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 190                                       "allocated " HR_FORMAT " from secondary_free_list",
 191                                       HR_FORMAT_PARAMS(res));
 192       return res;
 193     }
 194 
 195     // Wait here until we get notified either when (a) there are no
 196     // more free regions coming or (b) some regions have been moved on
 197     // the secondary_free_list.
 198     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 199   }
 200 
 201   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 202                                   "could not allocate from secondary_free_list");
 203   return NULL;
 204 }
 205 
 206 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 207   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 208          "the only time we use this to allocate a humongous region is "
 209          "when we are allocating a single humongous region");
 210 
 211   HeapRegion* res;
 212   if (G1StressConcRegionFreeing) {
 213     if (!_secondary_free_list.is_empty()) {
 214       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 215                                       "forced to look at the secondary_free_list");
 216       res = new_region_try_secondary_free_list(is_old);
 217       if (res != NULL) {
 218         return res;
 219       }
 220     }
 221   }
 222 
 223   res = _hrm.allocate_free_region(is_old);
 224 
 225   if (res == NULL) {
 226     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 227                                     "res == NULL, trying the secondary_free_list");
 228     res = new_region_try_secondary_free_list(is_old);
 229   }
 230   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 231     // Currently, only attempts to allocate GC alloc regions set
 232     // do_expand to true. So, we should only reach here during a
 233     // safepoint. If this assumption changes we might have to
 234     // reconsider the use of _expand_heap_after_alloc_failure.
 235     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 236 
 237     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 238                               word_size * HeapWordSize);
 239 
 240     if (expand(word_size * HeapWordSize)) {
 241       // Given that expand() succeeded in expanding the heap, and we
 242       // always expand the heap by an amount aligned to the heap
 243       // region size, the free list should in theory not be empty.
 244       // In either case allocate_free_region() will check for NULL.
 245       res = _hrm.allocate_free_region(is_old);
 246     } else {
 247       _expand_heap_after_alloc_failure = false;
 248     }
 249   }
 250   return res;
 251 }
 252 
 253 HeapWord*
 254 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 255                                                            uint num_regions,
 256                                                            size_t word_size,
 257                                                            AllocationContext_t context) {
 258   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 259   assert(is_humongous(word_size), "word_size should be humongous");
 260   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 261 
 262   // Index of last region in the series.
 263   uint last = first + num_regions - 1;
 264 
 265   // We need to initialize the region(s) we just discovered. This is
 266   // a bit tricky given that it can happen concurrently with
 267   // refinement threads refining cards on these regions and
 268   // potentially wanting to refine the BOT as they are scanning
 269   // those cards (this can happen shortly after a cleanup; see CR
 270   // 6991377). So we have to set up the region(s) carefully and in
 271   // a specific order.
 272 
 273   // The word size sum of all the regions we will allocate.
 274   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 275   assert(word_size <= word_size_sum, "sanity");
 276 
 277   // This will be the "starts humongous" region.
 278   HeapRegion* first_hr = region_at(first);
 279   // The header of the new object will be placed at the bottom of
 280   // the first region.
 281   HeapWord* new_obj = first_hr->bottom();
 282   // This will be the new top of the new object.
 283   HeapWord* obj_top = new_obj + word_size;
 284 
 285   // First, we need to zero the header of the space that we will be
 286   // allocating. When we update top further down, some refinement
 287   // threads might try to scan the region. By zeroing the header we
 288   // ensure that any thread that will try to scan the region will
 289   // come across the zero klass word and bail out.
 290   //
 291   // NOTE: It would not have been correct to have used
 292   // CollectedHeap::fill_with_object() and make the space look like
 293   // an int array. The thread that is doing the allocation will
 294   // later update the object header to a potentially different array
 295   // type and, for a very short period of time, the klass and length
 296   // fields will be inconsistent. This could cause a refinement
 297   // thread to calculate the object size incorrectly.
 298   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 299 
 300   // Next, pad out the unused tail of the last region with filler
 301   // objects, for improved usage accounting.
 302   // How many words we use for filler objects.
 303   size_t word_fill_size = word_size_sum - word_size;
 304 
 305   // How many words memory we "waste" which cannot hold a filler object.
 306   size_t words_not_fillable = 0;
 307 
 308   if (word_fill_size >= min_fill_size()) {
 309     fill_with_objects(obj_top, word_fill_size);
 310   } else if (word_fill_size > 0) {
 311     // We have space to fill, but we cannot fit an object there.
 312     words_not_fillable = word_fill_size;
 313     word_fill_size = 0;
 314   }
 315 
 316   // We will set up the first region as "starts humongous". This
 317   // will also update the BOT covering all the regions to reflect
 318   // that there is a single object that starts at the bottom of the
 319   // first region.
 320   first_hr->set_starts_humongous(obj_top, word_fill_size);
 321   first_hr->set_allocation_context(context);
 322   // Then, if there are any, we will set up the "continues
 323   // humongous" regions.
 324   HeapRegion* hr = NULL;
 325   for (uint i = first + 1; i <= last; ++i) {
 326     hr = region_at(i);
 327     hr->set_continues_humongous(first_hr);
 328     hr->set_allocation_context(context);
 329   }
 330 
 331   // Up to this point no concurrent thread would have been able to
 332   // do any scanning on any region in this series. All the top
 333   // fields still point to bottom, so the intersection between
 334   // [bottom,top] and [card_start,card_end] will be empty. Before we
 335   // update the top fields, we'll do a storestore to make sure that
 336   // no thread sees the update to top before the zeroing of the
 337   // object header and the BOT initialization.
 338   OrderAccess::storestore();
 339 
 340   // Now, we will update the top fields of the "continues humongous"
 341   // regions except the last one.
 342   for (uint i = first; i < last; ++i) {
 343     hr = region_at(i);
 344     hr->set_top(hr->end());
 345   }
 346 
 347   hr = region_at(last);
 348   // If we cannot fit a filler object, we must set top to the end
 349   // of the humongous object, otherwise we cannot iterate the heap
 350   // and the BOT will not be complete.
 351   hr->set_top(hr->end() - words_not_fillable);
 352 
 353   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 354          "obj_top should be in last region");
 355 
 356   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 357 
 358   assert(words_not_fillable == 0 ||
 359          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 360          "Miscalculation in humongous allocation");
 361 
 362   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 363 
 364   for (uint i = first; i <= last; ++i) {
 365     hr = region_at(i);
 366     _humongous_set.add(hr);
 367     _hr_printer.alloc(hr);
 368   }
 369 
 370   return new_obj;
 371 }
 372 
 373 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 374   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 375   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 376 }
 377 
 378 // If could fit into free regions w/o expansion, try.
 379 // Otherwise, if can expand, do so.
 380 // Otherwise, if using ex regions might help, try with ex given back.
 381 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 382   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 383 
 384   _verifier->verify_region_sets_optional();
 385 
 386   uint first = G1_NO_HRM_INDEX;
 387   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 388 
 389   if (obj_regions == 1) {
 390     // Only one region to allocate, try to use a fast path by directly allocating
 391     // from the free lists. Do not try to expand here, we will potentially do that
 392     // later.
 393     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 394     if (hr != NULL) {
 395       first = hr->hrm_index();
 396     }
 397   } else {
 398     // We can't allocate humongous regions spanning more than one region while
 399     // cleanupComplete() is running, since some of the regions we find to be
 400     // empty might not yet be added to the free list. It is not straightforward
 401     // to know in which list they are on so that we can remove them. We only
 402     // need to do this if we need to allocate more than one region to satisfy the
 403     // current humongous allocation request. If we are only allocating one region
 404     // we use the one-region region allocation code (see above), that already
 405     // potentially waits for regions from the secondary free list.
 406     wait_while_free_regions_coming();
 407     append_secondary_free_list_if_not_empty_with_lock();
 408 
 409     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 410     // are lucky enough to find some.
 411     first = _hrm.find_contiguous_only_empty(obj_regions);
 412     if (first != G1_NO_HRM_INDEX) {
 413       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 414     }
 415   }
 416 
 417   if (first == G1_NO_HRM_INDEX) {
 418     // Policy: We could not find enough regions for the humongous object in the
 419     // free list. Look through the heap to find a mix of free and uncommitted regions.
 420     // If so, try expansion.
 421     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 422     if (first != G1_NO_HRM_INDEX) {
 423       // We found something. Make sure these regions are committed, i.e. expand
 424       // the heap. Alternatively we could do a defragmentation GC.
 425       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 426                                     word_size * HeapWordSize);
 427 
 428       _hrm.expand_at(first, obj_regions, workers());
 429       g1_policy()->record_new_heap_size(num_regions());
 430 
 431 #ifdef ASSERT
 432       for (uint i = first; i < first + obj_regions; ++i) {
 433         HeapRegion* hr = region_at(i);
 434         assert(hr->is_free(), "sanity");
 435         assert(hr->is_empty(), "sanity");
 436         assert(is_on_master_free_list(hr), "sanity");
 437       }
 438 #endif
 439       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 440     } else {
 441       // Policy: Potentially trigger a defragmentation GC.
 442     }
 443   }
 444 
 445   HeapWord* result = NULL;
 446   if (first != G1_NO_HRM_INDEX) {
 447     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 448                                                        word_size, context);
 449     assert(result != NULL, "it should always return a valid result");
 450 
 451     // A successful humongous object allocation changes the used space
 452     // information of the old generation so we need to recalculate the
 453     // sizes and update the jstat counters here.
 454     g1mm()->update_sizes();
 455   }
 456 
 457   _verifier->verify_region_sets_optional();
 458 
 459   return result;
 460 }
 461 
 462 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 463   assert_heap_not_locked_and_not_at_safepoint();
 464   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 465 
 466   uint dummy_gc_count_before;
 467   uint dummy_gclocker_retry_count = 0;
 468   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 469 }
 470 
 471 HeapWord*
 472 G1CollectedHeap::mem_allocate(size_t word_size,
 473                               bool*  gc_overhead_limit_was_exceeded) {
 474   assert_heap_not_locked_and_not_at_safepoint();
 475 
 476   // Loop until the allocation is satisfied, or unsatisfied after GC.
 477   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 478     uint gc_count_before;
 479 
 480     HeapWord* result = NULL;
 481     if (!is_humongous(word_size)) {
 482       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 483     } else {
 484       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 485     }
 486     if (result != NULL) {
 487       return result;
 488     }
 489 
 490     // Create the garbage collection operation...
 491     VM_G1CollectForAllocation op(gc_count_before, word_size);
 492     op.set_allocation_context(AllocationContext::current());
 493 
 494     // ...and get the VM thread to execute it.
 495     VMThread::execute(&op);
 496 
 497     if (op.prologue_succeeded() && op.pause_succeeded()) {
 498       // If the operation was successful we'll return the result even
 499       // if it is NULL. If the allocation attempt failed immediately
 500       // after a Full GC, it's unlikely we'll be able to allocate now.
 501       HeapWord* result = op.result();
 502       if (result != NULL && !is_humongous(word_size)) {
 503         // Allocations that take place on VM operations do not do any
 504         // card dirtying and we have to do it here. We only have to do
 505         // this for non-humongous allocations, though.
 506         dirty_young_block(result, word_size);
 507       }
 508       return result;
 509     } else {
 510       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 511         return NULL;
 512       }
 513       assert(op.result() == NULL,
 514              "the result should be NULL if the VM op did not succeed");
 515     }
 516 
 517     // Give a warning if we seem to be looping forever.
 518     if ((QueuedAllocationWarningCount > 0) &&
 519         (try_count % QueuedAllocationWarningCount == 0)) {
 520       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 521     }
 522   }
 523 
 524   ShouldNotReachHere();
 525   return NULL;
 526 }
 527 
 528 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 529                                                    AllocationContext_t context,
 530                                                    uint* gc_count_before_ret,
 531                                                    uint* gclocker_retry_count_ret) {
 532   // Make sure you read the note in attempt_allocation_humongous().
 533 
 534   assert_heap_not_locked_and_not_at_safepoint();
 535   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 536          "be called for humongous allocation requests");
 537 
 538   // We should only get here after the first-level allocation attempt
 539   // (attempt_allocation()) failed to allocate.
 540 
 541   // We will loop until a) we manage to successfully perform the
 542   // allocation or b) we successfully schedule a collection which
 543   // fails to perform the allocation. b) is the only case when we'll
 544   // return NULL.
 545   HeapWord* result = NULL;
 546   for (int try_count = 1; /* we'll return */; try_count += 1) {
 547     bool should_try_gc;
 548     uint gc_count_before;
 549 
 550     {
 551       MutexLockerEx x(Heap_lock);
 552       result = _allocator->attempt_allocation_locked(word_size, context);
 553       if (result != NULL) {
 554         return result;
 555       }
 556 
 557       if (GCLocker::is_active_and_needs_gc()) {
 558         if (g1_policy()->can_expand_young_list()) {
 559           // No need for an ergo verbose message here,
 560           // can_expand_young_list() does this when it returns true.
 561           result = _allocator->attempt_allocation_force(word_size, context);
 562           if (result != NULL) {
 563             return result;
 564           }
 565         }
 566         should_try_gc = false;
 567       } else {
 568         // The GCLocker may not be active but the GCLocker initiated
 569         // GC may not yet have been performed (GCLocker::needs_gc()
 570         // returns true). In this case we do not try this GC and
 571         // wait until the GCLocker initiated GC is performed, and
 572         // then retry the allocation.
 573         if (GCLocker::needs_gc()) {
 574           should_try_gc = false;
 575         } else {
 576           // Read the GC count while still holding the Heap_lock.
 577           gc_count_before = total_collections();
 578           should_try_gc = true;
 579         }
 580       }
 581     }
 582 
 583     if (should_try_gc) {
 584       bool succeeded;
 585       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 586                                    GCCause::_g1_inc_collection_pause);
 587       if (result != NULL) {
 588         assert(succeeded, "only way to get back a non-NULL result");
 589         return result;
 590       }
 591 
 592       if (succeeded) {
 593         // If we get here we successfully scheduled a collection which
 594         // failed to allocate. No point in trying to allocate
 595         // further. We'll just return NULL.
 596         MutexLockerEx x(Heap_lock);
 597         *gc_count_before_ret = total_collections();
 598         return NULL;
 599       }
 600     } else {
 601       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 602         MutexLockerEx x(Heap_lock);
 603         *gc_count_before_ret = total_collections();
 604         return NULL;
 605       }
 606       // The GCLocker is either active or the GCLocker initiated
 607       // GC has not yet been performed. Stall until it is and
 608       // then retry the allocation.
 609       GCLocker::stall_until_clear();
 610       (*gclocker_retry_count_ret) += 1;
 611     }
 612 
 613     // We can reach here if we were unsuccessful in scheduling a
 614     // collection (because another thread beat us to it) or if we were
 615     // stalled due to the GC locker. In either can we should retry the
 616     // allocation attempt in case another thread successfully
 617     // performed a collection and reclaimed enough space. We do the
 618     // first attempt (without holding the Heap_lock) here and the
 619     // follow-on attempt will be at the start of the next loop
 620     // iteration (after taking the Heap_lock).
 621     result = _allocator->attempt_allocation(word_size, context);
 622     if (result != NULL) {
 623       return result;
 624     }
 625 
 626     // Give a warning if we seem to be looping forever.
 627     if ((QueuedAllocationWarningCount > 0) &&
 628         (try_count % QueuedAllocationWarningCount == 0)) {
 629       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 630                       "retries %d times", try_count);
 631     }
 632   }
 633 
 634   ShouldNotReachHere();
 635   return NULL;
 636 }
 637 
 638 void G1CollectedHeap::begin_archive_alloc_range() {
 639   assert_at_safepoint(true /* should_be_vm_thread */);
 640   if (_archive_allocator == NULL) {
 641     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 642   }
 643 }
 644 
 645 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 646   // Allocations in archive regions cannot be of a size that would be considered
 647   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 648   // may be different at archive-restore time.
 649   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 650 }
 651 
 652 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 653   assert_at_safepoint(true /* should_be_vm_thread */);
 654   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 655   if (is_archive_alloc_too_large(word_size)) {
 656     return NULL;
 657   }
 658   return _archive_allocator->archive_mem_allocate(word_size);
 659 }
 660 
 661 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 662                                               size_t end_alignment_in_bytes) {
 663   assert_at_safepoint(true /* should_be_vm_thread */);
 664   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 665 
 666   // Call complete_archive to do the real work, filling in the MemRegion
 667   // array with the archive regions.
 668   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 669   delete _archive_allocator;
 670   _archive_allocator = NULL;
 671 }
 672 
 673 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 674   assert(ranges != NULL, "MemRegion array NULL");
 675   assert(count != 0, "No MemRegions provided");
 676   MemRegion reserved = _hrm.reserved();
 677   for (size_t i = 0; i < count; i++) {
 678     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 679       return false;
 680     }
 681   }
 682   return true;
 683 }
 684 
 685 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 686   assert(!is_init_completed(), "Expect to be called at JVM init time");
 687   assert(ranges != NULL, "MemRegion array NULL");
 688   assert(count != 0, "No MemRegions provided");
 689   MutexLockerEx x(Heap_lock);
 690 
 691   MemRegion reserved = _hrm.reserved();
 692   HeapWord* prev_last_addr = NULL;
 693   HeapRegion* prev_last_region = NULL;
 694 
 695   // Temporarily disable pretouching of heap pages. This interface is used
 696   // when mmap'ing archived heap data in, so pre-touching is wasted.
 697   FlagSetting fs(AlwaysPreTouch, false);
 698 
 699   // Enable archive object checking used by G1MarkSweep. We have to let it know
 700   // about each archive range, so that objects in those ranges aren't marked.
 701   G1ArchiveAllocator::enable_archive_object_check();
 702 
 703   // For each specified MemRegion range, allocate the corresponding G1
 704   // regions and mark them as archive regions. We expect the ranges in
 705   // ascending starting address order, without overlap.
 706   for (size_t i = 0; i < count; i++) {
 707     MemRegion curr_range = ranges[i];
 708     HeapWord* start_address = curr_range.start();
 709     size_t word_size = curr_range.word_size();
 710     HeapWord* last_address = curr_range.last();
 711     size_t commits = 0;
 712 
 713     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 714               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 715               p2i(start_address), p2i(last_address));
 716     guarantee(start_address > prev_last_addr,
 717               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 718               p2i(start_address), p2i(prev_last_addr));
 719     prev_last_addr = last_address;
 720 
 721     // Check for ranges that start in the same G1 region in which the previous
 722     // range ended, and adjust the start address so we don't try to allocate
 723     // the same region again. If the current range is entirely within that
 724     // region, skip it, just adjusting the recorded top.
 725     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 726     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 727       start_address = start_region->end();
 728       if (start_address > last_address) {
 729         increase_used(word_size * HeapWordSize);
 730         start_region->set_top(last_address + 1);
 731         continue;
 732       }
 733       start_region->set_top(start_address);
 734       curr_range = MemRegion(start_address, last_address + 1);
 735       start_region = _hrm.addr_to_region(start_address);
 736     }
 737 
 738     // Perform the actual region allocation, exiting if it fails.
 739     // Then note how much new space we have allocated.
 740     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 741       return false;
 742     }
 743     increase_used(word_size * HeapWordSize);
 744     if (commits != 0) {
 745       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 746                                 HeapRegion::GrainWords * HeapWordSize * commits);
 747 
 748     }
 749 
 750     // Mark each G1 region touched by the range as archive, add it to the old set,
 751     // and set the allocation context and top.
 752     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 753     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 754     prev_last_region = last_region;
 755 
 756     while (curr_region != NULL) {
 757       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 758              "Region already in use (index %u)", curr_region->hrm_index());
 759       curr_region->set_allocation_context(AllocationContext::system());
 760       curr_region->set_archive();
 761       _hr_printer.alloc(curr_region);
 762       _old_set.add(curr_region);
 763       if (curr_region != last_region) {
 764         curr_region->set_top(curr_region->end());
 765         curr_region = _hrm.next_region_in_heap(curr_region);
 766       } else {
 767         curr_region->set_top(last_address + 1);
 768         curr_region = NULL;
 769       }
 770     }
 771 
 772     // Notify mark-sweep of the archive range.
 773     G1ArchiveAllocator::set_range_archive(curr_range, true);
 774   }
 775   return true;
 776 }
 777 
 778 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 779   assert(!is_init_completed(), "Expect to be called at JVM init time");
 780   assert(ranges != NULL, "MemRegion array NULL");
 781   assert(count != 0, "No MemRegions provided");
 782   MemRegion reserved = _hrm.reserved();
 783   HeapWord *prev_last_addr = NULL;
 784   HeapRegion* prev_last_region = NULL;
 785 
 786   // For each MemRegion, create filler objects, if needed, in the G1 regions
 787   // that contain the address range. The address range actually within the
 788   // MemRegion will not be modified. That is assumed to have been initialized
 789   // elsewhere, probably via an mmap of archived heap data.
 790   MutexLockerEx x(Heap_lock);
 791   for (size_t i = 0; i < count; i++) {
 792     HeapWord* start_address = ranges[i].start();
 793     HeapWord* last_address = ranges[i].last();
 794 
 795     assert(reserved.contains(start_address) && reserved.contains(last_address),
 796            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 797            p2i(start_address), p2i(last_address));
 798     assert(start_address > prev_last_addr,
 799            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 800            p2i(start_address), p2i(prev_last_addr));
 801 
 802     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 803     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 804     HeapWord* bottom_address = start_region->bottom();
 805 
 806     // Check for a range beginning in the same region in which the
 807     // previous one ended.
 808     if (start_region == prev_last_region) {
 809       bottom_address = prev_last_addr + 1;
 810     }
 811 
 812     // Verify that the regions were all marked as archive regions by
 813     // alloc_archive_regions.
 814     HeapRegion* curr_region = start_region;
 815     while (curr_region != NULL) {
 816       guarantee(curr_region->is_archive(),
 817                 "Expected archive region at index %u", curr_region->hrm_index());
 818       if (curr_region != last_region) {
 819         curr_region = _hrm.next_region_in_heap(curr_region);
 820       } else {
 821         curr_region = NULL;
 822       }
 823     }
 824 
 825     prev_last_addr = last_address;
 826     prev_last_region = last_region;
 827 
 828     // Fill the memory below the allocated range with dummy object(s),
 829     // if the region bottom does not match the range start, or if the previous
 830     // range ended within the same G1 region, and there is a gap.
 831     if (start_address != bottom_address) {
 832       size_t fill_size = pointer_delta(start_address, bottom_address);
 833       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 834       increase_used(fill_size * HeapWordSize);
 835     }
 836   }
 837 }
 838 
 839 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 840                                                      uint* gc_count_before_ret,
 841                                                      uint* gclocker_retry_count_ret) {
 842   assert_heap_not_locked_and_not_at_safepoint();
 843   assert(!is_humongous(word_size), "attempt_allocation() should not "
 844          "be called for humongous allocation requests");
 845 
 846   AllocationContext_t context = AllocationContext::current();
 847   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 848 
 849   if (result == NULL) {
 850     result = attempt_allocation_slow(word_size,
 851                                      context,
 852                                      gc_count_before_ret,
 853                                      gclocker_retry_count_ret);
 854   }
 855   assert_heap_not_locked();
 856   if (result != NULL) {
 857     dirty_young_block(result, word_size);
 858   }
 859   return result;
 860 }
 861 
 862 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 863   assert(!is_init_completed(), "Expect to be called at JVM init time");
 864   assert(ranges != NULL, "MemRegion array NULL");
 865   assert(count != 0, "No MemRegions provided");
 866   MemRegion reserved = _hrm.reserved();
 867   HeapWord* prev_last_addr = NULL;
 868   HeapRegion* prev_last_region = NULL;
 869   size_t size_used = 0;
 870   size_t uncommitted_regions = 0;
 871 
 872   // For each Memregion, free the G1 regions that constitute it, and
 873   // notify mark-sweep that the range is no longer to be considered 'archive.'
 874   MutexLockerEx x(Heap_lock);
 875   for (size_t i = 0; i < count; i++) {
 876     HeapWord* start_address = ranges[i].start();
 877     HeapWord* last_address = ranges[i].last();
 878 
 879     assert(reserved.contains(start_address) && reserved.contains(last_address),
 880            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 881            p2i(start_address), p2i(last_address));
 882     assert(start_address > prev_last_addr,
 883            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 884            p2i(start_address), p2i(prev_last_addr));
 885     size_used += ranges[i].byte_size();
 886     prev_last_addr = last_address;
 887 
 888     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 889     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 890 
 891     // Check for ranges that start in the same G1 region in which the previous
 892     // range ended, and adjust the start address so we don't try to free
 893     // the same region again. If the current range is entirely within that
 894     // region, skip it.
 895     if (start_region == prev_last_region) {
 896       start_address = start_region->end();
 897       if (start_address > last_address) {
 898         continue;
 899       }
 900       start_region = _hrm.addr_to_region(start_address);
 901     }
 902     prev_last_region = last_region;
 903 
 904     // After verifying that each region was marked as an archive region by
 905     // alloc_archive_regions, set it free and empty and uncommit it.
 906     HeapRegion* curr_region = start_region;
 907     while (curr_region != NULL) {
 908       guarantee(curr_region->is_archive(),
 909                 "Expected archive region at index %u", curr_region->hrm_index());
 910       uint curr_index = curr_region->hrm_index();
 911       _old_set.remove(curr_region);
 912       curr_region->set_free();
 913       curr_region->set_top(curr_region->bottom());
 914       if (curr_region != last_region) {
 915         curr_region = _hrm.next_region_in_heap(curr_region);
 916       } else {
 917         curr_region = NULL;
 918       }
 919       _hrm.shrink_at(curr_index, 1);
 920       uncommitted_regions++;
 921     }
 922 
 923     // Notify mark-sweep that this is no longer an archive range.
 924     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 925   }
 926 
 927   if (uncommitted_regions != 0) {
 928     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 929                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 930   }
 931   decrease_used(size_used);
 932 }
 933 
 934 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 935                                                         uint* gc_count_before_ret,
 936                                                         uint* gclocker_retry_count_ret) {
 937   // The structure of this method has a lot of similarities to
 938   // attempt_allocation_slow(). The reason these two were not merged
 939   // into a single one is that such a method would require several "if
 940   // allocation is not humongous do this, otherwise do that"
 941   // conditional paths which would obscure its flow. In fact, an early
 942   // version of this code did use a unified method which was harder to
 943   // follow and, as a result, it had subtle bugs that were hard to
 944   // track down. So keeping these two methods separate allows each to
 945   // be more readable. It will be good to keep these two in sync as
 946   // much as possible.
 947 
 948   assert_heap_not_locked_and_not_at_safepoint();
 949   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 950          "should only be called for humongous allocations");
 951 
 952   // Humongous objects can exhaust the heap quickly, so we should check if we
 953   // need to start a marking cycle at each humongous object allocation. We do
 954   // the check before we do the actual allocation. The reason for doing it
 955   // before the allocation is that we avoid having to keep track of the newly
 956   // allocated memory while we do a GC.
 957   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 958                                            word_size)) {
 959     collect(GCCause::_g1_humongous_allocation);
 960   }
 961 
 962   // We will loop until a) we manage to successfully perform the
 963   // allocation or b) we successfully schedule a collection which
 964   // fails to perform the allocation. b) is the only case when we'll
 965   // return NULL.
 966   HeapWord* result = NULL;
 967   for (int try_count = 1; /* we'll return */; try_count += 1) {
 968     bool should_try_gc;
 969     uint gc_count_before;
 970 
 971     {
 972       MutexLockerEx x(Heap_lock);
 973 
 974       // Given that humongous objects are not allocated in young
 975       // regions, we'll first try to do the allocation without doing a
 976       // collection hoping that there's enough space in the heap.
 977       result = humongous_obj_allocate(word_size, AllocationContext::current());
 978       if (result != NULL) {
 979         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 980         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 981         return result;
 982       }
 983 
 984       if (GCLocker::is_active_and_needs_gc()) {
 985         should_try_gc = false;
 986       } else {
 987          // The GCLocker may not be active but the GCLocker initiated
 988         // GC may not yet have been performed (GCLocker::needs_gc()
 989         // returns true). In this case we do not try this GC and
 990         // wait until the GCLocker initiated GC is performed, and
 991         // then retry the allocation.
 992         if (GCLocker::needs_gc()) {
 993           should_try_gc = false;
 994         } else {
 995           // Read the GC count while still holding the Heap_lock.
 996           gc_count_before = total_collections();
 997           should_try_gc = true;
 998         }
 999       }
1000     }
1001 
1002     if (should_try_gc) {
1003       // If we failed to allocate the humongous object, we should try to
1004       // do a collection pause (if we're allowed) in case it reclaims
1005       // enough space for the allocation to succeed after the pause.
1006 
1007       bool succeeded;
1008       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1009                                    GCCause::_g1_humongous_allocation);
1010       if (result != NULL) {
1011         assert(succeeded, "only way to get back a non-NULL result");
1012         return result;
1013       }
1014 
1015       if (succeeded) {
1016         // If we get here we successfully scheduled a collection which
1017         // failed to allocate. No point in trying to allocate
1018         // further. We'll just return NULL.
1019         MutexLockerEx x(Heap_lock);
1020         *gc_count_before_ret = total_collections();
1021         return NULL;
1022       }
1023     } else {
1024       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1025         MutexLockerEx x(Heap_lock);
1026         *gc_count_before_ret = total_collections();
1027         return NULL;
1028       }
1029       // The GCLocker is either active or the GCLocker initiated
1030       // GC has not yet been performed. Stall until it is and
1031       // then retry the allocation.
1032       GCLocker::stall_until_clear();
1033       (*gclocker_retry_count_ret) += 1;
1034     }
1035 
1036     // We can reach here if we were unsuccessful in scheduling a
1037     // collection (because another thread beat us to it) or if we were
1038     // stalled due to the GC locker. In either can we should retry the
1039     // allocation attempt in case another thread successfully
1040     // performed a collection and reclaimed enough space.  Give a
1041     // warning if we seem to be looping forever.
1042 
1043     if ((QueuedAllocationWarningCount > 0) &&
1044         (try_count % QueuedAllocationWarningCount == 0)) {
1045       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1046                       "retries %d times", try_count);
1047     }
1048   }
1049 
1050   ShouldNotReachHere();
1051   return NULL;
1052 }
1053 
1054 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1055                                                            AllocationContext_t context,
1056                                                            bool expect_null_mutator_alloc_region) {
1057   assert_at_safepoint(true /* should_be_vm_thread */);
1058   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1059          "the current alloc region was unexpectedly found to be non-NULL");
1060 
1061   if (!is_humongous(word_size)) {
1062     return _allocator->attempt_allocation_locked(word_size, context);
1063   } else {
1064     HeapWord* result = humongous_obj_allocate(word_size, context);
1065     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1066       collector_state()->set_initiate_conc_mark_if_possible(true);
1067     }
1068     return result;
1069   }
1070 
1071   ShouldNotReachHere();
1072 }
1073 
1074 class PostMCRemSetClearClosure: public HeapRegionClosure {
1075   G1CollectedHeap* _g1h;
1076   ModRefBarrierSet* _mr_bs;
1077 public:
1078   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1079     _g1h(g1h), _mr_bs(mr_bs) {}
1080 
1081   bool doHeapRegion(HeapRegion* r) {
1082     HeapRegionRemSet* hrrs = r->rem_set();
1083 
1084     _g1h->reset_gc_time_stamps(r);
1085 
1086     if (r->is_continues_humongous()) {
1087       // We'll assert that the strong code root list and RSet is empty
1088       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1089       assert(hrrs->occupied() == 0, "RSet should be empty");
1090     } else {
1091       hrrs->clear();
1092     }
1093     // You might think here that we could clear just the cards
1094     // corresponding to the used region.  But no: if we leave a dirty card
1095     // in a region we might allocate into, then it would prevent that card
1096     // from being enqueued, and cause it to be missed.
1097     // Re: the performance cost: we shouldn't be doing full GC anyway!
1098     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1099 
1100     return false;
1101   }
1102 };
1103 
1104 void G1CollectedHeap::clear_rsets_post_compaction() {
1105   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1106   heap_region_iterate(&rs_clear);
1107 }
1108 
1109 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1110   G1CollectedHeap*   _g1h;
1111   RebuildRSOopClosure _cl;
1112 public:
1113   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1114     _cl(g1->g1_rem_set(), worker_i),
1115     _g1h(g1)
1116   { }
1117 
1118   bool doHeapRegion(HeapRegion* r) {
1119     if (!r->is_continues_humongous()) {
1120       _cl.set_from(r);
1121       r->oop_iterate(&_cl);
1122     }
1123     return false;
1124   }
1125 };
1126 
1127 class ParRebuildRSTask: public AbstractGangTask {
1128   G1CollectedHeap* _g1;
1129   HeapRegionClaimer _hrclaimer;
1130 
1131 public:
1132   ParRebuildRSTask(G1CollectedHeap* g1) :
1133       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1134 
1135   void work(uint worker_id) {
1136     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1137     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1138   }
1139 };
1140 
1141 class PostCompactionPrinterClosure: public HeapRegionClosure {
1142 private:
1143   G1HRPrinter* _hr_printer;
1144 public:
1145   bool doHeapRegion(HeapRegion* hr) {
1146     assert(!hr->is_young(), "not expecting to find young regions");
1147     _hr_printer->post_compaction(hr);
1148     return false;
1149   }
1150 
1151   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1152     : _hr_printer(hr_printer) { }
1153 };
1154 
1155 void G1CollectedHeap::print_hrm_post_compaction() {
1156   if (_hr_printer.is_active()) {
1157     PostCompactionPrinterClosure cl(hr_printer());
1158     heap_region_iterate(&cl);
1159   }
1160 
1161 }
1162 
1163 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1164                                          bool clear_all_soft_refs) {
1165   assert_at_safepoint(true /* should_be_vm_thread */);
1166 
1167   if (GCLocker::check_active_before_gc()) {
1168     return false;
1169   }
1170 
1171   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1172   gc_timer->register_gc_start();
1173 
1174   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1175   GCIdMark gc_id_mark;
1176   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1177 
1178   SvcGCMarker sgcm(SvcGCMarker::FULL);
1179   ResourceMark rm;
1180 
1181   print_heap_before_gc();
1182   print_heap_regions();
1183   trace_heap_before_gc(gc_tracer);
1184 
1185   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1186 
1187   _verifier->verify_region_sets_optional();
1188 
1189   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1190                            collector_policy()->should_clear_all_soft_refs();
1191 
1192   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1193 
1194   {
1195     IsGCActiveMark x;
1196 
1197     // Timing
1198     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1199     GCTraceCPUTime tcpu;
1200 
1201     {
1202       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1203       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1204       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1205 
1206       G1HeapTransition heap_transition(this);
1207       g1_policy()->record_full_collection_start();
1208 
1209       // Note: When we have a more flexible GC logging framework that
1210       // allows us to add optional attributes to a GC log record we
1211       // could consider timing and reporting how long we wait in the
1212       // following two methods.
1213       wait_while_free_regions_coming();
1214       // If we start the compaction before the CM threads finish
1215       // scanning the root regions we might trip them over as we'll
1216       // be moving objects / updating references. So let's wait until
1217       // they are done. By telling them to abort, they should complete
1218       // early.
1219       _cm->root_regions()->abort();
1220       _cm->root_regions()->wait_until_scan_finished();
1221       append_secondary_free_list_if_not_empty_with_lock();
1222 
1223       gc_prologue(true);
1224       increment_total_collections(true /* full gc */);
1225       increment_old_marking_cycles_started();
1226 
1227       assert(used() == recalculate_used(), "Should be equal");
1228 
1229       _verifier->verify_before_gc();
1230 
1231       _verifier->check_bitmaps("Full GC Start");
1232       pre_full_gc_dump(gc_timer);
1233 
1234 #if defined(COMPILER2) || INCLUDE_JVMCI
1235       DerivedPointerTable::clear();
1236 #endif
1237 
1238       // Disable discovery and empty the discovered lists
1239       // for the CM ref processor.
1240       ref_processor_cm()->disable_discovery();
1241       ref_processor_cm()->abandon_partial_discovery();
1242       ref_processor_cm()->verify_no_references_recorded();
1243 
1244       // Abandon current iterations of concurrent marking and concurrent
1245       // refinement, if any are in progress.
1246       concurrent_mark()->abort();
1247 
1248       // Make sure we'll choose a new allocation region afterwards.
1249       _allocator->release_mutator_alloc_region();
1250       _allocator->abandon_gc_alloc_regions();
1251       g1_rem_set()->cleanupHRRS();
1252 
1253       // We may have added regions to the current incremental collection
1254       // set between the last GC or pause and now. We need to clear the
1255       // incremental collection set and then start rebuilding it afresh
1256       // after this full GC.
1257       abandon_collection_set(collection_set());
1258 
1259       tear_down_region_sets(false /* free_list_only */);
1260       collector_state()->set_gcs_are_young(true);
1261 
1262       // See the comments in g1CollectedHeap.hpp and
1263       // G1CollectedHeap::ref_processing_init() about
1264       // how reference processing currently works in G1.
1265 
1266       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1267       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1268 
1269       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1270       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1271 
1272       ref_processor_stw()->enable_discovery();
1273       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1274 
1275       // Do collection work
1276       {
1277         HandleMark hm;  // Discard invalid handles created during gc
1278         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1279       }
1280 
1281       assert(num_free_regions() == 0, "we should not have added any free regions");
1282       rebuild_region_sets(false /* free_list_only */);
1283 
1284       // Enqueue any discovered reference objects that have
1285       // not been removed from the discovered lists.
1286       ref_processor_stw()->enqueue_discovered_references();
1287 
1288 #if defined(COMPILER2) || INCLUDE_JVMCI
1289       DerivedPointerTable::update_pointers();
1290 #endif
1291 
1292       MemoryService::track_memory_usage();
1293 
1294       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1295       ref_processor_stw()->verify_no_references_recorded();
1296 
1297       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1298       ClassLoaderDataGraph::purge();
1299       MetaspaceAux::verify_metrics();
1300 
1301       // Note: since we've just done a full GC, concurrent
1302       // marking is no longer active. Therefore we need not
1303       // re-enable reference discovery for the CM ref processor.
1304       // That will be done at the start of the next marking cycle.
1305       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1306       ref_processor_cm()->verify_no_references_recorded();
1307 
1308       reset_gc_time_stamp();
1309       // Since everything potentially moved, we will clear all remembered
1310       // sets, and clear all cards.  Later we will rebuild remembered
1311       // sets. We will also reset the GC time stamps of the regions.
1312       clear_rsets_post_compaction();
1313       check_gc_time_stamps();
1314 
1315       resize_if_necessary_after_full_collection();
1316 
1317       // We should do this after we potentially resize the heap so
1318       // that all the COMMIT / UNCOMMIT events are generated before
1319       // the compaction events.
1320       print_hrm_post_compaction();
1321 
1322       if (_hot_card_cache->use_cache()) {
1323         _hot_card_cache->reset_card_counts();
1324         _hot_card_cache->reset_hot_cache();
1325       }
1326 
1327       // Rebuild remembered sets of all regions.
1328       uint n_workers =
1329         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1330                                                 workers()->active_workers(),
1331                                                 Threads::number_of_non_daemon_threads());
1332       workers()->update_active_workers(n_workers);
1333       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1334 
1335       ParRebuildRSTask rebuild_rs_task(this);
1336       workers()->run_task(&rebuild_rs_task);
1337 
1338       // Rebuild the strong code root lists for each region
1339       rebuild_strong_code_roots();
1340 
1341       if (true) { // FIXME
1342         MetaspaceGC::compute_new_size();
1343       }
1344 
1345 #ifdef TRACESPINNING
1346       ParallelTaskTerminator::print_termination_counts();
1347 #endif
1348 
1349       // Discard all rset updates
1350       JavaThread::dirty_card_queue_set().abandon_logs();
1351       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1352 
1353       // At this point there should be no regions in the
1354       // entire heap tagged as young.
1355       assert(check_young_list_empty(), "young list should be empty at this point");
1356 
1357       // Update the number of full collections that have been completed.
1358       increment_old_marking_cycles_completed(false /* concurrent */);
1359 
1360       _hrm.verify_optional();
1361       _verifier->verify_region_sets_optional();
1362 
1363       _verifier->verify_after_gc();
1364 
1365       // Clear the previous marking bitmap, if needed for bitmap verification.
1366       // Note we cannot do this when we clear the next marking bitmap in
1367       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1368       // objects marked during a full GC against the previous bitmap.
1369       // But we need to clear it before calling check_bitmaps below since
1370       // the full GC has compacted objects and updated TAMS but not updated
1371       // the prev bitmap.
1372       if (G1VerifyBitmaps) {
1373         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1374         _cm->clear_prev_bitmap(workers());
1375       }
1376       _verifier->check_bitmaps("Full GC End");
1377 
1378       start_new_collection_set();
1379 
1380       _allocator->init_mutator_alloc_region();
1381 
1382       g1_policy()->record_full_collection_end();
1383 
1384       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1385       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1386       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1387       // before any GC notifications are raised.
1388       g1mm()->update_sizes();
1389 
1390       gc_epilogue(true);
1391 
1392       heap_transition.print();
1393 
1394       print_heap_after_gc();
1395       print_heap_regions();
1396       trace_heap_after_gc(gc_tracer);
1397 
1398       post_full_gc_dump(gc_timer);
1399     }
1400 
1401     gc_timer->register_gc_end();
1402     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1403   }
1404 
1405   return true;
1406 }
1407 
1408 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1409   // Currently, there is no facility in the do_full_collection(bool) API to notify
1410   // the caller that the collection did not succeed (e.g., because it was locked
1411   // out by the GC locker). So, right now, we'll ignore the return value.
1412   bool dummy = do_full_collection(true,                /* explicit_gc */
1413                                   clear_all_soft_refs);
1414 }
1415 
1416 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1417   // Include bytes that will be pre-allocated to support collections, as "used".
1418   const size_t used_after_gc = used();
1419   const size_t capacity_after_gc = capacity();
1420   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1421 
1422   // This is enforced in arguments.cpp.
1423   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1424          "otherwise the code below doesn't make sense");
1425 
1426   // We don't have floating point command-line arguments
1427   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1428   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1429   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1430   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1431 
1432   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1433   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1434 
1435   // We have to be careful here as these two calculations can overflow
1436   // 32-bit size_t's.
1437   double used_after_gc_d = (double) used_after_gc;
1438   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1439   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1440 
1441   // Let's make sure that they are both under the max heap size, which
1442   // by default will make them fit into a size_t.
1443   double desired_capacity_upper_bound = (double) max_heap_size;
1444   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1445                                     desired_capacity_upper_bound);
1446   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1447                                     desired_capacity_upper_bound);
1448 
1449   // We can now safely turn them into size_t's.
1450   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1451   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1452 
1453   // This assert only makes sense here, before we adjust them
1454   // with respect to the min and max heap size.
1455   assert(minimum_desired_capacity <= maximum_desired_capacity,
1456          "minimum_desired_capacity = " SIZE_FORMAT ", "
1457          "maximum_desired_capacity = " SIZE_FORMAT,
1458          minimum_desired_capacity, maximum_desired_capacity);
1459 
1460   // Should not be greater than the heap max size. No need to adjust
1461   // it with respect to the heap min size as it's a lower bound (i.e.,
1462   // we'll try to make the capacity larger than it, not smaller).
1463   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1464   // Should not be less than the heap min size. No need to adjust it
1465   // with respect to the heap max size as it's an upper bound (i.e.,
1466   // we'll try to make the capacity smaller than it, not greater).
1467   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1468 
1469   if (capacity_after_gc < minimum_desired_capacity) {
1470     // Don't expand unless it's significant
1471     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1472 
1473     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1474                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1475                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1476 
1477     expand(expand_bytes, _workers);
1478 
1479     // No expansion, now see if we want to shrink
1480   } else if (capacity_after_gc > maximum_desired_capacity) {
1481     // Capacity too large, compute shrinking size
1482     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1483 
1484     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1485                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1486                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1487 
1488     shrink(shrink_bytes);
1489   }
1490 }
1491 
1492 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1493                                                             AllocationContext_t context,
1494                                                             bool do_gc,
1495                                                             bool clear_all_soft_refs,
1496                                                             bool expect_null_mutator_alloc_region,
1497                                                             bool* gc_succeeded) {
1498   *gc_succeeded = true;
1499   // Let's attempt the allocation first.
1500   HeapWord* result =
1501     attempt_allocation_at_safepoint(word_size,
1502                                     context,
1503                                     expect_null_mutator_alloc_region);
1504   if (result != NULL) {
1505     assert(*gc_succeeded, "sanity");
1506     return result;
1507   }
1508 
1509   // In a G1 heap, we're supposed to keep allocation from failing by
1510   // incremental pauses.  Therefore, at least for now, we'll favor
1511   // expansion over collection.  (This might change in the future if we can
1512   // do something smarter than full collection to satisfy a failed alloc.)
1513   result = expand_and_allocate(word_size, context);
1514   if (result != NULL) {
1515     assert(*gc_succeeded, "sanity");
1516     return result;
1517   }
1518 
1519   if (do_gc) {
1520     // Expansion didn't work, we'll try to do a Full GC.
1521     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1522                                        clear_all_soft_refs);
1523   }
1524 
1525   return NULL;
1526 }
1527 
1528 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1529                                                      AllocationContext_t context,
1530                                                      bool* succeeded) {
1531   assert_at_safepoint(true /* should_be_vm_thread */);
1532 
1533   // Attempts to allocate followed by Full GC.
1534   HeapWord* result =
1535     satisfy_failed_allocation_helper(word_size,
1536                                      context,
1537                                      true,  /* do_gc */
1538                                      false, /* clear_all_soft_refs */
1539                                      false, /* expect_null_mutator_alloc_region */
1540                                      succeeded);
1541 
1542   if (result != NULL || !*succeeded) {
1543     return result;
1544   }
1545 
1546   // Attempts to allocate followed by Full GC that will collect all soft references.
1547   result = satisfy_failed_allocation_helper(word_size,
1548                                             context,
1549                                             true, /* do_gc */
1550                                             true, /* clear_all_soft_refs */
1551                                             true, /* expect_null_mutator_alloc_region */
1552                                             succeeded);
1553 
1554   if (result != NULL || !*succeeded) {
1555     return result;
1556   }
1557 
1558   // Attempts to allocate, no GC
1559   result = satisfy_failed_allocation_helper(word_size,
1560                                             context,
1561                                             false, /* do_gc */
1562                                             false, /* clear_all_soft_refs */
1563                                             true,  /* expect_null_mutator_alloc_region */
1564                                             succeeded);
1565 
1566   if (result != NULL) {
1567     assert(*succeeded, "sanity");
1568     return result;
1569   }
1570 
1571   assert(!collector_policy()->should_clear_all_soft_refs(),
1572          "Flag should have been handled and cleared prior to this point");
1573 
1574   // What else?  We might try synchronous finalization later.  If the total
1575   // space available is large enough for the allocation, then a more
1576   // complete compaction phase than we've tried so far might be
1577   // appropriate.
1578   assert(*succeeded, "sanity");
1579   return NULL;
1580 }
1581 
1582 // Attempting to expand the heap sufficiently
1583 // to support an allocation of the given "word_size".  If
1584 // successful, perform the allocation and return the address of the
1585 // allocated block, or else "NULL".
1586 
1587 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1588   assert_at_safepoint(true /* should_be_vm_thread */);
1589 
1590   _verifier->verify_region_sets_optional();
1591 
1592   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1593   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1594                             word_size * HeapWordSize);
1595 
1596 
1597   if (expand(expand_bytes, _workers)) {
1598     _hrm.verify_optional();
1599     _verifier->verify_region_sets_optional();
1600     return attempt_allocation_at_safepoint(word_size,
1601                                            context,
1602                                            false /* expect_null_mutator_alloc_region */);
1603   }
1604   return NULL;
1605 }
1606 
1607 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1608   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1609   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1610                                        HeapRegion::GrainBytes);
1611 
1612   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1613                             expand_bytes, aligned_expand_bytes);
1614 
1615   if (is_maximal_no_gc()) {
1616     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1617     return false;
1618   }
1619 
1620   double expand_heap_start_time_sec = os::elapsedTime();
1621   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1622   assert(regions_to_expand > 0, "Must expand by at least one region");
1623 
1624   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1625   if (expand_time_ms != NULL) {
1626     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1627   }
1628 
1629   if (expanded_by > 0) {
1630     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1631     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1632     g1_policy()->record_new_heap_size(num_regions());
1633   } else {
1634     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1635 
1636     // The expansion of the virtual storage space was unsuccessful.
1637     // Let's see if it was because we ran out of swap.
1638     if (G1ExitOnExpansionFailure &&
1639         _hrm.available() >= regions_to_expand) {
1640       // We had head room...
1641       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1642     }
1643   }
1644   return regions_to_expand > 0;
1645 }
1646 
1647 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1648   size_t aligned_shrink_bytes =
1649     ReservedSpace::page_align_size_down(shrink_bytes);
1650   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1651                                          HeapRegion::GrainBytes);
1652   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1653 
1654   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1655   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1656 
1657 
1658   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1659                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1660   if (num_regions_removed > 0) {
1661     g1_policy()->record_new_heap_size(num_regions());
1662   } else {
1663     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1664   }
1665 }
1666 
1667 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1668   _verifier->verify_region_sets_optional();
1669 
1670   // We should only reach here at the end of a Full GC which means we
1671   // should not not be holding to any GC alloc regions. The method
1672   // below will make sure of that and do any remaining clean up.
1673   _allocator->abandon_gc_alloc_regions();
1674 
1675   // Instead of tearing down / rebuilding the free lists here, we
1676   // could instead use the remove_all_pending() method on free_list to
1677   // remove only the ones that we need to remove.
1678   tear_down_region_sets(true /* free_list_only */);
1679   shrink_helper(shrink_bytes);
1680   rebuild_region_sets(true /* free_list_only */);
1681 
1682   _hrm.verify_optional();
1683   _verifier->verify_region_sets_optional();
1684 }
1685 
1686 // Public methods.
1687 
1688 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1689   CollectedHeap(),
1690   _collector_policy(collector_policy),
1691   _g1_policy(create_g1_policy()),
1692   _collection_set(this, _g1_policy),
1693   _dirty_card_queue_set(false),
1694   _is_alive_closure_cm(this),
1695   _is_alive_closure_stw(this),
1696   _ref_processor_cm(NULL),
1697   _ref_processor_stw(NULL),
1698   _bot(NULL),
1699   _hot_card_cache(NULL),
1700   _g1_rem_set(NULL),
1701   _cg1r(NULL),
1702   _g1mm(NULL),
1703   _refine_cte_cl(NULL),
1704   _preserved_marks_set(true /* in_c_heap */),
1705   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1706   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1707   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1708   _humongous_reclaim_candidates(),
1709   _has_humongous_reclaim_candidates(false),
1710   _archive_allocator(NULL),
1711   _free_regions_coming(false),
1712   _gc_time_stamp(0),
1713   _summary_bytes_used(0),
1714   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1715   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1716   _expand_heap_after_alloc_failure(true),
1717   _old_marking_cycles_started(0),
1718   _old_marking_cycles_completed(0),
1719   _in_cset_fast_test(),
1720   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1721   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1722 
1723   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1724                           /* are_GC_task_threads */true,
1725                           /* are_ConcurrentGC_threads */false);
1726   _workers->initialize_workers();
1727   _verifier = new G1HeapVerifier(this);
1728 
1729   _allocator = G1Allocator::create_allocator(this);
1730 
1731   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1732 
1733   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1734 
1735   // Override the default _filler_array_max_size so that no humongous filler
1736   // objects are created.
1737   _filler_array_max_size = _humongous_object_threshold_in_words;
1738 
1739   uint n_queues = ParallelGCThreads;
1740   _task_queues = new RefToScanQueueSet(n_queues);
1741 
1742   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1743 
1744   for (uint i = 0; i < n_queues; i++) {
1745     RefToScanQueue* q = new RefToScanQueue();
1746     q->initialize();
1747     _task_queues->register_queue(i, q);
1748     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1749   }
1750 
1751   // Initialize the G1EvacuationFailureALot counters and flags.
1752   NOT_PRODUCT(reset_evacuation_should_fail();)
1753 
1754   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1755 }
1756 
1757 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1758                                                                  size_t size,
1759                                                                  size_t translation_factor) {
1760   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1761   // Allocate a new reserved space, preferring to use large pages.
1762   ReservedSpace rs(size, preferred_page_size);
1763   G1RegionToSpaceMapper* result  =
1764     G1RegionToSpaceMapper::create_mapper(rs,
1765                                          size,
1766                                          rs.alignment(),
1767                                          HeapRegion::GrainBytes,
1768                                          translation_factor,
1769                                          mtGC);
1770 
1771   os::trace_page_sizes_for_requested_size(description,
1772                                           size,
1773                                           preferred_page_size,
1774                                           rs.alignment(),
1775                                           rs.base(),
1776                                           rs.size());
1777 
1778   return result;
1779 }
1780 
1781 jint G1CollectedHeap::initialize() {
1782   CollectedHeap::pre_initialize();
1783   os::enable_vtime();
1784 
1785   // Necessary to satisfy locking discipline assertions.
1786 
1787   MutexLocker x(Heap_lock);
1788 
1789   // While there are no constraints in the GC code that HeapWordSize
1790   // be any particular value, there are multiple other areas in the
1791   // system which believe this to be true (e.g. oop->object_size in some
1792   // cases incorrectly returns the size in wordSize units rather than
1793   // HeapWordSize).
1794   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1795 
1796   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1797   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1798   size_t heap_alignment = collector_policy()->heap_alignment();
1799 
1800   // Ensure that the sizes are properly aligned.
1801   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1802   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1803   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1804 
1805   _refine_cte_cl = new RefineCardTableEntryClosure();
1806 
1807   jint ecode = JNI_OK;
1808   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1809   if (_cg1r == NULL) {
1810     return ecode;
1811   }
1812 
1813   // Reserve the maximum.
1814 
1815   // When compressed oops are enabled, the preferred heap base
1816   // is calculated by subtracting the requested size from the
1817   // 32Gb boundary and using the result as the base address for
1818   // heap reservation. If the requested size is not aligned to
1819   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1820   // into the ReservedHeapSpace constructor) then the actual
1821   // base of the reserved heap may end up differing from the
1822   // address that was requested (i.e. the preferred heap base).
1823   // If this happens then we could end up using a non-optimal
1824   // compressed oops mode.
1825 
1826   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1827                                                  heap_alignment);
1828 
1829   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1830 
1831   // Create the barrier set for the entire reserved region.
1832   G1SATBCardTableLoggingModRefBS* bs
1833     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1834   bs->initialize();
1835   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1836   set_barrier_set(bs);
1837 
1838   // Create the hot card cache.
1839   _hot_card_cache = new G1HotCardCache(this);
1840 
1841   // Also create a G1 rem set.
1842   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1843 
1844   // Carve out the G1 part of the heap.
1845   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1846   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1847   G1RegionToSpaceMapper* heap_storage =
1848     G1RegionToSpaceMapper::create_mapper(g1_rs,
1849                                          g1_rs.size(),
1850                                          page_size,
1851                                          HeapRegion::GrainBytes,
1852                                          1,
1853                                          mtJavaHeap);
1854   os::trace_page_sizes("Heap",
1855                        collector_policy()->min_heap_byte_size(),
1856                        max_byte_size,
1857                        page_size,
1858                        heap_rs.base(),
1859                        heap_rs.size());
1860   heap_storage->set_mapping_changed_listener(&_listener);
1861 
1862   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1863   G1RegionToSpaceMapper* bot_storage =
1864     create_aux_memory_mapper("Block Offset Table",
1865                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1866                              G1BlockOffsetTable::heap_map_factor());
1867 
1868   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1869   G1RegionToSpaceMapper* cardtable_storage =
1870     create_aux_memory_mapper("Card Table",
1871                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1872                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1873 
1874   G1RegionToSpaceMapper* card_counts_storage =
1875     create_aux_memory_mapper("Card Counts Table",
1876                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1877                              G1CardCounts::heap_map_factor());
1878 
1879   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1880   G1RegionToSpaceMapper* prev_bitmap_storage =
1881     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1882   G1RegionToSpaceMapper* next_bitmap_storage =
1883     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1884 
1885   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1886   g1_barrier_set()->initialize(cardtable_storage);
1887   // Do later initialization work for concurrent refinement.
1888   _hot_card_cache->initialize(card_counts_storage);
1889 
1890   // 6843694 - ensure that the maximum region index can fit
1891   // in the remembered set structures.
1892   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1893   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1894 
1895   g1_rem_set()->initialize(max_capacity(), max_regions());
1896 
1897   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1898   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1899   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1900             "too many cards per region");
1901 
1902   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1903 
1904   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1905 
1906   {
1907     HeapWord* start = _hrm.reserved().start();
1908     HeapWord* end = _hrm.reserved().end();
1909     size_t granularity = HeapRegion::GrainBytes;
1910 
1911     _in_cset_fast_test.initialize(start, end, granularity);
1912     _humongous_reclaim_candidates.initialize(start, end, granularity);
1913   }
1914 
1915   // Create the G1ConcurrentMark data structure and thread.
1916   // (Must do this late, so that "max_regions" is defined.)
1917   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1918   if (_cm == NULL || !_cm->completed_initialization()) {
1919     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1920     return JNI_ENOMEM;
1921   }
1922   _cmThread = _cm->cmThread();
1923 
1924   // Now expand into the initial heap size.
1925   if (!expand(init_byte_size, _workers)) {
1926     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1927     return JNI_ENOMEM;
1928   }
1929 
1930   // Perform any initialization actions delegated to the policy.
1931   g1_policy()->init(this, &_collection_set);
1932 
1933   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1934                                                SATB_Q_FL_lock,
1935                                                G1SATBProcessCompletedThreshold,
1936                                                Shared_SATB_Q_lock);
1937 
1938   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1939                                                 DirtyCardQ_CBL_mon,
1940                                                 DirtyCardQ_FL_lock,
1941                                                 (int)concurrent_g1_refine()->yellow_zone(),
1942                                                 (int)concurrent_g1_refine()->red_zone(),
1943                                                 Shared_DirtyCardQ_lock,
1944                                                 NULL,  // fl_owner
1945                                                 true); // init_free_ids
1946 
1947   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1948                                     DirtyCardQ_CBL_mon,
1949                                     DirtyCardQ_FL_lock,
1950                                     -1, // never trigger processing
1951                                     -1, // no limit on length
1952                                     Shared_DirtyCardQ_lock,
1953                                     &JavaThread::dirty_card_queue_set());
1954 
1955   // Here we allocate the dummy HeapRegion that is required by the
1956   // G1AllocRegion class.
1957   HeapRegion* dummy_region = _hrm.get_dummy_region();
1958 
1959   // We'll re-use the same region whether the alloc region will
1960   // require BOT updates or not and, if it doesn't, then a non-young
1961   // region will complain that it cannot support allocations without
1962   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1963   dummy_region->set_eden();
1964   // Make sure it's full.
1965   dummy_region->set_top(dummy_region->end());
1966   G1AllocRegion::setup(this, dummy_region);
1967 
1968   _allocator->init_mutator_alloc_region();
1969 
1970   // Do create of the monitoring and management support so that
1971   // values in the heap have been properly initialized.
1972   _g1mm = new G1MonitoringSupport(this);
1973 
1974   G1StringDedup::initialize();
1975 
1976   _preserved_marks_set.init(ParallelGCThreads);
1977 
1978   _collection_set.initialize(max_regions());
1979 
1980   return JNI_OK;
1981 }
1982 
1983 void G1CollectedHeap::stop() {
1984   // Stop all concurrent threads. We do this to make sure these threads
1985   // do not continue to execute and access resources (e.g. logging)
1986   // that are destroyed during shutdown.
1987   _cg1r->stop();
1988   _cmThread->stop();
1989   if (G1StringDedup::is_enabled()) {
1990     G1StringDedup::stop();
1991   }
1992 }
1993 
1994 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1995   return HeapRegion::max_region_size();
1996 }
1997 
1998 void G1CollectedHeap::post_initialize() {
1999   ref_processing_init();
2000 }
2001 
2002 void G1CollectedHeap::ref_processing_init() {
2003   // Reference processing in G1 currently works as follows:
2004   //
2005   // * There are two reference processor instances. One is
2006   //   used to record and process discovered references
2007   //   during concurrent marking; the other is used to
2008   //   record and process references during STW pauses
2009   //   (both full and incremental).
2010   // * Both ref processors need to 'span' the entire heap as
2011   //   the regions in the collection set may be dotted around.
2012   //
2013   // * For the concurrent marking ref processor:
2014   //   * Reference discovery is enabled at initial marking.
2015   //   * Reference discovery is disabled and the discovered
2016   //     references processed etc during remarking.
2017   //   * Reference discovery is MT (see below).
2018   //   * Reference discovery requires a barrier (see below).
2019   //   * Reference processing may or may not be MT
2020   //     (depending on the value of ParallelRefProcEnabled
2021   //     and ParallelGCThreads).
2022   //   * A full GC disables reference discovery by the CM
2023   //     ref processor and abandons any entries on it's
2024   //     discovered lists.
2025   //
2026   // * For the STW processor:
2027   //   * Non MT discovery is enabled at the start of a full GC.
2028   //   * Processing and enqueueing during a full GC is non-MT.
2029   //   * During a full GC, references are processed after marking.
2030   //
2031   //   * Discovery (may or may not be MT) is enabled at the start
2032   //     of an incremental evacuation pause.
2033   //   * References are processed near the end of a STW evacuation pause.
2034   //   * For both types of GC:
2035   //     * Discovery is atomic - i.e. not concurrent.
2036   //     * Reference discovery will not need a barrier.
2037 
2038   MemRegion mr = reserved_region();
2039 
2040   // Concurrent Mark ref processor
2041   _ref_processor_cm =
2042     new ReferenceProcessor(mr,    // span
2043                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2044                                 // mt processing
2045                            ParallelGCThreads,
2046                                 // degree of mt processing
2047                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2048                                 // mt discovery
2049                            MAX2(ParallelGCThreads, ConcGCThreads),
2050                                 // degree of mt discovery
2051                            false,
2052                                 // Reference discovery is not atomic
2053                            &_is_alive_closure_cm);
2054                                 // is alive closure
2055                                 // (for efficiency/performance)
2056 
2057   // STW ref processor
2058   _ref_processor_stw =
2059     new ReferenceProcessor(mr,    // span
2060                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2061                                 // mt processing
2062                            ParallelGCThreads,
2063                                 // degree of mt processing
2064                            (ParallelGCThreads > 1),
2065                                 // mt discovery
2066                            ParallelGCThreads,
2067                                 // degree of mt discovery
2068                            true,
2069                                 // Reference discovery is atomic
2070                            &_is_alive_closure_stw);
2071                                 // is alive closure
2072                                 // (for efficiency/performance)
2073 }
2074 
2075 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2076   return _collector_policy;
2077 }
2078 
2079 size_t G1CollectedHeap::capacity() const {
2080   return _hrm.length() * HeapRegion::GrainBytes;
2081 }
2082 
2083 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2084   hr->reset_gc_time_stamp();
2085 }
2086 
2087 #ifndef PRODUCT
2088 
2089 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2090 private:
2091   unsigned _gc_time_stamp;
2092   bool _failures;
2093 
2094 public:
2095   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2096     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2097 
2098   virtual bool doHeapRegion(HeapRegion* hr) {
2099     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2100     if (_gc_time_stamp != region_gc_time_stamp) {
2101       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2102                             region_gc_time_stamp, _gc_time_stamp);
2103       _failures = true;
2104     }
2105     return false;
2106   }
2107 
2108   bool failures() { return _failures; }
2109 };
2110 
2111 void G1CollectedHeap::check_gc_time_stamps() {
2112   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2113   heap_region_iterate(&cl);
2114   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2115 }
2116 #endif // PRODUCT
2117 
2118 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2119   _hot_card_cache->drain(cl, worker_i);
2120 }
2121 
2122 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2123   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2124   size_t n_completed_buffers = 0;
2125   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2126     n_completed_buffers++;
2127   }
2128   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2129   dcqs.clear_n_completed_buffers();
2130   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2131 }
2132 
2133 // Computes the sum of the storage used by the various regions.
2134 size_t G1CollectedHeap::used() const {
2135   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2136   if (_archive_allocator != NULL) {
2137     result += _archive_allocator->used();
2138   }
2139   return result;
2140 }
2141 
2142 size_t G1CollectedHeap::used_unlocked() const {
2143   return _summary_bytes_used;
2144 }
2145 
2146 class SumUsedClosure: public HeapRegionClosure {
2147   size_t _used;
2148 public:
2149   SumUsedClosure() : _used(0) {}
2150   bool doHeapRegion(HeapRegion* r) {
2151     _used += r->used();
2152     return false;
2153   }
2154   size_t result() { return _used; }
2155 };
2156 
2157 size_t G1CollectedHeap::recalculate_used() const {
2158   double recalculate_used_start = os::elapsedTime();
2159 
2160   SumUsedClosure blk;
2161   heap_region_iterate(&blk);
2162 
2163   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2164   return blk.result();
2165 }
2166 
2167 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2168   switch (cause) {
2169     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2170     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2171     case GCCause::_update_allocation_context_stats_inc: return true;
2172     case GCCause::_wb_conc_mark:                        return true;
2173     default :                                           return false;
2174   }
2175 }
2176 
2177 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2178   switch (cause) {
2179     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2180     case GCCause::_g1_humongous_allocation: return true;
2181     default:                                return is_user_requested_concurrent_full_gc(cause);
2182   }
2183 }
2184 
2185 #ifndef PRODUCT
2186 void G1CollectedHeap::allocate_dummy_regions() {
2187   // Let's fill up most of the region
2188   size_t word_size = HeapRegion::GrainWords - 1024;
2189   // And as a result the region we'll allocate will be humongous.
2190   guarantee(is_humongous(word_size), "sanity");
2191 
2192   // _filler_array_max_size is set to humongous object threshold
2193   // but temporarily change it to use CollectedHeap::fill_with_object().
2194   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2195 
2196   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2197     // Let's use the existing mechanism for the allocation
2198     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2199                                                  AllocationContext::system());
2200     if (dummy_obj != NULL) {
2201       MemRegion mr(dummy_obj, word_size);
2202       CollectedHeap::fill_with_object(mr);
2203     } else {
2204       // If we can't allocate once, we probably cannot allocate
2205       // again. Let's get out of the loop.
2206       break;
2207     }
2208   }
2209 }
2210 #endif // !PRODUCT
2211 
2212 void G1CollectedHeap::increment_old_marking_cycles_started() {
2213   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2214          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2215          "Wrong marking cycle count (started: %d, completed: %d)",
2216          _old_marking_cycles_started, _old_marking_cycles_completed);
2217 
2218   _old_marking_cycles_started++;
2219 }
2220 
2221 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2222   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2223 
2224   // We assume that if concurrent == true, then the caller is a
2225   // concurrent thread that was joined the Suspendible Thread
2226   // Set. If there's ever a cheap way to check this, we should add an
2227   // assert here.
2228 
2229   // Given that this method is called at the end of a Full GC or of a
2230   // concurrent cycle, and those can be nested (i.e., a Full GC can
2231   // interrupt a concurrent cycle), the number of full collections
2232   // completed should be either one (in the case where there was no
2233   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2234   // behind the number of full collections started.
2235 
2236   // This is the case for the inner caller, i.e. a Full GC.
2237   assert(concurrent ||
2238          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2239          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2240          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2241          "is inconsistent with _old_marking_cycles_completed = %u",
2242          _old_marking_cycles_started, _old_marking_cycles_completed);
2243 
2244   // This is the case for the outer caller, i.e. the concurrent cycle.
2245   assert(!concurrent ||
2246          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2247          "for outer caller (concurrent cycle): "
2248          "_old_marking_cycles_started = %u "
2249          "is inconsistent with _old_marking_cycles_completed = %u",
2250          _old_marking_cycles_started, _old_marking_cycles_completed);
2251 
2252   _old_marking_cycles_completed += 1;
2253 
2254   // We need to clear the "in_progress" flag in the CM thread before
2255   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2256   // is set) so that if a waiter requests another System.gc() it doesn't
2257   // incorrectly see that a marking cycle is still in progress.
2258   if (concurrent) {
2259     _cmThread->set_idle();
2260   }
2261 
2262   // This notify_all() will ensure that a thread that called
2263   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2264   // and it's waiting for a full GC to finish will be woken up. It is
2265   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2266   FullGCCount_lock->notify_all();
2267 }
2268 
2269 void G1CollectedHeap::collect(GCCause::Cause cause) {
2270   assert_heap_not_locked();
2271 
2272   uint gc_count_before;
2273   uint old_marking_count_before;
2274   uint full_gc_count_before;
2275   bool retry_gc;
2276 
2277   do {
2278     retry_gc = false;
2279 
2280     {
2281       MutexLocker ml(Heap_lock);
2282 
2283       // Read the GC count while holding the Heap_lock
2284       gc_count_before = total_collections();
2285       full_gc_count_before = total_full_collections();
2286       old_marking_count_before = _old_marking_cycles_started;
2287     }
2288 
2289     if (should_do_concurrent_full_gc(cause)) {
2290       // Schedule an initial-mark evacuation pause that will start a
2291       // concurrent cycle. We're setting word_size to 0 which means that
2292       // we are not requesting a post-GC allocation.
2293       VM_G1IncCollectionPause op(gc_count_before,
2294                                  0,     /* word_size */
2295                                  true,  /* should_initiate_conc_mark */
2296                                  g1_policy()->max_pause_time_ms(),
2297                                  cause);
2298       op.set_allocation_context(AllocationContext::current());
2299 
2300       VMThread::execute(&op);
2301       if (!op.pause_succeeded()) {
2302         if (old_marking_count_before == _old_marking_cycles_started) {
2303           retry_gc = op.should_retry_gc();
2304         } else {
2305           // A Full GC happened while we were trying to schedule the
2306           // initial-mark GC. No point in starting a new cycle given
2307           // that the whole heap was collected anyway.
2308         }
2309 
2310         if (retry_gc) {
2311           if (GCLocker::is_active_and_needs_gc()) {
2312             GCLocker::stall_until_clear();
2313           }
2314         }
2315       }
2316     } else {
2317       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2318           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2319 
2320         // Schedule a standard evacuation pause. We're setting word_size
2321         // to 0 which means that we are not requesting a post-GC allocation.
2322         VM_G1IncCollectionPause op(gc_count_before,
2323                                    0,     /* word_size */
2324                                    false, /* should_initiate_conc_mark */
2325                                    g1_policy()->max_pause_time_ms(),
2326                                    cause);
2327         VMThread::execute(&op);
2328       } else {
2329         // Schedule a Full GC.
2330         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2331         VMThread::execute(&op);
2332       }
2333     }
2334   } while (retry_gc);
2335 }
2336 
2337 bool G1CollectedHeap::is_in(const void* p) const {
2338   if (_hrm.reserved().contains(p)) {
2339     // Given that we know that p is in the reserved space,
2340     // heap_region_containing() should successfully
2341     // return the containing region.
2342     HeapRegion* hr = heap_region_containing(p);
2343     return hr->is_in(p);
2344   } else {
2345     return false;
2346   }
2347 }
2348 
2349 #ifdef ASSERT
2350 bool G1CollectedHeap::is_in_exact(const void* p) const {
2351   bool contains = reserved_region().contains(p);
2352   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2353   if (contains && available) {
2354     return true;
2355   } else {
2356     return false;
2357   }
2358 }
2359 #endif
2360 
2361 // Iteration functions.
2362 
2363 // Iterates an ObjectClosure over all objects within a HeapRegion.
2364 
2365 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2366   ObjectClosure* _cl;
2367 public:
2368   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2369   bool doHeapRegion(HeapRegion* r) {
2370     if (!r->is_continues_humongous()) {
2371       r->object_iterate(_cl);
2372     }
2373     return false;
2374   }
2375 };
2376 
2377 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2378   IterateObjectClosureRegionClosure blk(cl);
2379   heap_region_iterate(&blk);
2380 }
2381 
2382 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2383   _hrm.iterate(cl);
2384 }
2385 
2386 void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2387                                               uint worker_id,
2388                                               HeapRegionClaimer *hrclaimer) const {
2389   _hrm.par_iterate(cl, worker_id, hrclaimer);
2390 }
2391 
2392 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2393   _collection_set.iterate(cl);
2394 }
2395 
2396 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2397   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2398 }
2399 
2400 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2401   HeapRegion* result = _hrm.next_region_in_heap(from);
2402   while (result != NULL && result->is_pinned()) {
2403     result = _hrm.next_region_in_heap(result);
2404   }
2405   return result;
2406 }
2407 
2408 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2409   HeapRegion* hr = heap_region_containing(addr);
2410   return hr->block_start(addr);
2411 }
2412 
2413 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2414   HeapRegion* hr = heap_region_containing(addr);
2415   return hr->block_size(addr);
2416 }
2417 
2418 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2419   HeapRegion* hr = heap_region_containing(addr);
2420   return hr->block_is_obj(addr);
2421 }
2422 
2423 bool G1CollectedHeap::supports_tlab_allocation() const {
2424   return true;
2425 }
2426 
2427 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2428   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2429 }
2430 
2431 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2432   return _eden.length() * HeapRegion::GrainBytes;
2433 }
2434 
2435 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2436 // must be equal to the humongous object limit.
2437 size_t G1CollectedHeap::max_tlab_size() const {
2438   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2439 }
2440 
2441 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2442   AllocationContext_t context = AllocationContext::current();
2443   return _allocator->unsafe_max_tlab_alloc(context);
2444 }
2445 
2446 size_t G1CollectedHeap::max_capacity() const {
2447   return _hrm.reserved().byte_size();
2448 }
2449 
2450 jlong G1CollectedHeap::millis_since_last_gc() {
2451   // See the notes in GenCollectedHeap::millis_since_last_gc()
2452   // for more information about the implementation.
2453   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2454     _g1_policy->collection_pause_end_millis();
2455   if (ret_val < 0) {
2456     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2457       ". returning zero instead.", ret_val);
2458     return 0;
2459   }
2460   return ret_val;
2461 }
2462 
2463 void G1CollectedHeap::prepare_for_verify() {
2464   _verifier->prepare_for_verify();
2465 }
2466 
2467 void G1CollectedHeap::verify(VerifyOption vo) {
2468   _verifier->verify(vo);
2469 }
2470 
2471 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2472   return true;
2473 }
2474 
2475 const char* const* G1CollectedHeap::concurrent_phases() const {
2476   return _cmThread->concurrent_phases();
2477 }
2478 
2479 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2480   return _cmThread->request_concurrent_phase(phase);
2481 }
2482 
2483 class PrintRegionClosure: public HeapRegionClosure {
2484   outputStream* _st;
2485 public:
2486   PrintRegionClosure(outputStream* st) : _st(st) {}
2487   bool doHeapRegion(HeapRegion* r) {
2488     r->print_on(_st);
2489     return false;
2490   }
2491 };
2492 
2493 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2494                                        const HeapRegion* hr,
2495                                        const VerifyOption vo) const {
2496   switch (vo) {
2497   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2498   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2499   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2500   default:                            ShouldNotReachHere();
2501   }
2502   return false; // keep some compilers happy
2503 }
2504 
2505 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2506                                        const VerifyOption vo) const {
2507   switch (vo) {
2508   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2509   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2510   case VerifyOption_G1UseMarkWord: {
2511     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2512     return !obj->is_gc_marked() && !hr->is_archive();
2513   }
2514   default:                            ShouldNotReachHere();
2515   }
2516   return false; // keep some compilers happy
2517 }
2518 
2519 void G1CollectedHeap::print_heap_regions() const {
2520   LogTarget(Trace, gc, heap, region) lt;
2521   if (lt.is_enabled()) {
2522     LogStream ls(lt);
2523     print_regions_on(&ls);
2524   }
2525 }
2526 
2527 void G1CollectedHeap::print_on(outputStream* st) const {
2528   st->print(" %-20s", "garbage-first heap");
2529   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2530             capacity()/K, used_unlocked()/K);
2531   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2532             p2i(_hrm.reserved().start()),
2533             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2534             p2i(_hrm.reserved().end()));
2535   st->cr();
2536   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2537   uint young_regions = young_regions_count();
2538   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2539             (size_t) young_regions * HeapRegion::GrainBytes / K);
2540   uint survivor_regions = survivor_regions_count();
2541   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2542             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2543   st->cr();
2544   MetaspaceAux::print_on(st);
2545 }
2546 
2547 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2548   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2549                "HS=humongous(starts), HC=humongous(continues), "
2550                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2551                "AC=allocation context, "
2552                "TAMS=top-at-mark-start (previous, next)");
2553   PrintRegionClosure blk(st);
2554   heap_region_iterate(&blk);
2555 }
2556 
2557 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2558   print_on(st);
2559 
2560   // Print the per-region information.
2561   print_regions_on(st);
2562 }
2563 
2564 void G1CollectedHeap::print_on_error(outputStream* st) const {
2565   this->CollectedHeap::print_on_error(st);
2566 
2567   if (_cm != NULL) {
2568     st->cr();
2569     _cm->print_on_error(st);
2570   }
2571 }
2572 
2573 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2574   workers()->print_worker_threads_on(st);
2575   _cmThread->print_on(st);
2576   st->cr();
2577   _cm->print_worker_threads_on(st);
2578   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2579   if (G1StringDedup::is_enabled()) {
2580     G1StringDedup::print_worker_threads_on(st);
2581   }
2582 }
2583 
2584 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2585   workers()->threads_do(tc);
2586   tc->do_thread(_cmThread);
2587   _cm->threads_do(tc);
2588   _cg1r->threads_do(tc); // also iterates over the sample thread
2589   if (G1StringDedup::is_enabled()) {
2590     G1StringDedup::threads_do(tc);
2591   }
2592 }
2593 
2594 void G1CollectedHeap::print_tracing_info() const {
2595   g1_rem_set()->print_summary_info();
2596   concurrent_mark()->print_summary_info();
2597 }
2598 
2599 #ifndef PRODUCT
2600 // Helpful for debugging RSet issues.
2601 
2602 class PrintRSetsClosure : public HeapRegionClosure {
2603 private:
2604   const char* _msg;
2605   size_t _occupied_sum;
2606 
2607 public:
2608   bool doHeapRegion(HeapRegion* r) {
2609     HeapRegionRemSet* hrrs = r->rem_set();
2610     size_t occupied = hrrs->occupied();
2611     _occupied_sum += occupied;
2612 
2613     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2614     if (occupied == 0) {
2615       tty->print_cr("  RSet is empty");
2616     } else {
2617       hrrs->print();
2618     }
2619     tty->print_cr("----------");
2620     return false;
2621   }
2622 
2623   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2624     tty->cr();
2625     tty->print_cr("========================================");
2626     tty->print_cr("%s", msg);
2627     tty->cr();
2628   }
2629 
2630   ~PrintRSetsClosure() {
2631     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2632     tty->print_cr("========================================");
2633     tty->cr();
2634   }
2635 };
2636 
2637 void G1CollectedHeap::print_cset_rsets() {
2638   PrintRSetsClosure cl("Printing CSet RSets");
2639   collection_set_iterate(&cl);
2640 }
2641 
2642 void G1CollectedHeap::print_all_rsets() {
2643   PrintRSetsClosure cl("Printing All RSets");;
2644   heap_region_iterate(&cl);
2645 }
2646 #endif // PRODUCT
2647 
2648 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2649 
2650   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2651   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2652   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2653 
2654   size_t eden_capacity_bytes =
2655     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2656 
2657   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2658   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2659                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2660 }
2661 
2662 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2663   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2664                        stats->unused(), stats->used(), stats->region_end_waste(),
2665                        stats->regions_filled(), stats->direct_allocated(),
2666                        stats->failure_used(), stats->failure_waste());
2667 }
2668 
2669 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2670   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2671   gc_tracer->report_gc_heap_summary(when, heap_summary);
2672 
2673   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2674   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2675 }
2676 
2677 G1CollectedHeap* G1CollectedHeap::heap() {
2678   CollectedHeap* heap = Universe::heap();
2679   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2680   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2681   return (G1CollectedHeap*)heap;
2682 }
2683 
2684 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2685   // always_do_update_barrier = false;
2686   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2687 
2688   double start = os::elapsedTime();
2689   // Fill TLAB's and such
2690   accumulate_statistics_all_tlabs();
2691   ensure_parsability(true);
2692   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2693 
2694   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2695 }
2696 
2697 void G1CollectedHeap::gc_epilogue(bool full) {
2698   // we are at the end of the GC. Total collections has already been increased.
2699   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2700 
2701   // FIXME: what is this about?
2702   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2703   // is set.
2704 #if defined(COMPILER2) || INCLUDE_JVMCI
2705   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2706 #endif
2707   // always_do_update_barrier = true;
2708 
2709   double start = os::elapsedTime();
2710   resize_all_tlabs();
2711   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2712 
2713   allocation_context_stats().update(full);
2714 
2715   // We have just completed a GC. Update the soft reference
2716   // policy with the new heap occupancy
2717   Universe::update_heap_info_at_gc();
2718 }
2719 
2720 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2721                                                uint gc_count_before,
2722                                                bool* succeeded,
2723                                                GCCause::Cause gc_cause) {
2724   assert_heap_not_locked_and_not_at_safepoint();
2725   VM_G1IncCollectionPause op(gc_count_before,
2726                              word_size,
2727                              false, /* should_initiate_conc_mark */
2728                              g1_policy()->max_pause_time_ms(),
2729                              gc_cause);
2730 
2731   op.set_allocation_context(AllocationContext::current());
2732   VMThread::execute(&op);
2733 
2734   HeapWord* result = op.result();
2735   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2736   assert(result == NULL || ret_succeeded,
2737          "the result should be NULL if the VM did not succeed");
2738   *succeeded = ret_succeeded;
2739 
2740   assert_heap_not_locked();
2741   return result;
2742 }
2743 
2744 void
2745 G1CollectedHeap::doConcurrentMark() {
2746   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2747   if (!_cmThread->in_progress()) {
2748     _cmThread->set_started();
2749     CGC_lock->notify();
2750   }
2751 }
2752 
2753 size_t G1CollectedHeap::pending_card_num() {
2754   size_t extra_cards = 0;
2755   JavaThread *curr = Threads::first();
2756   while (curr != NULL) {
2757     DirtyCardQueue& dcq = curr->dirty_card_queue();
2758     extra_cards += dcq.size();
2759     curr = curr->next();
2760   }
2761   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2762   size_t buffer_size = dcqs.buffer_size();
2763   size_t buffer_num = dcqs.completed_buffers_num();
2764 
2765   return buffer_size * buffer_num + extra_cards;
2766 }
2767 
2768 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2769  private:
2770   size_t _total_humongous;
2771   size_t _candidate_humongous;
2772 
2773   DirtyCardQueue _dcq;
2774 
2775   // We don't nominate objects with many remembered set entries, on
2776   // the assumption that such objects are likely still live.
2777   bool is_remset_small(HeapRegion* region) const {
2778     HeapRegionRemSet* const rset = region->rem_set();
2779     return G1EagerReclaimHumongousObjectsWithStaleRefs
2780       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2781       : rset->is_empty();
2782   }
2783 
2784   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2785     assert(region->is_starts_humongous(), "Must start a humongous object");
2786 
2787     oop obj = oop(region->bottom());
2788 
2789     // Dead objects cannot be eager reclaim candidates. Due to class
2790     // unloading it is unsafe to query their classes so we return early.
2791     if (heap->is_obj_dead(obj, region)) {
2792       return false;
2793     }
2794 
2795     // Candidate selection must satisfy the following constraints
2796     // while concurrent marking is in progress:
2797     //
2798     // * In order to maintain SATB invariants, an object must not be
2799     // reclaimed if it was allocated before the start of marking and
2800     // has not had its references scanned.  Such an object must have
2801     // its references (including type metadata) scanned to ensure no
2802     // live objects are missed by the marking process.  Objects
2803     // allocated after the start of concurrent marking don't need to
2804     // be scanned.
2805     //
2806     // * An object must not be reclaimed if it is on the concurrent
2807     // mark stack.  Objects allocated after the start of concurrent
2808     // marking are never pushed on the mark stack.
2809     //
2810     // Nominating only objects allocated after the start of concurrent
2811     // marking is sufficient to meet both constraints.  This may miss
2812     // some objects that satisfy the constraints, but the marking data
2813     // structures don't support efficiently performing the needed
2814     // additional tests or scrubbing of the mark stack.
2815     //
2816     // However, we presently only nominate is_typeArray() objects.
2817     // A humongous object containing references induces remembered
2818     // set entries on other regions.  In order to reclaim such an
2819     // object, those remembered sets would need to be cleaned up.
2820     //
2821     // We also treat is_typeArray() objects specially, allowing them
2822     // to be reclaimed even if allocated before the start of
2823     // concurrent mark.  For this we rely on mark stack insertion to
2824     // exclude is_typeArray() objects, preventing reclaiming an object
2825     // that is in the mark stack.  We also rely on the metadata for
2826     // such objects to be built-in and so ensured to be kept live.
2827     // Frequent allocation and drop of large binary blobs is an
2828     // important use case for eager reclaim, and this special handling
2829     // may reduce needed headroom.
2830 
2831     return obj->is_typeArray() && is_remset_small(region);
2832   }
2833 
2834  public:
2835   RegisterHumongousWithInCSetFastTestClosure()
2836   : _total_humongous(0),
2837     _candidate_humongous(0),
2838     _dcq(&JavaThread::dirty_card_queue_set()) {
2839   }
2840 
2841   virtual bool doHeapRegion(HeapRegion* r) {
2842     if (!r->is_starts_humongous()) {
2843       return false;
2844     }
2845     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2846 
2847     bool is_candidate = humongous_region_is_candidate(g1h, r);
2848     uint rindex = r->hrm_index();
2849     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2850     if (is_candidate) {
2851       _candidate_humongous++;
2852       g1h->register_humongous_region_with_cset(rindex);
2853       // Is_candidate already filters out humongous object with large remembered sets.
2854       // If we have a humongous object with a few remembered sets, we simply flush these
2855       // remembered set entries into the DCQS. That will result in automatic
2856       // re-evaluation of their remembered set entries during the following evacuation
2857       // phase.
2858       if (!r->rem_set()->is_empty()) {
2859         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2860                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2861         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2862         HeapRegionRemSetIterator hrrs(r->rem_set());
2863         size_t card_index;
2864         while (hrrs.has_next(card_index)) {
2865           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2866           // The remembered set might contain references to already freed
2867           // regions. Filter out such entries to avoid failing card table
2868           // verification.
2869           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2870             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2871               *card_ptr = CardTableModRefBS::dirty_card_val();
2872               _dcq.enqueue(card_ptr);
2873             }
2874           }
2875         }
2876         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2877                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2878                hrrs.n_yielded(), r->rem_set()->occupied());
2879         r->rem_set()->clear_locked();
2880       }
2881       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2882     }
2883     _total_humongous++;
2884 
2885     return false;
2886   }
2887 
2888   size_t total_humongous() const { return _total_humongous; }
2889   size_t candidate_humongous() const { return _candidate_humongous; }
2890 
2891   void flush_rem_set_entries() { _dcq.flush(); }
2892 };
2893 
2894 void G1CollectedHeap::register_humongous_regions_with_cset() {
2895   if (!G1EagerReclaimHumongousObjects) {
2896     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2897     return;
2898   }
2899   double time = os::elapsed_counter();
2900 
2901   // Collect reclaim candidate information and register candidates with cset.
2902   RegisterHumongousWithInCSetFastTestClosure cl;
2903   heap_region_iterate(&cl);
2904 
2905   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2906   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2907                                                                   cl.total_humongous(),
2908                                                                   cl.candidate_humongous());
2909   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2910 
2911   // Finally flush all remembered set entries to re-check into the global DCQS.
2912   cl.flush_rem_set_entries();
2913 }
2914 
2915 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2916   public:
2917     bool doHeapRegion(HeapRegion* hr) {
2918       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2919         hr->verify_rem_set();
2920       }
2921       return false;
2922     }
2923 };
2924 
2925 uint G1CollectedHeap::num_task_queues() const {
2926   return _task_queues->size();
2927 }
2928 
2929 #if TASKQUEUE_STATS
2930 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2931   st->print_raw_cr("GC Task Stats");
2932   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2933   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2934 }
2935 
2936 void G1CollectedHeap::print_taskqueue_stats() const {
2937   if (!log_is_enabled(Trace, gc, task, stats)) {
2938     return;
2939   }
2940   Log(gc, task, stats) log;
2941   ResourceMark rm;
2942   LogStream ls(log.trace());
2943   outputStream* st = &ls;
2944 
2945   print_taskqueue_stats_hdr(st);
2946 
2947   TaskQueueStats totals;
2948   const uint n = num_task_queues();
2949   for (uint i = 0; i < n; ++i) {
2950     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2951     totals += task_queue(i)->stats;
2952   }
2953   st->print_raw("tot "); totals.print(st); st->cr();
2954 
2955   DEBUG_ONLY(totals.verify());
2956 }
2957 
2958 void G1CollectedHeap::reset_taskqueue_stats() {
2959   const uint n = num_task_queues();
2960   for (uint i = 0; i < n; ++i) {
2961     task_queue(i)->stats.reset();
2962   }
2963 }
2964 #endif // TASKQUEUE_STATS
2965 
2966 void G1CollectedHeap::wait_for_root_region_scanning() {
2967   double scan_wait_start = os::elapsedTime();
2968   // We have to wait until the CM threads finish scanning the
2969   // root regions as it's the only way to ensure that all the
2970   // objects on them have been correctly scanned before we start
2971   // moving them during the GC.
2972   bool waited = _cm->root_regions()->wait_until_scan_finished();
2973   double wait_time_ms = 0.0;
2974   if (waited) {
2975     double scan_wait_end = os::elapsedTime();
2976     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2977   }
2978   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2979 }
2980 
2981 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2982 private:
2983   G1HRPrinter* _hr_printer;
2984 public:
2985   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2986 
2987   virtual bool doHeapRegion(HeapRegion* r) {
2988     _hr_printer->cset(r);
2989     return false;
2990   }
2991 };
2992 
2993 void G1CollectedHeap::start_new_collection_set() {
2994   collection_set()->start_incremental_building();
2995 
2996   clear_cset_fast_test();
2997 
2998   guarantee(_eden.length() == 0, "eden should have been cleared");
2999   g1_policy()->transfer_survivors_to_cset(survivor());
3000 }
3001 
3002 bool
3003 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3004   assert_at_safepoint(true /* should_be_vm_thread */);
3005   guarantee(!is_gc_active(), "collection is not reentrant");
3006 
3007   if (GCLocker::check_active_before_gc()) {
3008     return false;
3009   }
3010 
3011   _gc_timer_stw->register_gc_start();
3012 
3013   GCIdMark gc_id_mark;
3014   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3015 
3016   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3017   ResourceMark rm;
3018 
3019   g1_policy()->note_gc_start();
3020 
3021   wait_for_root_region_scanning();
3022 
3023   print_heap_before_gc();
3024   print_heap_regions();
3025   trace_heap_before_gc(_gc_tracer_stw);
3026 
3027   _verifier->verify_region_sets_optional();
3028   _verifier->verify_dirty_young_regions();
3029 
3030   // We should not be doing initial mark unless the conc mark thread is running
3031   if (!_cmThread->should_terminate()) {
3032     // This call will decide whether this pause is an initial-mark
3033     // pause. If it is, during_initial_mark_pause() will return true
3034     // for the duration of this pause.
3035     g1_policy()->decide_on_conc_mark_initiation();
3036   }
3037 
3038   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3039   assert(!collector_state()->during_initial_mark_pause() ||
3040           collector_state()->gcs_are_young(), "sanity");
3041 
3042   // We also do not allow mixed GCs during marking.
3043   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3044 
3045   // Record whether this pause is an initial mark. When the current
3046   // thread has completed its logging output and it's safe to signal
3047   // the CM thread, the flag's value in the policy has been reset.
3048   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3049 
3050   // Inner scope for scope based logging, timers, and stats collection
3051   {
3052     EvacuationInfo evacuation_info;
3053 
3054     if (collector_state()->during_initial_mark_pause()) {
3055       // We are about to start a marking cycle, so we increment the
3056       // full collection counter.
3057       increment_old_marking_cycles_started();
3058       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3059     }
3060 
3061     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3062 
3063     GCTraceCPUTime tcpu;
3064 
3065     FormatBuffer<> gc_string("Pause ");
3066     if (collector_state()->during_initial_mark_pause()) {
3067       gc_string.append("Initial Mark");
3068     } else if (collector_state()->gcs_are_young()) {
3069       gc_string.append("Young");
3070     } else {
3071       gc_string.append("Mixed");
3072     }
3073     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3074 
3075     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3076                                                                   workers()->active_workers(),
3077                                                                   Threads::number_of_non_daemon_threads());
3078     workers()->update_active_workers(active_workers);
3079     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3080 
3081     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3082     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3083 
3084     // If the secondary_free_list is not empty, append it to the
3085     // free_list. No need to wait for the cleanup operation to finish;
3086     // the region allocation code will check the secondary_free_list
3087     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3088     // set, skip this step so that the region allocation code has to
3089     // get entries from the secondary_free_list.
3090     if (!G1StressConcRegionFreeing) {
3091       append_secondary_free_list_if_not_empty_with_lock();
3092     }
3093 
3094     G1HeapTransition heap_transition(this);
3095     size_t heap_used_bytes_before_gc = used();
3096 
3097     // Don't dynamically change the number of GC threads this early.  A value of
3098     // 0 is used to indicate serial work.  When parallel work is done,
3099     // it will be set.
3100 
3101     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3102       IsGCActiveMark x;
3103 
3104       gc_prologue(false);
3105       increment_total_collections(false /* full gc */);
3106       increment_gc_time_stamp();
3107 
3108       if (VerifyRememberedSets) {
3109         log_info(gc, verify)("[Verifying RemSets before GC]");
3110         VerifyRegionRemSetClosure v_cl;
3111         heap_region_iterate(&v_cl);
3112       }
3113 
3114       _verifier->verify_before_gc();
3115 
3116       _verifier->check_bitmaps("GC Start");
3117 
3118 #if defined(COMPILER2) || INCLUDE_JVMCI
3119       DerivedPointerTable::clear();
3120 #endif
3121 
3122       // Please see comment in g1CollectedHeap.hpp and
3123       // G1CollectedHeap::ref_processing_init() to see how
3124       // reference processing currently works in G1.
3125 
3126       // Enable discovery in the STW reference processor
3127       if (g1_policy()->should_process_references()) {
3128         ref_processor_stw()->enable_discovery();
3129       } else {
3130         ref_processor_stw()->disable_discovery();
3131       }
3132 
3133       {
3134         // We want to temporarily turn off discovery by the
3135         // CM ref processor, if necessary, and turn it back on
3136         // on again later if we do. Using a scoped
3137         // NoRefDiscovery object will do this.
3138         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3139 
3140         // Forget the current alloc region (we might even choose it to be part
3141         // of the collection set!).
3142         _allocator->release_mutator_alloc_region();
3143 
3144         // This timing is only used by the ergonomics to handle our pause target.
3145         // It is unclear why this should not include the full pause. We will
3146         // investigate this in CR 7178365.
3147         //
3148         // Preserving the old comment here if that helps the investigation:
3149         //
3150         // The elapsed time induced by the start time below deliberately elides
3151         // the possible verification above.
3152         double sample_start_time_sec = os::elapsedTime();
3153 
3154         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3155 
3156         if (collector_state()->during_initial_mark_pause()) {
3157           concurrent_mark()->checkpointRootsInitialPre();
3158         }
3159 
3160         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3161 
3162         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3163 
3164         // Make sure the remembered sets are up to date. This needs to be
3165         // done before register_humongous_regions_with_cset(), because the
3166         // remembered sets are used there to choose eager reclaim candidates.
3167         // If the remembered sets are not up to date we might miss some
3168         // entries that need to be handled.
3169         g1_rem_set()->cleanupHRRS();
3170 
3171         register_humongous_regions_with_cset();
3172 
3173         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3174 
3175         // We call this after finalize_cset() to
3176         // ensure that the CSet has been finalized.
3177         _cm->verify_no_cset_oops();
3178 
3179         if (_hr_printer.is_active()) {
3180           G1PrintCollectionSetClosure cl(&_hr_printer);
3181           _collection_set.iterate(&cl);
3182         }
3183 
3184         // Initialize the GC alloc regions.
3185         _allocator->init_gc_alloc_regions(evacuation_info);
3186 
3187         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3188         pre_evacuate_collection_set();
3189 
3190         // Actually do the work...
3191         evacuate_collection_set(evacuation_info, &per_thread_states);
3192 
3193         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3194 
3195         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3196         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3197 
3198         eagerly_reclaim_humongous_regions();
3199 
3200         record_obj_copy_mem_stats();
3201         _survivor_evac_stats.adjust_desired_plab_sz();
3202         _old_evac_stats.adjust_desired_plab_sz();
3203 
3204         double start = os::elapsedTime();
3205         start_new_collection_set();
3206         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3207 
3208         if (evacuation_failed()) {
3209           set_used(recalculate_used());
3210           if (_archive_allocator != NULL) {
3211             _archive_allocator->clear_used();
3212           }
3213           for (uint i = 0; i < ParallelGCThreads; i++) {
3214             if (_evacuation_failed_info_array[i].has_failed()) {
3215               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3216             }
3217           }
3218         } else {
3219           // The "used" of the the collection set have already been subtracted
3220           // when they were freed.  Add in the bytes evacuated.
3221           increase_used(g1_policy()->bytes_copied_during_gc());
3222         }
3223 
3224         if (collector_state()->during_initial_mark_pause()) {
3225           // We have to do this before we notify the CM threads that
3226           // they can start working to make sure that all the
3227           // appropriate initialization is done on the CM object.
3228           concurrent_mark()->checkpointRootsInitialPost();
3229           collector_state()->set_mark_in_progress(true);
3230           // Note that we don't actually trigger the CM thread at
3231           // this point. We do that later when we're sure that
3232           // the current thread has completed its logging output.
3233         }
3234 
3235         allocate_dummy_regions();
3236 
3237         _allocator->init_mutator_alloc_region();
3238 
3239         {
3240           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3241           if (expand_bytes > 0) {
3242             size_t bytes_before = capacity();
3243             // No need for an ergo logging here,
3244             // expansion_amount() does this when it returns a value > 0.
3245             double expand_ms;
3246             if (!expand(expand_bytes, _workers, &expand_ms)) {
3247               // We failed to expand the heap. Cannot do anything about it.
3248             }
3249             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3250           }
3251         }
3252 
3253         // We redo the verification but now wrt to the new CSet which
3254         // has just got initialized after the previous CSet was freed.
3255         _cm->verify_no_cset_oops();
3256 
3257         // This timing is only used by the ergonomics to handle our pause target.
3258         // It is unclear why this should not include the full pause. We will
3259         // investigate this in CR 7178365.
3260         double sample_end_time_sec = os::elapsedTime();
3261         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3262         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScannedCards);
3263         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3264 
3265         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3266         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3267 
3268         MemoryService::track_memory_usage();
3269 
3270         // In prepare_for_verify() below we'll need to scan the deferred
3271         // update buffers to bring the RSets up-to-date if
3272         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3273         // the update buffers we'll probably need to scan cards on the
3274         // regions we just allocated to (i.e., the GC alloc
3275         // regions). However, during the last GC we called
3276         // set_saved_mark() on all the GC alloc regions, so card
3277         // scanning might skip the [saved_mark_word()...top()] area of
3278         // those regions (i.e., the area we allocated objects into
3279         // during the last GC). But it shouldn't. Given that
3280         // saved_mark_word() is conditional on whether the GC time stamp
3281         // on the region is current or not, by incrementing the GC time
3282         // stamp here we invalidate all the GC time stamps on all the
3283         // regions and saved_mark_word() will simply return top() for
3284         // all the regions. This is a nicer way of ensuring this rather
3285         // than iterating over the regions and fixing them. In fact, the
3286         // GC time stamp increment here also ensures that
3287         // saved_mark_word() will return top() between pauses, i.e.,
3288         // during concurrent refinement. So we don't need the
3289         // is_gc_active() check to decided which top to use when
3290         // scanning cards (see CR 7039627).
3291         increment_gc_time_stamp();
3292 
3293         if (VerifyRememberedSets) {
3294           log_info(gc, verify)("[Verifying RemSets after GC]");
3295           VerifyRegionRemSetClosure v_cl;
3296           heap_region_iterate(&v_cl);
3297         }
3298 
3299         _verifier->verify_after_gc();
3300         _verifier->check_bitmaps("GC End");
3301 
3302         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3303         ref_processor_stw()->verify_no_references_recorded();
3304 
3305         // CM reference discovery will be re-enabled if necessary.
3306       }
3307 
3308 #ifdef TRACESPINNING
3309       ParallelTaskTerminator::print_termination_counts();
3310 #endif
3311 
3312       gc_epilogue(false);
3313     }
3314 
3315     // Print the remainder of the GC log output.
3316     if (evacuation_failed()) {
3317       log_info(gc)("To-space exhausted");
3318     }
3319 
3320     g1_policy()->print_phases();
3321     heap_transition.print();
3322 
3323     // It is not yet to safe to tell the concurrent mark to
3324     // start as we have some optional output below. We don't want the
3325     // output from the concurrent mark thread interfering with this
3326     // logging output either.
3327 
3328     _hrm.verify_optional();
3329     _verifier->verify_region_sets_optional();
3330 
3331     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3332     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3333 
3334     print_heap_after_gc();
3335     print_heap_regions();
3336     trace_heap_after_gc(_gc_tracer_stw);
3337 
3338     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3339     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3340     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3341     // before any GC notifications are raised.
3342     g1mm()->update_sizes();
3343 
3344     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3345     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3346     _gc_timer_stw->register_gc_end();
3347     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3348   }
3349   // It should now be safe to tell the concurrent mark thread to start
3350   // without its logging output interfering with the logging output
3351   // that came from the pause.
3352 
3353   if (should_start_conc_mark) {
3354     // CAUTION: after the doConcurrentMark() call below,
3355     // the concurrent marking thread(s) could be running
3356     // concurrently with us. Make sure that anything after
3357     // this point does not assume that we are the only GC thread
3358     // running. Note: of course, the actual marking work will
3359     // not start until the safepoint itself is released in
3360     // SuspendibleThreadSet::desynchronize().
3361     doConcurrentMark();
3362   }
3363 
3364   return true;
3365 }
3366 
3367 void G1CollectedHeap::remove_self_forwarding_pointers() {
3368   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3369   workers()->run_task(&rsfp_task);
3370 }
3371 
3372 void G1CollectedHeap::restore_after_evac_failure() {
3373   double remove_self_forwards_start = os::elapsedTime();
3374 
3375   remove_self_forwarding_pointers();
3376   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3377   _preserved_marks_set.restore(&task_executor);
3378 
3379   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3380 }
3381 
3382 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3383   if (!_evacuation_failed) {
3384     _evacuation_failed = true;
3385   }
3386 
3387   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3388   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3389 }
3390 
3391 bool G1ParEvacuateFollowersClosure::offer_termination() {
3392   G1ParScanThreadState* const pss = par_scan_state();
3393   start_term_time();
3394   const bool res = terminator()->offer_termination();
3395   end_term_time();
3396   return res;
3397 }
3398 
3399 void G1ParEvacuateFollowersClosure::do_void() {
3400   G1ParScanThreadState* const pss = par_scan_state();
3401   pss->trim_queue();
3402   do {
3403     pss->steal_and_trim_queue(queues());
3404   } while (!offer_termination());
3405 }
3406 
3407 class G1ParTask : public AbstractGangTask {
3408 protected:
3409   G1CollectedHeap*         _g1h;
3410   G1ParScanThreadStateSet* _pss;
3411   RefToScanQueueSet*       _queues;
3412   G1RootProcessor*         _root_processor;
3413   ParallelTaskTerminator   _terminator;
3414   uint                     _n_workers;
3415 
3416 public:
3417   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3418     : AbstractGangTask("G1 collection"),
3419       _g1h(g1h),
3420       _pss(per_thread_states),
3421       _queues(task_queues),
3422       _root_processor(root_processor),
3423       _terminator(n_workers, _queues),
3424       _n_workers(n_workers)
3425   {}
3426 
3427   void work(uint worker_id) {
3428     if (worker_id >= _n_workers) return;  // no work needed this round
3429 
3430     double start_sec = os::elapsedTime();
3431     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3432 
3433     {
3434       ResourceMark rm;
3435       HandleMark   hm;
3436 
3437       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3438 
3439       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3440       pss->set_ref_processor(rp);
3441 
3442       double start_strong_roots_sec = os::elapsedTime();
3443 
3444       _root_processor->evacuate_roots(pss->closures(), worker_id);
3445 
3446       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3447       // treating the nmethods visited to act as roots for concurrent marking.
3448       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3449       // objects copied by the current evacuation.
3450       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3451                                                       pss->closures()->weak_codeblobs(),
3452                                                       worker_id);
3453 
3454       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3455 
3456       double term_sec = 0.0;
3457       size_t evac_term_attempts = 0;
3458       {
3459         double start = os::elapsedTime();
3460         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3461         evac.do_void();
3462 
3463         evac_term_attempts = evac.term_attempts();
3464         term_sec = evac.term_time();
3465         double elapsed_sec = os::elapsedTime() - start;
3466         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3467         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3468         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3469       }
3470 
3471       assert(pss->queue_is_empty(), "should be empty");
3472 
3473       if (log_is_enabled(Debug, gc, task, stats)) {
3474         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3475         size_t lab_waste;
3476         size_t lab_undo_waste;
3477         pss->waste(lab_waste, lab_undo_waste);
3478         _g1h->print_termination_stats(worker_id,
3479                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3480                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3481                                       term_sec * 1000.0,                          /* evac term time */
3482                                       evac_term_attempts,                         /* evac term attempts */
3483                                       lab_waste,                                  /* alloc buffer waste */
3484                                       lab_undo_waste                              /* undo waste */
3485                                       );
3486       }
3487 
3488       // Close the inner scope so that the ResourceMark and HandleMark
3489       // destructors are executed here and are included as part of the
3490       // "GC Worker Time".
3491     }
3492     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3493   }
3494 };
3495 
3496 void G1CollectedHeap::print_termination_stats_hdr() {
3497   log_debug(gc, task, stats)("GC Termination Stats");
3498   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3499   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3500   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3501 }
3502 
3503 void G1CollectedHeap::print_termination_stats(uint worker_id,
3504                                               double elapsed_ms,
3505                                               double strong_roots_ms,
3506                                               double term_ms,
3507                                               size_t term_attempts,
3508                                               size_t alloc_buffer_waste,
3509                                               size_t undo_waste) const {
3510   log_debug(gc, task, stats)
3511               ("%3d %9.2f %9.2f %6.2f "
3512                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3513                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3514                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3515                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3516                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3517                alloc_buffer_waste * HeapWordSize / K,
3518                undo_waste * HeapWordSize / K);
3519 }
3520 
3521 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3522 private:
3523   BoolObjectClosure* _is_alive;
3524   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3525 
3526   int _initial_string_table_size;
3527   int _initial_symbol_table_size;
3528 
3529   bool  _process_strings;
3530   int _strings_processed;
3531   int _strings_removed;
3532 
3533   bool  _process_symbols;
3534   int _symbols_processed;
3535   int _symbols_removed;
3536 
3537   bool _process_string_dedup;
3538 
3539 public:
3540   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3541     AbstractGangTask("String/Symbol Unlinking"),
3542     _is_alive(is_alive),
3543     _dedup_closure(is_alive, NULL, false),
3544     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3545     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3546     _process_string_dedup(process_string_dedup) {
3547 
3548     _initial_string_table_size = StringTable::the_table()->table_size();
3549     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3550     if (process_strings) {
3551       StringTable::clear_parallel_claimed_index();
3552     }
3553     if (process_symbols) {
3554       SymbolTable::clear_parallel_claimed_index();
3555     }
3556   }
3557 
3558   ~G1StringAndSymbolCleaningTask() {
3559     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3560               "claim value %d after unlink less than initial string table size %d",
3561               StringTable::parallel_claimed_index(), _initial_string_table_size);
3562     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3563               "claim value %d after unlink less than initial symbol table size %d",
3564               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3565 
3566     log_info(gc, stringtable)(
3567         "Cleaned string and symbol table, "
3568         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3569         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3570         strings_processed(), strings_removed(),
3571         symbols_processed(), symbols_removed());
3572   }
3573 
3574   void work(uint worker_id) {
3575     int strings_processed = 0;
3576     int strings_removed = 0;
3577     int symbols_processed = 0;
3578     int symbols_removed = 0;
3579     if (_process_strings) {
3580       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3581       Atomic::add(strings_processed, &_strings_processed);
3582       Atomic::add(strings_removed, &_strings_removed);
3583     }
3584     if (_process_symbols) {
3585       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3586       Atomic::add(symbols_processed, &_symbols_processed);
3587       Atomic::add(symbols_removed, &_symbols_removed);
3588     }
3589     if (_process_string_dedup) {
3590       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3591     }
3592   }
3593 
3594   size_t strings_processed() const { return (size_t)_strings_processed; }
3595   size_t strings_removed()   const { return (size_t)_strings_removed; }
3596 
3597   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3598   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3599 };
3600 
3601 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3602 private:
3603   static Monitor* _lock;
3604 
3605   BoolObjectClosure* const _is_alive;
3606   const bool               _unloading_occurred;
3607   const uint               _num_workers;
3608 
3609   // Variables used to claim nmethods.
3610   CompiledMethod* _first_nmethod;
3611   volatile CompiledMethod* _claimed_nmethod;
3612 
3613   // The list of nmethods that need to be processed by the second pass.
3614   volatile CompiledMethod* _postponed_list;
3615   volatile uint            _num_entered_barrier;
3616 
3617  public:
3618   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3619       _is_alive(is_alive),
3620       _unloading_occurred(unloading_occurred),
3621       _num_workers(num_workers),
3622       _first_nmethod(NULL),
3623       _claimed_nmethod(NULL),
3624       _postponed_list(NULL),
3625       _num_entered_barrier(0)
3626   {
3627     CompiledMethod::increase_unloading_clock();
3628     // Get first alive nmethod
3629     CompiledMethodIterator iter = CompiledMethodIterator();
3630     if(iter.next_alive()) {
3631       _first_nmethod = iter.method();
3632     }
3633     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3634   }
3635 
3636   ~G1CodeCacheUnloadingTask() {
3637     CodeCache::verify_clean_inline_caches();
3638 
3639     CodeCache::set_needs_cache_clean(false);
3640     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3641 
3642     CodeCache::verify_icholder_relocations();
3643   }
3644 
3645  private:
3646   void add_to_postponed_list(CompiledMethod* nm) {
3647       CompiledMethod* old;
3648       do {
3649         old = (CompiledMethod*)_postponed_list;
3650         nm->set_unloading_next(old);
3651       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3652   }
3653 
3654   void clean_nmethod(CompiledMethod* nm) {
3655     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3656 
3657     if (postponed) {
3658       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3659       add_to_postponed_list(nm);
3660     }
3661 
3662     // Mark that this thread has been cleaned/unloaded.
3663     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3664     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3665   }
3666 
3667   void clean_nmethod_postponed(CompiledMethod* nm) {
3668     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3669   }
3670 
3671   static const int MaxClaimNmethods = 16;
3672 
3673   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3674     CompiledMethod* first;
3675     CompiledMethodIterator last;
3676 
3677     do {
3678       *num_claimed_nmethods = 0;
3679 
3680       first = (CompiledMethod*)_claimed_nmethod;
3681       last = CompiledMethodIterator(first);
3682 
3683       if (first != NULL) {
3684 
3685         for (int i = 0; i < MaxClaimNmethods; i++) {
3686           if (!last.next_alive()) {
3687             break;
3688           }
3689           claimed_nmethods[i] = last.method();
3690           (*num_claimed_nmethods)++;
3691         }
3692       }
3693 
3694     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3695   }
3696 
3697   CompiledMethod* claim_postponed_nmethod() {
3698     CompiledMethod* claim;
3699     CompiledMethod* next;
3700 
3701     do {
3702       claim = (CompiledMethod*)_postponed_list;
3703       if (claim == NULL) {
3704         return NULL;
3705       }
3706 
3707       next = claim->unloading_next();
3708 
3709     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3710 
3711     return claim;
3712   }
3713 
3714  public:
3715   // Mark that we're done with the first pass of nmethod cleaning.
3716   void barrier_mark(uint worker_id) {
3717     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3718     _num_entered_barrier++;
3719     if (_num_entered_barrier == _num_workers) {
3720       ml.notify_all();
3721     }
3722   }
3723 
3724   // See if we have to wait for the other workers to
3725   // finish their first-pass nmethod cleaning work.
3726   void barrier_wait(uint worker_id) {
3727     if (_num_entered_barrier < _num_workers) {
3728       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3729       while (_num_entered_barrier < _num_workers) {
3730           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3731       }
3732     }
3733   }
3734 
3735   // Cleaning and unloading of nmethods. Some work has to be postponed
3736   // to the second pass, when we know which nmethods survive.
3737   void work_first_pass(uint worker_id) {
3738     // The first nmethods is claimed by the first worker.
3739     if (worker_id == 0 && _first_nmethod != NULL) {
3740       clean_nmethod(_first_nmethod);
3741       _first_nmethod = NULL;
3742     }
3743 
3744     int num_claimed_nmethods;
3745     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3746 
3747     while (true) {
3748       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3749 
3750       if (num_claimed_nmethods == 0) {
3751         break;
3752       }
3753 
3754       for (int i = 0; i < num_claimed_nmethods; i++) {
3755         clean_nmethod(claimed_nmethods[i]);
3756       }
3757     }
3758   }
3759 
3760   void work_second_pass(uint worker_id) {
3761     CompiledMethod* nm;
3762     // Take care of postponed nmethods.
3763     while ((nm = claim_postponed_nmethod()) != NULL) {
3764       clean_nmethod_postponed(nm);
3765     }
3766   }
3767 };
3768 
3769 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3770 
3771 class G1KlassCleaningTask : public StackObj {
3772   BoolObjectClosure*                      _is_alive;
3773   volatile jint                           _clean_klass_tree_claimed;
3774   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3775 
3776  public:
3777   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3778       _is_alive(is_alive),
3779       _clean_klass_tree_claimed(0),
3780       _klass_iterator() {
3781   }
3782 
3783  private:
3784   bool claim_clean_klass_tree_task() {
3785     if (_clean_klass_tree_claimed) {
3786       return false;
3787     }
3788 
3789     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3790   }
3791 
3792   InstanceKlass* claim_next_klass() {
3793     Klass* klass;
3794     do {
3795       klass =_klass_iterator.next_klass();
3796     } while (klass != NULL && !klass->is_instance_klass());
3797 
3798     // this can be null so don't call InstanceKlass::cast
3799     return static_cast<InstanceKlass*>(klass);
3800   }
3801 
3802 public:
3803 
3804   void clean_klass(InstanceKlass* ik) {
3805     ik->clean_weak_instanceklass_links(_is_alive);
3806   }
3807 
3808   void work() {
3809     ResourceMark rm;
3810 
3811     // One worker will clean the subklass/sibling klass tree.
3812     if (claim_clean_klass_tree_task()) {
3813       Klass::clean_subklass_tree(_is_alive);
3814     }
3815 
3816     // All workers will help cleaning the classes,
3817     InstanceKlass* klass;
3818     while ((klass = claim_next_klass()) != NULL) {
3819       clean_klass(klass);
3820     }
3821   }
3822 };
3823 
3824 class G1ResolvedMethodCleaningTask : public StackObj {
3825   BoolObjectClosure* _is_alive;
3826   volatile jint      _resolved_method_task_claimed;
3827 public:
3828   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3829       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3830 
3831   bool claim_resolved_method_task() {
3832     if (_resolved_method_task_claimed) {
3833       return false;
3834     }
3835     return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3836   }
3837 
3838   // These aren't big, one thread can do it all.
3839   void work() {
3840     if (claim_resolved_method_task()) {
3841       ResolvedMethodTable::unlink(_is_alive);
3842     }
3843   }
3844 };
3845 
3846 
3847 // To minimize the remark pause times, the tasks below are done in parallel.
3848 class G1ParallelCleaningTask : public AbstractGangTask {
3849 private:
3850   G1StringAndSymbolCleaningTask _string_symbol_task;
3851   G1CodeCacheUnloadingTask      _code_cache_task;
3852   G1KlassCleaningTask           _klass_cleaning_task;
3853   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3854 
3855 public:
3856   // The constructor is run in the VMThread.
3857   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3858       AbstractGangTask("Parallel Cleaning"),
3859       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3860       _code_cache_task(num_workers, is_alive, unloading_occurred),
3861       _klass_cleaning_task(is_alive),
3862       _resolved_method_cleaning_task(is_alive) {
3863   }
3864 
3865   // The parallel work done by all worker threads.
3866   void work(uint worker_id) {
3867     // Do first pass of code cache cleaning.
3868     _code_cache_task.work_first_pass(worker_id);
3869 
3870     // Let the threads mark that the first pass is done.
3871     _code_cache_task.barrier_mark(worker_id);
3872 
3873     // Clean the Strings and Symbols.
3874     _string_symbol_task.work(worker_id);
3875 
3876     // Clean unreferenced things in the ResolvedMethodTable
3877     _resolved_method_cleaning_task.work();
3878 
3879     // Wait for all workers to finish the first code cache cleaning pass.
3880     _code_cache_task.barrier_wait(worker_id);
3881 
3882     // Do the second code cache cleaning work, which realize on
3883     // the liveness information gathered during the first pass.
3884     _code_cache_task.work_second_pass(worker_id);
3885 
3886     // Clean all klasses that were not unloaded.
3887     _klass_cleaning_task.work();
3888   }
3889 };
3890 
3891 
3892 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3893                                         bool class_unloading_occurred) {
3894   uint n_workers = workers()->active_workers();
3895 
3896   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3897   workers()->run_task(&g1_unlink_task);
3898 }
3899 
3900 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3901                                        bool process_strings,
3902                                        bool process_symbols,
3903                                        bool process_string_dedup) {
3904   if (!process_strings && !process_symbols && !process_string_dedup) {
3905     // Nothing to clean.
3906     return;
3907   }
3908 
3909   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3910   workers()->run_task(&g1_unlink_task);
3911 
3912 }
3913 
3914 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3915  private:
3916   DirtyCardQueueSet* _queue;
3917   G1CollectedHeap* _g1h;
3918  public:
3919   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3920     _queue(queue), _g1h(g1h) { }
3921 
3922   virtual void work(uint worker_id) {
3923     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3924     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3925 
3926     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3927     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3928 
3929     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3930   }
3931 };
3932 
3933 void G1CollectedHeap::redirty_logged_cards() {
3934   double redirty_logged_cards_start = os::elapsedTime();
3935 
3936   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3937   dirty_card_queue_set().reset_for_par_iteration();
3938   workers()->run_task(&redirty_task);
3939 
3940   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3941   dcq.merge_bufferlists(&dirty_card_queue_set());
3942   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3943 
3944   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3945 }
3946 
3947 // Weak Reference Processing support
3948 
3949 // An always "is_alive" closure that is used to preserve referents.
3950 // If the object is non-null then it's alive.  Used in the preservation
3951 // of referent objects that are pointed to by reference objects
3952 // discovered by the CM ref processor.
3953 class G1AlwaysAliveClosure: public BoolObjectClosure {
3954   G1CollectedHeap* _g1;
3955 public:
3956   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3957   bool do_object_b(oop p) {
3958     if (p != NULL) {
3959       return true;
3960     }
3961     return false;
3962   }
3963 };
3964 
3965 bool G1STWIsAliveClosure::do_object_b(oop p) {
3966   // An object is reachable if it is outside the collection set,
3967   // or is inside and copied.
3968   return !_g1->is_in_cset(p) || p->is_forwarded();
3969 }
3970 
3971 // Non Copying Keep Alive closure
3972 class G1KeepAliveClosure: public OopClosure {
3973   G1CollectedHeap* _g1;
3974 public:
3975   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3976   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3977   void do_oop(oop* p) {
3978     oop obj = *p;
3979     assert(obj != NULL, "the caller should have filtered out NULL values");
3980 
3981     const InCSetState cset_state = _g1->in_cset_state(obj);
3982     if (!cset_state.is_in_cset_or_humongous()) {
3983       return;
3984     }
3985     if (cset_state.is_in_cset()) {
3986       assert( obj->is_forwarded(), "invariant" );
3987       *p = obj->forwardee();
3988     } else {
3989       assert(!obj->is_forwarded(), "invariant" );
3990       assert(cset_state.is_humongous(),
3991              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3992       _g1->set_humongous_is_live(obj);
3993     }
3994   }
3995 };
3996 
3997 // Copying Keep Alive closure - can be called from both
3998 // serial and parallel code as long as different worker
3999 // threads utilize different G1ParScanThreadState instances
4000 // and different queues.
4001 
4002 class G1CopyingKeepAliveClosure: public OopClosure {
4003   G1CollectedHeap*         _g1h;
4004   OopClosure*              _copy_non_heap_obj_cl;
4005   G1ParScanThreadState*    _par_scan_state;
4006 
4007 public:
4008   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4009                             OopClosure* non_heap_obj_cl,
4010                             G1ParScanThreadState* pss):
4011     _g1h(g1h),
4012     _copy_non_heap_obj_cl(non_heap_obj_cl),
4013     _par_scan_state(pss)
4014   {}
4015 
4016   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4017   virtual void do_oop(      oop* p) { do_oop_work(p); }
4018 
4019   template <class T> void do_oop_work(T* p) {
4020     oop obj = oopDesc::load_decode_heap_oop(p);
4021 
4022     if (_g1h->is_in_cset_or_humongous(obj)) {
4023       // If the referent object has been forwarded (either copied
4024       // to a new location or to itself in the event of an
4025       // evacuation failure) then we need to update the reference
4026       // field and, if both reference and referent are in the G1
4027       // heap, update the RSet for the referent.
4028       //
4029       // If the referent has not been forwarded then we have to keep
4030       // it alive by policy. Therefore we have copy the referent.
4031       //
4032       // If the reference field is in the G1 heap then we can push
4033       // on the PSS queue. When the queue is drained (after each
4034       // phase of reference processing) the object and it's followers
4035       // will be copied, the reference field set to point to the
4036       // new location, and the RSet updated. Otherwise we need to
4037       // use the the non-heap or metadata closures directly to copy
4038       // the referent object and update the pointer, while avoiding
4039       // updating the RSet.
4040 
4041       if (_g1h->is_in_g1_reserved(p)) {
4042         _par_scan_state->push_on_queue(p);
4043       } else {
4044         assert(!Metaspace::contains((const void*)p),
4045                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4046         _copy_non_heap_obj_cl->do_oop(p);
4047       }
4048     }
4049   }
4050 };
4051 
4052 // Serial drain queue closure. Called as the 'complete_gc'
4053 // closure for each discovered list in some of the
4054 // reference processing phases.
4055 
4056 class G1STWDrainQueueClosure: public VoidClosure {
4057 protected:
4058   G1CollectedHeap* _g1h;
4059   G1ParScanThreadState* _par_scan_state;
4060 
4061   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4062 
4063 public:
4064   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4065     _g1h(g1h),
4066     _par_scan_state(pss)
4067   { }
4068 
4069   void do_void() {
4070     G1ParScanThreadState* const pss = par_scan_state();
4071     pss->trim_queue();
4072   }
4073 };
4074 
4075 // Parallel Reference Processing closures
4076 
4077 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4078 // processing during G1 evacuation pauses.
4079 
4080 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4081 private:
4082   G1CollectedHeap*          _g1h;
4083   G1ParScanThreadStateSet*  _pss;
4084   RefToScanQueueSet*        _queues;
4085   WorkGang*                 _workers;
4086   uint                      _active_workers;
4087 
4088 public:
4089   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4090                            G1ParScanThreadStateSet* per_thread_states,
4091                            WorkGang* workers,
4092                            RefToScanQueueSet *task_queues,
4093                            uint n_workers) :
4094     _g1h(g1h),
4095     _pss(per_thread_states),
4096     _queues(task_queues),
4097     _workers(workers),
4098     _active_workers(n_workers)
4099   {
4100     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4101   }
4102 
4103   // Executes the given task using concurrent marking worker threads.
4104   virtual void execute(ProcessTask& task);
4105   virtual void execute(EnqueueTask& task);
4106 };
4107 
4108 // Gang task for possibly parallel reference processing
4109 
4110 class G1STWRefProcTaskProxy: public AbstractGangTask {
4111   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4112   ProcessTask&     _proc_task;
4113   G1CollectedHeap* _g1h;
4114   G1ParScanThreadStateSet* _pss;
4115   RefToScanQueueSet* _task_queues;
4116   ParallelTaskTerminator* _terminator;
4117 
4118 public:
4119   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4120                         G1CollectedHeap* g1h,
4121                         G1ParScanThreadStateSet* per_thread_states,
4122                         RefToScanQueueSet *task_queues,
4123                         ParallelTaskTerminator* terminator) :
4124     AbstractGangTask("Process reference objects in parallel"),
4125     _proc_task(proc_task),
4126     _g1h(g1h),
4127     _pss(per_thread_states),
4128     _task_queues(task_queues),
4129     _terminator(terminator)
4130   {}
4131 
4132   virtual void work(uint worker_id) {
4133     // The reference processing task executed by a single worker.
4134     ResourceMark rm;
4135     HandleMark   hm;
4136 
4137     G1STWIsAliveClosure is_alive(_g1h);
4138 
4139     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4140     pss->set_ref_processor(NULL);
4141 
4142     // Keep alive closure.
4143     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4144 
4145     // Complete GC closure
4146     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4147 
4148     // Call the reference processing task's work routine.
4149     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4150 
4151     // Note we cannot assert that the refs array is empty here as not all
4152     // of the processing tasks (specifically phase2 - pp2_work) execute
4153     // the complete_gc closure (which ordinarily would drain the queue) so
4154     // the queue may not be empty.
4155   }
4156 };
4157 
4158 // Driver routine for parallel reference processing.
4159 // Creates an instance of the ref processing gang
4160 // task and has the worker threads execute it.
4161 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4162   assert(_workers != NULL, "Need parallel worker threads.");
4163 
4164   ParallelTaskTerminator terminator(_active_workers, _queues);
4165   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4166 
4167   _workers->run_task(&proc_task_proxy);
4168 }
4169 
4170 // Gang task for parallel reference enqueueing.
4171 
4172 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4173   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4174   EnqueueTask& _enq_task;
4175 
4176 public:
4177   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4178     AbstractGangTask("Enqueue reference objects in parallel"),
4179     _enq_task(enq_task)
4180   { }
4181 
4182   virtual void work(uint worker_id) {
4183     _enq_task.work(worker_id);
4184   }
4185 };
4186 
4187 // Driver routine for parallel reference enqueueing.
4188 // Creates an instance of the ref enqueueing gang
4189 // task and has the worker threads execute it.
4190 
4191 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4192   assert(_workers != NULL, "Need parallel worker threads.");
4193 
4194   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4195 
4196   _workers->run_task(&enq_task_proxy);
4197 }
4198 
4199 // End of weak reference support closures
4200 
4201 // Abstract task used to preserve (i.e. copy) any referent objects
4202 // that are in the collection set and are pointed to by reference
4203 // objects discovered by the CM ref processor.
4204 
4205 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4206 protected:
4207   G1CollectedHeap*         _g1h;
4208   G1ParScanThreadStateSet* _pss;
4209   RefToScanQueueSet*       _queues;
4210   ParallelTaskTerminator   _terminator;
4211   uint                     _n_workers;
4212 
4213 public:
4214   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4215     AbstractGangTask("ParPreserveCMReferents"),
4216     _g1h(g1h),
4217     _pss(per_thread_states),
4218     _queues(task_queues),
4219     _terminator(workers, _queues),
4220     _n_workers(workers)
4221   {
4222     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4223   }
4224 
4225   void work(uint worker_id) {
4226     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4227 
4228     ResourceMark rm;
4229     HandleMark   hm;
4230 
4231     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4232     pss->set_ref_processor(NULL);
4233     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4234 
4235     // Is alive closure
4236     G1AlwaysAliveClosure always_alive(_g1h);
4237 
4238     // Copying keep alive closure. Applied to referent objects that need
4239     // to be copied.
4240     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4241 
4242     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4243 
4244     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4245     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4246 
4247     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4248     // So this must be true - but assert just in case someone decides to
4249     // change the worker ids.
4250     assert(worker_id < limit, "sanity");
4251     assert(!rp->discovery_is_atomic(), "check this code");
4252 
4253     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4254     for (uint idx = worker_id; idx < limit; idx += stride) {
4255       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4256 
4257       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4258       while (iter.has_next()) {
4259         // Since discovery is not atomic for the CM ref processor, we
4260         // can see some null referent objects.
4261         iter.load_ptrs(DEBUG_ONLY(true));
4262         oop ref = iter.obj();
4263 
4264         // This will filter nulls.
4265         if (iter.is_referent_alive()) {
4266           iter.make_referent_alive();
4267         }
4268         iter.move_to_next();
4269       }
4270     }
4271 
4272     // Drain the queue - which may cause stealing
4273     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4274     drain_queue.do_void();
4275     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4276     assert(pss->queue_is_empty(), "should be");
4277   }
4278 };
4279 
4280 void G1CollectedHeap::process_weak_jni_handles() {
4281   double ref_proc_start = os::elapsedTime();
4282 
4283   G1STWIsAliveClosure is_alive(this);
4284   G1KeepAliveClosure keep_alive(this);
4285   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4286 
4287   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4288   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4289 }
4290 
4291 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4292   // Any reference objects, in the collection set, that were 'discovered'
4293   // by the CM ref processor should have already been copied (either by
4294   // applying the external root copy closure to the discovered lists, or
4295   // by following an RSet entry).
4296   //
4297   // But some of the referents, that are in the collection set, that these
4298   // reference objects point to may not have been copied: the STW ref
4299   // processor would have seen that the reference object had already
4300   // been 'discovered' and would have skipped discovering the reference,
4301   // but would not have treated the reference object as a regular oop.
4302   // As a result the copy closure would not have been applied to the
4303   // referent object.
4304   //
4305   // We need to explicitly copy these referent objects - the references
4306   // will be processed at the end of remarking.
4307   //
4308   // We also need to do this copying before we process the reference
4309   // objects discovered by the STW ref processor in case one of these
4310   // referents points to another object which is also referenced by an
4311   // object discovered by the STW ref processor.
4312   double preserve_cm_referents_time = 0.0;
4313 
4314   // To avoid spawning task when there is no work to do, check that
4315   // a concurrent cycle is active and that some references have been
4316   // discovered.
4317   if (concurrent_mark()->cmThread()->during_cycle() &&
4318       ref_processor_cm()->has_discovered_references()) {
4319     double preserve_cm_referents_start = os::elapsedTime();
4320     uint no_of_gc_workers = workers()->active_workers();
4321     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4322                                                    per_thread_states,
4323                                                    no_of_gc_workers,
4324                                                    _task_queues);
4325     workers()->run_task(&keep_cm_referents);
4326     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4327   }
4328 
4329   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4330 }
4331 
4332 // Weak Reference processing during an evacuation pause (part 1).
4333 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4334   double ref_proc_start = os::elapsedTime();
4335 
4336   ReferenceProcessor* rp = _ref_processor_stw;
4337   assert(rp->discovery_enabled(), "should have been enabled");
4338 
4339   // Closure to test whether a referent is alive.
4340   G1STWIsAliveClosure is_alive(this);
4341 
4342   // Even when parallel reference processing is enabled, the processing
4343   // of JNI refs is serial and performed serially by the current thread
4344   // rather than by a worker. The following PSS will be used for processing
4345   // JNI refs.
4346 
4347   // Use only a single queue for this PSS.
4348   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4349   pss->set_ref_processor(NULL);
4350   assert(pss->queue_is_empty(), "pre-condition");
4351 
4352   // Keep alive closure.
4353   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4354 
4355   // Serial Complete GC closure
4356   G1STWDrainQueueClosure drain_queue(this, pss);
4357 
4358   // Setup the soft refs policy...
4359   rp->setup_policy(false);
4360 
4361   ReferenceProcessorStats stats;
4362   if (!rp->processing_is_mt()) {
4363     // Serial reference processing...
4364     stats = rp->process_discovered_references(&is_alive,
4365                                               &keep_alive,
4366                                               &drain_queue,
4367                                               NULL,
4368                                               _gc_timer_stw);
4369   } else {
4370     uint no_of_gc_workers = workers()->active_workers();
4371 
4372     // Parallel reference processing
4373     assert(no_of_gc_workers <= rp->max_num_q(),
4374            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4375            no_of_gc_workers,  rp->max_num_q());
4376 
4377     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4378     stats = rp->process_discovered_references(&is_alive,
4379                                               &keep_alive,
4380                                               &drain_queue,
4381                                               &par_task_executor,
4382                                               _gc_timer_stw);
4383   }
4384 
4385   _gc_tracer_stw->report_gc_reference_stats(stats);
4386 
4387   // We have completed copying any necessary live referent objects.
4388   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4389 
4390   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4391   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4392 }
4393 
4394 // Weak Reference processing during an evacuation pause (part 2).
4395 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4396   double ref_enq_start = os::elapsedTime();
4397 
4398   ReferenceProcessor* rp = _ref_processor_stw;
4399   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4400 
4401   // Now enqueue any remaining on the discovered lists on to
4402   // the pending list.
4403   if (!rp->processing_is_mt()) {
4404     // Serial reference processing...
4405     rp->enqueue_discovered_references();
4406   } else {
4407     // Parallel reference enqueueing
4408 
4409     uint n_workers = workers()->active_workers();
4410 
4411     assert(n_workers <= rp->max_num_q(),
4412            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4413            n_workers,  rp->max_num_q());
4414 
4415     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4416     rp->enqueue_discovered_references(&par_task_executor);
4417   }
4418 
4419   rp->verify_no_references_recorded();
4420   assert(!rp->discovery_enabled(), "should have been disabled");
4421 
4422   // FIXME
4423   // CM's reference processing also cleans up the string and symbol tables.
4424   // Should we do that here also? We could, but it is a serial operation
4425   // and could significantly increase the pause time.
4426 
4427   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4428   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4429 }
4430 
4431 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4432   double merge_pss_time_start = os::elapsedTime();
4433   per_thread_states->flush();
4434   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4435 }
4436 
4437 void G1CollectedHeap::pre_evacuate_collection_set() {
4438   _expand_heap_after_alloc_failure = true;
4439   _evacuation_failed = false;
4440 
4441   // Disable the hot card cache.
4442   _hot_card_cache->reset_hot_cache_claimed_index();
4443   _hot_card_cache->set_use_cache(false);
4444 
4445   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4446   _preserved_marks_set.assert_empty();
4447 
4448   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4449 
4450   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4451   if (collector_state()->during_initial_mark_pause()) {
4452     double start_clear_claimed_marks = os::elapsedTime();
4453 
4454     ClassLoaderDataGraph::clear_claimed_marks();
4455 
4456     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4457     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4458   }
4459 }
4460 
4461 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4462   // Should G1EvacuationFailureALot be in effect for this GC?
4463   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4464 
4465   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4466 
4467   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4468 
4469   double start_par_time_sec = os::elapsedTime();
4470   double end_par_time_sec;
4471 
4472   {
4473     const uint n_workers = workers()->active_workers();
4474     G1RootProcessor root_processor(this, n_workers);
4475     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4476 
4477     print_termination_stats_hdr();
4478 
4479     workers()->run_task(&g1_par_task);
4480     end_par_time_sec = os::elapsedTime();
4481 
4482     // Closing the inner scope will execute the destructor
4483     // for the G1RootProcessor object. We record the current
4484     // elapsed time before closing the scope so that time
4485     // taken for the destructor is NOT included in the
4486     // reported parallel time.
4487   }
4488 
4489   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4490   phase_times->record_par_time(par_time_ms);
4491 
4492   double code_root_fixup_time_ms =
4493         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4494   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4495 }
4496 
4497 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4498   // Process any discovered reference objects - we have
4499   // to do this _before_ we retire the GC alloc regions
4500   // as we may have to copy some 'reachable' referent
4501   // objects (and their reachable sub-graphs) that were
4502   // not copied during the pause.
4503   if (g1_policy()->should_process_references()) {
4504     preserve_cm_referents(per_thread_states);
4505     process_discovered_references(per_thread_states);
4506   } else {
4507     ref_processor_stw()->verify_no_references_recorded();
4508     process_weak_jni_handles();
4509   }
4510 
4511   if (G1StringDedup::is_enabled()) {
4512     double fixup_start = os::elapsedTime();
4513 
4514     G1STWIsAliveClosure is_alive(this);
4515     G1KeepAliveClosure keep_alive(this);
4516     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4517 
4518     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4519     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4520   }
4521 
4522   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4523 
4524   if (evacuation_failed()) {
4525     restore_after_evac_failure();
4526 
4527     // Reset the G1EvacuationFailureALot counters and flags
4528     // Note: the values are reset only when an actual
4529     // evacuation failure occurs.
4530     NOT_PRODUCT(reset_evacuation_should_fail();)
4531   }
4532 
4533   _preserved_marks_set.assert_empty();
4534 
4535   // Enqueue any remaining references remaining on the STW
4536   // reference processor's discovered lists. We need to do
4537   // this after the card table is cleaned (and verified) as
4538   // the act of enqueueing entries on to the pending list
4539   // will log these updates (and dirty their associated
4540   // cards). We need these updates logged to update any
4541   // RSets.
4542   if (g1_policy()->should_process_references()) {
4543     enqueue_discovered_references(per_thread_states);
4544   } else {
4545     g1_policy()->phase_times()->record_ref_enq_time(0);
4546   }
4547 
4548   _allocator->release_gc_alloc_regions(evacuation_info);
4549 
4550   merge_per_thread_state_info(per_thread_states);
4551 
4552   // Reset and re-enable the hot card cache.
4553   // Note the counts for the cards in the regions in the
4554   // collection set are reset when the collection set is freed.
4555   _hot_card_cache->reset_hot_cache();
4556   _hot_card_cache->set_use_cache(true);
4557 
4558   purge_code_root_memory();
4559 
4560   redirty_logged_cards();
4561 #if defined(COMPILER2) || INCLUDE_JVMCI
4562   double start = os::elapsedTime();
4563   DerivedPointerTable::update_pointers();
4564   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4565 #endif
4566   g1_policy()->print_age_table();
4567 }
4568 
4569 void G1CollectedHeap::record_obj_copy_mem_stats() {
4570   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4571 
4572   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4573                                                create_g1_evac_summary(&_old_evac_stats));
4574 }
4575 
4576 void G1CollectedHeap::free_region(HeapRegion* hr,
4577                                   FreeRegionList* free_list,
4578                                   bool skip_remset,
4579                                   bool skip_hot_card_cache,
4580                                   bool locked) {
4581   assert(!hr->is_free(), "the region should not be free");
4582   assert(!hr->is_empty(), "the region should not be empty");
4583   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4584   assert(free_list != NULL, "pre-condition");
4585 
4586   if (G1VerifyBitmaps) {
4587     MemRegion mr(hr->bottom(), hr->end());
4588     concurrent_mark()->clearRangePrevBitmap(mr);
4589   }
4590 
4591   // Clear the card counts for this region.
4592   // Note: we only need to do this if the region is not young
4593   // (since we don't refine cards in young regions).
4594   if (!skip_hot_card_cache && !hr->is_young()) {
4595     _hot_card_cache->reset_card_counts(hr);
4596   }
4597   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4598   free_list->add_ordered(hr);
4599 }
4600 
4601 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4602                                             FreeRegionList* free_list,
4603                                             bool skip_remset) {
4604   assert(hr->is_humongous(), "this is only for humongous regions");
4605   assert(free_list != NULL, "pre-condition");
4606   hr->clear_humongous();
4607   free_region(hr, free_list, skip_remset);
4608 }
4609 
4610 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4611                                            const uint humongous_regions_removed) {
4612   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4613     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4614     _old_set.bulk_remove(old_regions_removed);
4615     _humongous_set.bulk_remove(humongous_regions_removed);
4616   }
4617 
4618 }
4619 
4620 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4621   assert(list != NULL, "list can't be null");
4622   if (!list->is_empty()) {
4623     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4624     _hrm.insert_list_into_free_list(list);
4625   }
4626 }
4627 
4628 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4629   decrease_used(bytes);
4630 }
4631 
4632 class G1ParScrubRemSetTask: public AbstractGangTask {
4633 protected:
4634   G1RemSet* _g1rs;
4635   HeapRegionClaimer _hrclaimer;
4636 
4637 public:
4638   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4639     AbstractGangTask("G1 ScrubRS"),
4640     _g1rs(g1_rs),
4641     _hrclaimer(num_workers) {
4642   }
4643 
4644   void work(uint worker_id) {
4645     _g1rs->scrub(worker_id, &_hrclaimer);
4646   }
4647 };
4648 
4649 void G1CollectedHeap::scrub_rem_set() {
4650   uint num_workers = workers()->active_workers();
4651   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4652   workers()->run_task(&g1_par_scrub_rs_task);
4653 }
4654 
4655 class G1FreeCollectionSetTask : public AbstractGangTask {
4656 private:
4657 
4658   // Closure applied to all regions in the collection set to do work that needs to
4659   // be done serially in a single thread.
4660   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4661   private:
4662     EvacuationInfo* _evacuation_info;
4663     const size_t* _surviving_young_words;
4664 
4665     // Bytes used in successfully evacuated regions before the evacuation.
4666     size_t _before_used_bytes;
4667     // Bytes used in unsucessfully evacuated regions before the evacuation
4668     size_t _after_used_bytes;
4669 
4670     size_t _bytes_allocated_in_old_since_last_gc;
4671 
4672     size_t _failure_used_words;
4673     size_t _failure_waste_words;
4674 
4675     FreeRegionList _local_free_list;
4676   public:
4677     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4678       HeapRegionClosure(),
4679       _evacuation_info(evacuation_info),
4680       _surviving_young_words(surviving_young_words),
4681       _before_used_bytes(0),
4682       _after_used_bytes(0),
4683       _bytes_allocated_in_old_since_last_gc(0),
4684       _failure_used_words(0),
4685       _failure_waste_words(0),
4686       _local_free_list("Local Region List for CSet Freeing") {
4687     }
4688 
4689     virtual bool doHeapRegion(HeapRegion* r) {
4690       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4691 
4692       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4693       g1h->clear_in_cset(r);
4694 
4695       if (r->is_young()) {
4696         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4697                "Young index %d is wrong for region %u of type %s with %u young regions",
4698                r->young_index_in_cset(),
4699                r->hrm_index(),
4700                r->get_type_str(),
4701                g1h->collection_set()->young_region_length());
4702         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4703         r->record_surv_words_in_group(words_survived);
4704       }
4705 
4706       if (!r->evacuation_failed()) {
4707         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4708         _before_used_bytes += r->used();
4709         g1h->free_region(r,
4710                          &_local_free_list,
4711                          true, /* skip_remset */
4712                          true, /* skip_hot_card_cache */
4713                          true  /* locked */);
4714       } else {
4715         r->uninstall_surv_rate_group();
4716         r->set_young_index_in_cset(-1);
4717         r->set_evacuation_failed(false);
4718         // When moving a young gen region to old gen, we "allocate" that whole region
4719         // there. This is in addition to any already evacuated objects. Notify the
4720         // policy about that.
4721         // Old gen regions do not cause an additional allocation: both the objects
4722         // still in the region and the ones already moved are accounted for elsewhere.
4723         if (r->is_young()) {
4724           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4725         }
4726         // The region is now considered to be old.
4727         r->set_old();
4728         // Do some allocation statistics accounting. Regions that failed evacuation
4729         // are always made old, so there is no need to update anything in the young
4730         // gen statistics, but we need to update old gen statistics.
4731         size_t used_words = r->marked_bytes() / HeapWordSize;
4732 
4733         _failure_used_words += used_words;
4734         _failure_waste_words += HeapRegion::GrainWords - used_words;
4735 
4736         g1h->old_set_add(r);
4737         _after_used_bytes += r->used();
4738       }
4739       return false;
4740     }
4741 
4742     void complete_work() {
4743       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4744 
4745       _evacuation_info->set_regions_freed(_local_free_list.length());
4746       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4747 
4748       g1h->prepend_to_freelist(&_local_free_list);
4749       g1h->decrement_summary_bytes(_before_used_bytes);
4750 
4751       G1Policy* policy = g1h->g1_policy();
4752       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4753 
4754       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4755     }
4756   };
4757 
4758   G1CollectionSet* _collection_set;
4759   G1SerialFreeCollectionSetClosure _cl;
4760   const size_t* _surviving_young_words;
4761 
4762   size_t _rs_lengths;
4763 
4764   volatile jint _serial_work_claim;
4765 
4766   struct WorkItem {
4767     uint region_idx;
4768     bool is_young;
4769     bool evacuation_failed;
4770 
4771     WorkItem(HeapRegion* r) {
4772       region_idx = r->hrm_index();
4773       is_young = r->is_young();
4774       evacuation_failed = r->evacuation_failed();
4775     }
4776   };
4777 
4778   volatile size_t _parallel_work_claim;
4779   size_t _num_work_items;
4780   WorkItem* _work_items;
4781 
4782   void do_serial_work() {
4783     // Need to grab the lock to be allowed to modify the old region list.
4784     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4785     _collection_set->iterate(&_cl);
4786   }
4787 
4788   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4789     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4790 
4791     HeapRegion* r = g1h->region_at(region_idx);
4792     assert(!g1h->is_on_master_free_list(r), "sanity");
4793 
4794     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4795 
4796     if (!is_young) {
4797       g1h->_hot_card_cache->reset_card_counts(r);
4798     }
4799 
4800     if (!evacuation_failed) {
4801       r->rem_set()->clear_locked();
4802     }
4803   }
4804 
4805   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4806   private:
4807     size_t _cur_idx;
4808     WorkItem* _work_items;
4809   public:
4810     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4811 
4812     virtual bool doHeapRegion(HeapRegion* r) {
4813       _work_items[_cur_idx++] = WorkItem(r);
4814       return false;
4815     }
4816   };
4817 
4818   void prepare_work() {
4819     G1PrepareFreeCollectionSetClosure cl(_work_items);
4820     _collection_set->iterate(&cl);
4821   }
4822 
4823   void complete_work() {
4824     _cl.complete_work();
4825 
4826     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4827     policy->record_max_rs_lengths(_rs_lengths);
4828     policy->cset_regions_freed();
4829   }
4830 public:
4831   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4832     AbstractGangTask("G1 Free Collection Set"),
4833     _cl(evacuation_info, surviving_young_words),
4834     _collection_set(collection_set),
4835     _surviving_young_words(surviving_young_words),
4836     _serial_work_claim(0),
4837     _rs_lengths(0),
4838     _parallel_work_claim(0),
4839     _num_work_items(collection_set->region_length()),
4840     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4841     prepare_work();
4842   }
4843 
4844   ~G1FreeCollectionSetTask() {
4845     complete_work();
4846     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4847   }
4848 
4849   // Chunk size for work distribution. The chosen value has been determined experimentally
4850   // to be a good tradeoff between overhead and achievable parallelism.
4851   static uint chunk_size() { return 32; }
4852 
4853   virtual void work(uint worker_id) {
4854     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4855 
4856     // Claim serial work.
4857     if (_serial_work_claim == 0) {
4858       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4859       if (value == 0) {
4860         double serial_time = os::elapsedTime();
4861         do_serial_work();
4862         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4863       }
4864     }
4865 
4866     // Start parallel work.
4867     double young_time = 0.0;
4868     bool has_young_time = false;
4869     double non_young_time = 0.0;
4870     bool has_non_young_time = false;
4871 
4872     while (true) {
4873       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4874       size_t cur = end - chunk_size();
4875 
4876       if (cur >= _num_work_items) {
4877         break;
4878       }
4879 
4880       double start_time = os::elapsedTime();
4881 
4882       end = MIN2(end, _num_work_items);
4883 
4884       for (; cur < end; cur++) {
4885         bool is_young = _work_items[cur].is_young;
4886 
4887         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4888 
4889         double end_time = os::elapsedTime();
4890         double time_taken = end_time - start_time;
4891         if (is_young) {
4892           young_time += time_taken;
4893           has_young_time = true;
4894         } else {
4895           non_young_time += time_taken;
4896           has_non_young_time = true;
4897         }
4898         start_time = end_time;
4899       }
4900     }
4901 
4902     if (has_young_time) {
4903       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4904     }
4905     if (has_non_young_time) {
4906       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4907     }
4908   }
4909 };
4910 
4911 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4912   _eden.clear();
4913 
4914   double free_cset_start_time = os::elapsedTime();
4915 
4916   {
4917     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4918     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4919 
4920     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4921 
4922     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4923                         cl.name(),
4924                         num_workers,
4925                         _collection_set.region_length());
4926     workers()->run_task(&cl, num_workers);
4927   }
4928   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4929 
4930   collection_set->clear();
4931 }
4932 
4933 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4934  private:
4935   FreeRegionList* _free_region_list;
4936   HeapRegionSet* _proxy_set;
4937   uint _humongous_objects_reclaimed;
4938   uint _humongous_regions_reclaimed;
4939   size_t _freed_bytes;
4940  public:
4941 
4942   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4943     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4944   }
4945 
4946   virtual bool doHeapRegion(HeapRegion* r) {
4947     if (!r->is_starts_humongous()) {
4948       return false;
4949     }
4950 
4951     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4952 
4953     oop obj = (oop)r->bottom();
4954     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4955 
4956     // The following checks whether the humongous object is live are sufficient.
4957     // The main additional check (in addition to having a reference from the roots
4958     // or the young gen) is whether the humongous object has a remembered set entry.
4959     //
4960     // A humongous object cannot be live if there is no remembered set for it
4961     // because:
4962     // - there can be no references from within humongous starts regions referencing
4963     // the object because we never allocate other objects into them.
4964     // (I.e. there are no intra-region references that may be missed by the
4965     // remembered set)
4966     // - as soon there is a remembered set entry to the humongous starts region
4967     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4968     // until the end of a concurrent mark.
4969     //
4970     // It is not required to check whether the object has been found dead by marking
4971     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4972     // all objects allocated during that time are considered live.
4973     // SATB marking is even more conservative than the remembered set.
4974     // So if at this point in the collection there is no remembered set entry,
4975     // nobody has a reference to it.
4976     // At the start of collection we flush all refinement logs, and remembered sets
4977     // are completely up-to-date wrt to references to the humongous object.
4978     //
4979     // Other implementation considerations:
4980     // - never consider object arrays at this time because they would pose
4981     // considerable effort for cleaning up the the remembered sets. This is
4982     // required because stale remembered sets might reference locations that
4983     // are currently allocated into.
4984     uint region_idx = r->hrm_index();
4985     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4986         !r->rem_set()->is_empty()) {
4987       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4988                                region_idx,
4989                                (size_t)obj->size() * HeapWordSize,
4990                                p2i(r->bottom()),
4991                                r->rem_set()->occupied(),
4992                                r->rem_set()->strong_code_roots_list_length(),
4993                                next_bitmap->isMarked(r->bottom()),
4994                                g1h->is_humongous_reclaim_candidate(region_idx),
4995                                obj->is_typeArray()
4996                               );
4997       return false;
4998     }
4999 
5000     guarantee(obj->is_typeArray(),
5001               "Only eagerly reclaiming type arrays is supported, but the object "
5002               PTR_FORMAT " is not.", p2i(r->bottom()));
5003 
5004     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5005                              region_idx,
5006                              (size_t)obj->size() * HeapWordSize,
5007                              p2i(r->bottom()),
5008                              r->rem_set()->occupied(),
5009                              r->rem_set()->strong_code_roots_list_length(),
5010                              next_bitmap->isMarked(r->bottom()),
5011                              g1h->is_humongous_reclaim_candidate(region_idx),
5012                              obj->is_typeArray()
5013                             );
5014 
5015     // Need to clear mark bit of the humongous object if already set.
5016     if (next_bitmap->isMarked(r->bottom())) {
5017       next_bitmap->clear(r->bottom());
5018     }
5019     _humongous_objects_reclaimed++;
5020     do {
5021       HeapRegion* next = g1h->next_region_in_humongous(r);
5022       _freed_bytes += r->used();
5023       r->set_containing_set(NULL);
5024       _humongous_regions_reclaimed++;
5025       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
5026       r = next;
5027     } while (r != NULL);
5028 
5029     return false;
5030   }
5031 
5032   uint humongous_objects_reclaimed() {
5033     return _humongous_objects_reclaimed;
5034   }
5035 
5036   uint humongous_regions_reclaimed() {
5037     return _humongous_regions_reclaimed;
5038   }
5039 
5040   size_t bytes_freed() const {
5041     return _freed_bytes;
5042   }
5043 };
5044 
5045 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5046   assert_at_safepoint(true);
5047 
5048   if (!G1EagerReclaimHumongousObjects ||
5049       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5050     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5051     return;
5052   }
5053 
5054   double start_time = os::elapsedTime();
5055 
5056   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5057 
5058   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5059   heap_region_iterate(&cl);
5060 
5061   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
5062 
5063   G1HRPrinter* hrp = hr_printer();
5064   if (hrp->is_active()) {
5065     FreeRegionListIterator iter(&local_cleanup_list);
5066     while (iter.more_available()) {
5067       HeapRegion* hr = iter.get_next();
5068       hrp->cleanup(hr);
5069     }
5070   }
5071 
5072   prepend_to_freelist(&local_cleanup_list);
5073   decrement_summary_bytes(cl.bytes_freed());
5074 
5075   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5076                                                                     cl.humongous_objects_reclaimed());
5077 }
5078 
5079 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5080 public:
5081   virtual bool doHeapRegion(HeapRegion* r) {
5082     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5083     G1CollectedHeap::heap()->clear_in_cset(r);
5084     r->set_young_index_in_cset(-1);
5085     return false;
5086   }
5087 };
5088 
5089 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5090   G1AbandonCollectionSetClosure cl;
5091   collection_set->iterate(&cl);
5092 
5093   collection_set->clear();
5094   collection_set->stop_incremental_building();
5095 }
5096 
5097 void G1CollectedHeap::set_free_regions_coming() {
5098   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5099 
5100   assert(!free_regions_coming(), "pre-condition");
5101   _free_regions_coming = true;
5102 }
5103 
5104 void G1CollectedHeap::reset_free_regions_coming() {
5105   assert(free_regions_coming(), "pre-condition");
5106 
5107   {
5108     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5109     _free_regions_coming = false;
5110     SecondaryFreeList_lock->notify_all();
5111   }
5112 
5113   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5114 }
5115 
5116 void G1CollectedHeap::wait_while_free_regions_coming() {
5117   // Most of the time we won't have to wait, so let's do a quick test
5118   // first before we take the lock.
5119   if (!free_regions_coming()) {
5120     return;
5121   }
5122 
5123   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5124 
5125   {
5126     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5127     while (free_regions_coming()) {
5128       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5129     }
5130   }
5131 
5132   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5133 }
5134 
5135 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5136   return _allocator->is_retained_old_region(hr);
5137 }
5138 
5139 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5140   _eden.add(hr);
5141   _g1_policy->set_region_eden(hr);
5142 }
5143 
5144 #ifdef ASSERT
5145 
5146 class NoYoungRegionsClosure: public HeapRegionClosure {
5147 private:
5148   bool _success;
5149 public:
5150   NoYoungRegionsClosure() : _success(true) { }
5151   bool doHeapRegion(HeapRegion* r) {
5152     if (r->is_young()) {
5153       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5154                             p2i(r->bottom()), p2i(r->end()));
5155       _success = false;
5156     }
5157     return false;
5158   }
5159   bool success() { return _success; }
5160 };
5161 
5162 bool G1CollectedHeap::check_young_list_empty() {
5163   bool ret = (young_regions_count() == 0);
5164 
5165   NoYoungRegionsClosure closure;
5166   heap_region_iterate(&closure);
5167   ret = ret && closure.success();
5168 
5169   return ret;
5170 }
5171 
5172 #endif // ASSERT
5173 
5174 class TearDownRegionSetsClosure : public HeapRegionClosure {
5175 private:
5176   HeapRegionSet *_old_set;
5177 
5178 public:
5179   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5180 
5181   bool doHeapRegion(HeapRegion* r) {
5182     if (r->is_old()) {
5183       _old_set->remove(r);
5184     } else if(r->is_young()) {
5185       r->uninstall_surv_rate_group();
5186     } else {
5187       // We ignore free regions, we'll empty the free list afterwards.
5188       // We ignore humongous regions, we're not tearing down the
5189       // humongous regions set.
5190       assert(r->is_free() || r->is_humongous(),
5191              "it cannot be another type");
5192     }
5193     return false;
5194   }
5195 
5196   ~TearDownRegionSetsClosure() {
5197     assert(_old_set->is_empty(), "post-condition");
5198   }
5199 };
5200 
5201 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5202   assert_at_safepoint(true /* should_be_vm_thread */);
5203 
5204   if (!free_list_only) {
5205     TearDownRegionSetsClosure cl(&_old_set);
5206     heap_region_iterate(&cl);
5207 
5208     // Note that emptying the _young_list is postponed and instead done as
5209     // the first step when rebuilding the regions sets again. The reason for
5210     // this is that during a full GC string deduplication needs to know if
5211     // a collected region was young or old when the full GC was initiated.
5212   }
5213   _hrm.remove_all_free_regions();
5214 }
5215 
5216 void G1CollectedHeap::increase_used(size_t bytes) {
5217   _summary_bytes_used += bytes;
5218 }
5219 
5220 void G1CollectedHeap::decrease_used(size_t bytes) {
5221   assert(_summary_bytes_used >= bytes,
5222          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5223          _summary_bytes_used, bytes);
5224   _summary_bytes_used -= bytes;
5225 }
5226 
5227 void G1CollectedHeap::set_used(size_t bytes) {
5228   _summary_bytes_used = bytes;
5229 }
5230 
5231 class RebuildRegionSetsClosure : public HeapRegionClosure {
5232 private:
5233   bool            _free_list_only;
5234   HeapRegionSet*   _old_set;
5235   HeapRegionManager*   _hrm;
5236   size_t          _total_used;
5237 
5238 public:
5239   RebuildRegionSetsClosure(bool free_list_only,
5240                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5241     _free_list_only(free_list_only),
5242     _old_set(old_set), _hrm(hrm), _total_used(0) {
5243     assert(_hrm->num_free_regions() == 0, "pre-condition");
5244     if (!free_list_only) {
5245       assert(_old_set->is_empty(), "pre-condition");
5246     }
5247   }
5248 
5249   bool doHeapRegion(HeapRegion* r) {
5250     if (r->is_empty()) {
5251       // Add free regions to the free list
5252       r->set_free();
5253       r->set_allocation_context(AllocationContext::system());
5254       _hrm->insert_into_free_list(r);
5255     } else if (!_free_list_only) {
5256 
5257       if (r->is_humongous()) {
5258         // We ignore humongous regions. We left the humongous set unchanged.
5259       } else {
5260         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5261         // We now consider all regions old, so register as such. Leave
5262         // archive regions set that way, however, while still adding
5263         // them to the old set.
5264         if (!r->is_archive()) {
5265           r->set_old();
5266         }
5267         _old_set->add(r);
5268       }
5269       _total_used += r->used();
5270     }
5271 
5272     return false;
5273   }
5274 
5275   size_t total_used() {
5276     return _total_used;
5277   }
5278 };
5279 
5280 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5281   assert_at_safepoint(true /* should_be_vm_thread */);
5282 
5283   if (!free_list_only) {
5284     _eden.clear();
5285     _survivor.clear();
5286   }
5287 
5288   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5289   heap_region_iterate(&cl);
5290 
5291   if (!free_list_only) {
5292     set_used(cl.total_used());
5293     if (_archive_allocator != NULL) {
5294       _archive_allocator->clear_used();
5295     }
5296   }
5297   assert(used_unlocked() == recalculate_used(),
5298          "inconsistent used_unlocked(), "
5299          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5300          used_unlocked(), recalculate_used());
5301 }
5302 
5303 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5304   _refine_cte_cl->set_concurrent(concurrent);
5305 }
5306 
5307 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5308   HeapRegion* hr = heap_region_containing(p);
5309   return hr->is_in(p);
5310 }
5311 
5312 // Methods for the mutator alloc region
5313 
5314 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5315                                                       bool force) {
5316   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5317   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5318   if (force || should_allocate) {
5319     HeapRegion* new_alloc_region = new_region(word_size,
5320                                               false /* is_old */,
5321                                               false /* do_expand */);
5322     if (new_alloc_region != NULL) {
5323       set_region_short_lived_locked(new_alloc_region);
5324       _hr_printer.alloc(new_alloc_region, !should_allocate);
5325       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5326       return new_alloc_region;
5327     }
5328   }
5329   return NULL;
5330 }
5331 
5332 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5333                                                   size_t allocated_bytes) {
5334   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5335   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5336 
5337   collection_set()->add_eden_region(alloc_region);
5338   increase_used(allocated_bytes);
5339   _hr_printer.retire(alloc_region);
5340   // We update the eden sizes here, when the region is retired,
5341   // instead of when it's allocated, since this is the point that its
5342   // used space has been recored in _summary_bytes_used.
5343   g1mm()->update_eden_size();
5344 }
5345 
5346 // Methods for the GC alloc regions
5347 
5348 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5349   if (dest.is_old()) {
5350     return true;
5351   } else {
5352     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5353   }
5354 }
5355 
5356 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5357   assert(FreeList_lock->owned_by_self(), "pre-condition");
5358 
5359   if (!has_more_regions(dest)) {
5360     return NULL;
5361   }
5362 
5363   const bool is_survivor = dest.is_young();
5364 
5365   HeapRegion* new_alloc_region = new_region(word_size,
5366                                             !is_survivor,
5367                                             true /* do_expand */);
5368   if (new_alloc_region != NULL) {
5369     // We really only need to do this for old regions given that we
5370     // should never scan survivors. But it doesn't hurt to do it
5371     // for survivors too.
5372     new_alloc_region->record_timestamp();
5373     if (is_survivor) {
5374       new_alloc_region->set_survivor();
5375       _survivor.add(new_alloc_region);
5376       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5377     } else {
5378       new_alloc_region->set_old();
5379       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5380     }
5381     _hr_printer.alloc(new_alloc_region);
5382     bool during_im = collector_state()->during_initial_mark_pause();
5383     new_alloc_region->note_start_of_copying(during_im);
5384     return new_alloc_region;
5385   }
5386   return NULL;
5387 }
5388 
5389 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5390                                              size_t allocated_bytes,
5391                                              InCSetState dest) {
5392   bool during_im = collector_state()->during_initial_mark_pause();
5393   alloc_region->note_end_of_copying(during_im);
5394   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5395   if (dest.is_old()) {
5396     _old_set.add(alloc_region);
5397   }
5398   _hr_printer.retire(alloc_region);
5399 }
5400 
5401 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5402   bool expanded = false;
5403   uint index = _hrm.find_highest_free(&expanded);
5404 
5405   if (index != G1_NO_HRM_INDEX) {
5406     if (expanded) {
5407       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5408                                 HeapRegion::GrainWords * HeapWordSize);
5409     }
5410     _hrm.allocate_free_regions_starting_at(index, 1);
5411     return region_at(index);
5412   }
5413   return NULL;
5414 }
5415 
5416 // Optimized nmethod scanning
5417 
5418 class RegisterNMethodOopClosure: public OopClosure {
5419   G1CollectedHeap* _g1h;
5420   nmethod* _nm;
5421 
5422   template <class T> void do_oop_work(T* p) {
5423     T heap_oop = oopDesc::load_heap_oop(p);
5424     if (!oopDesc::is_null(heap_oop)) {
5425       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5426       HeapRegion* hr = _g1h->heap_region_containing(obj);
5427       assert(!hr->is_continues_humongous(),
5428              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5429              " starting at " HR_FORMAT,
5430              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5431 
5432       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5433       hr->add_strong_code_root_locked(_nm);
5434     }
5435   }
5436 
5437 public:
5438   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5439     _g1h(g1h), _nm(nm) {}
5440 
5441   void do_oop(oop* p)       { do_oop_work(p); }
5442   void do_oop(narrowOop* p) { do_oop_work(p); }
5443 };
5444 
5445 class UnregisterNMethodOopClosure: public OopClosure {
5446   G1CollectedHeap* _g1h;
5447   nmethod* _nm;
5448 
5449   template <class T> void do_oop_work(T* p) {
5450     T heap_oop = oopDesc::load_heap_oop(p);
5451     if (!oopDesc::is_null(heap_oop)) {
5452       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5453       HeapRegion* hr = _g1h->heap_region_containing(obj);
5454       assert(!hr->is_continues_humongous(),
5455              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5456              " starting at " HR_FORMAT,
5457              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5458 
5459       hr->remove_strong_code_root(_nm);
5460     }
5461   }
5462 
5463 public:
5464   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5465     _g1h(g1h), _nm(nm) {}
5466 
5467   void do_oop(oop* p)       { do_oop_work(p); }
5468   void do_oop(narrowOop* p) { do_oop_work(p); }
5469 };
5470 
5471 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5472   CollectedHeap::register_nmethod(nm);
5473 
5474   guarantee(nm != NULL, "sanity");
5475   RegisterNMethodOopClosure reg_cl(this, nm);
5476   nm->oops_do(&reg_cl);
5477 }
5478 
5479 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5480   CollectedHeap::unregister_nmethod(nm);
5481 
5482   guarantee(nm != NULL, "sanity");
5483   UnregisterNMethodOopClosure reg_cl(this, nm);
5484   nm->oops_do(&reg_cl, true);
5485 }
5486 
5487 void G1CollectedHeap::purge_code_root_memory() {
5488   double purge_start = os::elapsedTime();
5489   G1CodeRootSet::purge();
5490   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5491   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5492 }
5493 
5494 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5495   G1CollectedHeap* _g1h;
5496 
5497 public:
5498   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5499     _g1h(g1h) {}
5500 
5501   void do_code_blob(CodeBlob* cb) {
5502     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5503     if (nm == NULL) {
5504       return;
5505     }
5506 
5507     if (ScavengeRootsInCode) {
5508       _g1h->register_nmethod(nm);
5509     }
5510   }
5511 };
5512 
5513 void G1CollectedHeap::rebuild_strong_code_roots() {
5514   RebuildStrongCodeRootClosure blob_cl(this);
5515   CodeCache::blobs_do(&blob_cl);
5516 }