1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "prims/resolvedMethodTable.hpp"
  78 #include "runtime/atomic.hpp"
  79 #include "runtime/init.hpp"
  80 #include "runtime/orderAccess.inline.hpp"
  81 #include "runtime/vmThread.hpp"
  82 #include "utilities/align.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 #include "utilities/stack.inline.hpp"
  85 
  86 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  87 
  88 // INVARIANTS/NOTES
  89 //
  90 // All allocation activity covered by the G1CollectedHeap interface is
  91 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  92 // and allocate_new_tlab, which are the "entry" points to the
  93 // allocation code from the rest of the JVM.  (Note that this does not
  94 // apply to TLAB allocation, which is not part of this interface: it
  95 // is done by clients of this interface.)
  96 
  97 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
  98  private:
  99   size_t _num_dirtied;
 100   G1CollectedHeap* _g1h;
 101   G1SATBCardTableLoggingModRefBS* _g1_bs;
 102 
 103   HeapRegion* region_for_card(jbyte* card_ptr) const {
 104     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 105   }
 106 
 107   bool will_become_free(HeapRegion* hr) const {
 108     // A region will be freed by free_collection_set if the region is in the
 109     // collection set and has not had an evacuation failure.
 110     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 111   }
 112 
 113  public:
 114   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 115     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 116 
 117   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 118     HeapRegion* hr = region_for_card(card_ptr);
 119 
 120     // Should only dirty cards in regions that won't be freed.
 121     if (!will_become_free(hr)) {
 122       *card_ptr = CardTableModRefBS::dirty_card_val();
 123       _num_dirtied++;
 124     }
 125 
 126     return true;
 127   }
 128 
 129   size_t num_dirtied()   const { return _num_dirtied; }
 130 };
 131 
 132 
 133 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 134   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 135 }
 136 
 137 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 138   // The from card cache is not the memory that is actually committed. So we cannot
 139   // take advantage of the zero_filled parameter.
 140   reset_from_card_cache(start_idx, num_regions);
 141 }
 142 
 143 // Returns true if the reference points to an object that
 144 // can move in an incremental collection.
 145 bool G1CollectedHeap::is_scavengable(const void* p) {
 146   HeapRegion* hr = heap_region_containing(p);
 147   return !hr->is_pinned();
 148 }
 149 
 150 // Private methods.
 151 
 152 HeapRegion*
 153 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 154   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 155   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 156     if (!_secondary_free_list.is_empty()) {
 157       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 158                                       "secondary_free_list has %u entries",
 159                                       _secondary_free_list.length());
 160       // It looks as if there are free regions available on the
 161       // secondary_free_list. Let's move them to the free_list and try
 162       // again to allocate from it.
 163       append_secondary_free_list();
 164 
 165       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 166              "empty we should have moved at least one entry to the free_list");
 167       HeapRegion* res = _hrm.allocate_free_region(is_old);
 168       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 169                                       "allocated " HR_FORMAT " from secondary_free_list",
 170                                       HR_FORMAT_PARAMS(res));
 171       return res;
 172     }
 173 
 174     // Wait here until we get notified either when (a) there are no
 175     // more free regions coming or (b) some regions have been moved on
 176     // the secondary_free_list.
 177     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 178   }
 179 
 180   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 181                                   "could not allocate from secondary_free_list");
 182   return NULL;
 183 }
 184 
 185 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 186   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 187          "the only time we use this to allocate a humongous region is "
 188          "when we are allocating a single humongous region");
 189 
 190   HeapRegion* res;
 191   if (G1StressConcRegionFreeing) {
 192     if (!_secondary_free_list.is_empty()) {
 193       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 194                                       "forced to look at the secondary_free_list");
 195       res = new_region_try_secondary_free_list(is_old);
 196       if (res != NULL) {
 197         return res;
 198       }
 199     }
 200   }
 201 
 202   res = _hrm.allocate_free_region(is_old);
 203 
 204   if (res == NULL) {
 205     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 206                                     "res == NULL, trying the secondary_free_list");
 207     res = new_region_try_secondary_free_list(is_old);
 208   }
 209   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 210     // Currently, only attempts to allocate GC alloc regions set
 211     // do_expand to true. So, we should only reach here during a
 212     // safepoint. If this assumption changes we might have to
 213     // reconsider the use of _expand_heap_after_alloc_failure.
 214     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 215 
 216     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 217                               word_size * HeapWordSize);
 218 
 219     if (expand(word_size * HeapWordSize)) {
 220       // Given that expand() succeeded in expanding the heap, and we
 221       // always expand the heap by an amount aligned to the heap
 222       // region size, the free list should in theory not be empty.
 223       // In either case allocate_free_region() will check for NULL.
 224       res = _hrm.allocate_free_region(is_old);
 225     } else {
 226       _expand_heap_after_alloc_failure = false;
 227     }
 228   }
 229   return res;
 230 }
 231 
 232 HeapWord*
 233 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 234                                                            uint num_regions,
 235                                                            size_t word_size,
 236                                                            AllocationContext_t context) {
 237   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 238   assert(is_humongous(word_size), "word_size should be humongous");
 239   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 240 
 241   // Index of last region in the series.
 242   uint last = first + num_regions - 1;
 243 
 244   // We need to initialize the region(s) we just discovered. This is
 245   // a bit tricky given that it can happen concurrently with
 246   // refinement threads refining cards on these regions and
 247   // potentially wanting to refine the BOT as they are scanning
 248   // those cards (this can happen shortly after a cleanup; see CR
 249   // 6991377). So we have to set up the region(s) carefully and in
 250   // a specific order.
 251 
 252   // The word size sum of all the regions we will allocate.
 253   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 254   assert(word_size <= word_size_sum, "sanity");
 255 
 256   // This will be the "starts humongous" region.
 257   HeapRegion* first_hr = region_at(first);
 258   // The header of the new object will be placed at the bottom of
 259   // the first region.
 260   HeapWord* new_obj = first_hr->bottom();
 261   // This will be the new top of the new object.
 262   HeapWord* obj_top = new_obj + word_size;
 263 
 264   // First, we need to zero the header of the space that we will be
 265   // allocating. When we update top further down, some refinement
 266   // threads might try to scan the region. By zeroing the header we
 267   // ensure that any thread that will try to scan the region will
 268   // come across the zero klass word and bail out.
 269   //
 270   // NOTE: It would not have been correct to have used
 271   // CollectedHeap::fill_with_object() and make the space look like
 272   // an int array. The thread that is doing the allocation will
 273   // later update the object header to a potentially different array
 274   // type and, for a very short period of time, the klass and length
 275   // fields will be inconsistent. This could cause a refinement
 276   // thread to calculate the object size incorrectly.
 277   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 278 
 279   // Next, pad out the unused tail of the last region with filler
 280   // objects, for improved usage accounting.
 281   // How many words we use for filler objects.
 282   size_t word_fill_size = word_size_sum - word_size;
 283 
 284   // How many words memory we "waste" which cannot hold a filler object.
 285   size_t words_not_fillable = 0;
 286 
 287   if (word_fill_size >= min_fill_size()) {
 288     fill_with_objects(obj_top, word_fill_size);
 289   } else if (word_fill_size > 0) {
 290     // We have space to fill, but we cannot fit an object there.
 291     words_not_fillable = word_fill_size;
 292     word_fill_size = 0;
 293   }
 294 
 295   // We will set up the first region as "starts humongous". This
 296   // will also update the BOT covering all the regions to reflect
 297   // that there is a single object that starts at the bottom of the
 298   // first region.
 299   first_hr->set_starts_humongous(obj_top, word_fill_size);
 300   first_hr->set_allocation_context(context);
 301   // Then, if there are any, we will set up the "continues
 302   // humongous" regions.
 303   HeapRegion* hr = NULL;
 304   for (uint i = first + 1; i <= last; ++i) {
 305     hr = region_at(i);
 306     hr->set_continues_humongous(first_hr);
 307     hr->set_allocation_context(context);
 308   }
 309 
 310   // Up to this point no concurrent thread would have been able to
 311   // do any scanning on any region in this series. All the top
 312   // fields still point to bottom, so the intersection between
 313   // [bottom,top] and [card_start,card_end] will be empty. Before we
 314   // update the top fields, we'll do a storestore to make sure that
 315   // no thread sees the update to top before the zeroing of the
 316   // object header and the BOT initialization.
 317   OrderAccess::storestore();
 318 
 319   // Now, we will update the top fields of the "continues humongous"
 320   // regions except the last one.
 321   for (uint i = first; i < last; ++i) {
 322     hr = region_at(i);
 323     hr->set_top(hr->end());
 324   }
 325 
 326   hr = region_at(last);
 327   // If we cannot fit a filler object, we must set top to the end
 328   // of the humongous object, otherwise we cannot iterate the heap
 329   // and the BOT will not be complete.
 330   hr->set_top(hr->end() - words_not_fillable);
 331 
 332   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 333          "obj_top should be in last region");
 334 
 335   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 336 
 337   assert(words_not_fillable == 0 ||
 338          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 339          "Miscalculation in humongous allocation");
 340 
 341   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 342 
 343   for (uint i = first; i <= last; ++i) {
 344     hr = region_at(i);
 345     _humongous_set.add(hr);
 346     _hr_printer.alloc(hr);
 347   }
 348 
 349   return new_obj;
 350 }
 351 
 352 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 353   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 354   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 355 }
 356 
 357 // If could fit into free regions w/o expansion, try.
 358 // Otherwise, if can expand, do so.
 359 // Otherwise, if using ex regions might help, try with ex given back.
 360 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 361   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 362 
 363   _verifier->verify_region_sets_optional();
 364 
 365   uint first = G1_NO_HRM_INDEX;
 366   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 367 
 368   if (obj_regions == 1) {
 369     // Only one region to allocate, try to use a fast path by directly allocating
 370     // from the free lists. Do not try to expand here, we will potentially do that
 371     // later.
 372     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 373     if (hr != NULL) {
 374       first = hr->hrm_index();
 375     }
 376   } else {
 377     // We can't allocate humongous regions spanning more than one region while
 378     // cleanupComplete() is running, since some of the regions we find to be
 379     // empty might not yet be added to the free list. It is not straightforward
 380     // to know in which list they are on so that we can remove them. We only
 381     // need to do this if we need to allocate more than one region to satisfy the
 382     // current humongous allocation request. If we are only allocating one region
 383     // we use the one-region region allocation code (see above), that already
 384     // potentially waits for regions from the secondary free list.
 385     wait_while_free_regions_coming();
 386     append_secondary_free_list_if_not_empty_with_lock();
 387 
 388     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 389     // are lucky enough to find some.
 390     first = _hrm.find_contiguous_only_empty(obj_regions);
 391     if (first != G1_NO_HRM_INDEX) {
 392       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 393     }
 394   }
 395 
 396   if (first == G1_NO_HRM_INDEX) {
 397     // Policy: We could not find enough regions for the humongous object in the
 398     // free list. Look through the heap to find a mix of free and uncommitted regions.
 399     // If so, try expansion.
 400     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 401     if (first != G1_NO_HRM_INDEX) {
 402       // We found something. Make sure these regions are committed, i.e. expand
 403       // the heap. Alternatively we could do a defragmentation GC.
 404       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 405                                     word_size * HeapWordSize);
 406 
 407       _hrm.expand_at(first, obj_regions, workers());
 408       g1_policy()->record_new_heap_size(num_regions());
 409 
 410 #ifdef ASSERT
 411       for (uint i = first; i < first + obj_regions; ++i) {
 412         HeapRegion* hr = region_at(i);
 413         assert(hr->is_free(), "sanity");
 414         assert(hr->is_empty(), "sanity");
 415         assert(is_on_master_free_list(hr), "sanity");
 416       }
 417 #endif
 418       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 419     } else {
 420       // Policy: Potentially trigger a defragmentation GC.
 421     }
 422   }
 423 
 424   HeapWord* result = NULL;
 425   if (first != G1_NO_HRM_INDEX) {
 426     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 427                                                        word_size, context);
 428     assert(result != NULL, "it should always return a valid result");
 429 
 430     // A successful humongous object allocation changes the used space
 431     // information of the old generation so we need to recalculate the
 432     // sizes and update the jstat counters here.
 433     g1mm()->update_sizes();
 434   }
 435 
 436   _verifier->verify_region_sets_optional();
 437 
 438   return result;
 439 }
 440 
 441 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 442   assert_heap_not_locked_and_not_at_safepoint();
 443   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 444 
 445   uint dummy_gc_count_before;
 446   uint dummy_gclocker_retry_count = 0;
 447   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 448 }
 449 
 450 HeapWord*
 451 G1CollectedHeap::mem_allocate(size_t word_size,
 452                               bool*  gc_overhead_limit_was_exceeded) {
 453   assert_heap_not_locked_and_not_at_safepoint();
 454 
 455   // Loop until the allocation is satisfied, or unsatisfied after GC.
 456   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 457     uint gc_count_before;
 458 
 459     HeapWord* result = NULL;
 460     if (!is_humongous(word_size)) {
 461       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 462     } else {
 463       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 464     }
 465     if (result != NULL) {
 466       return result;
 467     }
 468 
 469     // Create the garbage collection operation...
 470     VM_G1CollectForAllocation op(gc_count_before, word_size);
 471     op.set_allocation_context(AllocationContext::current());
 472 
 473     // ...and get the VM thread to execute it.
 474     VMThread::execute(&op);
 475 
 476     if (op.prologue_succeeded() && op.pause_succeeded()) {
 477       // If the operation was successful we'll return the result even
 478       // if it is NULL. If the allocation attempt failed immediately
 479       // after a Full GC, it's unlikely we'll be able to allocate now.
 480       HeapWord* result = op.result();
 481       if (result != NULL && !is_humongous(word_size)) {
 482         // Allocations that take place on VM operations do not do any
 483         // card dirtying and we have to do it here. We only have to do
 484         // this for non-humongous allocations, though.
 485         dirty_young_block(result, word_size);
 486       }
 487       return result;
 488     } else {
 489       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 490         return NULL;
 491       }
 492       assert(op.result() == NULL,
 493              "the result should be NULL if the VM op did not succeed");
 494     }
 495 
 496     // Give a warning if we seem to be looping forever.
 497     if ((QueuedAllocationWarningCount > 0) &&
 498         (try_count % QueuedAllocationWarningCount == 0)) {
 499       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 500     }
 501   }
 502 
 503   ShouldNotReachHere();
 504   return NULL;
 505 }
 506 
 507 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 508                                                    AllocationContext_t context,
 509                                                    uint* gc_count_before_ret,
 510                                                    uint* gclocker_retry_count_ret) {
 511   // Make sure you read the note in attempt_allocation_humongous().
 512 
 513   assert_heap_not_locked_and_not_at_safepoint();
 514   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 515          "be called for humongous allocation requests");
 516 
 517   // We should only get here after the first-level allocation attempt
 518   // (attempt_allocation()) failed to allocate.
 519 
 520   // We will loop until a) we manage to successfully perform the
 521   // allocation or b) we successfully schedule a collection which
 522   // fails to perform the allocation. b) is the only case when we'll
 523   // return NULL.
 524   HeapWord* result = NULL;
 525   for (int try_count = 1; /* we'll return */; try_count += 1) {
 526     bool should_try_gc;
 527     uint gc_count_before;
 528 
 529     {
 530       MutexLockerEx x(Heap_lock);
 531       result = _allocator->attempt_allocation_locked(word_size, context);
 532       if (result != NULL) {
 533         return result;
 534       }
 535 
 536       if (GCLocker::is_active_and_needs_gc()) {
 537         if (g1_policy()->can_expand_young_list()) {
 538           // No need for an ergo verbose message here,
 539           // can_expand_young_list() does this when it returns true.
 540           result = _allocator->attempt_allocation_force(word_size, context);
 541           if (result != NULL) {
 542             return result;
 543           }
 544         }
 545         should_try_gc = false;
 546       } else {
 547         // The GCLocker may not be active but the GCLocker initiated
 548         // GC may not yet have been performed (GCLocker::needs_gc()
 549         // returns true). In this case we do not try this GC and
 550         // wait until the GCLocker initiated GC is performed, and
 551         // then retry the allocation.
 552         if (GCLocker::needs_gc()) {
 553           should_try_gc = false;
 554         } else {
 555           // Read the GC count while still holding the Heap_lock.
 556           gc_count_before = total_collections();
 557           should_try_gc = true;
 558         }
 559       }
 560     }
 561 
 562     if (should_try_gc) {
 563       bool succeeded;
 564       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 565                                    GCCause::_g1_inc_collection_pause);
 566       if (result != NULL) {
 567         assert(succeeded, "only way to get back a non-NULL result");
 568         return result;
 569       }
 570 
 571       if (succeeded) {
 572         // If we get here we successfully scheduled a collection which
 573         // failed to allocate. No point in trying to allocate
 574         // further. We'll just return NULL.
 575         MutexLockerEx x(Heap_lock);
 576         *gc_count_before_ret = total_collections();
 577         return NULL;
 578       }
 579     } else {
 580       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 581         MutexLockerEx x(Heap_lock);
 582         *gc_count_before_ret = total_collections();
 583         return NULL;
 584       }
 585       // The GCLocker is either active or the GCLocker initiated
 586       // GC has not yet been performed. Stall until it is and
 587       // then retry the allocation.
 588       GCLocker::stall_until_clear();
 589       (*gclocker_retry_count_ret) += 1;
 590     }
 591 
 592     // We can reach here if we were unsuccessful in scheduling a
 593     // collection (because another thread beat us to it) or if we were
 594     // stalled due to the GC locker. In either can we should retry the
 595     // allocation attempt in case another thread successfully
 596     // performed a collection and reclaimed enough space. We do the
 597     // first attempt (without holding the Heap_lock) here and the
 598     // follow-on attempt will be at the start of the next loop
 599     // iteration (after taking the Heap_lock).
 600     result = _allocator->attempt_allocation(word_size, context);
 601     if (result != NULL) {
 602       return result;
 603     }
 604 
 605     // Give a warning if we seem to be looping forever.
 606     if ((QueuedAllocationWarningCount > 0) &&
 607         (try_count % QueuedAllocationWarningCount == 0)) {
 608       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 609                       "retries %d times", try_count);
 610     }
 611   }
 612 
 613   ShouldNotReachHere();
 614   return NULL;
 615 }
 616 
 617 void G1CollectedHeap::begin_archive_alloc_range() {
 618   assert_at_safepoint(true /* should_be_vm_thread */);
 619   if (_archive_allocator == NULL) {
 620     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 621   }
 622 }
 623 
 624 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 625   // Allocations in archive regions cannot be of a size that would be considered
 626   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 627   // may be different at archive-restore time.
 628   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 629 }
 630 
 631 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 632   assert_at_safepoint(true /* should_be_vm_thread */);
 633   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 634   if (is_archive_alloc_too_large(word_size)) {
 635     return NULL;
 636   }
 637   return _archive_allocator->archive_mem_allocate(word_size);
 638 }
 639 
 640 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 641                                               size_t end_alignment_in_bytes) {
 642   assert_at_safepoint(true /* should_be_vm_thread */);
 643   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 644 
 645   // Call complete_archive to do the real work, filling in the MemRegion
 646   // array with the archive regions.
 647   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 648   delete _archive_allocator;
 649   _archive_allocator = NULL;
 650 }
 651 
 652 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 653   assert(ranges != NULL, "MemRegion array NULL");
 654   assert(count != 0, "No MemRegions provided");
 655   MemRegion reserved = _hrm.reserved();
 656   for (size_t i = 0; i < count; i++) {
 657     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 658       return false;
 659     }
 660   }
 661   return true;
 662 }
 663 
 664 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 665   assert(!is_init_completed(), "Expect to be called at JVM init time");
 666   assert(ranges != NULL, "MemRegion array NULL");
 667   assert(count != 0, "No MemRegions provided");
 668   MutexLockerEx x(Heap_lock);
 669 
 670   MemRegion reserved = _hrm.reserved();
 671   HeapWord* prev_last_addr = NULL;
 672   HeapRegion* prev_last_region = NULL;
 673 
 674   // Temporarily disable pretouching of heap pages. This interface is used
 675   // when mmap'ing archived heap data in, so pre-touching is wasted.
 676   FlagSetting fs(AlwaysPreTouch, false);
 677 
 678   // Enable archive object checking used by G1MarkSweep. We have to let it know
 679   // about each archive range, so that objects in those ranges aren't marked.
 680   G1ArchiveAllocator::enable_archive_object_check();
 681 
 682   // For each specified MemRegion range, allocate the corresponding G1
 683   // regions and mark them as archive regions. We expect the ranges in
 684   // ascending starting address order, without overlap.
 685   for (size_t i = 0; i < count; i++) {
 686     MemRegion curr_range = ranges[i];
 687     HeapWord* start_address = curr_range.start();
 688     size_t word_size = curr_range.word_size();
 689     HeapWord* last_address = curr_range.last();
 690     size_t commits = 0;
 691 
 692     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 693               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 694               p2i(start_address), p2i(last_address));
 695     guarantee(start_address > prev_last_addr,
 696               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 697               p2i(start_address), p2i(prev_last_addr));
 698     prev_last_addr = last_address;
 699 
 700     // Check for ranges that start in the same G1 region in which the previous
 701     // range ended, and adjust the start address so we don't try to allocate
 702     // the same region again. If the current range is entirely within that
 703     // region, skip it, just adjusting the recorded top.
 704     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 705     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 706       start_address = start_region->end();
 707       if (start_address > last_address) {
 708         increase_used(word_size * HeapWordSize);
 709         start_region->set_top(last_address + 1);
 710         continue;
 711       }
 712       start_region->set_top(start_address);
 713       curr_range = MemRegion(start_address, last_address + 1);
 714       start_region = _hrm.addr_to_region(start_address);
 715     }
 716 
 717     // Perform the actual region allocation, exiting if it fails.
 718     // Then note how much new space we have allocated.
 719     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 720       return false;
 721     }
 722     increase_used(word_size * HeapWordSize);
 723     if (commits != 0) {
 724       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 725                                 HeapRegion::GrainWords * HeapWordSize * commits);
 726 
 727     }
 728 
 729     // Mark each G1 region touched by the range as archive, add it to the old set,
 730     // and set the allocation context and top.
 731     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 732     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 733     prev_last_region = last_region;
 734 
 735     while (curr_region != NULL) {
 736       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 737              "Region already in use (index %u)", curr_region->hrm_index());
 738       curr_region->set_allocation_context(AllocationContext::system());
 739       curr_region->set_archive();
 740       _hr_printer.alloc(curr_region);
 741       _old_set.add(curr_region);
 742       if (curr_region != last_region) {
 743         curr_region->set_top(curr_region->end());
 744         curr_region = _hrm.next_region_in_heap(curr_region);
 745       } else {
 746         curr_region->set_top(last_address + 1);
 747         curr_region = NULL;
 748       }
 749     }
 750 
 751     // Notify mark-sweep of the archive range.
 752     G1ArchiveAllocator::set_range_archive(curr_range, true);
 753   }
 754   return true;
 755 }
 756 
 757 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 758   assert(!is_init_completed(), "Expect to be called at JVM init time");
 759   assert(ranges != NULL, "MemRegion array NULL");
 760   assert(count != 0, "No MemRegions provided");
 761   MemRegion reserved = _hrm.reserved();
 762   HeapWord *prev_last_addr = NULL;
 763   HeapRegion* prev_last_region = NULL;
 764 
 765   // For each MemRegion, create filler objects, if needed, in the G1 regions
 766   // that contain the address range. The address range actually within the
 767   // MemRegion will not be modified. That is assumed to have been initialized
 768   // elsewhere, probably via an mmap of archived heap data.
 769   MutexLockerEx x(Heap_lock);
 770   for (size_t i = 0; i < count; i++) {
 771     HeapWord* start_address = ranges[i].start();
 772     HeapWord* last_address = ranges[i].last();
 773 
 774     assert(reserved.contains(start_address) && reserved.contains(last_address),
 775            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 776            p2i(start_address), p2i(last_address));
 777     assert(start_address > prev_last_addr,
 778            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 779            p2i(start_address), p2i(prev_last_addr));
 780 
 781     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 782     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 783     HeapWord* bottom_address = start_region->bottom();
 784 
 785     // Check for a range beginning in the same region in which the
 786     // previous one ended.
 787     if (start_region == prev_last_region) {
 788       bottom_address = prev_last_addr + 1;
 789     }
 790 
 791     // Verify that the regions were all marked as archive regions by
 792     // alloc_archive_regions.
 793     HeapRegion* curr_region = start_region;
 794     while (curr_region != NULL) {
 795       guarantee(curr_region->is_archive(),
 796                 "Expected archive region at index %u", curr_region->hrm_index());
 797       if (curr_region != last_region) {
 798         curr_region = _hrm.next_region_in_heap(curr_region);
 799       } else {
 800         curr_region = NULL;
 801       }
 802     }
 803 
 804     prev_last_addr = last_address;
 805     prev_last_region = last_region;
 806 
 807     // Fill the memory below the allocated range with dummy object(s),
 808     // if the region bottom does not match the range start, or if the previous
 809     // range ended within the same G1 region, and there is a gap.
 810     if (start_address != bottom_address) {
 811       size_t fill_size = pointer_delta(start_address, bottom_address);
 812       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 813       increase_used(fill_size * HeapWordSize);
 814     }
 815   }
 816 }
 817 
 818 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 819                                                      uint* gc_count_before_ret,
 820                                                      uint* gclocker_retry_count_ret) {
 821   assert_heap_not_locked_and_not_at_safepoint();
 822   assert(!is_humongous(word_size), "attempt_allocation() should not "
 823          "be called for humongous allocation requests");
 824 
 825   AllocationContext_t context = AllocationContext::current();
 826   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 827 
 828   if (result == NULL) {
 829     result = attempt_allocation_slow(word_size,
 830                                      context,
 831                                      gc_count_before_ret,
 832                                      gclocker_retry_count_ret);
 833   }
 834   assert_heap_not_locked();
 835   if (result != NULL) {
 836     dirty_young_block(result, word_size);
 837   }
 838   return result;
 839 }
 840 
 841 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 842   assert(!is_init_completed(), "Expect to be called at JVM init time");
 843   assert(ranges != NULL, "MemRegion array NULL");
 844   assert(count != 0, "No MemRegions provided");
 845   MemRegion reserved = _hrm.reserved();
 846   HeapWord* prev_last_addr = NULL;
 847   HeapRegion* prev_last_region = NULL;
 848   size_t size_used = 0;
 849   size_t uncommitted_regions = 0;
 850 
 851   // For each Memregion, free the G1 regions that constitute it, and
 852   // notify mark-sweep that the range is no longer to be considered 'archive.'
 853   MutexLockerEx x(Heap_lock);
 854   for (size_t i = 0; i < count; i++) {
 855     HeapWord* start_address = ranges[i].start();
 856     HeapWord* last_address = ranges[i].last();
 857 
 858     assert(reserved.contains(start_address) && reserved.contains(last_address),
 859            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 860            p2i(start_address), p2i(last_address));
 861     assert(start_address > prev_last_addr,
 862            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 863            p2i(start_address), p2i(prev_last_addr));
 864     size_used += ranges[i].byte_size();
 865     prev_last_addr = last_address;
 866 
 867     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 868     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 869 
 870     // Check for ranges that start in the same G1 region in which the previous
 871     // range ended, and adjust the start address so we don't try to free
 872     // the same region again. If the current range is entirely within that
 873     // region, skip it.
 874     if (start_region == prev_last_region) {
 875       start_address = start_region->end();
 876       if (start_address > last_address) {
 877         continue;
 878       }
 879       start_region = _hrm.addr_to_region(start_address);
 880     }
 881     prev_last_region = last_region;
 882 
 883     // After verifying that each region was marked as an archive region by
 884     // alloc_archive_regions, set it free and empty and uncommit it.
 885     HeapRegion* curr_region = start_region;
 886     while (curr_region != NULL) {
 887       guarantee(curr_region->is_archive(),
 888                 "Expected archive region at index %u", curr_region->hrm_index());
 889       uint curr_index = curr_region->hrm_index();
 890       _old_set.remove(curr_region);
 891       curr_region->set_free();
 892       curr_region->set_top(curr_region->bottom());
 893       if (curr_region != last_region) {
 894         curr_region = _hrm.next_region_in_heap(curr_region);
 895       } else {
 896         curr_region = NULL;
 897       }
 898       _hrm.shrink_at(curr_index, 1);
 899       uncommitted_regions++;
 900     }
 901 
 902     // Notify mark-sweep that this is no longer an archive range.
 903     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 904   }
 905 
 906   if (uncommitted_regions != 0) {
 907     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 908                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 909   }
 910   decrease_used(size_used);
 911 }
 912 
 913 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 914                                                         uint* gc_count_before_ret,
 915                                                         uint* gclocker_retry_count_ret) {
 916   // The structure of this method has a lot of similarities to
 917   // attempt_allocation_slow(). The reason these two were not merged
 918   // into a single one is that such a method would require several "if
 919   // allocation is not humongous do this, otherwise do that"
 920   // conditional paths which would obscure its flow. In fact, an early
 921   // version of this code did use a unified method which was harder to
 922   // follow and, as a result, it had subtle bugs that were hard to
 923   // track down. So keeping these two methods separate allows each to
 924   // be more readable. It will be good to keep these two in sync as
 925   // much as possible.
 926 
 927   assert_heap_not_locked_and_not_at_safepoint();
 928   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 929          "should only be called for humongous allocations");
 930 
 931   // Humongous objects can exhaust the heap quickly, so we should check if we
 932   // need to start a marking cycle at each humongous object allocation. We do
 933   // the check before we do the actual allocation. The reason for doing it
 934   // before the allocation is that we avoid having to keep track of the newly
 935   // allocated memory while we do a GC.
 936   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 937                                            word_size)) {
 938     collect(GCCause::_g1_humongous_allocation);
 939   }
 940 
 941   // We will loop until a) we manage to successfully perform the
 942   // allocation or b) we successfully schedule a collection which
 943   // fails to perform the allocation. b) is the only case when we'll
 944   // return NULL.
 945   HeapWord* result = NULL;
 946   for (int try_count = 1; /* we'll return */; try_count += 1) {
 947     bool should_try_gc;
 948     uint gc_count_before;
 949 
 950     {
 951       MutexLockerEx x(Heap_lock);
 952 
 953       // Given that humongous objects are not allocated in young
 954       // regions, we'll first try to do the allocation without doing a
 955       // collection hoping that there's enough space in the heap.
 956       result = humongous_obj_allocate(word_size, AllocationContext::current());
 957       if (result != NULL) {
 958         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 959         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 960         return result;
 961       }
 962 
 963       if (GCLocker::is_active_and_needs_gc()) {
 964         should_try_gc = false;
 965       } else {
 966          // The GCLocker may not be active but the GCLocker initiated
 967         // GC may not yet have been performed (GCLocker::needs_gc()
 968         // returns true). In this case we do not try this GC and
 969         // wait until the GCLocker initiated GC is performed, and
 970         // then retry the allocation.
 971         if (GCLocker::needs_gc()) {
 972           should_try_gc = false;
 973         } else {
 974           // Read the GC count while still holding the Heap_lock.
 975           gc_count_before = total_collections();
 976           should_try_gc = true;
 977         }
 978       }
 979     }
 980 
 981     if (should_try_gc) {
 982       // If we failed to allocate the humongous object, we should try to
 983       // do a collection pause (if we're allowed) in case it reclaims
 984       // enough space for the allocation to succeed after the pause.
 985 
 986       bool succeeded;
 987       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 988                                    GCCause::_g1_humongous_allocation);
 989       if (result != NULL) {
 990         assert(succeeded, "only way to get back a non-NULL result");
 991         return result;
 992       }
 993 
 994       if (succeeded) {
 995         // If we get here we successfully scheduled a collection which
 996         // failed to allocate. No point in trying to allocate
 997         // further. We'll just return NULL.
 998         MutexLockerEx x(Heap_lock);
 999         *gc_count_before_ret = total_collections();
1000         return NULL;
1001       }
1002     } else {
1003       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1004         MutexLockerEx x(Heap_lock);
1005         *gc_count_before_ret = total_collections();
1006         return NULL;
1007       }
1008       // The GCLocker is either active or the GCLocker initiated
1009       // GC has not yet been performed. Stall until it is and
1010       // then retry the allocation.
1011       GCLocker::stall_until_clear();
1012       (*gclocker_retry_count_ret) += 1;
1013     }
1014 
1015     // We can reach here if we were unsuccessful in scheduling a
1016     // collection (because another thread beat us to it) or if we were
1017     // stalled due to the GC locker. In either can we should retry the
1018     // allocation attempt in case another thread successfully
1019     // performed a collection and reclaimed enough space.  Give a
1020     // warning if we seem to be looping forever.
1021 
1022     if ((QueuedAllocationWarningCount > 0) &&
1023         (try_count % QueuedAllocationWarningCount == 0)) {
1024       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1025                       "retries %d times", try_count);
1026     }
1027   }
1028 
1029   ShouldNotReachHere();
1030   return NULL;
1031 }
1032 
1033 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1034                                                            AllocationContext_t context,
1035                                                            bool expect_null_mutator_alloc_region) {
1036   assert_at_safepoint(true /* should_be_vm_thread */);
1037   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1038          "the current alloc region was unexpectedly found to be non-NULL");
1039 
1040   if (!is_humongous(word_size)) {
1041     return _allocator->attempt_allocation_locked(word_size, context);
1042   } else {
1043     HeapWord* result = humongous_obj_allocate(word_size, context);
1044     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1045       collector_state()->set_initiate_conc_mark_if_possible(true);
1046     }
1047     return result;
1048   }
1049 
1050   ShouldNotReachHere();
1051 }
1052 
1053 class PostMCRemSetClearClosure: public HeapRegionClosure {
1054   G1CollectedHeap* _g1h;
1055   ModRefBarrierSet* _mr_bs;
1056 public:
1057   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1058     _g1h(g1h), _mr_bs(mr_bs) {}
1059 
1060   bool doHeapRegion(HeapRegion* r) {
1061     HeapRegionRemSet* hrrs = r->rem_set();
1062 
1063     _g1h->reset_gc_time_stamps(r);
1064 
1065     if (r->is_continues_humongous()) {
1066       // We'll assert that the strong code root list and RSet is empty
1067       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1068       assert(hrrs->occupied() == 0, "RSet should be empty");
1069     } else {
1070       hrrs->clear();
1071     }
1072     // You might think here that we could clear just the cards
1073     // corresponding to the used region.  But no: if we leave a dirty card
1074     // in a region we might allocate into, then it would prevent that card
1075     // from being enqueued, and cause it to be missed.
1076     // Re: the performance cost: we shouldn't be doing full GC anyway!
1077     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1078 
1079     return false;
1080   }
1081 };
1082 
1083 void G1CollectedHeap::clear_rsets_post_compaction() {
1084   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1085   heap_region_iterate(&rs_clear);
1086 }
1087 
1088 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1089   G1CollectedHeap*   _g1h;
1090   RebuildRSOopClosure _cl;
1091 public:
1092   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1093     _cl(g1->g1_rem_set(), worker_i),
1094     _g1h(g1)
1095   { }
1096 
1097   bool doHeapRegion(HeapRegion* r) {
1098     if (!r->is_continues_humongous()) {
1099       _cl.set_from(r);
1100       r->oop_iterate(&_cl);
1101     }
1102     return false;
1103   }
1104 };
1105 
1106 class ParRebuildRSTask: public AbstractGangTask {
1107   G1CollectedHeap* _g1;
1108   HeapRegionClaimer _hrclaimer;
1109 
1110 public:
1111   ParRebuildRSTask(G1CollectedHeap* g1) :
1112       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1113 
1114   void work(uint worker_id) {
1115     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1116     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1117   }
1118 };
1119 
1120 class PostCompactionPrinterClosure: public HeapRegionClosure {
1121 private:
1122   G1HRPrinter* _hr_printer;
1123 public:
1124   bool doHeapRegion(HeapRegion* hr) {
1125     assert(!hr->is_young(), "not expecting to find young regions");
1126     _hr_printer->post_compaction(hr);
1127     return false;
1128   }
1129 
1130   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1131     : _hr_printer(hr_printer) { }
1132 };
1133 
1134 void G1CollectedHeap::print_hrm_post_compaction() {
1135   if (_hr_printer.is_active()) {
1136     PostCompactionPrinterClosure cl(hr_printer());
1137     heap_region_iterate(&cl);
1138   }
1139 
1140 }
1141 
1142 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1143                                          bool clear_all_soft_refs) {
1144   assert_at_safepoint(true /* should_be_vm_thread */);
1145 
1146   if (GCLocker::check_active_before_gc()) {
1147     return false;
1148   }
1149 
1150   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1151   gc_timer->register_gc_start();
1152 
1153   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1154   GCIdMark gc_id_mark;
1155   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1156 
1157   SvcGCMarker sgcm(SvcGCMarker::FULL);
1158   ResourceMark rm;
1159 
1160   print_heap_before_gc();
1161   print_heap_regions();
1162   trace_heap_before_gc(gc_tracer);
1163 
1164   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1165 
1166   _verifier->verify_region_sets_optional();
1167 
1168   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1169                            collector_policy()->should_clear_all_soft_refs();
1170 
1171   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1172 
1173   {
1174     IsGCActiveMark x;
1175 
1176     // Timing
1177     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1178     GCTraceCPUTime tcpu;
1179 
1180     {
1181       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1182       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1183       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1184 
1185       G1HeapTransition heap_transition(this);
1186       g1_policy()->record_full_collection_start();
1187 
1188       // Note: When we have a more flexible GC logging framework that
1189       // allows us to add optional attributes to a GC log record we
1190       // could consider timing and reporting how long we wait in the
1191       // following two methods.
1192       wait_while_free_regions_coming();
1193       // If we start the compaction before the CM threads finish
1194       // scanning the root regions we might trip them over as we'll
1195       // be moving objects / updating references. So let's wait until
1196       // they are done. By telling them to abort, they should complete
1197       // early.
1198       _cm->root_regions()->abort();
1199       _cm->root_regions()->wait_until_scan_finished();
1200       append_secondary_free_list_if_not_empty_with_lock();
1201 
1202       gc_prologue(true);
1203       increment_total_collections(true /* full gc */);
1204       increment_old_marking_cycles_started();
1205 
1206       assert(used() == recalculate_used(), "Should be equal");
1207 
1208       _verifier->verify_before_gc();
1209 
1210       _verifier->check_bitmaps("Full GC Start");
1211       pre_full_gc_dump(gc_timer);
1212 
1213 #if defined(COMPILER2) || INCLUDE_JVMCI
1214       DerivedPointerTable::clear();
1215 #endif
1216 
1217       // Disable discovery and empty the discovered lists
1218       // for the CM ref processor.
1219       ref_processor_cm()->disable_discovery();
1220       ref_processor_cm()->abandon_partial_discovery();
1221       ref_processor_cm()->verify_no_references_recorded();
1222 
1223       // Abandon current iterations of concurrent marking and concurrent
1224       // refinement, if any are in progress.
1225       concurrent_mark()->abort();
1226 
1227       // Make sure we'll choose a new allocation region afterwards.
1228       _allocator->release_mutator_alloc_region();
1229       _allocator->abandon_gc_alloc_regions();
1230       g1_rem_set()->cleanupHRRS();
1231 
1232       // We may have added regions to the current incremental collection
1233       // set between the last GC or pause and now. We need to clear the
1234       // incremental collection set and then start rebuilding it afresh
1235       // after this full GC.
1236       abandon_collection_set(collection_set());
1237 
1238       tear_down_region_sets(false /* free_list_only */);
1239       collector_state()->set_gcs_are_young(true);
1240 
1241       // See the comments in g1CollectedHeap.hpp and
1242       // G1CollectedHeap::ref_processing_init() about
1243       // how reference processing currently works in G1.
1244 
1245       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1246       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1247 
1248       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1249       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1250 
1251       ref_processor_stw()->enable_discovery();
1252       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1253 
1254       // Do collection work
1255       {
1256         HandleMark hm;  // Discard invalid handles created during gc
1257         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1258       }
1259 
1260       assert(num_free_regions() == 0, "we should not have added any free regions");
1261       rebuild_region_sets(false /* free_list_only */);
1262 
1263       // Enqueue any discovered reference objects that have
1264       // not been removed from the discovered lists.
1265       ref_processor_stw()->enqueue_discovered_references();
1266 
1267 #if defined(COMPILER2) || INCLUDE_JVMCI
1268       DerivedPointerTable::update_pointers();
1269 #endif
1270 
1271       MemoryService::track_memory_usage();
1272 
1273       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1274       ref_processor_stw()->verify_no_references_recorded();
1275 
1276       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1277       ClassLoaderDataGraph::purge();
1278       MetaspaceAux::verify_metrics();
1279 
1280       // Note: since we've just done a full GC, concurrent
1281       // marking is no longer active. Therefore we need not
1282       // re-enable reference discovery for the CM ref processor.
1283       // That will be done at the start of the next marking cycle.
1284       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1285       ref_processor_cm()->verify_no_references_recorded();
1286 
1287       reset_gc_time_stamp();
1288       // Since everything potentially moved, we will clear all remembered
1289       // sets, and clear all cards.  Later we will rebuild remembered
1290       // sets. We will also reset the GC time stamps of the regions.
1291       clear_rsets_post_compaction();
1292       check_gc_time_stamps();
1293 
1294       resize_if_necessary_after_full_collection();
1295 
1296       // We should do this after we potentially resize the heap so
1297       // that all the COMMIT / UNCOMMIT events are generated before
1298       // the compaction events.
1299       print_hrm_post_compaction();
1300 
1301       if (_hot_card_cache->use_cache()) {
1302         _hot_card_cache->reset_card_counts();
1303         _hot_card_cache->reset_hot_cache();
1304       }
1305 
1306       // Rebuild remembered sets of all regions.
1307       uint n_workers =
1308         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1309                                                 workers()->active_workers(),
1310                                                 Threads::number_of_non_daemon_threads());
1311       workers()->update_active_workers(n_workers);
1312       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1313 
1314       ParRebuildRSTask rebuild_rs_task(this);
1315       workers()->run_task(&rebuild_rs_task);
1316 
1317       // Rebuild the strong code root lists for each region
1318       rebuild_strong_code_roots();
1319 
1320       if (true) { // FIXME
1321         MetaspaceGC::compute_new_size();
1322       }
1323 
1324 #ifdef TRACESPINNING
1325       ParallelTaskTerminator::print_termination_counts();
1326 #endif
1327 
1328       // Discard all rset updates
1329       JavaThread::dirty_card_queue_set().abandon_logs();
1330       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1331 
1332       // At this point there should be no regions in the
1333       // entire heap tagged as young.
1334       assert(check_young_list_empty(), "young list should be empty at this point");
1335 
1336       // Update the number of full collections that have been completed.
1337       increment_old_marking_cycles_completed(false /* concurrent */);
1338 
1339       _hrm.verify_optional();
1340       _verifier->verify_region_sets_optional();
1341 
1342       _verifier->verify_after_gc();
1343 
1344       // Clear the previous marking bitmap, if needed for bitmap verification.
1345       // Note we cannot do this when we clear the next marking bitmap in
1346       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1347       // objects marked during a full GC against the previous bitmap.
1348       // But we need to clear it before calling check_bitmaps below since
1349       // the full GC has compacted objects and updated TAMS but not updated
1350       // the prev bitmap.
1351       if (G1VerifyBitmaps) {
1352         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1353         _cm->clear_prev_bitmap(workers());
1354       }
1355       _verifier->check_bitmaps("Full GC End");
1356 
1357       start_new_collection_set();
1358 
1359       _allocator->init_mutator_alloc_region();
1360 
1361       g1_policy()->record_full_collection_end();
1362 
1363       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1364       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1365       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1366       // before any GC notifications are raised.
1367       g1mm()->update_sizes();
1368 
1369       gc_epilogue(true);
1370 
1371       heap_transition.print();
1372 
1373       print_heap_after_gc();
1374       print_heap_regions();
1375       trace_heap_after_gc(gc_tracer);
1376 
1377       post_full_gc_dump(gc_timer);
1378     }
1379 
1380     gc_timer->register_gc_end();
1381     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1382   }
1383 
1384   return true;
1385 }
1386 
1387 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1388   // Currently, there is no facility in the do_full_collection(bool) API to notify
1389   // the caller that the collection did not succeed (e.g., because it was locked
1390   // out by the GC locker). So, right now, we'll ignore the return value.
1391   bool dummy = do_full_collection(true,                /* explicit_gc */
1392                                   clear_all_soft_refs);
1393 }
1394 
1395 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1396   // Include bytes that will be pre-allocated to support collections, as "used".
1397   const size_t used_after_gc = used();
1398   const size_t capacity_after_gc = capacity();
1399   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1400 
1401   // This is enforced in arguments.cpp.
1402   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1403          "otherwise the code below doesn't make sense");
1404 
1405   // We don't have floating point command-line arguments
1406   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1407   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1408   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1409   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1410 
1411   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1412   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1413 
1414   // We have to be careful here as these two calculations can overflow
1415   // 32-bit size_t's.
1416   double used_after_gc_d = (double) used_after_gc;
1417   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1418   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1419 
1420   // Let's make sure that they are both under the max heap size, which
1421   // by default will make them fit into a size_t.
1422   double desired_capacity_upper_bound = (double) max_heap_size;
1423   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1424                                     desired_capacity_upper_bound);
1425   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1426                                     desired_capacity_upper_bound);
1427 
1428   // We can now safely turn them into size_t's.
1429   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1430   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1431 
1432   // This assert only makes sense here, before we adjust them
1433   // with respect to the min and max heap size.
1434   assert(minimum_desired_capacity <= maximum_desired_capacity,
1435          "minimum_desired_capacity = " SIZE_FORMAT ", "
1436          "maximum_desired_capacity = " SIZE_FORMAT,
1437          minimum_desired_capacity, maximum_desired_capacity);
1438 
1439   // Should not be greater than the heap max size. No need to adjust
1440   // it with respect to the heap min size as it's a lower bound (i.e.,
1441   // we'll try to make the capacity larger than it, not smaller).
1442   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1443   // Should not be less than the heap min size. No need to adjust it
1444   // with respect to the heap max size as it's an upper bound (i.e.,
1445   // we'll try to make the capacity smaller than it, not greater).
1446   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1447 
1448   if (capacity_after_gc < minimum_desired_capacity) {
1449     // Don't expand unless it's significant
1450     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1451 
1452     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1453                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1454                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1455 
1456     expand(expand_bytes, _workers);
1457 
1458     // No expansion, now see if we want to shrink
1459   } else if (capacity_after_gc > maximum_desired_capacity) {
1460     // Capacity too large, compute shrinking size
1461     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1462 
1463     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1464                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1465                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1466 
1467     shrink(shrink_bytes);
1468   }
1469 }
1470 
1471 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1472                                                             AllocationContext_t context,
1473                                                             bool do_gc,
1474                                                             bool clear_all_soft_refs,
1475                                                             bool expect_null_mutator_alloc_region,
1476                                                             bool* gc_succeeded) {
1477   *gc_succeeded = true;
1478   // Let's attempt the allocation first.
1479   HeapWord* result =
1480     attempt_allocation_at_safepoint(word_size,
1481                                     context,
1482                                     expect_null_mutator_alloc_region);
1483   if (result != NULL) {
1484     assert(*gc_succeeded, "sanity");
1485     return result;
1486   }
1487 
1488   // In a G1 heap, we're supposed to keep allocation from failing by
1489   // incremental pauses.  Therefore, at least for now, we'll favor
1490   // expansion over collection.  (This might change in the future if we can
1491   // do something smarter than full collection to satisfy a failed alloc.)
1492   result = expand_and_allocate(word_size, context);
1493   if (result != NULL) {
1494     assert(*gc_succeeded, "sanity");
1495     return result;
1496   }
1497 
1498   if (do_gc) {
1499     // Expansion didn't work, we'll try to do a Full GC.
1500     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1501                                        clear_all_soft_refs);
1502   }
1503 
1504   return NULL;
1505 }
1506 
1507 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1508                                                      AllocationContext_t context,
1509                                                      bool* succeeded) {
1510   assert_at_safepoint(true /* should_be_vm_thread */);
1511 
1512   // Attempts to allocate followed by Full GC.
1513   HeapWord* result =
1514     satisfy_failed_allocation_helper(word_size,
1515                                      context,
1516                                      true,  /* do_gc */
1517                                      false, /* clear_all_soft_refs */
1518                                      false, /* expect_null_mutator_alloc_region */
1519                                      succeeded);
1520 
1521   if (result != NULL || !*succeeded) {
1522     return result;
1523   }
1524 
1525   // Attempts to allocate followed by Full GC that will collect all soft references.
1526   result = satisfy_failed_allocation_helper(word_size,
1527                                             context,
1528                                             true, /* do_gc */
1529                                             true, /* clear_all_soft_refs */
1530                                             true, /* expect_null_mutator_alloc_region */
1531                                             succeeded);
1532 
1533   if (result != NULL || !*succeeded) {
1534     return result;
1535   }
1536 
1537   // Attempts to allocate, no GC
1538   result = satisfy_failed_allocation_helper(word_size,
1539                                             context,
1540                                             false, /* do_gc */
1541                                             false, /* clear_all_soft_refs */
1542                                             true,  /* expect_null_mutator_alloc_region */
1543                                             succeeded);
1544 
1545   if (result != NULL) {
1546     assert(*succeeded, "sanity");
1547     return result;
1548   }
1549 
1550   assert(!collector_policy()->should_clear_all_soft_refs(),
1551          "Flag should have been handled and cleared prior to this point");
1552 
1553   // What else?  We might try synchronous finalization later.  If the total
1554   // space available is large enough for the allocation, then a more
1555   // complete compaction phase than we've tried so far might be
1556   // appropriate.
1557   assert(*succeeded, "sanity");
1558   return NULL;
1559 }
1560 
1561 // Attempting to expand the heap sufficiently
1562 // to support an allocation of the given "word_size".  If
1563 // successful, perform the allocation and return the address of the
1564 // allocated block, or else "NULL".
1565 
1566 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1567   assert_at_safepoint(true /* should_be_vm_thread */);
1568 
1569   _verifier->verify_region_sets_optional();
1570 
1571   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1572   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1573                             word_size * HeapWordSize);
1574 
1575 
1576   if (expand(expand_bytes, _workers)) {
1577     _hrm.verify_optional();
1578     _verifier->verify_region_sets_optional();
1579     return attempt_allocation_at_safepoint(word_size,
1580                                            context,
1581                                            false /* expect_null_mutator_alloc_region */);
1582   }
1583   return NULL;
1584 }
1585 
1586 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1587   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1588   aligned_expand_bytes = align_up(aligned_expand_bytes,
1589                                        HeapRegion::GrainBytes);
1590 
1591   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1592                             expand_bytes, aligned_expand_bytes);
1593 
1594   if (is_maximal_no_gc()) {
1595     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1596     return false;
1597   }
1598 
1599   double expand_heap_start_time_sec = os::elapsedTime();
1600   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1601   assert(regions_to_expand > 0, "Must expand by at least one region");
1602 
1603   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1604   if (expand_time_ms != NULL) {
1605     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1606   }
1607 
1608   if (expanded_by > 0) {
1609     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1610     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1611     g1_policy()->record_new_heap_size(num_regions());
1612   } else {
1613     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1614 
1615     // The expansion of the virtual storage space was unsuccessful.
1616     // Let's see if it was because we ran out of swap.
1617     if (G1ExitOnExpansionFailure &&
1618         _hrm.available() >= regions_to_expand) {
1619       // We had head room...
1620       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1621     }
1622   }
1623   return regions_to_expand > 0;
1624 }
1625 
1626 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1627   size_t aligned_shrink_bytes =
1628     ReservedSpace::page_align_size_down(shrink_bytes);
1629   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1630                                          HeapRegion::GrainBytes);
1631   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1632 
1633   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1634   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1635 
1636 
1637   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1638                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1639   if (num_regions_removed > 0) {
1640     g1_policy()->record_new_heap_size(num_regions());
1641   } else {
1642     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1643   }
1644 }
1645 
1646 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1647   _verifier->verify_region_sets_optional();
1648 
1649   // We should only reach here at the end of a Full GC which means we
1650   // should not not be holding to any GC alloc regions. The method
1651   // below will make sure of that and do any remaining clean up.
1652   _allocator->abandon_gc_alloc_regions();
1653 
1654   // Instead of tearing down / rebuilding the free lists here, we
1655   // could instead use the remove_all_pending() method on free_list to
1656   // remove only the ones that we need to remove.
1657   tear_down_region_sets(true /* free_list_only */);
1658   shrink_helper(shrink_bytes);
1659   rebuild_region_sets(true /* free_list_only */);
1660 
1661   _hrm.verify_optional();
1662   _verifier->verify_region_sets_optional();
1663 }
1664 
1665 // Public methods.
1666 
1667 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1668   CollectedHeap(),
1669   _collector_policy(collector_policy),
1670   _g1_policy(create_g1_policy()),
1671   _collection_set(this, _g1_policy),
1672   _dirty_card_queue_set(false),
1673   _is_alive_closure_cm(this),
1674   _is_alive_closure_stw(this),
1675   _ref_processor_cm(NULL),
1676   _ref_processor_stw(NULL),
1677   _bot(NULL),
1678   _hot_card_cache(NULL),
1679   _g1_rem_set(NULL),
1680   _cg1r(NULL),
1681   _g1mm(NULL),
1682   _preserved_marks_set(true /* in_c_heap */),
1683   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1684   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1685   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1686   _humongous_reclaim_candidates(),
1687   _has_humongous_reclaim_candidates(false),
1688   _archive_allocator(NULL),
1689   _free_regions_coming(false),
1690   _gc_time_stamp(0),
1691   _summary_bytes_used(0),
1692   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1693   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1694   _expand_heap_after_alloc_failure(true),
1695   _old_marking_cycles_started(0),
1696   _old_marking_cycles_completed(0),
1697   _in_cset_fast_test(),
1698   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1699   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1700 
1701   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1702                           /* are_GC_task_threads */true,
1703                           /* are_ConcurrentGC_threads */false);
1704   _workers->initialize_workers();
1705   _verifier = new G1HeapVerifier(this);
1706 
1707   _allocator = G1Allocator::create_allocator(this);
1708 
1709   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1710 
1711   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1712 
1713   // Override the default _filler_array_max_size so that no humongous filler
1714   // objects are created.
1715   _filler_array_max_size = _humongous_object_threshold_in_words;
1716 
1717   uint n_queues = ParallelGCThreads;
1718   _task_queues = new RefToScanQueueSet(n_queues);
1719 
1720   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1721 
1722   for (uint i = 0; i < n_queues; i++) {
1723     RefToScanQueue* q = new RefToScanQueue();
1724     q->initialize();
1725     _task_queues->register_queue(i, q);
1726     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1727   }
1728 
1729   // Initialize the G1EvacuationFailureALot counters and flags.
1730   NOT_PRODUCT(reset_evacuation_should_fail();)
1731 
1732   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1733 }
1734 
1735 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1736                                                                  size_t size,
1737                                                                  size_t translation_factor) {
1738   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1739   // Allocate a new reserved space, preferring to use large pages.
1740   ReservedSpace rs(size, preferred_page_size);
1741   G1RegionToSpaceMapper* result  =
1742     G1RegionToSpaceMapper::create_mapper(rs,
1743                                          size,
1744                                          rs.alignment(),
1745                                          HeapRegion::GrainBytes,
1746                                          translation_factor,
1747                                          mtGC);
1748 
1749   os::trace_page_sizes_for_requested_size(description,
1750                                           size,
1751                                           preferred_page_size,
1752                                           rs.alignment(),
1753                                           rs.base(),
1754                                           rs.size());
1755 
1756   return result;
1757 }
1758 
1759 jint G1CollectedHeap::initialize_concurrent_refinement() {
1760   jint ecode = JNI_OK;
1761   _cg1r = ConcurrentG1Refine::create(&ecode);
1762   return ecode;
1763 }
1764 
1765 jint G1CollectedHeap::initialize() {
1766   CollectedHeap::pre_initialize();
1767   os::enable_vtime();
1768 
1769   // Necessary to satisfy locking discipline assertions.
1770 
1771   MutexLocker x(Heap_lock);
1772 
1773   // While there are no constraints in the GC code that HeapWordSize
1774   // be any particular value, there are multiple other areas in the
1775   // system which believe this to be true (e.g. oop->object_size in some
1776   // cases incorrectly returns the size in wordSize units rather than
1777   // HeapWordSize).
1778   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1779 
1780   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1781   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1782   size_t heap_alignment = collector_policy()->heap_alignment();
1783 
1784   // Ensure that the sizes are properly aligned.
1785   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1786   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1787   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1788 
1789   // Reserve the maximum.
1790 
1791   // When compressed oops are enabled, the preferred heap base
1792   // is calculated by subtracting the requested size from the
1793   // 32Gb boundary and using the result as the base address for
1794   // heap reservation. If the requested size is not aligned to
1795   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1796   // into the ReservedHeapSpace constructor) then the actual
1797   // base of the reserved heap may end up differing from the
1798   // address that was requested (i.e. the preferred heap base).
1799   // If this happens then we could end up using a non-optimal
1800   // compressed oops mode.
1801 
1802   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1803                                                  heap_alignment);
1804 
1805   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1806 
1807   // Create the barrier set for the entire reserved region.
1808   G1SATBCardTableLoggingModRefBS* bs
1809     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1810   bs->initialize();
1811   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1812   set_barrier_set(bs);
1813 
1814   // Create the hot card cache.
1815   _hot_card_cache = new G1HotCardCache(this);
1816 
1817   // Carve out the G1 part of the heap.
1818   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1819   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1820   G1RegionToSpaceMapper* heap_storage =
1821     G1RegionToSpaceMapper::create_mapper(g1_rs,
1822                                          g1_rs.size(),
1823                                          page_size,
1824                                          HeapRegion::GrainBytes,
1825                                          1,
1826                                          mtJavaHeap);
1827   os::trace_page_sizes("Heap",
1828                        collector_policy()->min_heap_byte_size(),
1829                        max_byte_size,
1830                        page_size,
1831                        heap_rs.base(),
1832                        heap_rs.size());
1833   heap_storage->set_mapping_changed_listener(&_listener);
1834 
1835   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1836   G1RegionToSpaceMapper* bot_storage =
1837     create_aux_memory_mapper("Block Offset Table",
1838                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1839                              G1BlockOffsetTable::heap_map_factor());
1840 
1841   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1842   G1RegionToSpaceMapper* cardtable_storage =
1843     create_aux_memory_mapper("Card Table",
1844                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1845                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1846 
1847   G1RegionToSpaceMapper* card_counts_storage =
1848     create_aux_memory_mapper("Card Counts Table",
1849                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1850                              G1CardCounts::heap_map_factor());
1851 
1852   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1853   G1RegionToSpaceMapper* prev_bitmap_storage =
1854     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1855   G1RegionToSpaceMapper* next_bitmap_storage =
1856     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1857 
1858   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1859   g1_barrier_set()->initialize(cardtable_storage);
1860   // Do later initialization work for concurrent refinement.
1861   _hot_card_cache->initialize(card_counts_storage);
1862 
1863   // 6843694 - ensure that the maximum region index can fit
1864   // in the remembered set structures.
1865   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1866   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1867 
1868   // Also create a G1 rem set.
1869   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1870   _g1_rem_set->initialize(max_capacity(), max_regions());
1871 
1872   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1873   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1874   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1875             "too many cards per region");
1876 
1877   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1878 
1879   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1880 
1881   {
1882     HeapWord* start = _hrm.reserved().start();
1883     HeapWord* end = _hrm.reserved().end();
1884     size_t granularity = HeapRegion::GrainBytes;
1885 
1886     _in_cset_fast_test.initialize(start, end, granularity);
1887     _humongous_reclaim_candidates.initialize(start, end, granularity);
1888   }
1889 
1890   // Create the G1ConcurrentMark data structure and thread.
1891   // (Must do this late, so that "max_regions" is defined.)
1892   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1893   if (_cm == NULL || !_cm->completed_initialization()) {
1894     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1895     return JNI_ENOMEM;
1896   }
1897   _cmThread = _cm->cmThread();
1898 
1899   // Now expand into the initial heap size.
1900   if (!expand(init_byte_size, _workers)) {
1901     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1902     return JNI_ENOMEM;
1903   }
1904 
1905   // Perform any initialization actions delegated to the policy.
1906   g1_policy()->init(this, &_collection_set);
1907 
1908   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1909                                                SATB_Q_FL_lock,
1910                                                G1SATBProcessCompletedThreshold,
1911                                                Shared_SATB_Q_lock);
1912 
1913   jint ecode = initialize_concurrent_refinement();
1914   if (ecode != JNI_OK) {
1915     return ecode;
1916   }
1917 
1918   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1919                                                 DirtyCardQ_FL_lock,
1920                                                 (int)concurrent_g1_refine()->yellow_zone(),
1921                                                 (int)concurrent_g1_refine()->red_zone(),
1922                                                 Shared_DirtyCardQ_lock,
1923                                                 NULL,  // fl_owner
1924                                                 true); // init_free_ids
1925 
1926   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1927                                     DirtyCardQ_FL_lock,
1928                                     -1, // never trigger processing
1929                                     -1, // no limit on length
1930                                     Shared_DirtyCardQ_lock,
1931                                     &JavaThread::dirty_card_queue_set());
1932 
1933   // Here we allocate the dummy HeapRegion that is required by the
1934   // G1AllocRegion class.
1935   HeapRegion* dummy_region = _hrm.get_dummy_region();
1936 
1937   // We'll re-use the same region whether the alloc region will
1938   // require BOT updates or not and, if it doesn't, then a non-young
1939   // region will complain that it cannot support allocations without
1940   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1941   dummy_region->set_eden();
1942   // Make sure it's full.
1943   dummy_region->set_top(dummy_region->end());
1944   G1AllocRegion::setup(this, dummy_region);
1945 
1946   _allocator->init_mutator_alloc_region();
1947 
1948   // Do create of the monitoring and management support so that
1949   // values in the heap have been properly initialized.
1950   _g1mm = new G1MonitoringSupport(this);
1951 
1952   G1StringDedup::initialize();
1953 
1954   _preserved_marks_set.init(ParallelGCThreads);
1955 
1956   _collection_set.initialize(max_regions());
1957 
1958   return JNI_OK;
1959 }
1960 
1961 void G1CollectedHeap::stop() {
1962   // Stop all concurrent threads. We do this to make sure these threads
1963   // do not continue to execute and access resources (e.g. logging)
1964   // that are destroyed during shutdown.
1965   _cg1r->stop();
1966   _cmThread->stop();
1967   if (G1StringDedup::is_enabled()) {
1968     G1StringDedup::stop();
1969   }
1970 }
1971 
1972 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1973   return HeapRegion::max_region_size();
1974 }
1975 
1976 void G1CollectedHeap::post_initialize() {
1977   ref_processing_init();
1978 }
1979 
1980 void G1CollectedHeap::ref_processing_init() {
1981   // Reference processing in G1 currently works as follows:
1982   //
1983   // * There are two reference processor instances. One is
1984   //   used to record and process discovered references
1985   //   during concurrent marking; the other is used to
1986   //   record and process references during STW pauses
1987   //   (both full and incremental).
1988   // * Both ref processors need to 'span' the entire heap as
1989   //   the regions in the collection set may be dotted around.
1990   //
1991   // * For the concurrent marking ref processor:
1992   //   * Reference discovery is enabled at initial marking.
1993   //   * Reference discovery is disabled and the discovered
1994   //     references processed etc during remarking.
1995   //   * Reference discovery is MT (see below).
1996   //   * Reference discovery requires a barrier (see below).
1997   //   * Reference processing may or may not be MT
1998   //     (depending on the value of ParallelRefProcEnabled
1999   //     and ParallelGCThreads).
2000   //   * A full GC disables reference discovery by the CM
2001   //     ref processor and abandons any entries on it's
2002   //     discovered lists.
2003   //
2004   // * For the STW processor:
2005   //   * Non MT discovery is enabled at the start of a full GC.
2006   //   * Processing and enqueueing during a full GC is non-MT.
2007   //   * During a full GC, references are processed after marking.
2008   //
2009   //   * Discovery (may or may not be MT) is enabled at the start
2010   //     of an incremental evacuation pause.
2011   //   * References are processed near the end of a STW evacuation pause.
2012   //   * For both types of GC:
2013   //     * Discovery is atomic - i.e. not concurrent.
2014   //     * Reference discovery will not need a barrier.
2015 
2016   MemRegion mr = reserved_region();
2017 
2018   // Concurrent Mark ref processor
2019   _ref_processor_cm =
2020     new ReferenceProcessor(mr,    // span
2021                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2022                                 // mt processing
2023                            ParallelGCThreads,
2024                                 // degree of mt processing
2025                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2026                                 // mt discovery
2027                            MAX2(ParallelGCThreads, ConcGCThreads),
2028                                 // degree of mt discovery
2029                            false,
2030                                 // Reference discovery is not atomic
2031                            &_is_alive_closure_cm);
2032                                 // is alive closure
2033                                 // (for efficiency/performance)
2034 
2035   // STW ref processor
2036   _ref_processor_stw =
2037     new ReferenceProcessor(mr,    // span
2038                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2039                                 // mt processing
2040                            ParallelGCThreads,
2041                                 // degree of mt processing
2042                            (ParallelGCThreads > 1),
2043                                 // mt discovery
2044                            ParallelGCThreads,
2045                                 // degree of mt discovery
2046                            true,
2047                                 // Reference discovery is atomic
2048                            &_is_alive_closure_stw);
2049                                 // is alive closure
2050                                 // (for efficiency/performance)
2051 }
2052 
2053 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2054   return _collector_policy;
2055 }
2056 
2057 size_t G1CollectedHeap::capacity() const {
2058   return _hrm.length() * HeapRegion::GrainBytes;
2059 }
2060 
2061 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2062   hr->reset_gc_time_stamp();
2063 }
2064 
2065 #ifndef PRODUCT
2066 
2067 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2068 private:
2069   unsigned _gc_time_stamp;
2070   bool _failures;
2071 
2072 public:
2073   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2074     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2075 
2076   virtual bool doHeapRegion(HeapRegion* hr) {
2077     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2078     if (_gc_time_stamp != region_gc_time_stamp) {
2079       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2080                             region_gc_time_stamp, _gc_time_stamp);
2081       _failures = true;
2082     }
2083     return false;
2084   }
2085 
2086   bool failures() { return _failures; }
2087 };
2088 
2089 void G1CollectedHeap::check_gc_time_stamps() {
2090   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2091   heap_region_iterate(&cl);
2092   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2093 }
2094 #endif // PRODUCT
2095 
2096 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2097   _hot_card_cache->drain(cl, worker_i);
2098 }
2099 
2100 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2101   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2102   size_t n_completed_buffers = 0;
2103   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
2104     n_completed_buffers++;
2105   }
2106   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2107   dcqs.clear_n_completed_buffers();
2108   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2109 }
2110 
2111 // Computes the sum of the storage used by the various regions.
2112 size_t G1CollectedHeap::used() const {
2113   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2114   if (_archive_allocator != NULL) {
2115     result += _archive_allocator->used();
2116   }
2117   return result;
2118 }
2119 
2120 size_t G1CollectedHeap::used_unlocked() const {
2121   return _summary_bytes_used;
2122 }
2123 
2124 class SumUsedClosure: public HeapRegionClosure {
2125   size_t _used;
2126 public:
2127   SumUsedClosure() : _used(0) {}
2128   bool doHeapRegion(HeapRegion* r) {
2129     _used += r->used();
2130     return false;
2131   }
2132   size_t result() { return _used; }
2133 };
2134 
2135 size_t G1CollectedHeap::recalculate_used() const {
2136   double recalculate_used_start = os::elapsedTime();
2137 
2138   SumUsedClosure blk;
2139   heap_region_iterate(&blk);
2140 
2141   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2142   return blk.result();
2143 }
2144 
2145 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2146   switch (cause) {
2147     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2148     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2149     case GCCause::_update_allocation_context_stats_inc: return true;
2150     case GCCause::_wb_conc_mark:                        return true;
2151     default :                                           return false;
2152   }
2153 }
2154 
2155 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2156   switch (cause) {
2157     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2158     case GCCause::_g1_humongous_allocation: return true;
2159     default:                                return is_user_requested_concurrent_full_gc(cause);
2160   }
2161 }
2162 
2163 #ifndef PRODUCT
2164 void G1CollectedHeap::allocate_dummy_regions() {
2165   // Let's fill up most of the region
2166   size_t word_size = HeapRegion::GrainWords - 1024;
2167   // And as a result the region we'll allocate will be humongous.
2168   guarantee(is_humongous(word_size), "sanity");
2169 
2170   // _filler_array_max_size is set to humongous object threshold
2171   // but temporarily change it to use CollectedHeap::fill_with_object().
2172   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2173 
2174   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2175     // Let's use the existing mechanism for the allocation
2176     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2177                                                  AllocationContext::system());
2178     if (dummy_obj != NULL) {
2179       MemRegion mr(dummy_obj, word_size);
2180       CollectedHeap::fill_with_object(mr);
2181     } else {
2182       // If we can't allocate once, we probably cannot allocate
2183       // again. Let's get out of the loop.
2184       break;
2185     }
2186   }
2187 }
2188 #endif // !PRODUCT
2189 
2190 void G1CollectedHeap::increment_old_marking_cycles_started() {
2191   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2192          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2193          "Wrong marking cycle count (started: %d, completed: %d)",
2194          _old_marking_cycles_started, _old_marking_cycles_completed);
2195 
2196   _old_marking_cycles_started++;
2197 }
2198 
2199 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2200   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2201 
2202   // We assume that if concurrent == true, then the caller is a
2203   // concurrent thread that was joined the Suspendible Thread
2204   // Set. If there's ever a cheap way to check this, we should add an
2205   // assert here.
2206 
2207   // Given that this method is called at the end of a Full GC or of a
2208   // concurrent cycle, and those can be nested (i.e., a Full GC can
2209   // interrupt a concurrent cycle), the number of full collections
2210   // completed should be either one (in the case where there was no
2211   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2212   // behind the number of full collections started.
2213 
2214   // This is the case for the inner caller, i.e. a Full GC.
2215   assert(concurrent ||
2216          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2217          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2218          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2219          "is inconsistent with _old_marking_cycles_completed = %u",
2220          _old_marking_cycles_started, _old_marking_cycles_completed);
2221 
2222   // This is the case for the outer caller, i.e. the concurrent cycle.
2223   assert(!concurrent ||
2224          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2225          "for outer caller (concurrent cycle): "
2226          "_old_marking_cycles_started = %u "
2227          "is inconsistent with _old_marking_cycles_completed = %u",
2228          _old_marking_cycles_started, _old_marking_cycles_completed);
2229 
2230   _old_marking_cycles_completed += 1;
2231 
2232   // We need to clear the "in_progress" flag in the CM thread before
2233   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2234   // is set) so that if a waiter requests another System.gc() it doesn't
2235   // incorrectly see that a marking cycle is still in progress.
2236   if (concurrent) {
2237     _cmThread->set_idle();
2238   }
2239 
2240   // This notify_all() will ensure that a thread that called
2241   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2242   // and it's waiting for a full GC to finish will be woken up. It is
2243   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2244   FullGCCount_lock->notify_all();
2245 }
2246 
2247 void G1CollectedHeap::collect(GCCause::Cause cause) {
2248   assert_heap_not_locked();
2249 
2250   uint gc_count_before;
2251   uint old_marking_count_before;
2252   uint full_gc_count_before;
2253   bool retry_gc;
2254 
2255   do {
2256     retry_gc = false;
2257 
2258     {
2259       MutexLocker ml(Heap_lock);
2260 
2261       // Read the GC count while holding the Heap_lock
2262       gc_count_before = total_collections();
2263       full_gc_count_before = total_full_collections();
2264       old_marking_count_before = _old_marking_cycles_started;
2265     }
2266 
2267     if (should_do_concurrent_full_gc(cause)) {
2268       // Schedule an initial-mark evacuation pause that will start a
2269       // concurrent cycle. We're setting word_size to 0 which means that
2270       // we are not requesting a post-GC allocation.
2271       VM_G1IncCollectionPause op(gc_count_before,
2272                                  0,     /* word_size */
2273                                  true,  /* should_initiate_conc_mark */
2274                                  g1_policy()->max_pause_time_ms(),
2275                                  cause);
2276       op.set_allocation_context(AllocationContext::current());
2277 
2278       VMThread::execute(&op);
2279       if (!op.pause_succeeded()) {
2280         if (old_marking_count_before == _old_marking_cycles_started) {
2281           retry_gc = op.should_retry_gc();
2282         } else {
2283           // A Full GC happened while we were trying to schedule the
2284           // initial-mark GC. No point in starting a new cycle given
2285           // that the whole heap was collected anyway.
2286         }
2287 
2288         if (retry_gc) {
2289           if (GCLocker::is_active_and_needs_gc()) {
2290             GCLocker::stall_until_clear();
2291           }
2292         }
2293       }
2294     } else {
2295       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2296           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2297 
2298         // Schedule a standard evacuation pause. We're setting word_size
2299         // to 0 which means that we are not requesting a post-GC allocation.
2300         VM_G1IncCollectionPause op(gc_count_before,
2301                                    0,     /* word_size */
2302                                    false, /* should_initiate_conc_mark */
2303                                    g1_policy()->max_pause_time_ms(),
2304                                    cause);
2305         VMThread::execute(&op);
2306       } else {
2307         // Schedule a Full GC.
2308         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2309         VMThread::execute(&op);
2310       }
2311     }
2312   } while (retry_gc);
2313 }
2314 
2315 bool G1CollectedHeap::is_in(const void* p) const {
2316   if (_hrm.reserved().contains(p)) {
2317     // Given that we know that p is in the reserved space,
2318     // heap_region_containing() should successfully
2319     // return the containing region.
2320     HeapRegion* hr = heap_region_containing(p);
2321     return hr->is_in(p);
2322   } else {
2323     return false;
2324   }
2325 }
2326 
2327 #ifdef ASSERT
2328 bool G1CollectedHeap::is_in_exact(const void* p) const {
2329   bool contains = reserved_region().contains(p);
2330   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2331   if (contains && available) {
2332     return true;
2333   } else {
2334     return false;
2335   }
2336 }
2337 #endif
2338 
2339 // Iteration functions.
2340 
2341 // Iterates an ObjectClosure over all objects within a HeapRegion.
2342 
2343 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2344   ObjectClosure* _cl;
2345 public:
2346   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2347   bool doHeapRegion(HeapRegion* r) {
2348     if (!r->is_continues_humongous()) {
2349       r->object_iterate(_cl);
2350     }
2351     return false;
2352   }
2353 };
2354 
2355 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2356   IterateObjectClosureRegionClosure blk(cl);
2357   heap_region_iterate(&blk);
2358 }
2359 
2360 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2361   _hrm.iterate(cl);
2362 }
2363 
2364 void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2365                                               uint worker_id,
2366                                               HeapRegionClaimer *hrclaimer) const {
2367   _hrm.par_iterate(cl, worker_id, hrclaimer);
2368 }
2369 
2370 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2371   _collection_set.iterate(cl);
2372 }
2373 
2374 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2375   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2376 }
2377 
2378 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2379   HeapRegion* result = _hrm.next_region_in_heap(from);
2380   while (result != NULL && result->is_pinned()) {
2381     result = _hrm.next_region_in_heap(result);
2382   }
2383   return result;
2384 }
2385 
2386 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2387   HeapRegion* hr = heap_region_containing(addr);
2388   return hr->block_start(addr);
2389 }
2390 
2391 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2392   HeapRegion* hr = heap_region_containing(addr);
2393   return hr->block_size(addr);
2394 }
2395 
2396 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2397   HeapRegion* hr = heap_region_containing(addr);
2398   return hr->block_is_obj(addr);
2399 }
2400 
2401 bool G1CollectedHeap::supports_tlab_allocation() const {
2402   return true;
2403 }
2404 
2405 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2406   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2407 }
2408 
2409 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2410   return _eden.length() * HeapRegion::GrainBytes;
2411 }
2412 
2413 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2414 // must be equal to the humongous object limit.
2415 size_t G1CollectedHeap::max_tlab_size() const {
2416   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2417 }
2418 
2419 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2420   AllocationContext_t context = AllocationContext::current();
2421   return _allocator->unsafe_max_tlab_alloc(context);
2422 }
2423 
2424 size_t G1CollectedHeap::max_capacity() const {
2425   return _hrm.reserved().byte_size();
2426 }
2427 
2428 jlong G1CollectedHeap::millis_since_last_gc() {
2429   // See the notes in GenCollectedHeap::millis_since_last_gc()
2430   // for more information about the implementation.
2431   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2432     _g1_policy->collection_pause_end_millis();
2433   if (ret_val < 0) {
2434     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2435       ". returning zero instead.", ret_val);
2436     return 0;
2437   }
2438   return ret_val;
2439 }
2440 
2441 void G1CollectedHeap::prepare_for_verify() {
2442   _verifier->prepare_for_verify();
2443 }
2444 
2445 void G1CollectedHeap::verify(VerifyOption vo) {
2446   _verifier->verify(vo);
2447 }
2448 
2449 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2450   return true;
2451 }
2452 
2453 const char* const* G1CollectedHeap::concurrent_phases() const {
2454   return _cmThread->concurrent_phases();
2455 }
2456 
2457 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2458   return _cmThread->request_concurrent_phase(phase);
2459 }
2460 
2461 class PrintRegionClosure: public HeapRegionClosure {
2462   outputStream* _st;
2463 public:
2464   PrintRegionClosure(outputStream* st) : _st(st) {}
2465   bool doHeapRegion(HeapRegion* r) {
2466     r->print_on(_st);
2467     return false;
2468   }
2469 };
2470 
2471 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2472                                        const HeapRegion* hr,
2473                                        const VerifyOption vo) const {
2474   switch (vo) {
2475   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2476   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2477   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2478   default:                            ShouldNotReachHere();
2479   }
2480   return false; // keep some compilers happy
2481 }
2482 
2483 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2484                                        const VerifyOption vo) const {
2485   switch (vo) {
2486   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2487   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2488   case VerifyOption_G1UseMarkWord: {
2489     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2490     return !obj->is_gc_marked() && !hr->is_archive();
2491   }
2492   default:                            ShouldNotReachHere();
2493   }
2494   return false; // keep some compilers happy
2495 }
2496 
2497 void G1CollectedHeap::print_heap_regions() const {
2498   LogTarget(Trace, gc, heap, region) lt;
2499   if (lt.is_enabled()) {
2500     LogStream ls(lt);
2501     print_regions_on(&ls);
2502   }
2503 }
2504 
2505 void G1CollectedHeap::print_on(outputStream* st) const {
2506   st->print(" %-20s", "garbage-first heap");
2507   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2508             capacity()/K, used_unlocked()/K);
2509   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2510             p2i(_hrm.reserved().start()),
2511             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2512             p2i(_hrm.reserved().end()));
2513   st->cr();
2514   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2515   uint young_regions = young_regions_count();
2516   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2517             (size_t) young_regions * HeapRegion::GrainBytes / K);
2518   uint survivor_regions = survivor_regions_count();
2519   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2520             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2521   st->cr();
2522   MetaspaceAux::print_on(st);
2523 }
2524 
2525 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2526   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2527                "HS=humongous(starts), HC=humongous(continues), "
2528                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2529                "AC=allocation context, "
2530                "TAMS=top-at-mark-start (previous, next)");
2531   PrintRegionClosure blk(st);
2532   heap_region_iterate(&blk);
2533 }
2534 
2535 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2536   print_on(st);
2537 
2538   // Print the per-region information.
2539   print_regions_on(st);
2540 }
2541 
2542 void G1CollectedHeap::print_on_error(outputStream* st) const {
2543   this->CollectedHeap::print_on_error(st);
2544 
2545   if (_cm != NULL) {
2546     st->cr();
2547     _cm->print_on_error(st);
2548   }
2549 }
2550 
2551 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2552   workers()->print_worker_threads_on(st);
2553   _cmThread->print_on(st);
2554   st->cr();
2555   _cm->print_worker_threads_on(st);
2556   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2557   if (G1StringDedup::is_enabled()) {
2558     G1StringDedup::print_worker_threads_on(st);
2559   }
2560 }
2561 
2562 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2563   workers()->threads_do(tc);
2564   tc->do_thread(_cmThread);
2565   _cm->threads_do(tc);
2566   _cg1r->threads_do(tc); // also iterates over the sample thread
2567   if (G1StringDedup::is_enabled()) {
2568     G1StringDedup::threads_do(tc);
2569   }
2570 }
2571 
2572 void G1CollectedHeap::print_tracing_info() const {
2573   g1_rem_set()->print_summary_info();
2574   concurrent_mark()->print_summary_info();
2575 }
2576 
2577 #ifndef PRODUCT
2578 // Helpful for debugging RSet issues.
2579 
2580 class PrintRSetsClosure : public HeapRegionClosure {
2581 private:
2582   const char* _msg;
2583   size_t _occupied_sum;
2584 
2585 public:
2586   bool doHeapRegion(HeapRegion* r) {
2587     HeapRegionRemSet* hrrs = r->rem_set();
2588     size_t occupied = hrrs->occupied();
2589     _occupied_sum += occupied;
2590 
2591     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2592     if (occupied == 0) {
2593       tty->print_cr("  RSet is empty");
2594     } else {
2595       hrrs->print();
2596     }
2597     tty->print_cr("----------");
2598     return false;
2599   }
2600 
2601   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2602     tty->cr();
2603     tty->print_cr("========================================");
2604     tty->print_cr("%s", msg);
2605     tty->cr();
2606   }
2607 
2608   ~PrintRSetsClosure() {
2609     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2610     tty->print_cr("========================================");
2611     tty->cr();
2612   }
2613 };
2614 
2615 void G1CollectedHeap::print_cset_rsets() {
2616   PrintRSetsClosure cl("Printing CSet RSets");
2617   collection_set_iterate(&cl);
2618 }
2619 
2620 void G1CollectedHeap::print_all_rsets() {
2621   PrintRSetsClosure cl("Printing All RSets");;
2622   heap_region_iterate(&cl);
2623 }
2624 #endif // PRODUCT
2625 
2626 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2627 
2628   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2629   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2630   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2631 
2632   size_t eden_capacity_bytes =
2633     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2634 
2635   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2636   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2637                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2638 }
2639 
2640 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2641   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2642                        stats->unused(), stats->used(), stats->region_end_waste(),
2643                        stats->regions_filled(), stats->direct_allocated(),
2644                        stats->failure_used(), stats->failure_waste());
2645 }
2646 
2647 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2648   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2649   gc_tracer->report_gc_heap_summary(when, heap_summary);
2650 
2651   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2652   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2653 }
2654 
2655 G1CollectedHeap* G1CollectedHeap::heap() {
2656   CollectedHeap* heap = Universe::heap();
2657   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2658   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2659   return (G1CollectedHeap*)heap;
2660 }
2661 
2662 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2663   // always_do_update_barrier = false;
2664   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2665 
2666   double start = os::elapsedTime();
2667   // Fill TLAB's and such
2668   accumulate_statistics_all_tlabs();
2669   ensure_parsability(true);
2670   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2671 
2672   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2673 }
2674 
2675 void G1CollectedHeap::gc_epilogue(bool full) {
2676   // we are at the end of the GC. Total collections has already been increased.
2677   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2678 
2679   // FIXME: what is this about?
2680   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2681   // is set.
2682 #if defined(COMPILER2) || INCLUDE_JVMCI
2683   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2684 #endif
2685   // always_do_update_barrier = true;
2686 
2687   double start = os::elapsedTime();
2688   resize_all_tlabs();
2689   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2690 
2691   allocation_context_stats().update(full);
2692 
2693   // We have just completed a GC. Update the soft reference
2694   // policy with the new heap occupancy
2695   Universe::update_heap_info_at_gc();
2696 }
2697 
2698 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2699                                                uint gc_count_before,
2700                                                bool* succeeded,
2701                                                GCCause::Cause gc_cause) {
2702   assert_heap_not_locked_and_not_at_safepoint();
2703   VM_G1IncCollectionPause op(gc_count_before,
2704                              word_size,
2705                              false, /* should_initiate_conc_mark */
2706                              g1_policy()->max_pause_time_ms(),
2707                              gc_cause);
2708 
2709   op.set_allocation_context(AllocationContext::current());
2710   VMThread::execute(&op);
2711 
2712   HeapWord* result = op.result();
2713   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2714   assert(result == NULL || ret_succeeded,
2715          "the result should be NULL if the VM did not succeed");
2716   *succeeded = ret_succeeded;
2717 
2718   assert_heap_not_locked();
2719   return result;
2720 }
2721 
2722 void
2723 G1CollectedHeap::doConcurrentMark() {
2724   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2725   if (!_cmThread->in_progress()) {
2726     _cmThread->set_started();
2727     CGC_lock->notify();
2728   }
2729 }
2730 
2731 size_t G1CollectedHeap::pending_card_num() {
2732   size_t extra_cards = 0;
2733   JavaThread *curr = Threads::first();
2734   while (curr != NULL) {
2735     DirtyCardQueue& dcq = curr->dirty_card_queue();
2736     extra_cards += dcq.size();
2737     curr = curr->next();
2738   }
2739   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2740   size_t buffer_size = dcqs.buffer_size();
2741   size_t buffer_num = dcqs.completed_buffers_num();
2742 
2743   return buffer_size * buffer_num + extra_cards;
2744 }
2745 
2746 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2747  private:
2748   size_t _total_humongous;
2749   size_t _candidate_humongous;
2750 
2751   DirtyCardQueue _dcq;
2752 
2753   // We don't nominate objects with many remembered set entries, on
2754   // the assumption that such objects are likely still live.
2755   bool is_remset_small(HeapRegion* region) const {
2756     HeapRegionRemSet* const rset = region->rem_set();
2757     return G1EagerReclaimHumongousObjectsWithStaleRefs
2758       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2759       : rset->is_empty();
2760   }
2761 
2762   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2763     assert(region->is_starts_humongous(), "Must start a humongous object");
2764 
2765     oop obj = oop(region->bottom());
2766 
2767     // Dead objects cannot be eager reclaim candidates. Due to class
2768     // unloading it is unsafe to query their classes so we return early.
2769     if (heap->is_obj_dead(obj, region)) {
2770       return false;
2771     }
2772 
2773     // Candidate selection must satisfy the following constraints
2774     // while concurrent marking is in progress:
2775     //
2776     // * In order to maintain SATB invariants, an object must not be
2777     // reclaimed if it was allocated before the start of marking and
2778     // has not had its references scanned.  Such an object must have
2779     // its references (including type metadata) scanned to ensure no
2780     // live objects are missed by the marking process.  Objects
2781     // allocated after the start of concurrent marking don't need to
2782     // be scanned.
2783     //
2784     // * An object must not be reclaimed if it is on the concurrent
2785     // mark stack.  Objects allocated after the start of concurrent
2786     // marking are never pushed on the mark stack.
2787     //
2788     // Nominating only objects allocated after the start of concurrent
2789     // marking is sufficient to meet both constraints.  This may miss
2790     // some objects that satisfy the constraints, but the marking data
2791     // structures don't support efficiently performing the needed
2792     // additional tests or scrubbing of the mark stack.
2793     //
2794     // However, we presently only nominate is_typeArray() objects.
2795     // A humongous object containing references induces remembered
2796     // set entries on other regions.  In order to reclaim such an
2797     // object, those remembered sets would need to be cleaned up.
2798     //
2799     // We also treat is_typeArray() objects specially, allowing them
2800     // to be reclaimed even if allocated before the start of
2801     // concurrent mark.  For this we rely on mark stack insertion to
2802     // exclude is_typeArray() objects, preventing reclaiming an object
2803     // that is in the mark stack.  We also rely on the metadata for
2804     // such objects to be built-in and so ensured to be kept live.
2805     // Frequent allocation and drop of large binary blobs is an
2806     // important use case for eager reclaim, and this special handling
2807     // may reduce needed headroom.
2808 
2809     return obj->is_typeArray() && is_remset_small(region);
2810   }
2811 
2812  public:
2813   RegisterHumongousWithInCSetFastTestClosure()
2814   : _total_humongous(0),
2815     _candidate_humongous(0),
2816     _dcq(&JavaThread::dirty_card_queue_set()) {
2817   }
2818 
2819   virtual bool doHeapRegion(HeapRegion* r) {
2820     if (!r->is_starts_humongous()) {
2821       return false;
2822     }
2823     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2824 
2825     bool is_candidate = humongous_region_is_candidate(g1h, r);
2826     uint rindex = r->hrm_index();
2827     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2828     if (is_candidate) {
2829       _candidate_humongous++;
2830       g1h->register_humongous_region_with_cset(rindex);
2831       // Is_candidate already filters out humongous object with large remembered sets.
2832       // If we have a humongous object with a few remembered sets, we simply flush these
2833       // remembered set entries into the DCQS. That will result in automatic
2834       // re-evaluation of their remembered set entries during the following evacuation
2835       // phase.
2836       if (!r->rem_set()->is_empty()) {
2837         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2838                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2839         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2840         HeapRegionRemSetIterator hrrs(r->rem_set());
2841         size_t card_index;
2842         while (hrrs.has_next(card_index)) {
2843           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2844           // The remembered set might contain references to already freed
2845           // regions. Filter out such entries to avoid failing card table
2846           // verification.
2847           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2848             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2849               *card_ptr = CardTableModRefBS::dirty_card_val();
2850               _dcq.enqueue(card_ptr);
2851             }
2852           }
2853         }
2854         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2855                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2856                hrrs.n_yielded(), r->rem_set()->occupied());
2857         r->rem_set()->clear_locked();
2858       }
2859       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2860     }
2861     _total_humongous++;
2862 
2863     return false;
2864   }
2865 
2866   size_t total_humongous() const { return _total_humongous; }
2867   size_t candidate_humongous() const { return _candidate_humongous; }
2868 
2869   void flush_rem_set_entries() { _dcq.flush(); }
2870 };
2871 
2872 void G1CollectedHeap::register_humongous_regions_with_cset() {
2873   if (!G1EagerReclaimHumongousObjects) {
2874     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2875     return;
2876   }
2877   double time = os::elapsed_counter();
2878 
2879   // Collect reclaim candidate information and register candidates with cset.
2880   RegisterHumongousWithInCSetFastTestClosure cl;
2881   heap_region_iterate(&cl);
2882 
2883   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2884   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2885                                                                   cl.total_humongous(),
2886                                                                   cl.candidate_humongous());
2887   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2888 
2889   // Finally flush all remembered set entries to re-check into the global DCQS.
2890   cl.flush_rem_set_entries();
2891 }
2892 
2893 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2894   public:
2895     bool doHeapRegion(HeapRegion* hr) {
2896       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2897         hr->verify_rem_set();
2898       }
2899       return false;
2900     }
2901 };
2902 
2903 uint G1CollectedHeap::num_task_queues() const {
2904   return _task_queues->size();
2905 }
2906 
2907 #if TASKQUEUE_STATS
2908 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2909   st->print_raw_cr("GC Task Stats");
2910   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2911   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2912 }
2913 
2914 void G1CollectedHeap::print_taskqueue_stats() const {
2915   if (!log_is_enabled(Trace, gc, task, stats)) {
2916     return;
2917   }
2918   Log(gc, task, stats) log;
2919   ResourceMark rm;
2920   LogStream ls(log.trace());
2921   outputStream* st = &ls;
2922 
2923   print_taskqueue_stats_hdr(st);
2924 
2925   TaskQueueStats totals;
2926   const uint n = num_task_queues();
2927   for (uint i = 0; i < n; ++i) {
2928     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2929     totals += task_queue(i)->stats;
2930   }
2931   st->print_raw("tot "); totals.print(st); st->cr();
2932 
2933   DEBUG_ONLY(totals.verify());
2934 }
2935 
2936 void G1CollectedHeap::reset_taskqueue_stats() {
2937   const uint n = num_task_queues();
2938   for (uint i = 0; i < n; ++i) {
2939     task_queue(i)->stats.reset();
2940   }
2941 }
2942 #endif // TASKQUEUE_STATS
2943 
2944 void G1CollectedHeap::wait_for_root_region_scanning() {
2945   double scan_wait_start = os::elapsedTime();
2946   // We have to wait until the CM threads finish scanning the
2947   // root regions as it's the only way to ensure that all the
2948   // objects on them have been correctly scanned before we start
2949   // moving them during the GC.
2950   bool waited = _cm->root_regions()->wait_until_scan_finished();
2951   double wait_time_ms = 0.0;
2952   if (waited) {
2953     double scan_wait_end = os::elapsedTime();
2954     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2955   }
2956   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2957 }
2958 
2959 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2960 private:
2961   G1HRPrinter* _hr_printer;
2962 public:
2963   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2964 
2965   virtual bool doHeapRegion(HeapRegion* r) {
2966     _hr_printer->cset(r);
2967     return false;
2968   }
2969 };
2970 
2971 void G1CollectedHeap::start_new_collection_set() {
2972   collection_set()->start_incremental_building();
2973 
2974   clear_cset_fast_test();
2975 
2976   guarantee(_eden.length() == 0, "eden should have been cleared");
2977   g1_policy()->transfer_survivors_to_cset(survivor());
2978 }
2979 
2980 bool
2981 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2982   assert_at_safepoint(true /* should_be_vm_thread */);
2983   guarantee(!is_gc_active(), "collection is not reentrant");
2984 
2985   if (GCLocker::check_active_before_gc()) {
2986     return false;
2987   }
2988 
2989   _gc_timer_stw->register_gc_start();
2990 
2991   GCIdMark gc_id_mark;
2992   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2993 
2994   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2995   ResourceMark rm;
2996 
2997   g1_policy()->note_gc_start();
2998 
2999   wait_for_root_region_scanning();
3000 
3001   print_heap_before_gc();
3002   print_heap_regions();
3003   trace_heap_before_gc(_gc_tracer_stw);
3004 
3005   _verifier->verify_region_sets_optional();
3006   _verifier->verify_dirty_young_regions();
3007 
3008   // We should not be doing initial mark unless the conc mark thread is running
3009   if (!_cmThread->should_terminate()) {
3010     // This call will decide whether this pause is an initial-mark
3011     // pause. If it is, during_initial_mark_pause() will return true
3012     // for the duration of this pause.
3013     g1_policy()->decide_on_conc_mark_initiation();
3014   }
3015 
3016   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3017   assert(!collector_state()->during_initial_mark_pause() ||
3018           collector_state()->gcs_are_young(), "sanity");
3019 
3020   // We also do not allow mixed GCs during marking.
3021   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3022 
3023   // Record whether this pause is an initial mark. When the current
3024   // thread has completed its logging output and it's safe to signal
3025   // the CM thread, the flag's value in the policy has been reset.
3026   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3027 
3028   // Inner scope for scope based logging, timers, and stats collection
3029   {
3030     EvacuationInfo evacuation_info;
3031 
3032     if (collector_state()->during_initial_mark_pause()) {
3033       // We are about to start a marking cycle, so we increment the
3034       // full collection counter.
3035       increment_old_marking_cycles_started();
3036       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3037     }
3038 
3039     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3040 
3041     GCTraceCPUTime tcpu;
3042 
3043     FormatBuffer<> gc_string("Pause ");
3044     if (collector_state()->during_initial_mark_pause()) {
3045       gc_string.append("Initial Mark");
3046     } else if (collector_state()->gcs_are_young()) {
3047       gc_string.append("Young");
3048     } else {
3049       gc_string.append("Mixed");
3050     }
3051     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3052 
3053     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3054                                                                   workers()->active_workers(),
3055                                                                   Threads::number_of_non_daemon_threads());
3056     workers()->update_active_workers(active_workers);
3057     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3058 
3059     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3060     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3061 
3062     // If the secondary_free_list is not empty, append it to the
3063     // free_list. No need to wait for the cleanup operation to finish;
3064     // the region allocation code will check the secondary_free_list
3065     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3066     // set, skip this step so that the region allocation code has to
3067     // get entries from the secondary_free_list.
3068     if (!G1StressConcRegionFreeing) {
3069       append_secondary_free_list_if_not_empty_with_lock();
3070     }
3071 
3072     G1HeapTransition heap_transition(this);
3073     size_t heap_used_bytes_before_gc = used();
3074 
3075     // Don't dynamically change the number of GC threads this early.  A value of
3076     // 0 is used to indicate serial work.  When parallel work is done,
3077     // it will be set.
3078 
3079     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3080       IsGCActiveMark x;
3081 
3082       gc_prologue(false);
3083       increment_total_collections(false /* full gc */);
3084       increment_gc_time_stamp();
3085 
3086       if (VerifyRememberedSets) {
3087         log_info(gc, verify)("[Verifying RemSets before GC]");
3088         VerifyRegionRemSetClosure v_cl;
3089         heap_region_iterate(&v_cl);
3090       }
3091 
3092       _verifier->verify_before_gc();
3093 
3094       _verifier->check_bitmaps("GC Start");
3095 
3096 #if defined(COMPILER2) || INCLUDE_JVMCI
3097       DerivedPointerTable::clear();
3098 #endif
3099 
3100       // Please see comment in g1CollectedHeap.hpp and
3101       // G1CollectedHeap::ref_processing_init() to see how
3102       // reference processing currently works in G1.
3103 
3104       // Enable discovery in the STW reference processor
3105       if (g1_policy()->should_process_references()) {
3106         ref_processor_stw()->enable_discovery();
3107       } else {
3108         ref_processor_stw()->disable_discovery();
3109       }
3110 
3111       {
3112         // We want to temporarily turn off discovery by the
3113         // CM ref processor, if necessary, and turn it back on
3114         // on again later if we do. Using a scoped
3115         // NoRefDiscovery object will do this.
3116         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3117 
3118         // Forget the current alloc region (we might even choose it to be part
3119         // of the collection set!).
3120         _allocator->release_mutator_alloc_region();
3121 
3122         // This timing is only used by the ergonomics to handle our pause target.
3123         // It is unclear why this should not include the full pause. We will
3124         // investigate this in CR 7178365.
3125         //
3126         // Preserving the old comment here if that helps the investigation:
3127         //
3128         // The elapsed time induced by the start time below deliberately elides
3129         // the possible verification above.
3130         double sample_start_time_sec = os::elapsedTime();
3131 
3132         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3133 
3134         if (collector_state()->during_initial_mark_pause()) {
3135           concurrent_mark()->checkpointRootsInitialPre();
3136         }
3137 
3138         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3139 
3140         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3141 
3142         // Make sure the remembered sets are up to date. This needs to be
3143         // done before register_humongous_regions_with_cset(), because the
3144         // remembered sets are used there to choose eager reclaim candidates.
3145         // If the remembered sets are not up to date we might miss some
3146         // entries that need to be handled.
3147         g1_rem_set()->cleanupHRRS();
3148 
3149         register_humongous_regions_with_cset();
3150 
3151         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3152 
3153         // We call this after finalize_cset() to
3154         // ensure that the CSet has been finalized.
3155         _cm->verify_no_cset_oops();
3156 
3157         if (_hr_printer.is_active()) {
3158           G1PrintCollectionSetClosure cl(&_hr_printer);
3159           _collection_set.iterate(&cl);
3160         }
3161 
3162         // Initialize the GC alloc regions.
3163         _allocator->init_gc_alloc_regions(evacuation_info);
3164 
3165         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3166         pre_evacuate_collection_set();
3167 
3168         // Actually do the work...
3169         evacuate_collection_set(evacuation_info, &per_thread_states);
3170 
3171         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3172 
3173         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3174         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3175 
3176         eagerly_reclaim_humongous_regions();
3177 
3178         record_obj_copy_mem_stats();
3179         _survivor_evac_stats.adjust_desired_plab_sz();
3180         _old_evac_stats.adjust_desired_plab_sz();
3181 
3182         double start = os::elapsedTime();
3183         start_new_collection_set();
3184         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3185 
3186         if (evacuation_failed()) {
3187           set_used(recalculate_used());
3188           if (_archive_allocator != NULL) {
3189             _archive_allocator->clear_used();
3190           }
3191           for (uint i = 0; i < ParallelGCThreads; i++) {
3192             if (_evacuation_failed_info_array[i].has_failed()) {
3193               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3194             }
3195           }
3196         } else {
3197           // The "used" of the the collection set have already been subtracted
3198           // when they were freed.  Add in the bytes evacuated.
3199           increase_used(g1_policy()->bytes_copied_during_gc());
3200         }
3201 
3202         if (collector_state()->during_initial_mark_pause()) {
3203           // We have to do this before we notify the CM threads that
3204           // they can start working to make sure that all the
3205           // appropriate initialization is done on the CM object.
3206           concurrent_mark()->checkpointRootsInitialPost();
3207           collector_state()->set_mark_in_progress(true);
3208           // Note that we don't actually trigger the CM thread at
3209           // this point. We do that later when we're sure that
3210           // the current thread has completed its logging output.
3211         }
3212 
3213         allocate_dummy_regions();
3214 
3215         _allocator->init_mutator_alloc_region();
3216 
3217         {
3218           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3219           if (expand_bytes > 0) {
3220             size_t bytes_before = capacity();
3221             // No need for an ergo logging here,
3222             // expansion_amount() does this when it returns a value > 0.
3223             double expand_ms;
3224             if (!expand(expand_bytes, _workers, &expand_ms)) {
3225               // We failed to expand the heap. Cannot do anything about it.
3226             }
3227             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3228           }
3229         }
3230 
3231         // We redo the verification but now wrt to the new CSet which
3232         // has just got initialized after the previous CSet was freed.
3233         _cm->verify_no_cset_oops();
3234 
3235         // This timing is only used by the ergonomics to handle our pause target.
3236         // It is unclear why this should not include the full pause. We will
3237         // investigate this in CR 7178365.
3238         double sample_end_time_sec = os::elapsedTime();
3239         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3240         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScannedCards);
3241         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3242 
3243         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3244         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3245 
3246         MemoryService::track_memory_usage();
3247 
3248         if (VerifyRememberedSets) {
3249           log_info(gc, verify)("[Verifying RemSets after GC]");
3250           VerifyRegionRemSetClosure v_cl;
3251           heap_region_iterate(&v_cl);
3252         }
3253 
3254         _verifier->verify_after_gc();
3255         _verifier->check_bitmaps("GC End");
3256 
3257         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3258         ref_processor_stw()->verify_no_references_recorded();
3259 
3260         // CM reference discovery will be re-enabled if necessary.
3261       }
3262 
3263 #ifdef TRACESPINNING
3264       ParallelTaskTerminator::print_termination_counts();
3265 #endif
3266 
3267       gc_epilogue(false);
3268     }
3269 
3270     // Print the remainder of the GC log output.
3271     if (evacuation_failed()) {
3272       log_info(gc)("To-space exhausted");
3273     }
3274 
3275     g1_policy()->print_phases();
3276     heap_transition.print();
3277 
3278     // It is not yet to safe to tell the concurrent mark to
3279     // start as we have some optional output below. We don't want the
3280     // output from the concurrent mark thread interfering with this
3281     // logging output either.
3282 
3283     _hrm.verify_optional();
3284     _verifier->verify_region_sets_optional();
3285 
3286     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3287     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3288 
3289     print_heap_after_gc();
3290     print_heap_regions();
3291     trace_heap_after_gc(_gc_tracer_stw);
3292 
3293     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3294     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3295     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3296     // before any GC notifications are raised.
3297     g1mm()->update_sizes();
3298 
3299     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3300     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3301     _gc_timer_stw->register_gc_end();
3302     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3303   }
3304   // It should now be safe to tell the concurrent mark thread to start
3305   // without its logging output interfering with the logging output
3306   // that came from the pause.
3307 
3308   if (should_start_conc_mark) {
3309     // CAUTION: after the doConcurrentMark() call below,
3310     // the concurrent marking thread(s) could be running
3311     // concurrently with us. Make sure that anything after
3312     // this point does not assume that we are the only GC thread
3313     // running. Note: of course, the actual marking work will
3314     // not start until the safepoint itself is released in
3315     // SuspendibleThreadSet::desynchronize().
3316     doConcurrentMark();
3317   }
3318 
3319   return true;
3320 }
3321 
3322 void G1CollectedHeap::remove_self_forwarding_pointers() {
3323   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3324   workers()->run_task(&rsfp_task);
3325 }
3326 
3327 void G1CollectedHeap::restore_after_evac_failure() {
3328   double remove_self_forwards_start = os::elapsedTime();
3329 
3330   remove_self_forwarding_pointers();
3331   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3332   _preserved_marks_set.restore(&task_executor);
3333 
3334   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3335 }
3336 
3337 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3338   if (!_evacuation_failed) {
3339     _evacuation_failed = true;
3340   }
3341 
3342   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3343   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3344 }
3345 
3346 bool G1ParEvacuateFollowersClosure::offer_termination() {
3347   G1ParScanThreadState* const pss = par_scan_state();
3348   start_term_time();
3349   const bool res = terminator()->offer_termination();
3350   end_term_time();
3351   return res;
3352 }
3353 
3354 void G1ParEvacuateFollowersClosure::do_void() {
3355   G1ParScanThreadState* const pss = par_scan_state();
3356   pss->trim_queue();
3357   do {
3358     pss->steal_and_trim_queue(queues());
3359   } while (!offer_termination());
3360 }
3361 
3362 class G1ParTask : public AbstractGangTask {
3363 protected:
3364   G1CollectedHeap*         _g1h;
3365   G1ParScanThreadStateSet* _pss;
3366   RefToScanQueueSet*       _queues;
3367   G1RootProcessor*         _root_processor;
3368   ParallelTaskTerminator   _terminator;
3369   uint                     _n_workers;
3370 
3371 public:
3372   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3373     : AbstractGangTask("G1 collection"),
3374       _g1h(g1h),
3375       _pss(per_thread_states),
3376       _queues(task_queues),
3377       _root_processor(root_processor),
3378       _terminator(n_workers, _queues),
3379       _n_workers(n_workers)
3380   {}
3381 
3382   void work(uint worker_id) {
3383     if (worker_id >= _n_workers) return;  // no work needed this round
3384 
3385     double start_sec = os::elapsedTime();
3386     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3387 
3388     {
3389       ResourceMark rm;
3390       HandleMark   hm;
3391 
3392       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3393 
3394       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3395       pss->set_ref_processor(rp);
3396 
3397       double start_strong_roots_sec = os::elapsedTime();
3398 
3399       _root_processor->evacuate_roots(pss->closures(), worker_id);
3400 
3401       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3402       // treating the nmethods visited to act as roots for concurrent marking.
3403       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3404       // objects copied by the current evacuation.
3405       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3406                                                       pss->closures()->weak_codeblobs(),
3407                                                       worker_id);
3408 
3409       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3410 
3411       double term_sec = 0.0;
3412       size_t evac_term_attempts = 0;
3413       {
3414         double start = os::elapsedTime();
3415         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3416         evac.do_void();
3417 
3418         evac_term_attempts = evac.term_attempts();
3419         term_sec = evac.term_time();
3420         double elapsed_sec = os::elapsedTime() - start;
3421         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3422         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3423         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3424       }
3425 
3426       assert(pss->queue_is_empty(), "should be empty");
3427 
3428       if (log_is_enabled(Debug, gc, task, stats)) {
3429         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3430         size_t lab_waste;
3431         size_t lab_undo_waste;
3432         pss->waste(lab_waste, lab_undo_waste);
3433         _g1h->print_termination_stats(worker_id,
3434                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3435                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3436                                       term_sec * 1000.0,                          /* evac term time */
3437                                       evac_term_attempts,                         /* evac term attempts */
3438                                       lab_waste,                                  /* alloc buffer waste */
3439                                       lab_undo_waste                              /* undo waste */
3440                                       );
3441       }
3442 
3443       // Close the inner scope so that the ResourceMark and HandleMark
3444       // destructors are executed here and are included as part of the
3445       // "GC Worker Time".
3446     }
3447     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3448   }
3449 };
3450 
3451 void G1CollectedHeap::print_termination_stats_hdr() {
3452   log_debug(gc, task, stats)("GC Termination Stats");
3453   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3454   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3455   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3456 }
3457 
3458 void G1CollectedHeap::print_termination_stats(uint worker_id,
3459                                               double elapsed_ms,
3460                                               double strong_roots_ms,
3461                                               double term_ms,
3462                                               size_t term_attempts,
3463                                               size_t alloc_buffer_waste,
3464                                               size_t undo_waste) const {
3465   log_debug(gc, task, stats)
3466               ("%3d %9.2f %9.2f %6.2f "
3467                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3468                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3469                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3470                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3471                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3472                alloc_buffer_waste * HeapWordSize / K,
3473                undo_waste * HeapWordSize / K);
3474 }
3475 
3476 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3477 private:
3478   BoolObjectClosure* _is_alive;
3479   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3480 
3481   int _initial_string_table_size;
3482   int _initial_symbol_table_size;
3483 
3484   bool  _process_strings;
3485   int _strings_processed;
3486   int _strings_removed;
3487 
3488   bool  _process_symbols;
3489   int _symbols_processed;
3490   int _symbols_removed;
3491 
3492   bool _process_string_dedup;
3493 
3494 public:
3495   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3496     AbstractGangTask("String/Symbol Unlinking"),
3497     _is_alive(is_alive),
3498     _dedup_closure(is_alive, NULL, false),
3499     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3500     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3501     _process_string_dedup(process_string_dedup) {
3502 
3503     _initial_string_table_size = StringTable::the_table()->table_size();
3504     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3505     if (process_strings) {
3506       StringTable::clear_parallel_claimed_index();
3507     }
3508     if (process_symbols) {
3509       SymbolTable::clear_parallel_claimed_index();
3510     }
3511   }
3512 
3513   ~G1StringAndSymbolCleaningTask() {
3514     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3515               "claim value %d after unlink less than initial string table size %d",
3516               StringTable::parallel_claimed_index(), _initial_string_table_size);
3517     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3518               "claim value %d after unlink less than initial symbol table size %d",
3519               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3520 
3521     log_info(gc, stringtable)(
3522         "Cleaned string and symbol table, "
3523         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3524         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3525         strings_processed(), strings_removed(),
3526         symbols_processed(), symbols_removed());
3527   }
3528 
3529   void work(uint worker_id) {
3530     int strings_processed = 0;
3531     int strings_removed = 0;
3532     int symbols_processed = 0;
3533     int symbols_removed = 0;
3534     if (_process_strings) {
3535       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3536       Atomic::add(strings_processed, &_strings_processed);
3537       Atomic::add(strings_removed, &_strings_removed);
3538     }
3539     if (_process_symbols) {
3540       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3541       Atomic::add(symbols_processed, &_symbols_processed);
3542       Atomic::add(symbols_removed, &_symbols_removed);
3543     }
3544     if (_process_string_dedup) {
3545       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3546     }
3547   }
3548 
3549   size_t strings_processed() const { return (size_t)_strings_processed; }
3550   size_t strings_removed()   const { return (size_t)_strings_removed; }
3551 
3552   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3553   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3554 };
3555 
3556 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3557 private:
3558   static Monitor* _lock;
3559 
3560   BoolObjectClosure* const _is_alive;
3561   const bool               _unloading_occurred;
3562   const uint               _num_workers;
3563 
3564   // Variables used to claim nmethods.
3565   CompiledMethod* _first_nmethod;
3566   volatile CompiledMethod* _claimed_nmethod;
3567 
3568   // The list of nmethods that need to be processed by the second pass.
3569   volatile CompiledMethod* _postponed_list;
3570   volatile uint            _num_entered_barrier;
3571 
3572  public:
3573   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3574       _is_alive(is_alive),
3575       _unloading_occurred(unloading_occurred),
3576       _num_workers(num_workers),
3577       _first_nmethod(NULL),
3578       _claimed_nmethod(NULL),
3579       _postponed_list(NULL),
3580       _num_entered_barrier(0)
3581   {
3582     CompiledMethod::increase_unloading_clock();
3583     // Get first alive nmethod
3584     CompiledMethodIterator iter = CompiledMethodIterator();
3585     if(iter.next_alive()) {
3586       _first_nmethod = iter.method();
3587     }
3588     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3589   }
3590 
3591   ~G1CodeCacheUnloadingTask() {
3592     CodeCache::verify_clean_inline_caches();
3593 
3594     CodeCache::set_needs_cache_clean(false);
3595     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3596 
3597     CodeCache::verify_icholder_relocations();
3598   }
3599 
3600  private:
3601   void add_to_postponed_list(CompiledMethod* nm) {
3602       CompiledMethod* old;
3603       do {
3604         old = (CompiledMethod*)_postponed_list;
3605         nm->set_unloading_next(old);
3606       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3607   }
3608 
3609   void clean_nmethod(CompiledMethod* nm) {
3610     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3611 
3612     if (postponed) {
3613       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3614       add_to_postponed_list(nm);
3615     }
3616 
3617     // Mark that this thread has been cleaned/unloaded.
3618     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3619     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3620   }
3621 
3622   void clean_nmethod_postponed(CompiledMethod* nm) {
3623     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3624   }
3625 
3626   static const int MaxClaimNmethods = 16;
3627 
3628   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3629     CompiledMethod* first;
3630     CompiledMethodIterator last;
3631 
3632     do {
3633       *num_claimed_nmethods = 0;
3634 
3635       first = (CompiledMethod*)_claimed_nmethod;
3636       last = CompiledMethodIterator(first);
3637 
3638       if (first != NULL) {
3639 
3640         for (int i = 0; i < MaxClaimNmethods; i++) {
3641           if (!last.next_alive()) {
3642             break;
3643           }
3644           claimed_nmethods[i] = last.method();
3645           (*num_claimed_nmethods)++;
3646         }
3647       }
3648 
3649     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3650   }
3651 
3652   CompiledMethod* claim_postponed_nmethod() {
3653     CompiledMethod* claim;
3654     CompiledMethod* next;
3655 
3656     do {
3657       claim = (CompiledMethod*)_postponed_list;
3658       if (claim == NULL) {
3659         return NULL;
3660       }
3661 
3662       next = claim->unloading_next();
3663 
3664     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3665 
3666     return claim;
3667   }
3668 
3669  public:
3670   // Mark that we're done with the first pass of nmethod cleaning.
3671   void barrier_mark(uint worker_id) {
3672     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3673     _num_entered_barrier++;
3674     if (_num_entered_barrier == _num_workers) {
3675       ml.notify_all();
3676     }
3677   }
3678 
3679   // See if we have to wait for the other workers to
3680   // finish their first-pass nmethod cleaning work.
3681   void barrier_wait(uint worker_id) {
3682     if (_num_entered_barrier < _num_workers) {
3683       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3684       while (_num_entered_barrier < _num_workers) {
3685           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3686       }
3687     }
3688   }
3689 
3690   // Cleaning and unloading of nmethods. Some work has to be postponed
3691   // to the second pass, when we know which nmethods survive.
3692   void work_first_pass(uint worker_id) {
3693     // The first nmethods is claimed by the first worker.
3694     if (worker_id == 0 && _first_nmethod != NULL) {
3695       clean_nmethod(_first_nmethod);
3696       _first_nmethod = NULL;
3697     }
3698 
3699     int num_claimed_nmethods;
3700     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3701 
3702     while (true) {
3703       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3704 
3705       if (num_claimed_nmethods == 0) {
3706         break;
3707       }
3708 
3709       for (int i = 0; i < num_claimed_nmethods; i++) {
3710         clean_nmethod(claimed_nmethods[i]);
3711       }
3712     }
3713   }
3714 
3715   void work_second_pass(uint worker_id) {
3716     CompiledMethod* nm;
3717     // Take care of postponed nmethods.
3718     while ((nm = claim_postponed_nmethod()) != NULL) {
3719       clean_nmethod_postponed(nm);
3720     }
3721   }
3722 };
3723 
3724 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3725 
3726 class G1KlassCleaningTask : public StackObj {
3727   BoolObjectClosure*                      _is_alive;
3728   volatile jint                           _clean_klass_tree_claimed;
3729   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3730 
3731  public:
3732   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3733       _is_alive(is_alive),
3734       _clean_klass_tree_claimed(0),
3735       _klass_iterator() {
3736   }
3737 
3738  private:
3739   bool claim_clean_klass_tree_task() {
3740     if (_clean_klass_tree_claimed) {
3741       return false;
3742     }
3743 
3744     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3745   }
3746 
3747   InstanceKlass* claim_next_klass() {
3748     Klass* klass;
3749     do {
3750       klass =_klass_iterator.next_klass();
3751     } while (klass != NULL && !klass->is_instance_klass());
3752 
3753     // this can be null so don't call InstanceKlass::cast
3754     return static_cast<InstanceKlass*>(klass);
3755   }
3756 
3757 public:
3758 
3759   void clean_klass(InstanceKlass* ik) {
3760     ik->clean_weak_instanceklass_links(_is_alive);
3761   }
3762 
3763   void work() {
3764     ResourceMark rm;
3765 
3766     // One worker will clean the subklass/sibling klass tree.
3767     if (claim_clean_klass_tree_task()) {
3768       Klass::clean_subklass_tree(_is_alive);
3769     }
3770 
3771     // All workers will help cleaning the classes,
3772     InstanceKlass* klass;
3773     while ((klass = claim_next_klass()) != NULL) {
3774       clean_klass(klass);
3775     }
3776   }
3777 };
3778 
3779 class G1ResolvedMethodCleaningTask : public StackObj {
3780   BoolObjectClosure* _is_alive;
3781   volatile jint      _resolved_method_task_claimed;
3782 public:
3783   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3784       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3785 
3786   bool claim_resolved_method_task() {
3787     if (_resolved_method_task_claimed) {
3788       return false;
3789     }
3790     return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3791   }
3792 
3793   // These aren't big, one thread can do it all.
3794   void work() {
3795     if (claim_resolved_method_task()) {
3796       ResolvedMethodTable::unlink(_is_alive);
3797     }
3798   }
3799 };
3800 
3801 
3802 // To minimize the remark pause times, the tasks below are done in parallel.
3803 class G1ParallelCleaningTask : public AbstractGangTask {
3804 private:
3805   G1StringAndSymbolCleaningTask _string_symbol_task;
3806   G1CodeCacheUnloadingTask      _code_cache_task;
3807   G1KlassCleaningTask           _klass_cleaning_task;
3808   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3809 
3810 public:
3811   // The constructor is run in the VMThread.
3812   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3813       AbstractGangTask("Parallel Cleaning"),
3814       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3815       _code_cache_task(num_workers, is_alive, unloading_occurred),
3816       _klass_cleaning_task(is_alive),
3817       _resolved_method_cleaning_task(is_alive) {
3818   }
3819 
3820   // The parallel work done by all worker threads.
3821   void work(uint worker_id) {
3822     // Do first pass of code cache cleaning.
3823     _code_cache_task.work_first_pass(worker_id);
3824 
3825     // Let the threads mark that the first pass is done.
3826     _code_cache_task.barrier_mark(worker_id);
3827 
3828     // Clean the Strings and Symbols.
3829     _string_symbol_task.work(worker_id);
3830 
3831     // Clean unreferenced things in the ResolvedMethodTable
3832     _resolved_method_cleaning_task.work();
3833 
3834     // Wait for all workers to finish the first code cache cleaning pass.
3835     _code_cache_task.barrier_wait(worker_id);
3836 
3837     // Do the second code cache cleaning work, which realize on
3838     // the liveness information gathered during the first pass.
3839     _code_cache_task.work_second_pass(worker_id);
3840 
3841     // Clean all klasses that were not unloaded.
3842     _klass_cleaning_task.work();
3843   }
3844 };
3845 
3846 
3847 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3848                                         bool class_unloading_occurred) {
3849   uint n_workers = workers()->active_workers();
3850 
3851   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3852   workers()->run_task(&g1_unlink_task);
3853 }
3854 
3855 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3856                                        bool process_strings,
3857                                        bool process_symbols,
3858                                        bool process_string_dedup) {
3859   if (!process_strings && !process_symbols && !process_string_dedup) {
3860     // Nothing to clean.
3861     return;
3862   }
3863 
3864   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3865   workers()->run_task(&g1_unlink_task);
3866 
3867 }
3868 
3869 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3870  private:
3871   DirtyCardQueueSet* _queue;
3872   G1CollectedHeap* _g1h;
3873  public:
3874   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3875     _queue(queue), _g1h(g1h) { }
3876 
3877   virtual void work(uint worker_id) {
3878     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3879     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3880 
3881     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3882     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3883 
3884     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3885   }
3886 };
3887 
3888 void G1CollectedHeap::redirty_logged_cards() {
3889   double redirty_logged_cards_start = os::elapsedTime();
3890 
3891   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3892   dirty_card_queue_set().reset_for_par_iteration();
3893   workers()->run_task(&redirty_task);
3894 
3895   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3896   dcq.merge_bufferlists(&dirty_card_queue_set());
3897   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3898 
3899   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3900 }
3901 
3902 // Weak Reference Processing support
3903 
3904 // An always "is_alive" closure that is used to preserve referents.
3905 // If the object is non-null then it's alive.  Used in the preservation
3906 // of referent objects that are pointed to by reference objects
3907 // discovered by the CM ref processor.
3908 class G1AlwaysAliveClosure: public BoolObjectClosure {
3909   G1CollectedHeap* _g1;
3910 public:
3911   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3912   bool do_object_b(oop p) {
3913     if (p != NULL) {
3914       return true;
3915     }
3916     return false;
3917   }
3918 };
3919 
3920 bool G1STWIsAliveClosure::do_object_b(oop p) {
3921   // An object is reachable if it is outside the collection set,
3922   // or is inside and copied.
3923   return !_g1->is_in_cset(p) || p->is_forwarded();
3924 }
3925 
3926 // Non Copying Keep Alive closure
3927 class G1KeepAliveClosure: public OopClosure {
3928   G1CollectedHeap* _g1;
3929 public:
3930   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3931   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3932   void do_oop(oop* p) {
3933     oop obj = *p;
3934     assert(obj != NULL, "the caller should have filtered out NULL values");
3935 
3936     const InCSetState cset_state = _g1->in_cset_state(obj);
3937     if (!cset_state.is_in_cset_or_humongous()) {
3938       return;
3939     }
3940     if (cset_state.is_in_cset()) {
3941       assert( obj->is_forwarded(), "invariant" );
3942       *p = obj->forwardee();
3943     } else {
3944       assert(!obj->is_forwarded(), "invariant" );
3945       assert(cset_state.is_humongous(),
3946              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3947       _g1->set_humongous_is_live(obj);
3948     }
3949   }
3950 };
3951 
3952 // Copying Keep Alive closure - can be called from both
3953 // serial and parallel code as long as different worker
3954 // threads utilize different G1ParScanThreadState instances
3955 // and different queues.
3956 
3957 class G1CopyingKeepAliveClosure: public OopClosure {
3958   G1CollectedHeap*         _g1h;
3959   OopClosure*              _copy_non_heap_obj_cl;
3960   G1ParScanThreadState*    _par_scan_state;
3961 
3962 public:
3963   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3964                             OopClosure* non_heap_obj_cl,
3965                             G1ParScanThreadState* pss):
3966     _g1h(g1h),
3967     _copy_non_heap_obj_cl(non_heap_obj_cl),
3968     _par_scan_state(pss)
3969   {}
3970 
3971   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3972   virtual void do_oop(      oop* p) { do_oop_work(p); }
3973 
3974   template <class T> void do_oop_work(T* p) {
3975     oop obj = oopDesc::load_decode_heap_oop(p);
3976 
3977     if (_g1h->is_in_cset_or_humongous(obj)) {
3978       // If the referent object has been forwarded (either copied
3979       // to a new location or to itself in the event of an
3980       // evacuation failure) then we need to update the reference
3981       // field and, if both reference and referent are in the G1
3982       // heap, update the RSet for the referent.
3983       //
3984       // If the referent has not been forwarded then we have to keep
3985       // it alive by policy. Therefore we have copy the referent.
3986       //
3987       // If the reference field is in the G1 heap then we can push
3988       // on the PSS queue. When the queue is drained (after each
3989       // phase of reference processing) the object and it's followers
3990       // will be copied, the reference field set to point to the
3991       // new location, and the RSet updated. Otherwise we need to
3992       // use the the non-heap or metadata closures directly to copy
3993       // the referent object and update the pointer, while avoiding
3994       // updating the RSet.
3995 
3996       if (_g1h->is_in_g1_reserved(p)) {
3997         _par_scan_state->push_on_queue(p);
3998       } else {
3999         assert(!Metaspace::contains((const void*)p),
4000                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4001         _copy_non_heap_obj_cl->do_oop(p);
4002       }
4003     }
4004   }
4005 };
4006 
4007 // Serial drain queue closure. Called as the 'complete_gc'
4008 // closure for each discovered list in some of the
4009 // reference processing phases.
4010 
4011 class G1STWDrainQueueClosure: public VoidClosure {
4012 protected:
4013   G1CollectedHeap* _g1h;
4014   G1ParScanThreadState* _par_scan_state;
4015 
4016   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4017 
4018 public:
4019   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4020     _g1h(g1h),
4021     _par_scan_state(pss)
4022   { }
4023 
4024   void do_void() {
4025     G1ParScanThreadState* const pss = par_scan_state();
4026     pss->trim_queue();
4027   }
4028 };
4029 
4030 // Parallel Reference Processing closures
4031 
4032 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4033 // processing during G1 evacuation pauses.
4034 
4035 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4036 private:
4037   G1CollectedHeap*          _g1h;
4038   G1ParScanThreadStateSet*  _pss;
4039   RefToScanQueueSet*        _queues;
4040   WorkGang*                 _workers;
4041   uint                      _active_workers;
4042 
4043 public:
4044   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4045                            G1ParScanThreadStateSet* per_thread_states,
4046                            WorkGang* workers,
4047                            RefToScanQueueSet *task_queues,
4048                            uint n_workers) :
4049     _g1h(g1h),
4050     _pss(per_thread_states),
4051     _queues(task_queues),
4052     _workers(workers),
4053     _active_workers(n_workers)
4054   {
4055     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4056   }
4057 
4058   // Executes the given task using concurrent marking worker threads.
4059   virtual void execute(ProcessTask& task);
4060   virtual void execute(EnqueueTask& task);
4061 };
4062 
4063 // Gang task for possibly parallel reference processing
4064 
4065 class G1STWRefProcTaskProxy: public AbstractGangTask {
4066   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4067   ProcessTask&     _proc_task;
4068   G1CollectedHeap* _g1h;
4069   G1ParScanThreadStateSet* _pss;
4070   RefToScanQueueSet* _task_queues;
4071   ParallelTaskTerminator* _terminator;
4072 
4073 public:
4074   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4075                         G1CollectedHeap* g1h,
4076                         G1ParScanThreadStateSet* per_thread_states,
4077                         RefToScanQueueSet *task_queues,
4078                         ParallelTaskTerminator* terminator) :
4079     AbstractGangTask("Process reference objects in parallel"),
4080     _proc_task(proc_task),
4081     _g1h(g1h),
4082     _pss(per_thread_states),
4083     _task_queues(task_queues),
4084     _terminator(terminator)
4085   {}
4086 
4087   virtual void work(uint worker_id) {
4088     // The reference processing task executed by a single worker.
4089     ResourceMark rm;
4090     HandleMark   hm;
4091 
4092     G1STWIsAliveClosure is_alive(_g1h);
4093 
4094     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4095     pss->set_ref_processor(NULL);
4096 
4097     // Keep alive closure.
4098     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4099 
4100     // Complete GC closure
4101     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4102 
4103     // Call the reference processing task's work routine.
4104     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4105 
4106     // Note we cannot assert that the refs array is empty here as not all
4107     // of the processing tasks (specifically phase2 - pp2_work) execute
4108     // the complete_gc closure (which ordinarily would drain the queue) so
4109     // the queue may not be empty.
4110   }
4111 };
4112 
4113 // Driver routine for parallel reference processing.
4114 // Creates an instance of the ref processing gang
4115 // task and has the worker threads execute it.
4116 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4117   assert(_workers != NULL, "Need parallel worker threads.");
4118 
4119   ParallelTaskTerminator terminator(_active_workers, _queues);
4120   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4121 
4122   _workers->run_task(&proc_task_proxy);
4123 }
4124 
4125 // Gang task for parallel reference enqueueing.
4126 
4127 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4128   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4129   EnqueueTask& _enq_task;
4130 
4131 public:
4132   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4133     AbstractGangTask("Enqueue reference objects in parallel"),
4134     _enq_task(enq_task)
4135   { }
4136 
4137   virtual void work(uint worker_id) {
4138     _enq_task.work(worker_id);
4139   }
4140 };
4141 
4142 // Driver routine for parallel reference enqueueing.
4143 // Creates an instance of the ref enqueueing gang
4144 // task and has the worker threads execute it.
4145 
4146 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4147   assert(_workers != NULL, "Need parallel worker threads.");
4148 
4149   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4150 
4151   _workers->run_task(&enq_task_proxy);
4152 }
4153 
4154 // End of weak reference support closures
4155 
4156 // Abstract task used to preserve (i.e. copy) any referent objects
4157 // that are in the collection set and are pointed to by reference
4158 // objects discovered by the CM ref processor.
4159 
4160 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4161 protected:
4162   G1CollectedHeap*         _g1h;
4163   G1ParScanThreadStateSet* _pss;
4164   RefToScanQueueSet*       _queues;
4165   ParallelTaskTerminator   _terminator;
4166   uint                     _n_workers;
4167 
4168 public:
4169   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4170     AbstractGangTask("ParPreserveCMReferents"),
4171     _g1h(g1h),
4172     _pss(per_thread_states),
4173     _queues(task_queues),
4174     _terminator(workers, _queues),
4175     _n_workers(workers)
4176   {
4177     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4178   }
4179 
4180   void work(uint worker_id) {
4181     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4182 
4183     ResourceMark rm;
4184     HandleMark   hm;
4185 
4186     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4187     pss->set_ref_processor(NULL);
4188     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4189 
4190     // Is alive closure
4191     G1AlwaysAliveClosure always_alive(_g1h);
4192 
4193     // Copying keep alive closure. Applied to referent objects that need
4194     // to be copied.
4195     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4196 
4197     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4198 
4199     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4200     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4201 
4202     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4203     // So this must be true - but assert just in case someone decides to
4204     // change the worker ids.
4205     assert(worker_id < limit, "sanity");
4206     assert(!rp->discovery_is_atomic(), "check this code");
4207 
4208     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4209     for (uint idx = worker_id; idx < limit; idx += stride) {
4210       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4211 
4212       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4213       while (iter.has_next()) {
4214         // Since discovery is not atomic for the CM ref processor, we
4215         // can see some null referent objects.
4216         iter.load_ptrs(DEBUG_ONLY(true));
4217         oop ref = iter.obj();
4218 
4219         // This will filter nulls.
4220         if (iter.is_referent_alive()) {
4221           iter.make_referent_alive();
4222         }
4223         iter.move_to_next();
4224       }
4225     }
4226 
4227     // Drain the queue - which may cause stealing
4228     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4229     drain_queue.do_void();
4230     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4231     assert(pss->queue_is_empty(), "should be");
4232   }
4233 };
4234 
4235 void G1CollectedHeap::process_weak_jni_handles() {
4236   double ref_proc_start = os::elapsedTime();
4237 
4238   G1STWIsAliveClosure is_alive(this);
4239   G1KeepAliveClosure keep_alive(this);
4240   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4241 
4242   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4243   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4244 }
4245 
4246 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4247   // Any reference objects, in the collection set, that were 'discovered'
4248   // by the CM ref processor should have already been copied (either by
4249   // applying the external root copy closure to the discovered lists, or
4250   // by following an RSet entry).
4251   //
4252   // But some of the referents, that are in the collection set, that these
4253   // reference objects point to may not have been copied: the STW ref
4254   // processor would have seen that the reference object had already
4255   // been 'discovered' and would have skipped discovering the reference,
4256   // but would not have treated the reference object as a regular oop.
4257   // As a result the copy closure would not have been applied to the
4258   // referent object.
4259   //
4260   // We need to explicitly copy these referent objects - the references
4261   // will be processed at the end of remarking.
4262   //
4263   // We also need to do this copying before we process the reference
4264   // objects discovered by the STW ref processor in case one of these
4265   // referents points to another object which is also referenced by an
4266   // object discovered by the STW ref processor.
4267   double preserve_cm_referents_time = 0.0;
4268 
4269   // To avoid spawning task when there is no work to do, check that
4270   // a concurrent cycle is active and that some references have been
4271   // discovered.
4272   if (concurrent_mark()->cmThread()->during_cycle() &&
4273       ref_processor_cm()->has_discovered_references()) {
4274     double preserve_cm_referents_start = os::elapsedTime();
4275     uint no_of_gc_workers = workers()->active_workers();
4276     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4277                                                    per_thread_states,
4278                                                    no_of_gc_workers,
4279                                                    _task_queues);
4280     workers()->run_task(&keep_cm_referents);
4281     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4282   }
4283 
4284   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4285 }
4286 
4287 // Weak Reference processing during an evacuation pause (part 1).
4288 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4289   double ref_proc_start = os::elapsedTime();
4290 
4291   ReferenceProcessor* rp = _ref_processor_stw;
4292   assert(rp->discovery_enabled(), "should have been enabled");
4293 
4294   // Closure to test whether a referent is alive.
4295   G1STWIsAliveClosure is_alive(this);
4296 
4297   // Even when parallel reference processing is enabled, the processing
4298   // of JNI refs is serial and performed serially by the current thread
4299   // rather than by a worker. The following PSS will be used for processing
4300   // JNI refs.
4301 
4302   // Use only a single queue for this PSS.
4303   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4304   pss->set_ref_processor(NULL);
4305   assert(pss->queue_is_empty(), "pre-condition");
4306 
4307   // Keep alive closure.
4308   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4309 
4310   // Serial Complete GC closure
4311   G1STWDrainQueueClosure drain_queue(this, pss);
4312 
4313   // Setup the soft refs policy...
4314   rp->setup_policy(false);
4315 
4316   ReferenceProcessorStats stats;
4317   if (!rp->processing_is_mt()) {
4318     // Serial reference processing...
4319     stats = rp->process_discovered_references(&is_alive,
4320                                               &keep_alive,
4321                                               &drain_queue,
4322                                               NULL,
4323                                               _gc_timer_stw);
4324   } else {
4325     uint no_of_gc_workers = workers()->active_workers();
4326 
4327     // Parallel reference processing
4328     assert(no_of_gc_workers <= rp->max_num_q(),
4329            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4330            no_of_gc_workers,  rp->max_num_q());
4331 
4332     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4333     stats = rp->process_discovered_references(&is_alive,
4334                                               &keep_alive,
4335                                               &drain_queue,
4336                                               &par_task_executor,
4337                                               _gc_timer_stw);
4338   }
4339 
4340   _gc_tracer_stw->report_gc_reference_stats(stats);
4341 
4342   // We have completed copying any necessary live referent objects.
4343   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4344 
4345   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4346   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4347 }
4348 
4349 // Weak Reference processing during an evacuation pause (part 2).
4350 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4351   double ref_enq_start = os::elapsedTime();
4352 
4353   ReferenceProcessor* rp = _ref_processor_stw;
4354   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4355 
4356   // Now enqueue any remaining on the discovered lists on to
4357   // the pending list.
4358   if (!rp->processing_is_mt()) {
4359     // Serial reference processing...
4360     rp->enqueue_discovered_references();
4361   } else {
4362     // Parallel reference enqueueing
4363 
4364     uint n_workers = workers()->active_workers();
4365 
4366     assert(n_workers <= rp->max_num_q(),
4367            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4368            n_workers,  rp->max_num_q());
4369 
4370     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4371     rp->enqueue_discovered_references(&par_task_executor);
4372   }
4373 
4374   rp->verify_no_references_recorded();
4375   assert(!rp->discovery_enabled(), "should have been disabled");
4376 
4377   // FIXME
4378   // CM's reference processing also cleans up the string and symbol tables.
4379   // Should we do that here also? We could, but it is a serial operation
4380   // and could significantly increase the pause time.
4381 
4382   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4383   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4384 }
4385 
4386 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4387   double merge_pss_time_start = os::elapsedTime();
4388   per_thread_states->flush();
4389   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4390 }
4391 
4392 void G1CollectedHeap::pre_evacuate_collection_set() {
4393   _expand_heap_after_alloc_failure = true;
4394   _evacuation_failed = false;
4395 
4396   // Disable the hot card cache.
4397   _hot_card_cache->reset_hot_cache_claimed_index();
4398   _hot_card_cache->set_use_cache(false);
4399 
4400   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4401   _preserved_marks_set.assert_empty();
4402 
4403   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4404 
4405   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4406   if (collector_state()->during_initial_mark_pause()) {
4407     double start_clear_claimed_marks = os::elapsedTime();
4408 
4409     ClassLoaderDataGraph::clear_claimed_marks();
4410 
4411     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4412     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4413   }
4414 }
4415 
4416 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4417   // Should G1EvacuationFailureALot be in effect for this GC?
4418   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4419 
4420   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4421 
4422   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4423 
4424   double start_par_time_sec = os::elapsedTime();
4425   double end_par_time_sec;
4426 
4427   {
4428     const uint n_workers = workers()->active_workers();
4429     G1RootProcessor root_processor(this, n_workers);
4430     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4431 
4432     print_termination_stats_hdr();
4433 
4434     workers()->run_task(&g1_par_task);
4435     end_par_time_sec = os::elapsedTime();
4436 
4437     // Closing the inner scope will execute the destructor
4438     // for the G1RootProcessor object. We record the current
4439     // elapsed time before closing the scope so that time
4440     // taken for the destructor is NOT included in the
4441     // reported parallel time.
4442   }
4443 
4444   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4445   phase_times->record_par_time(par_time_ms);
4446 
4447   double code_root_fixup_time_ms =
4448         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4449   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4450 }
4451 
4452 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4453   // Process any discovered reference objects - we have
4454   // to do this _before_ we retire the GC alloc regions
4455   // as we may have to copy some 'reachable' referent
4456   // objects (and their reachable sub-graphs) that were
4457   // not copied during the pause.
4458   if (g1_policy()->should_process_references()) {
4459     preserve_cm_referents(per_thread_states);
4460     process_discovered_references(per_thread_states);
4461   } else {
4462     ref_processor_stw()->verify_no_references_recorded();
4463     process_weak_jni_handles();
4464   }
4465 
4466   if (G1StringDedup::is_enabled()) {
4467     double fixup_start = os::elapsedTime();
4468 
4469     G1STWIsAliveClosure is_alive(this);
4470     G1KeepAliveClosure keep_alive(this);
4471     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4472 
4473     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4474     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4475   }
4476 
4477   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4478 
4479   if (evacuation_failed()) {
4480     restore_after_evac_failure();
4481 
4482     // Reset the G1EvacuationFailureALot counters and flags
4483     // Note: the values are reset only when an actual
4484     // evacuation failure occurs.
4485     NOT_PRODUCT(reset_evacuation_should_fail();)
4486   }
4487 
4488   _preserved_marks_set.assert_empty();
4489 
4490   // Enqueue any remaining references remaining on the STW
4491   // reference processor's discovered lists. We need to do
4492   // this after the card table is cleaned (and verified) as
4493   // the act of enqueueing entries on to the pending list
4494   // will log these updates (and dirty their associated
4495   // cards). We need these updates logged to update any
4496   // RSets.
4497   if (g1_policy()->should_process_references()) {
4498     enqueue_discovered_references(per_thread_states);
4499   } else {
4500     g1_policy()->phase_times()->record_ref_enq_time(0);
4501   }
4502 
4503   _allocator->release_gc_alloc_regions(evacuation_info);
4504 
4505   merge_per_thread_state_info(per_thread_states);
4506 
4507   // Reset and re-enable the hot card cache.
4508   // Note the counts for the cards in the regions in the
4509   // collection set are reset when the collection set is freed.
4510   _hot_card_cache->reset_hot_cache();
4511   _hot_card_cache->set_use_cache(true);
4512 
4513   purge_code_root_memory();
4514 
4515   redirty_logged_cards();
4516 #if defined(COMPILER2) || INCLUDE_JVMCI
4517   double start = os::elapsedTime();
4518   DerivedPointerTable::update_pointers();
4519   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4520 #endif
4521   g1_policy()->print_age_table();
4522 }
4523 
4524 void G1CollectedHeap::record_obj_copy_mem_stats() {
4525   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4526 
4527   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4528                                                create_g1_evac_summary(&_old_evac_stats));
4529 }
4530 
4531 void G1CollectedHeap::free_region(HeapRegion* hr,
4532                                   FreeRegionList* free_list,
4533                                   bool skip_remset,
4534                                   bool skip_hot_card_cache,
4535                                   bool locked) {
4536   assert(!hr->is_free(), "the region should not be free");
4537   assert(!hr->is_empty(), "the region should not be empty");
4538   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4539   assert(free_list != NULL, "pre-condition");
4540 
4541   if (G1VerifyBitmaps) {
4542     MemRegion mr(hr->bottom(), hr->end());
4543     concurrent_mark()->clearRangePrevBitmap(mr);
4544   }
4545 
4546   // Clear the card counts for this region.
4547   // Note: we only need to do this if the region is not young
4548   // (since we don't refine cards in young regions).
4549   if (!skip_hot_card_cache && !hr->is_young()) {
4550     _hot_card_cache->reset_card_counts(hr);
4551   }
4552   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4553   free_list->add_ordered(hr);
4554 }
4555 
4556 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4557                                             FreeRegionList* free_list,
4558                                             bool skip_remset) {
4559   assert(hr->is_humongous(), "this is only for humongous regions");
4560   assert(free_list != NULL, "pre-condition");
4561   hr->clear_humongous();
4562   free_region(hr, free_list, skip_remset);
4563 }
4564 
4565 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4566                                            const uint humongous_regions_removed) {
4567   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4568     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4569     _old_set.bulk_remove(old_regions_removed);
4570     _humongous_set.bulk_remove(humongous_regions_removed);
4571   }
4572 
4573 }
4574 
4575 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4576   assert(list != NULL, "list can't be null");
4577   if (!list->is_empty()) {
4578     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4579     _hrm.insert_list_into_free_list(list);
4580   }
4581 }
4582 
4583 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4584   decrease_used(bytes);
4585 }
4586 
4587 class G1ParScrubRemSetTask: public AbstractGangTask {
4588 protected:
4589   G1RemSet* _g1rs;
4590   HeapRegionClaimer _hrclaimer;
4591 
4592 public:
4593   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4594     AbstractGangTask("G1 ScrubRS"),
4595     _g1rs(g1_rs),
4596     _hrclaimer(num_workers) {
4597   }
4598 
4599   void work(uint worker_id) {
4600     _g1rs->scrub(worker_id, &_hrclaimer);
4601   }
4602 };
4603 
4604 void G1CollectedHeap::scrub_rem_set() {
4605   uint num_workers = workers()->active_workers();
4606   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4607   workers()->run_task(&g1_par_scrub_rs_task);
4608 }
4609 
4610 class G1FreeCollectionSetTask : public AbstractGangTask {
4611 private:
4612 
4613   // Closure applied to all regions in the collection set to do work that needs to
4614   // be done serially in a single thread.
4615   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4616   private:
4617     EvacuationInfo* _evacuation_info;
4618     const size_t* _surviving_young_words;
4619 
4620     // Bytes used in successfully evacuated regions before the evacuation.
4621     size_t _before_used_bytes;
4622     // Bytes used in unsucessfully evacuated regions before the evacuation
4623     size_t _after_used_bytes;
4624 
4625     size_t _bytes_allocated_in_old_since_last_gc;
4626 
4627     size_t _failure_used_words;
4628     size_t _failure_waste_words;
4629 
4630     FreeRegionList _local_free_list;
4631   public:
4632     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4633       HeapRegionClosure(),
4634       _evacuation_info(evacuation_info),
4635       _surviving_young_words(surviving_young_words),
4636       _before_used_bytes(0),
4637       _after_used_bytes(0),
4638       _bytes_allocated_in_old_since_last_gc(0),
4639       _failure_used_words(0),
4640       _failure_waste_words(0),
4641       _local_free_list("Local Region List for CSet Freeing") {
4642     }
4643 
4644     virtual bool doHeapRegion(HeapRegion* r) {
4645       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4646 
4647       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4648       g1h->clear_in_cset(r);
4649 
4650       if (r->is_young()) {
4651         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4652                "Young index %d is wrong for region %u of type %s with %u young regions",
4653                r->young_index_in_cset(),
4654                r->hrm_index(),
4655                r->get_type_str(),
4656                g1h->collection_set()->young_region_length());
4657         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4658         r->record_surv_words_in_group(words_survived);
4659       }
4660 
4661       if (!r->evacuation_failed()) {
4662         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4663         _before_used_bytes += r->used();
4664         g1h->free_region(r,
4665                          &_local_free_list,
4666                          true, /* skip_remset */
4667                          true, /* skip_hot_card_cache */
4668                          true  /* locked */);
4669       } else {
4670         r->uninstall_surv_rate_group();
4671         r->set_young_index_in_cset(-1);
4672         r->set_evacuation_failed(false);
4673         // When moving a young gen region to old gen, we "allocate" that whole region
4674         // there. This is in addition to any already evacuated objects. Notify the
4675         // policy about that.
4676         // Old gen regions do not cause an additional allocation: both the objects
4677         // still in the region and the ones already moved are accounted for elsewhere.
4678         if (r->is_young()) {
4679           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4680         }
4681         // The region is now considered to be old.
4682         r->set_old();
4683         // Do some allocation statistics accounting. Regions that failed evacuation
4684         // are always made old, so there is no need to update anything in the young
4685         // gen statistics, but we need to update old gen statistics.
4686         size_t used_words = r->marked_bytes() / HeapWordSize;
4687 
4688         _failure_used_words += used_words;
4689         _failure_waste_words += HeapRegion::GrainWords - used_words;
4690 
4691         g1h->old_set_add(r);
4692         _after_used_bytes += r->used();
4693       }
4694       return false;
4695     }
4696 
4697     void complete_work() {
4698       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4699 
4700       _evacuation_info->set_regions_freed(_local_free_list.length());
4701       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4702 
4703       g1h->prepend_to_freelist(&_local_free_list);
4704       g1h->decrement_summary_bytes(_before_used_bytes);
4705 
4706       G1Policy* policy = g1h->g1_policy();
4707       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4708 
4709       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4710     }
4711   };
4712 
4713   G1CollectionSet* _collection_set;
4714   G1SerialFreeCollectionSetClosure _cl;
4715   const size_t* _surviving_young_words;
4716 
4717   size_t _rs_lengths;
4718 
4719   volatile jint _serial_work_claim;
4720 
4721   struct WorkItem {
4722     uint region_idx;
4723     bool is_young;
4724     bool evacuation_failed;
4725 
4726     WorkItem(HeapRegion* r) {
4727       region_idx = r->hrm_index();
4728       is_young = r->is_young();
4729       evacuation_failed = r->evacuation_failed();
4730     }
4731   };
4732 
4733   volatile size_t _parallel_work_claim;
4734   size_t _num_work_items;
4735   WorkItem* _work_items;
4736 
4737   void do_serial_work() {
4738     // Need to grab the lock to be allowed to modify the old region list.
4739     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4740     _collection_set->iterate(&_cl);
4741   }
4742 
4743   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4744     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4745 
4746     HeapRegion* r = g1h->region_at(region_idx);
4747     assert(!g1h->is_on_master_free_list(r), "sanity");
4748 
4749     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4750 
4751     if (!is_young) {
4752       g1h->_hot_card_cache->reset_card_counts(r);
4753     }
4754 
4755     if (!evacuation_failed) {
4756       r->rem_set()->clear_locked();
4757     }
4758   }
4759 
4760   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4761   private:
4762     size_t _cur_idx;
4763     WorkItem* _work_items;
4764   public:
4765     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4766 
4767     virtual bool doHeapRegion(HeapRegion* r) {
4768       _work_items[_cur_idx++] = WorkItem(r);
4769       return false;
4770     }
4771   };
4772 
4773   void prepare_work() {
4774     G1PrepareFreeCollectionSetClosure cl(_work_items);
4775     _collection_set->iterate(&cl);
4776   }
4777 
4778   void complete_work() {
4779     _cl.complete_work();
4780 
4781     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4782     policy->record_max_rs_lengths(_rs_lengths);
4783     policy->cset_regions_freed();
4784   }
4785 public:
4786   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4787     AbstractGangTask("G1 Free Collection Set"),
4788     _cl(evacuation_info, surviving_young_words),
4789     _collection_set(collection_set),
4790     _surviving_young_words(surviving_young_words),
4791     _serial_work_claim(0),
4792     _rs_lengths(0),
4793     _parallel_work_claim(0),
4794     _num_work_items(collection_set->region_length()),
4795     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4796     prepare_work();
4797   }
4798 
4799   ~G1FreeCollectionSetTask() {
4800     complete_work();
4801     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4802   }
4803 
4804   // Chunk size for work distribution. The chosen value has been determined experimentally
4805   // to be a good tradeoff between overhead and achievable parallelism.
4806   static uint chunk_size() { return 32; }
4807 
4808   virtual void work(uint worker_id) {
4809     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4810 
4811     // Claim serial work.
4812     if (_serial_work_claim == 0) {
4813       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4814       if (value == 0) {
4815         double serial_time = os::elapsedTime();
4816         do_serial_work();
4817         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4818       }
4819     }
4820 
4821     // Start parallel work.
4822     double young_time = 0.0;
4823     bool has_young_time = false;
4824     double non_young_time = 0.0;
4825     bool has_non_young_time = false;
4826 
4827     while (true) {
4828       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4829       size_t cur = end - chunk_size();
4830 
4831       if (cur >= _num_work_items) {
4832         break;
4833       }
4834 
4835       double start_time = os::elapsedTime();
4836 
4837       end = MIN2(end, _num_work_items);
4838 
4839       for (; cur < end; cur++) {
4840         bool is_young = _work_items[cur].is_young;
4841 
4842         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4843 
4844         double end_time = os::elapsedTime();
4845         double time_taken = end_time - start_time;
4846         if (is_young) {
4847           young_time += time_taken;
4848           has_young_time = true;
4849         } else {
4850           non_young_time += time_taken;
4851           has_non_young_time = true;
4852         }
4853         start_time = end_time;
4854       }
4855     }
4856 
4857     if (has_young_time) {
4858       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4859     }
4860     if (has_non_young_time) {
4861       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4862     }
4863   }
4864 };
4865 
4866 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4867   _eden.clear();
4868 
4869   double free_cset_start_time = os::elapsedTime();
4870 
4871   {
4872     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4873     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4874 
4875     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4876 
4877     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4878                         cl.name(),
4879                         num_workers,
4880                         _collection_set.region_length());
4881     workers()->run_task(&cl, num_workers);
4882   }
4883   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4884 
4885   collection_set->clear();
4886 }
4887 
4888 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4889  private:
4890   FreeRegionList* _free_region_list;
4891   HeapRegionSet* _proxy_set;
4892   uint _humongous_objects_reclaimed;
4893   uint _humongous_regions_reclaimed;
4894   size_t _freed_bytes;
4895  public:
4896 
4897   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4898     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4899   }
4900 
4901   virtual bool doHeapRegion(HeapRegion* r) {
4902     if (!r->is_starts_humongous()) {
4903       return false;
4904     }
4905 
4906     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4907 
4908     oop obj = (oop)r->bottom();
4909     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4910 
4911     // The following checks whether the humongous object is live are sufficient.
4912     // The main additional check (in addition to having a reference from the roots
4913     // or the young gen) is whether the humongous object has a remembered set entry.
4914     //
4915     // A humongous object cannot be live if there is no remembered set for it
4916     // because:
4917     // - there can be no references from within humongous starts regions referencing
4918     // the object because we never allocate other objects into them.
4919     // (I.e. there are no intra-region references that may be missed by the
4920     // remembered set)
4921     // - as soon there is a remembered set entry to the humongous starts region
4922     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4923     // until the end of a concurrent mark.
4924     //
4925     // It is not required to check whether the object has been found dead by marking
4926     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4927     // all objects allocated during that time are considered live.
4928     // SATB marking is even more conservative than the remembered set.
4929     // So if at this point in the collection there is no remembered set entry,
4930     // nobody has a reference to it.
4931     // At the start of collection we flush all refinement logs, and remembered sets
4932     // are completely up-to-date wrt to references to the humongous object.
4933     //
4934     // Other implementation considerations:
4935     // - never consider object arrays at this time because they would pose
4936     // considerable effort for cleaning up the the remembered sets. This is
4937     // required because stale remembered sets might reference locations that
4938     // are currently allocated into.
4939     uint region_idx = r->hrm_index();
4940     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4941         !r->rem_set()->is_empty()) {
4942       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4943                                region_idx,
4944                                (size_t)obj->size() * HeapWordSize,
4945                                p2i(r->bottom()),
4946                                r->rem_set()->occupied(),
4947                                r->rem_set()->strong_code_roots_list_length(),
4948                                next_bitmap->isMarked(r->bottom()),
4949                                g1h->is_humongous_reclaim_candidate(region_idx),
4950                                obj->is_typeArray()
4951                               );
4952       return false;
4953     }
4954 
4955     guarantee(obj->is_typeArray(),
4956               "Only eagerly reclaiming type arrays is supported, but the object "
4957               PTR_FORMAT " is not.", p2i(r->bottom()));
4958 
4959     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4960                              region_idx,
4961                              (size_t)obj->size() * HeapWordSize,
4962                              p2i(r->bottom()),
4963                              r->rem_set()->occupied(),
4964                              r->rem_set()->strong_code_roots_list_length(),
4965                              next_bitmap->isMarked(r->bottom()),
4966                              g1h->is_humongous_reclaim_candidate(region_idx),
4967                              obj->is_typeArray()
4968                             );
4969 
4970     // Need to clear mark bit of the humongous object if already set.
4971     if (next_bitmap->isMarked(r->bottom())) {
4972       next_bitmap->clear(r->bottom());
4973     }
4974     _humongous_objects_reclaimed++;
4975     do {
4976       HeapRegion* next = g1h->next_region_in_humongous(r);
4977       _freed_bytes += r->used();
4978       r->set_containing_set(NULL);
4979       _humongous_regions_reclaimed++;
4980       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4981       r = next;
4982     } while (r != NULL);
4983 
4984     return false;
4985   }
4986 
4987   uint humongous_objects_reclaimed() {
4988     return _humongous_objects_reclaimed;
4989   }
4990 
4991   uint humongous_regions_reclaimed() {
4992     return _humongous_regions_reclaimed;
4993   }
4994 
4995   size_t bytes_freed() const {
4996     return _freed_bytes;
4997   }
4998 };
4999 
5000 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5001   assert_at_safepoint(true);
5002 
5003   if (!G1EagerReclaimHumongousObjects ||
5004       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5005     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5006     return;
5007   }
5008 
5009   double start_time = os::elapsedTime();
5010 
5011   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5012 
5013   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5014   heap_region_iterate(&cl);
5015 
5016   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
5017 
5018   G1HRPrinter* hrp = hr_printer();
5019   if (hrp->is_active()) {
5020     FreeRegionListIterator iter(&local_cleanup_list);
5021     while (iter.more_available()) {
5022       HeapRegion* hr = iter.get_next();
5023       hrp->cleanup(hr);
5024     }
5025   }
5026 
5027   prepend_to_freelist(&local_cleanup_list);
5028   decrement_summary_bytes(cl.bytes_freed());
5029 
5030   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5031                                                                     cl.humongous_objects_reclaimed());
5032 }
5033 
5034 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5035 public:
5036   virtual bool doHeapRegion(HeapRegion* r) {
5037     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5038     G1CollectedHeap::heap()->clear_in_cset(r);
5039     r->set_young_index_in_cset(-1);
5040     return false;
5041   }
5042 };
5043 
5044 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5045   G1AbandonCollectionSetClosure cl;
5046   collection_set->iterate(&cl);
5047 
5048   collection_set->clear();
5049   collection_set->stop_incremental_building();
5050 }
5051 
5052 void G1CollectedHeap::set_free_regions_coming() {
5053   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5054 
5055   assert(!free_regions_coming(), "pre-condition");
5056   _free_regions_coming = true;
5057 }
5058 
5059 void G1CollectedHeap::reset_free_regions_coming() {
5060   assert(free_regions_coming(), "pre-condition");
5061 
5062   {
5063     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5064     _free_regions_coming = false;
5065     SecondaryFreeList_lock->notify_all();
5066   }
5067 
5068   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5069 }
5070 
5071 void G1CollectedHeap::wait_while_free_regions_coming() {
5072   // Most of the time we won't have to wait, so let's do a quick test
5073   // first before we take the lock.
5074   if (!free_regions_coming()) {
5075     return;
5076   }
5077 
5078   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5079 
5080   {
5081     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5082     while (free_regions_coming()) {
5083       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5084     }
5085   }
5086 
5087   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5088 }
5089 
5090 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5091   return _allocator->is_retained_old_region(hr);
5092 }
5093 
5094 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5095   _eden.add(hr);
5096   _g1_policy->set_region_eden(hr);
5097 }
5098 
5099 #ifdef ASSERT
5100 
5101 class NoYoungRegionsClosure: public HeapRegionClosure {
5102 private:
5103   bool _success;
5104 public:
5105   NoYoungRegionsClosure() : _success(true) { }
5106   bool doHeapRegion(HeapRegion* r) {
5107     if (r->is_young()) {
5108       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5109                             p2i(r->bottom()), p2i(r->end()));
5110       _success = false;
5111     }
5112     return false;
5113   }
5114   bool success() { return _success; }
5115 };
5116 
5117 bool G1CollectedHeap::check_young_list_empty() {
5118   bool ret = (young_regions_count() == 0);
5119 
5120   NoYoungRegionsClosure closure;
5121   heap_region_iterate(&closure);
5122   ret = ret && closure.success();
5123 
5124   return ret;
5125 }
5126 
5127 #endif // ASSERT
5128 
5129 class TearDownRegionSetsClosure : public HeapRegionClosure {
5130 private:
5131   HeapRegionSet *_old_set;
5132 
5133 public:
5134   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5135 
5136   bool doHeapRegion(HeapRegion* r) {
5137     if (r->is_old()) {
5138       _old_set->remove(r);
5139     } else if(r->is_young()) {
5140       r->uninstall_surv_rate_group();
5141     } else {
5142       // We ignore free regions, we'll empty the free list afterwards.
5143       // We ignore humongous regions, we're not tearing down the
5144       // humongous regions set.
5145       assert(r->is_free() || r->is_humongous(),
5146              "it cannot be another type");
5147     }
5148     return false;
5149   }
5150 
5151   ~TearDownRegionSetsClosure() {
5152     assert(_old_set->is_empty(), "post-condition");
5153   }
5154 };
5155 
5156 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5157   assert_at_safepoint(true /* should_be_vm_thread */);
5158 
5159   if (!free_list_only) {
5160     TearDownRegionSetsClosure cl(&_old_set);
5161     heap_region_iterate(&cl);
5162 
5163     // Note that emptying the _young_list is postponed and instead done as
5164     // the first step when rebuilding the regions sets again. The reason for
5165     // this is that during a full GC string deduplication needs to know if
5166     // a collected region was young or old when the full GC was initiated.
5167   }
5168   _hrm.remove_all_free_regions();
5169 }
5170 
5171 void G1CollectedHeap::increase_used(size_t bytes) {
5172   _summary_bytes_used += bytes;
5173 }
5174 
5175 void G1CollectedHeap::decrease_used(size_t bytes) {
5176   assert(_summary_bytes_used >= bytes,
5177          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5178          _summary_bytes_used, bytes);
5179   _summary_bytes_used -= bytes;
5180 }
5181 
5182 void G1CollectedHeap::set_used(size_t bytes) {
5183   _summary_bytes_used = bytes;
5184 }
5185 
5186 class RebuildRegionSetsClosure : public HeapRegionClosure {
5187 private:
5188   bool            _free_list_only;
5189   HeapRegionSet*   _old_set;
5190   HeapRegionManager*   _hrm;
5191   size_t          _total_used;
5192 
5193 public:
5194   RebuildRegionSetsClosure(bool free_list_only,
5195                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5196     _free_list_only(free_list_only),
5197     _old_set(old_set), _hrm(hrm), _total_used(0) {
5198     assert(_hrm->num_free_regions() == 0, "pre-condition");
5199     if (!free_list_only) {
5200       assert(_old_set->is_empty(), "pre-condition");
5201     }
5202   }
5203 
5204   bool doHeapRegion(HeapRegion* r) {
5205     if (r->is_empty()) {
5206       // Add free regions to the free list
5207       r->set_free();
5208       r->set_allocation_context(AllocationContext::system());
5209       _hrm->insert_into_free_list(r);
5210     } else if (!_free_list_only) {
5211 
5212       if (r->is_humongous()) {
5213         // We ignore humongous regions. We left the humongous set unchanged.
5214       } else {
5215         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5216         // We now consider all regions old, so register as such. Leave
5217         // archive regions set that way, however, while still adding
5218         // them to the old set.
5219         if (!r->is_archive()) {
5220           r->set_old();
5221         }
5222         _old_set->add(r);
5223       }
5224       _total_used += r->used();
5225     }
5226 
5227     return false;
5228   }
5229 
5230   size_t total_used() {
5231     return _total_used;
5232   }
5233 };
5234 
5235 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5236   assert_at_safepoint(true /* should_be_vm_thread */);
5237 
5238   if (!free_list_only) {
5239     _eden.clear();
5240     _survivor.clear();
5241   }
5242 
5243   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5244   heap_region_iterate(&cl);
5245 
5246   if (!free_list_only) {
5247     set_used(cl.total_used());
5248     if (_archive_allocator != NULL) {
5249       _archive_allocator->clear_used();
5250     }
5251   }
5252   assert(used_unlocked() == recalculate_used(),
5253          "inconsistent used_unlocked(), "
5254          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5255          used_unlocked(), recalculate_used());
5256 }
5257 
5258 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5259   HeapRegion* hr = heap_region_containing(p);
5260   return hr->is_in(p);
5261 }
5262 
5263 // Methods for the mutator alloc region
5264 
5265 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5266                                                       bool force) {
5267   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5268   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5269   if (force || should_allocate) {
5270     HeapRegion* new_alloc_region = new_region(word_size,
5271                                               false /* is_old */,
5272                                               false /* do_expand */);
5273     if (new_alloc_region != NULL) {
5274       set_region_short_lived_locked(new_alloc_region);
5275       _hr_printer.alloc(new_alloc_region, !should_allocate);
5276       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5277       return new_alloc_region;
5278     }
5279   }
5280   return NULL;
5281 }
5282 
5283 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5284                                                   size_t allocated_bytes) {
5285   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5286   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5287 
5288   collection_set()->add_eden_region(alloc_region);
5289   increase_used(allocated_bytes);
5290   _hr_printer.retire(alloc_region);
5291   // We update the eden sizes here, when the region is retired,
5292   // instead of when it's allocated, since this is the point that its
5293   // used space has been recored in _summary_bytes_used.
5294   g1mm()->update_eden_size();
5295 }
5296 
5297 // Methods for the GC alloc regions
5298 
5299 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5300   if (dest.is_old()) {
5301     return true;
5302   } else {
5303     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5304   }
5305 }
5306 
5307 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5308   assert(FreeList_lock->owned_by_self(), "pre-condition");
5309 
5310   if (!has_more_regions(dest)) {
5311     return NULL;
5312   }
5313 
5314   const bool is_survivor = dest.is_young();
5315 
5316   HeapRegion* new_alloc_region = new_region(word_size,
5317                                             !is_survivor,
5318                                             true /* do_expand */);
5319   if (new_alloc_region != NULL) {
5320     // We really only need to do this for old regions given that we
5321     // should never scan survivors. But it doesn't hurt to do it
5322     // for survivors too.
5323     new_alloc_region->record_timestamp();
5324     if (is_survivor) {
5325       new_alloc_region->set_survivor();
5326       _survivor.add(new_alloc_region);
5327       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5328     } else {
5329       new_alloc_region->set_old();
5330       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5331     }
5332     _hr_printer.alloc(new_alloc_region);
5333     bool during_im = collector_state()->during_initial_mark_pause();
5334     new_alloc_region->note_start_of_copying(during_im);
5335     return new_alloc_region;
5336   }
5337   return NULL;
5338 }
5339 
5340 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5341                                              size_t allocated_bytes,
5342                                              InCSetState dest) {
5343   bool during_im = collector_state()->during_initial_mark_pause();
5344   alloc_region->note_end_of_copying(during_im);
5345   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5346   if (dest.is_old()) {
5347     _old_set.add(alloc_region);
5348   }
5349   _hr_printer.retire(alloc_region);
5350 }
5351 
5352 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5353   bool expanded = false;
5354   uint index = _hrm.find_highest_free(&expanded);
5355 
5356   if (index != G1_NO_HRM_INDEX) {
5357     if (expanded) {
5358       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5359                                 HeapRegion::GrainWords * HeapWordSize);
5360     }
5361     _hrm.allocate_free_regions_starting_at(index, 1);
5362     return region_at(index);
5363   }
5364   return NULL;
5365 }
5366 
5367 // Optimized nmethod scanning
5368 
5369 class RegisterNMethodOopClosure: public OopClosure {
5370   G1CollectedHeap* _g1h;
5371   nmethod* _nm;
5372 
5373   template <class T> void do_oop_work(T* p) {
5374     T heap_oop = oopDesc::load_heap_oop(p);
5375     if (!oopDesc::is_null(heap_oop)) {
5376       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5377       HeapRegion* hr = _g1h->heap_region_containing(obj);
5378       assert(!hr->is_continues_humongous(),
5379              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5380              " starting at " HR_FORMAT,
5381              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5382 
5383       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5384       hr->add_strong_code_root_locked(_nm);
5385     }
5386   }
5387 
5388 public:
5389   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5390     _g1h(g1h), _nm(nm) {}
5391 
5392   void do_oop(oop* p)       { do_oop_work(p); }
5393   void do_oop(narrowOop* p) { do_oop_work(p); }
5394 };
5395 
5396 class UnregisterNMethodOopClosure: public OopClosure {
5397   G1CollectedHeap* _g1h;
5398   nmethod* _nm;
5399 
5400   template <class T> void do_oop_work(T* p) {
5401     T heap_oop = oopDesc::load_heap_oop(p);
5402     if (!oopDesc::is_null(heap_oop)) {
5403       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5404       HeapRegion* hr = _g1h->heap_region_containing(obj);
5405       assert(!hr->is_continues_humongous(),
5406              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5407              " starting at " HR_FORMAT,
5408              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5409 
5410       hr->remove_strong_code_root(_nm);
5411     }
5412   }
5413 
5414 public:
5415   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5416     _g1h(g1h), _nm(nm) {}
5417 
5418   void do_oop(oop* p)       { do_oop_work(p); }
5419   void do_oop(narrowOop* p) { do_oop_work(p); }
5420 };
5421 
5422 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5423   CollectedHeap::register_nmethod(nm);
5424 
5425   guarantee(nm != NULL, "sanity");
5426   RegisterNMethodOopClosure reg_cl(this, nm);
5427   nm->oops_do(&reg_cl);
5428 }
5429 
5430 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5431   CollectedHeap::unregister_nmethod(nm);
5432 
5433   guarantee(nm != NULL, "sanity");
5434   UnregisterNMethodOopClosure reg_cl(this, nm);
5435   nm->oops_do(&reg_cl, true);
5436 }
5437 
5438 void G1CollectedHeap::purge_code_root_memory() {
5439   double purge_start = os::elapsedTime();
5440   G1CodeRootSet::purge();
5441   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5442   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5443 }
5444 
5445 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5446   G1CollectedHeap* _g1h;
5447 
5448 public:
5449   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5450     _g1h(g1h) {}
5451 
5452   void do_code_blob(CodeBlob* cb) {
5453     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5454     if (nm == NULL) {
5455       return;
5456     }
5457 
5458     if (ScavengeRootsInCode) {
5459       _g1h->register_nmethod(nm);
5460     }
5461   }
5462 };
5463 
5464 void G1CollectedHeap::rebuild_strong_code_roots() {
5465   RebuildStrongCodeRootClosure blob_cl(this);
5466   CodeCache::blobs_do(&blob_cl);
5467 }