1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/dirtyCardQueue.hpp"
  28 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1FromCardCache.hpp"
  31 #include "gc/g1/g1GCPhaseTimes.hpp"
  32 #include "gc/g1/g1HotCardCache.hpp"
  33 #include "gc/g1/g1OopClosures.inline.hpp"
  34 #include "gc/g1/g1RemSet.inline.hpp"
  35 #include "gc/g1/g1SATBCardTableModRefBS.inline.hpp"
  36 #include "gc/g1/heapRegion.inline.hpp"
  37 #include "gc/g1/heapRegionManager.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/g1/suspendibleThreadSet.hpp"
  40 #include "gc/shared/gcTraceTime.inline.hpp"
  41 #include "memory/iterator.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "utilities/align.hpp"
  45 #include "utilities/globalDefinitions.hpp"
  46 #include "utilities/intHisto.hpp"
  47 #include "utilities/stack.inline.hpp"
  48 
  49 // Collects information about the overall remembered set scan progress during an evacuation.
  50 class G1RemSetScanState : public CHeapObj<mtGC> {
  51 private:
  52   class G1ClearCardTableTask : public AbstractGangTask {
  53     G1CollectedHeap* _g1h;
  54     uint* _dirty_region_list;
  55     size_t _num_dirty_regions;
  56     size_t _chunk_length;
  57 
  58     size_t volatile _cur_dirty_regions;
  59   public:
  60     G1ClearCardTableTask(G1CollectedHeap* g1h,
  61                          uint* dirty_region_list,
  62                          size_t num_dirty_regions,
  63                          size_t chunk_length) :
  64       AbstractGangTask("G1 Clear Card Table Task"),
  65       _g1h(g1h),
  66       _dirty_region_list(dirty_region_list),
  67       _num_dirty_regions(num_dirty_regions),
  68       _chunk_length(chunk_length),
  69       _cur_dirty_regions(0) {
  70 
  71       assert(chunk_length > 0, "must be");
  72     }
  73 
  74     static size_t chunk_size() { return M; }
  75 
  76     void work(uint worker_id) {
  77       G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
  78 
  79       while (_cur_dirty_regions < _num_dirty_regions) {
  80         size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
  81         size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
  82 
  83         for (size_t i = next; i < max; i++) {
  84           HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
  85           if (!r->is_survivor()) {
  86             ct_bs->clear(MemRegion(r->bottom(), r->end()));
  87           }
  88         }
  89       }
  90     }
  91   };
  92 
  93   size_t _max_regions;
  94 
  95   // Scan progress for the remembered set of a single region. Transitions from
  96   // Unclaimed -> Claimed -> Complete.
  97   // At each of the transitions the thread that does the transition needs to perform
  98   // some special action once. This is the reason for the extra "Claimed" state.
  99   typedef jint G1RemsetIterState;
 100 
 101   static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
 102   static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
 103   static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
 104 
 105   G1RemsetIterState volatile* _iter_states;
 106   // The current location where the next thread should continue scanning in a region's
 107   // remembered set.
 108   size_t volatile* _iter_claims;
 109 
 110   // Temporary buffer holding the regions we used to store remembered set scan duplicate
 111   // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
 112   uint* _dirty_region_buffer;
 113 
 114   typedef jbyte IsDirtyRegionState;
 115   static const IsDirtyRegionState Clean = 0;
 116   static const IsDirtyRegionState Dirty = 1;
 117   // Holds a flag for every region whether it is in the _dirty_region_buffer already
 118   // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
 119   IsDirtyRegionState* _in_dirty_region_buffer;
 120   size_t _cur_dirty_region;
 121 
 122   // Creates a snapshot of the current _top values at the start of collection to
 123   // filter out card marks that we do not want to scan.
 124   class G1ResetScanTopClosure : public HeapRegionClosure {
 125   private:
 126     HeapWord** _scan_top;
 127   public:
 128     G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { }
 129 
 130     virtual bool doHeapRegion(HeapRegion* r) {
 131       uint hrm_index = r->hrm_index();
 132       if (!r->in_collection_set() && r->is_old_or_humongous()) {
 133         _scan_top[hrm_index] = r->top();
 134       } else {
 135         _scan_top[hrm_index] = r->bottom();
 136       }
 137       return false;
 138     }
 139   };
 140 
 141   // For each region, contains the maximum top() value to be used during this garbage
 142   // collection. Subsumes common checks like filtering out everything but old and
 143   // humongous regions outside the collection set.
 144   // This is valid because we are not interested in scanning stray remembered set
 145   // entries from free or archive regions.
 146   HeapWord** _scan_top;
 147 public:
 148   G1RemSetScanState() :
 149     _max_regions(0),
 150     _iter_states(NULL),
 151     _iter_claims(NULL),
 152     _dirty_region_buffer(NULL),
 153     _in_dirty_region_buffer(NULL),
 154     _cur_dirty_region(0),
 155     _scan_top(NULL) {
 156   }
 157 
 158   ~G1RemSetScanState() {
 159     if (_iter_states != NULL) {
 160       FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
 161     }
 162     if (_iter_claims != NULL) {
 163       FREE_C_HEAP_ARRAY(size_t, _iter_claims);
 164     }
 165     if (_dirty_region_buffer != NULL) {
 166       FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
 167     }
 168     if (_in_dirty_region_buffer != NULL) {
 169       FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
 170     }
 171     if (_scan_top != NULL) {
 172       FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
 173     }
 174   }
 175 
 176   void initialize(uint max_regions) {
 177     assert(_iter_states == NULL, "Must not be initialized twice");
 178     assert(_iter_claims == NULL, "Must not be initialized twice");
 179     _max_regions = max_regions;
 180     _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
 181     _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 182     _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
 183     _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
 184     _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
 185   }
 186 
 187   void reset() {
 188     for (uint i = 0; i < _max_regions; i++) {
 189       _iter_states[i] = Unclaimed;
 190     }
 191 
 192     G1ResetScanTopClosure cl(_scan_top);
 193     G1CollectedHeap::heap()->heap_region_iterate(&cl);
 194 
 195     memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
 196     memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
 197     _cur_dirty_region = 0;
 198   }
 199 
 200   // Attempt to claim the remembered set of the region for iteration. Returns true
 201   // if this call caused the transition from Unclaimed to Claimed.
 202   inline bool claim_iter(uint region) {
 203     assert(region < _max_regions, "Tried to access invalid region %u", region);
 204     if (_iter_states[region] != Unclaimed) {
 205       return false;
 206     }
 207     jint res = Atomic::cmpxchg(Claimed, (jint*)(&_iter_states[region]), Unclaimed);
 208     return (res == Unclaimed);
 209   }
 210 
 211   // Try to atomically sets the iteration state to "complete". Returns true for the
 212   // thread that caused the transition.
 213   inline bool set_iter_complete(uint region) {
 214     if (iter_is_complete(region)) {
 215       return false;
 216     }
 217     jint res = Atomic::cmpxchg(Complete, (jint*)(&_iter_states[region]), Claimed);
 218     return (res == Claimed);
 219   }
 220 
 221   // Returns true if the region's iteration is complete.
 222   inline bool iter_is_complete(uint region) const {
 223     assert(region < _max_regions, "Tried to access invalid region %u", region);
 224     return _iter_states[region] == Complete;
 225   }
 226 
 227   // The current position within the remembered set of the given region.
 228   inline size_t iter_claimed(uint region) const {
 229     assert(region < _max_regions, "Tried to access invalid region %u", region);
 230     return _iter_claims[region];
 231   }
 232 
 233   // Claim the next block of cards within the remembered set of the region with
 234   // step size.
 235   inline size_t iter_claimed_next(uint region, size_t step) {
 236     return Atomic::add(step, &_iter_claims[region]) - step;
 237   }
 238 
 239   void add_dirty_region(uint region) {
 240     if (_in_dirty_region_buffer[region] == Dirty) {
 241       return;
 242     }
 243 
 244     bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
 245     if (marked_as_dirty) {
 246       size_t allocated = Atomic::add(1, &_cur_dirty_region) - 1;
 247       _dirty_region_buffer[allocated] = region;
 248     }
 249   }
 250 
 251   HeapWord* scan_top(uint region_idx) const {
 252     return _scan_top[region_idx];
 253   }
 254 
 255   // Clear the card table of "dirty" regions.
 256   void clear_card_table(WorkGang* workers) {
 257     if (_cur_dirty_region == 0) {
 258       return;
 259     }
 260 
 261     size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
 262     uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 263     size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
 264 
 265     // Iterate over the dirty cards region list.
 266     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
 267 
 268     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
 269                         "units of work for " SIZE_FORMAT " regions.",
 270                         cl.name(), num_workers, num_chunks, _cur_dirty_region);
 271     workers->run_task(&cl, num_workers);
 272 
 273 #ifndef PRODUCT
 274     // Need to synchronize with concurrent cleanup since it needs to
 275     // finish its card table clearing before we can verify.
 276     G1CollectedHeap::heap()->wait_while_free_regions_coming();
 277     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
 278 #endif
 279   }
 280 };
 281 
 282 G1RemSet::G1RemSet(G1CollectedHeap* g1,
 283                    CardTableModRefBS* ct_bs,
 284                    G1HotCardCache* hot_card_cache) :
 285   _g1(g1),
 286   _scan_state(new G1RemSetScanState()),
 287   _num_conc_refined_cards(0),
 288   _ct_bs(ct_bs),
 289   _g1p(_g1->g1_policy()),
 290   _hot_card_cache(hot_card_cache),
 291   _prev_period_summary(),
 292   _into_cset_dirty_card_queue_set(false)
 293 {
 294   // Initialize the card queue set used to hold cards containing
 295   // references into the collection set.
 296   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
 297                                              DirtyCardQ_FL_lock,
 298                                              -1, // never trigger processing
 299                                              -1, // no limit on length
 300                                              Shared_DirtyCardQ_lock,
 301                                              &JavaThread::dirty_card_queue_set());
 302 }
 303 
 304 G1RemSet::~G1RemSet() {
 305   if (_scan_state != NULL) {
 306     delete _scan_state;
 307   }
 308 }
 309 
 310 uint G1RemSet::num_par_rem_sets() {
 311   return MAX2(DirtyCardQueueSet::num_par_ids() + ConcurrentG1Refine::thread_num(), ParallelGCThreads);
 312 }
 313 
 314 void G1RemSet::initialize(size_t capacity, uint max_regions) {
 315   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
 316   _scan_state->initialize(max_regions);
 317   {
 318     GCTraceTime(Debug, gc, marking)("Initialize Card Live Data");
 319     _card_live_data.initialize(capacity, max_regions);
 320   }
 321   if (G1PretouchAuxiliaryMemory) {
 322     GCTraceTime(Debug, gc, marking)("Pre-Touch Card Live Data");
 323     _card_live_data.pretouch();
 324   }
 325 }
 326 
 327 G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state,
 328                                                    G1ScanObjsDuringScanRSClosure* scan_obj_on_card,
 329                                                    CodeBlobClosure* code_root_cl,
 330                                                    uint worker_i) :
 331   _scan_state(scan_state),
 332   _scan_objs_on_card_cl(scan_obj_on_card),
 333   _code_root_cl(code_root_cl),
 334   _strong_code_root_scan_time_sec(0.0),
 335   _cards_claimed(0),
 336   _cards_scanned(0),
 337   _cards_skipped(0),
 338   _worker_i(worker_i) {
 339   _g1h = G1CollectedHeap::heap();
 340   _bot = _g1h->bot();
 341   _ct_bs = _g1h->g1_barrier_set();
 342 }
 343 
 344 void G1ScanRSForRegionClosure::scan_card(MemRegion mr, uint region_idx_for_card) {
 345   HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
 346   _scan_objs_on_card_cl->set_region(card_region);
 347   card_region->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl);
 348   _cards_scanned++;
 349 }
 350 
 351 void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) {
 352   double scan_start = os::elapsedTime();
 353   r->strong_code_roots_do(_code_root_cl);
 354   _strong_code_root_scan_time_sec += (os::elapsedTime() - scan_start);
 355 }
 356 
 357 void G1ScanRSForRegionClosure::claim_card(size_t card_index, const uint region_idx_for_card){
 358   _ct_bs->set_card_claimed(card_index);
 359   _scan_state->add_dirty_region(region_idx_for_card);
 360 }
 361 
 362 bool G1ScanRSForRegionClosure::doHeapRegion(HeapRegion* r) {
 363   assert(r->in_collection_set(), "should only be called on elements of CS.");
 364   uint region_idx = r->hrm_index();
 365 
 366   if (_scan_state->iter_is_complete(region_idx)) {
 367     return false;
 368   }
 369   if (_scan_state->claim_iter(region_idx)) {
 370     // If we ever free the collection set concurrently, we should also
 371     // clear the card table concurrently therefore we won't need to
 372     // add regions of the collection set to the dirty cards region.
 373     _scan_state->add_dirty_region(region_idx);
 374   }
 375 
 376   // We claim cards in blocks so as to reduce the contention.
 377   size_t const block_size = G1RSetScanBlockSize;
 378 
 379   HeapRegionRemSetIterator iter(r->rem_set());
 380   size_t card_index;
 381 
 382   size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 383   for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
 384     if (current_card >= claimed_card_block + block_size) {
 385       claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 386     }
 387     if (current_card < claimed_card_block) {
 388       _cards_skipped++;
 389       continue;
 390     }
 391     _cards_claimed++;
 392 
 393     // If the card is dirty, then G1 will scan it during Update RS.
 394     if (_ct_bs->is_card_claimed(card_index) || _ct_bs->is_card_dirty(card_index)) {
 395       continue;
 396     }
 397 
 398     HeapWord* const card_start = _g1h->bot()->address_for_index(card_index);
 399     uint const region_idx_for_card = _g1h->addr_to_region(card_start);
 400 
 401     assert(_g1h->region_at(region_idx_for_card)->is_in_reserved(card_start),
 402            "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index());
 403     HeapWord* const top = _scan_state->scan_top(region_idx_for_card);
 404     if (card_start >= top) {
 405       continue;
 406     }
 407 
 408     // We claim lazily (so races are possible but they're benign), which reduces the
 409     // number of duplicate scans (the rsets of the regions in the cset can intersect).
 410     // Claim the card after checking bounds above: the remembered set may contain
 411     // random cards into current survivor, and we would then have an incorrectly
 412     // claimed card in survivor space. Card table clear does not reset the card table
 413     // of survivor space regions.
 414     claim_card(card_index, region_idx_for_card);
 415 
 416     MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top));
 417 
 418     scan_card(mr, region_idx_for_card);
 419   }
 420   if (_scan_state->set_iter_complete(region_idx)) {
 421     // Scan the strong code root list attached to the current region
 422     scan_strong_code_roots(r);
 423   }
 424   return false;
 425 }
 426 
 427 void G1RemSet::scan_rem_set(G1ParScanThreadState* pss,
 428                             CodeBlobClosure* heap_region_codeblobs,
 429                             uint worker_i) {
 430   double rs_time_start = os::elapsedTime();
 431 
 432   G1ScanObjsDuringScanRSClosure scan_cl(_g1, pss);
 433   G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, heap_region_codeblobs, worker_i);
 434   _g1->collection_set_iterate_from(&cl, worker_i);
 435 
 436   double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) -
 437                              cl.strong_code_root_scan_time_sec();
 438 
 439   G1GCPhaseTimes* p = _g1p->phase_times();
 440 
 441   p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec);
 442   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScannedCards);
 443   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ClaimedCards);
 444   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::SkippedCards);
 445 
 446   p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time_sec());
 447 }
 448 
 449 // Closure used for updating RSets and recording references that
 450 // point into the collection set. Only called during an
 451 // evacuation pause.
 452 class G1RefineCardClosure: public CardTableEntryClosure {
 453   G1RemSet* _g1rs;
 454   DirtyCardQueue* _into_cset_dcq;
 455   G1ScanObjsDuringUpdateRSClosure* _update_rs_cl;
 456 public:
 457   G1RefineCardClosure(G1CollectedHeap* g1h,
 458                       DirtyCardQueue* into_cset_dcq,
 459                       G1ScanObjsDuringUpdateRSClosure* update_rs_cl) :
 460     _g1rs(g1h->g1_rem_set()), _into_cset_dcq(into_cset_dcq), _update_rs_cl(update_rs_cl)
 461   {}
 462 
 463   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 464     // The only time we care about recording cards that
 465     // contain references that point into the collection set
 466     // is during RSet updating within an evacuation pause.
 467     // In this case worker_i should be the id of a GC worker thread.
 468     assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
 469 
 470     if (_g1rs->refine_card_during_gc(card_ptr, _update_rs_cl)) {
 471       // 'card_ptr' contains references that point into the collection
 472       // set. We need to record the card in the DCQS
 473       // (_into_cset_dirty_card_queue_set)
 474       // that's used for that purpose.
 475       //
 476       // Enqueue the card
 477       _into_cset_dcq->enqueue(card_ptr);
 478     }
 479     return true;
 480   }
 481 };
 482 
 483 void G1RemSet::update_rem_set(DirtyCardQueue* into_cset_dcq,
 484                               G1ParScanThreadState* pss,
 485                               uint worker_i) {
 486   G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1, pss, worker_i);
 487   G1RefineCardClosure refine_card_cl(_g1, into_cset_dcq, &update_rs_cl);
 488 
 489   G1GCParPhaseTimesTracker x(_g1p->phase_times(), G1GCPhaseTimes::UpdateRS, worker_i);
 490   if (G1HotCardCache::default_use_cache()) {
 491     // Apply the closure to the entries of the hot card cache.
 492     G1GCParPhaseTimesTracker y(_g1p->phase_times(), G1GCPhaseTimes::ScanHCC, worker_i);
 493     _g1->iterate_hcc_closure(&refine_card_cl, worker_i);
 494   }
 495   // Apply the closure to all remaining log entries.
 496   _g1->iterate_dirty_card_closure(&refine_card_cl, worker_i);
 497 }
 498 
 499 void G1RemSet::cleanupHRRS() {
 500   HeapRegionRemSet::cleanup();
 501 }
 502 
 503 void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss,
 504                                            CodeBlobClosure* heap_region_codeblobs,
 505                                            uint worker_i) {
 506   // A DirtyCardQueue that is used to hold cards containing references
 507   // that point into the collection set. This DCQ is associated with a
 508   // special DirtyCardQueueSet (see g1CollectedHeap.hpp).  Under normal
 509   // circumstances (i.e. the pause successfully completes), these cards
 510   // are just discarded (there's no need to update the RSets of regions
 511   // that were in the collection set - after the pause these regions
 512   // are wholly 'free' of live objects. In the event of an evacuation
 513   // failure the cards/buffers in this queue set are passed to the
 514   // DirtyCardQueueSet that is used to manage RSet updates
 515   DirtyCardQueue into_cset_dcq(&_into_cset_dirty_card_queue_set);
 516 
 517   update_rem_set(&into_cset_dcq, pss, worker_i);
 518   scan_rem_set(pss, heap_region_codeblobs, worker_i);;
 519 }
 520 
 521 void G1RemSet::prepare_for_oops_into_collection_set_do() {
 522   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 523   dcqs.concatenate_logs();
 524 
 525   _scan_state->reset();
 526 }
 527 
 528 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
 529   G1GCPhaseTimes* phase_times = _g1->g1_policy()->phase_times();
 530 
 531   // Set all cards back to clean.
 532   double start = os::elapsedTime();
 533   _scan_state->clear_card_table(_g1->workers());
 534   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
 535 
 536   DirtyCardQueueSet& into_cset_dcqs = _into_cset_dirty_card_queue_set;
 537 
 538   if (_g1->evacuation_failed()) {
 539     double restore_remembered_set_start = os::elapsedTime();
 540 
 541     // Restore remembered sets for the regions pointing into the collection set.
 542     // We just need to transfer the completed buffers from the DirtyCardQueueSet
 543     // used to hold cards that contain references that point into the collection set
 544     // to the DCQS used to hold the deferred RS updates.
 545     _g1->dirty_card_queue_set().merge_bufferlists(&into_cset_dcqs);
 546     phase_times->record_evac_fail_restore_remsets((os::elapsedTime() - restore_remembered_set_start) * 1000.0);
 547   }
 548 
 549   // Free any completed buffers in the DirtyCardQueueSet used to hold cards
 550   // which contain references that point into the collection.
 551   _into_cset_dirty_card_queue_set.clear();
 552   assert(_into_cset_dirty_card_queue_set.completed_buffers_num() == 0,
 553          "all buffers should be freed");
 554   _into_cset_dirty_card_queue_set.clear_n_completed_buffers();
 555 }
 556 
 557 class G1ScrubRSClosure: public HeapRegionClosure {
 558   G1CollectedHeap* _g1h;
 559   G1CardLiveData* _live_data;
 560 public:
 561   G1ScrubRSClosure(G1CardLiveData* live_data) :
 562     _g1h(G1CollectedHeap::heap()),
 563     _live_data(live_data) { }
 564 
 565   bool doHeapRegion(HeapRegion* r) {
 566     if (!r->is_continues_humongous()) {
 567       r->rem_set()->scrub(_live_data);
 568     }
 569     return false;
 570   }
 571 };
 572 
 573 void G1RemSet::scrub(uint worker_num, HeapRegionClaimer *hrclaimer) {
 574   G1ScrubRSClosure scrub_cl(&_card_live_data);
 575   _g1->heap_region_par_iterate(&scrub_cl, worker_num, hrclaimer);
 576 }
 577 
 578 inline void check_card_ptr(jbyte* card_ptr, CardTableModRefBS* ct_bs) {
 579 #ifdef ASSERT
 580   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 581   assert(g1->is_in_exact(ct_bs->addr_for(card_ptr)),
 582          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
 583          p2i(card_ptr),
 584          ct_bs->index_for(ct_bs->addr_for(card_ptr)),
 585          p2i(ct_bs->addr_for(card_ptr)),
 586          g1->addr_to_region(ct_bs->addr_for(card_ptr)));
 587 #endif
 588 }
 589 
 590 void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
 591                                         uint worker_i) {
 592   assert(!_g1->is_gc_active(), "Only call concurrently");
 593 
 594   check_card_ptr(card_ptr, _ct_bs);
 595 
 596   // If the card is no longer dirty, nothing to do.
 597   if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 598     return;
 599   }
 600 
 601   // Construct the region representing the card.
 602   HeapWord* start = _ct_bs->addr_for(card_ptr);
 603   // And find the region containing it.
 604   HeapRegion* r = _g1->heap_region_containing(start);
 605 
 606   // This check is needed for some uncommon cases where we should
 607   // ignore the card.
 608   //
 609   // The region could be young.  Cards for young regions are
 610   // distinctly marked (set to g1_young_gen), so the post-barrier will
 611   // filter them out.  However, that marking is performed
 612   // concurrently.  A write to a young object could occur before the
 613   // card has been marked young, slipping past the filter.
 614   //
 615   // The card could be stale, because the region has been freed since
 616   // the card was recorded. In this case the region type could be
 617   // anything.  If (still) free or (reallocated) young, just ignore
 618   // it.  If (reallocated) old or humongous, the later card trimming
 619   // and additional checks in iteration may detect staleness.  At
 620   // worst, we end up processing a stale card unnecessarily.
 621   //
 622   // In the normal (non-stale) case, the synchronization between the
 623   // enqueueing of the card and processing it here will have ensured
 624   // we see the up-to-date region type here.
 625   if (!r->is_old_or_humongous()) {
 626     return;
 627   }
 628 
 629   // While we are processing RSet buffers during the collection, we
 630   // actually don't want to scan any cards on the collection set,
 631   // since we don't want to update remembered sets with entries that
 632   // point into the collection set, given that live objects from the
 633   // collection set are about to move and such entries will be stale
 634   // very soon. This change also deals with a reliability issue which
 635   // involves scanning a card in the collection set and coming across
 636   // an array that was being chunked and looking malformed. Note,
 637   // however, that if evacuation fails, we have to scan any objects
 638   // that were not moved and create any missing entries.
 639   if (r->in_collection_set()) {
 640     return;
 641   }
 642 
 643   // The result from the hot card cache insert call is either:
 644   //   * pointer to the current card
 645   //     (implying that the current card is not 'hot'),
 646   //   * null
 647   //     (meaning we had inserted the card ptr into the "hot" card cache,
 648   //     which had some headroom),
 649   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
 650   //
 651 
 652   if (_hot_card_cache->use_cache()) {
 653     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
 654 
 655     const jbyte* orig_card_ptr = card_ptr;
 656     card_ptr = _hot_card_cache->insert(card_ptr);
 657     if (card_ptr == NULL) {
 658       // There was no eviction. Nothing to do.
 659       return;
 660     } else if (card_ptr != orig_card_ptr) {
 661       // Original card was inserted and an old card was evicted.
 662       start = _ct_bs->addr_for(card_ptr);
 663       r = _g1->heap_region_containing(start);
 664 
 665       // Check whether the region formerly in the cache should be
 666       // ignored, as discussed earlier for the original card.  The
 667       // region could have been freed while in the cache.  The cset is
 668       // not relevant here, since we're in concurrent phase.
 669       if (!r->is_old_or_humongous()) {
 670         return;
 671       }
 672     } // Else we still have the original card.
 673   }
 674 
 675   // Trim the region designated by the card to what's been allocated
 676   // in the region.  The card could be stale, or the card could cover
 677   // (part of) an object at the end of the allocated space and extend
 678   // beyond the end of allocation.
 679 
 680   // Non-humongous objects are only allocated in the old-gen during
 681   // GC, so if region is old then top is stable.  Humongous object
 682   // allocation sets top last; if top has not yet been set, this is
 683   // a stale card and we'll end up with an empty intersection.  If
 684   // this is not a stale card, the synchronization between the
 685   // enqueuing of the card and processing it here will have ensured
 686   // we see the up-to-date top here.
 687   HeapWord* scan_limit = r->top();
 688 
 689   if (scan_limit <= start) {
 690     // If the trimmed region is empty, the card must be stale.
 691     return;
 692   }
 693 
 694   // Okay to clean and process the card now.  There are still some
 695   // stale card cases that may be detected by iteration and dealt with
 696   // as iteration failure.
 697   *const_cast<volatile jbyte*>(card_ptr) = CardTableModRefBS::clean_card_val();
 698 
 699   // This fence serves two purposes.  First, the card must be cleaned
 700   // before processing the contents.  Second, we can't proceed with
 701   // processing until after the read of top, for synchronization with
 702   // possibly concurrent humongous object allocation.  It's okay that
 703   // reading top and reading type were racy wrto each other.  We need
 704   // both set, in any order, to proceed.
 705   OrderAccess::fence();
 706 
 707   // Don't use addr_for(card_ptr + 1) which can ask for
 708   // a card beyond the heap.
 709   HeapWord* end = start + CardTableModRefBS::card_size_in_words;
 710   MemRegion dirty_region(start, MIN2(scan_limit, end));
 711   assert(!dirty_region.is_empty(), "sanity");
 712 
 713   G1ConcurrentRefineOopClosure conc_refine_cl(_g1, worker_i);
 714 
 715   bool card_processed =
 716     r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
 717 
 718   // If unable to process the card then we encountered an unparsable
 719   // part of the heap (e.g. a partially allocated object) while
 720   // processing a stale card.  Despite the card being stale, redirty
 721   // and re-enqueue, because we've already cleaned the card.  Without
 722   // this we could incorrectly discard a non-stale card.
 723   if (!card_processed) {
 724     // The card might have gotten re-dirtied and re-enqueued while we
 725     // worked.  (In fact, it's pretty likely.)
 726     if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 727       *card_ptr = CardTableModRefBS::dirty_card_val();
 728       MutexLockerEx x(Shared_DirtyCardQ_lock,
 729                       Mutex::_no_safepoint_check_flag);
 730       DirtyCardQueue* sdcq =
 731         JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
 732       sdcq->enqueue(card_ptr);
 733     }
 734   } else {
 735     _num_conc_refined_cards++; // Unsynchronized update, only used for logging.
 736   }
 737 }
 738 
 739 bool G1RemSet::refine_card_during_gc(jbyte* card_ptr,
 740                                      G1ScanObjsDuringUpdateRSClosure* update_rs_cl) {
 741   assert(_g1->is_gc_active(), "Only call during GC");
 742 
 743   check_card_ptr(card_ptr, _ct_bs);
 744 
 745   // If the card is no longer dirty, nothing to do. This covers cards that were already
 746   // scanned as parts of the remembered sets.
 747   if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 748     // No need to return that this card contains refs that point
 749     // into the collection set.
 750     return false;
 751   }
 752 
 753   // During GC we can immediately clean the card since we will not re-enqueue stale
 754   // cards as we know they can be disregarded.
 755   *card_ptr = CardTableModRefBS::clean_card_val();
 756 
 757   // Construct the region representing the card.
 758   HeapWord* card_start = _ct_bs->addr_for(card_ptr);
 759   // And find the region containing it.
 760   HeapRegion* r = _g1->heap_region_containing(card_start);
 761 
 762   HeapWord* scan_limit = _scan_state->scan_top(r->hrm_index());
 763   if (scan_limit <= card_start) {
 764     // If the card starts above the area in the region containing objects to scan, skip it.
 765     return false;
 766   }
 767 
 768   // Don't use addr_for(card_ptr + 1) which can ask for
 769   // a card beyond the heap.
 770   HeapWord* card_end = card_start + CardTableModRefBS::card_size_in_words;
 771   MemRegion dirty_region(card_start, MIN2(scan_limit, card_end));
 772   assert(!dirty_region.is_empty(), "sanity");
 773 
 774   update_rs_cl->set_region(r);
 775   update_rs_cl->reset_has_refs_into_cset();
 776 
 777   bool card_processed = r->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl);
 778   assert(card_processed, "must be");
 779 
 780   return update_rs_cl->has_refs_into_cset();
 781 }
 782 
 783 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
 784   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
 785       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
 786 
 787     G1RemSetSummary current(this);
 788     _prev_period_summary.subtract_from(&current);
 789 
 790     Log(gc, remset) log;
 791     log.trace("%s", header);
 792     ResourceMark rm;
 793     LogStream ls(log.trace());
 794     _prev_period_summary.print_on(&ls);
 795 
 796     _prev_period_summary.set(&current);
 797   }
 798 }
 799 
 800 void G1RemSet::print_summary_info() {
 801   Log(gc, remset, exit) log;
 802   if (log.is_trace()) {
 803     log.trace(" Cumulative RS summary");
 804     G1RemSetSummary current(this);
 805     ResourceMark rm;
 806     LogStream ls(log.trace());
 807     current.print_on(&ls);
 808   }
 809 }
 810 
 811 void G1RemSet::create_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
 812   _card_live_data.create(workers, mark_bitmap);
 813 }
 814 
 815 void G1RemSet::finalize_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
 816   _card_live_data.finalize(workers, mark_bitmap);
 817 }
 818 
 819 void G1RemSet::verify_card_live_data(WorkGang* workers, G1CMBitMap* bitmap) {
 820   _card_live_data.verify(workers, bitmap);
 821 }
 822 
 823 void G1RemSet::clear_card_live_data(WorkGang* workers) {
 824   _card_live_data.clear(workers);
 825 }
 826 
 827 #ifdef ASSERT
 828 void G1RemSet::verify_card_live_data_is_clear() {
 829   _card_live_data.verify_is_clear();
 830 }
 831 #endif