1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/parallel/gcTaskManager.hpp"
  32 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  33 #include "gc/parallel/parMarkBitMap.inline.hpp"
  34 #include "gc/parallel/pcTasks.hpp"
  35 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  36 #include "gc/parallel/psCompactionManager.inline.hpp"
  37 #include "gc/parallel/psMarkSweep.hpp"
  38 #include "gc/parallel/psMarkSweepDecorator.hpp"
  39 #include "gc/parallel/psOldGen.hpp"
  40 #include "gc/parallel/psParallelCompact.inline.hpp"
  41 #include "gc/parallel/psPromotionManager.inline.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psYoungGen.hpp"
  44 #include "gc/shared/gcCause.hpp"
  45 #include "gc/shared/gcHeapSummary.hpp"
  46 #include "gc/shared/gcId.hpp"
  47 #include "gc/shared/gcLocker.inline.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/isGCActiveMark.hpp"
  52 #include "gc/shared/referencePolicy.hpp"
  53 #include "gc/shared/referenceProcessor.hpp"
  54 #include "gc/shared/spaceDecorator.hpp"
  55 #include "logging/log.hpp"
  56 #include "memory/resourceArea.hpp"
  57 #include "oops/instanceKlass.inline.hpp"
  58 #include "oops/instanceMirrorKlass.inline.hpp"
  59 #include "oops/methodData.hpp"
  60 #include "oops/objArrayKlass.inline.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/fprofiler.hpp"
  64 #include "runtime/safepoint.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "services/management.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/debug.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/formatBuffer.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 #include <math.h>
  76 
  77 // All sizes are in HeapWords.
  78 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  79 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  80 const size_t ParallelCompactData::RegionSizeBytes =
  81   RegionSize << LogHeapWordSize;
  82 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  83 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  84 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  85 
  86 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  87 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  88 const size_t ParallelCompactData::BlockSizeBytes  =
  89   BlockSize << LogHeapWordSize;
  90 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  91 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  92 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  93 
  94 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
  95 const size_t ParallelCompactData::Log2BlocksPerRegion =
  96   Log2RegionSize - Log2BlockSize;
  97 
  98 const ParallelCompactData::RegionData::region_sz_t
  99 ParallelCompactData::RegionData::dc_shift = 27;
 100 
 101 const ParallelCompactData::RegionData::region_sz_t
 102 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 103 
 104 const ParallelCompactData::RegionData::region_sz_t
 105 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 106 
 107 const ParallelCompactData::RegionData::region_sz_t
 108 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 109 
 110 const ParallelCompactData::RegionData::region_sz_t
 111 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 112 
 113 const ParallelCompactData::RegionData::region_sz_t
 114 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 115 
 116 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 117 
 118 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 119 
 120 double PSParallelCompact::_dwl_mean;
 121 double PSParallelCompact::_dwl_std_dev;
 122 double PSParallelCompact::_dwl_first_term;
 123 double PSParallelCompact::_dwl_adjustment;
 124 #ifdef  ASSERT
 125 bool   PSParallelCompact::_dwl_initialized = false;
 126 #endif  // #ifdef ASSERT
 127 
 128 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 129                        HeapWord* destination)
 130 {
 131   assert(src_region_idx != 0, "invalid src_region_idx");
 132   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 133   assert(destination != NULL, "invalid destination argument");
 134 
 135   _src_region_idx = src_region_idx;
 136   _partial_obj_size = partial_obj_size;
 137   _destination = destination;
 138 
 139   // These fields may not be updated below, so make sure they're clear.
 140   assert(_dest_region_addr == NULL, "should have been cleared");
 141   assert(_first_src_addr == NULL, "should have been cleared");
 142 
 143   // Determine the number of destination regions for the partial object.
 144   HeapWord* const last_word = destination + partial_obj_size - 1;
 145   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 146   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 147   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 148 
 149   if (beg_region_addr == end_region_addr) {
 150     // One destination region.
 151     _destination_count = 1;
 152     if (end_region_addr == destination) {
 153       // The destination falls on a region boundary, thus the first word of the
 154       // partial object will be the first word copied to the destination region.
 155       _dest_region_addr = end_region_addr;
 156       _first_src_addr = sd.region_to_addr(src_region_idx);
 157     }
 158   } else {
 159     // Two destination regions.  When copied, the partial object will cross a
 160     // destination region boundary, so a word somewhere within the partial
 161     // object will be the first word copied to the second destination region.
 162     _destination_count = 2;
 163     _dest_region_addr = end_region_addr;
 164     const size_t ofs = pointer_delta(end_region_addr, destination);
 165     assert(ofs < _partial_obj_size, "sanity");
 166     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 167   }
 168 }
 169 
 170 void SplitInfo::clear()
 171 {
 172   _src_region_idx = 0;
 173   _partial_obj_size = 0;
 174   _destination = NULL;
 175   _destination_count = 0;
 176   _dest_region_addr = NULL;
 177   _first_src_addr = NULL;
 178   assert(!is_valid(), "sanity");
 179 }
 180 
 181 #ifdef  ASSERT
 182 void SplitInfo::verify_clear()
 183 {
 184   assert(_src_region_idx == 0, "not clear");
 185   assert(_partial_obj_size == 0, "not clear");
 186   assert(_destination == NULL, "not clear");
 187   assert(_destination_count == 0, "not clear");
 188   assert(_dest_region_addr == NULL, "not clear");
 189   assert(_first_src_addr == NULL, "not clear");
 190 }
 191 #endif  // #ifdef ASSERT
 192 
 193 
 194 void PSParallelCompact::print_on_error(outputStream* st) {
 195   _mark_bitmap.print_on_error(st);
 196 }
 197 
 198 #ifndef PRODUCT
 199 const char* PSParallelCompact::space_names[] = {
 200   "old ", "eden", "from", "to  "
 201 };
 202 
 203 void PSParallelCompact::print_region_ranges() {
 204   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 205     return;
 206   }
 207   Log(gc, compaction) log;
 208   ResourceMark rm;
 209   Universe::print_on(log.trace_stream());
 210   log.trace("space  bottom     top        end        new_top");
 211   log.trace("------ ---------- ---------- ---------- ----------");
 212 
 213   for (unsigned int id = 0; id < last_space_id; ++id) {
 214     const MutableSpace* space = _space_info[id].space();
 215     log.trace("%u %s "
 216               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 217               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 218               id, space_names[id],
 219               summary_data().addr_to_region_idx(space->bottom()),
 220               summary_data().addr_to_region_idx(space->top()),
 221               summary_data().addr_to_region_idx(space->end()),
 222               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 223   }
 224 }
 225 
 226 void
 227 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 228 {
 229 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 230 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 231 
 232   ParallelCompactData& sd = PSParallelCompact::summary_data();
 233   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 234   log_develop_trace(gc, compaction)(
 235       REGION_IDX_FORMAT " " PTR_FORMAT " "
 236       REGION_IDX_FORMAT " " PTR_FORMAT " "
 237       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 238       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 239       i, p2i(c->data_location()), dci, p2i(c->destination()),
 240       c->partial_obj_size(), c->live_obj_size(),
 241       c->data_size(), c->source_region(), c->destination_count());
 242 
 243 #undef  REGION_IDX_FORMAT
 244 #undef  REGION_DATA_FORMAT
 245 }
 246 
 247 void
 248 print_generic_summary_data(ParallelCompactData& summary_data,
 249                            HeapWord* const beg_addr,
 250                            HeapWord* const end_addr)
 251 {
 252   size_t total_words = 0;
 253   size_t i = summary_data.addr_to_region_idx(beg_addr);
 254   const size_t last = summary_data.addr_to_region_idx(end_addr);
 255   HeapWord* pdest = 0;
 256 
 257   while (i < last) {
 258     ParallelCompactData::RegionData* c = summary_data.region(i);
 259     if (c->data_size() != 0 || c->destination() != pdest) {
 260       print_generic_summary_region(i, c);
 261       total_words += c->data_size();
 262       pdest = c->destination();
 263     }
 264     ++i;
 265   }
 266 
 267   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 268 }
 269 
 270 void
 271 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 272                                               HeapWord* const beg_addr,
 273                                               HeapWord* const end_addr) {
 274   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 275 }
 276 
 277 void
 278 print_generic_summary_data(ParallelCompactData& summary_data,
 279                            SpaceInfo* space_info)
 280 {
 281   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 282     return;
 283   }
 284 
 285   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 286     const MutableSpace* space = space_info[id].space();
 287     print_generic_summary_data(summary_data, space->bottom(),
 288                                MAX2(space->top(), space_info[id].new_top()));
 289   }
 290 }
 291 
 292 void
 293 print_initial_summary_data(ParallelCompactData& summary_data,
 294                            const MutableSpace* space) {
 295   if (space->top() == space->bottom()) {
 296     return;
 297   }
 298 
 299   const size_t region_size = ParallelCompactData::RegionSize;
 300   typedef ParallelCompactData::RegionData RegionData;
 301   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 302   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 303   const RegionData* c = summary_data.region(end_region - 1);
 304   HeapWord* end_addr = c->destination() + c->data_size();
 305   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 306 
 307   // Print (and count) the full regions at the beginning of the space.
 308   size_t full_region_count = 0;
 309   size_t i = summary_data.addr_to_region_idx(space->bottom());
 310   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 311     ParallelCompactData::RegionData* c = summary_data.region(i);
 312     log_develop_trace(gc, compaction)(
 313         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 314         i, p2i(c->destination()),
 315         c->partial_obj_size(), c->live_obj_size(),
 316         c->data_size(), c->source_region(), c->destination_count());
 317     ++full_region_count;
 318     ++i;
 319   }
 320 
 321   size_t live_to_right = live_in_space - full_region_count * region_size;
 322 
 323   double max_reclaimed_ratio = 0.0;
 324   size_t max_reclaimed_ratio_region = 0;
 325   size_t max_dead_to_right = 0;
 326   size_t max_live_to_right = 0;
 327 
 328   // Print the 'reclaimed ratio' for regions while there is something live in
 329   // the region or to the right of it.  The remaining regions are empty (and
 330   // uninteresting), and computing the ratio will result in division by 0.
 331   while (i < end_region && live_to_right > 0) {
 332     c = summary_data.region(i);
 333     HeapWord* const region_addr = summary_data.region_to_addr(i);
 334     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 335     const size_t dead_to_right = used_to_right - live_to_right;
 336     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 337 
 338     if (reclaimed_ratio > max_reclaimed_ratio) {
 339             max_reclaimed_ratio = reclaimed_ratio;
 340             max_reclaimed_ratio_region = i;
 341             max_dead_to_right = dead_to_right;
 342             max_live_to_right = live_to_right;
 343     }
 344 
 345     ParallelCompactData::RegionData* c = summary_data.region(i);
 346     log_develop_trace(gc, compaction)(
 347         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 348         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 349         i, p2i(c->destination()),
 350         c->partial_obj_size(), c->live_obj_size(),
 351         c->data_size(), c->source_region(), c->destination_count(),
 352         reclaimed_ratio, dead_to_right, live_to_right);
 353 
 354 
 355     live_to_right -= c->data_size();
 356     ++i;
 357   }
 358 
 359   // Any remaining regions are empty.  Print one more if there is one.
 360   if (i < end_region) {
 361     ParallelCompactData::RegionData* c = summary_data.region(i);
 362     log_develop_trace(gc, compaction)(
 363         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 364          i, p2i(c->destination()),
 365          c->partial_obj_size(), c->live_obj_size(),
 366          c->data_size(), c->source_region(), c->destination_count());
 367   }
 368 
 369   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 370                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 371 }
 372 
 373 void
 374 print_initial_summary_data(ParallelCompactData& summary_data,
 375                            SpaceInfo* space_info) {
 376   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 377     return;
 378   }
 379 
 380   unsigned int id = PSParallelCompact::old_space_id;
 381   const MutableSpace* space;
 382   do {
 383     space = space_info[id].space();
 384     print_initial_summary_data(summary_data, space);
 385   } while (++id < PSParallelCompact::eden_space_id);
 386 
 387   do {
 388     space = space_info[id].space();
 389     print_generic_summary_data(summary_data, space->bottom(), space->top());
 390   } while (++id < PSParallelCompact::last_space_id);
 391 }
 392 #endif  // #ifndef PRODUCT
 393 
 394 #ifdef  ASSERT
 395 size_t add_obj_count;
 396 size_t add_obj_size;
 397 size_t mark_bitmap_count;
 398 size_t mark_bitmap_size;
 399 #endif  // #ifdef ASSERT
 400 
 401 ParallelCompactData::ParallelCompactData()
 402 {
 403   _region_start = 0;
 404 
 405   _region_vspace = 0;
 406   _reserved_byte_size = 0;
 407   _region_data = 0;
 408   _region_count = 0;
 409 
 410   _block_vspace = 0;
 411   _block_data = 0;
 412   _block_count = 0;
 413 }
 414 
 415 bool ParallelCompactData::initialize(MemRegion covered_region)
 416 {
 417   _region_start = covered_region.start();
 418   const size_t region_size = covered_region.word_size();
 419   DEBUG_ONLY(_region_end = _region_start + region_size;)
 420 
 421   assert(region_align_down(_region_start) == _region_start,
 422          "region start not aligned");
 423   assert((region_size & RegionSizeOffsetMask) == 0,
 424          "region size not a multiple of RegionSize");
 425 
 426   bool result = initialize_region_data(region_size) && initialize_block_data();
 427   return result;
 428 }
 429 
 430 PSVirtualSpace*
 431 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 432 {
 433   const size_t raw_bytes = count * element_size;
 434   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 435   const size_t granularity = os::vm_allocation_granularity();
 436   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 437 
 438   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 439     MAX2(page_sz, granularity);
 440   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 441   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 442                        rs.size());
 443 
 444   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 445 
 446   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 447   if (vspace != 0) {
 448     if (vspace->expand_by(_reserved_byte_size)) {
 449       return vspace;
 450     }
 451     delete vspace;
 452     // Release memory reserved in the space.
 453     rs.release();
 454   }
 455 
 456   return 0;
 457 }
 458 
 459 bool ParallelCompactData::initialize_region_data(size_t region_size)
 460 {
 461   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 462   _region_vspace = create_vspace(count, sizeof(RegionData));
 463   if (_region_vspace != 0) {
 464     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 465     _region_count = count;
 466     return true;
 467   }
 468   return false;
 469 }
 470 
 471 bool ParallelCompactData::initialize_block_data()
 472 {
 473   assert(_region_count != 0, "region data must be initialized first");
 474   const size_t count = _region_count << Log2BlocksPerRegion;
 475   _block_vspace = create_vspace(count, sizeof(BlockData));
 476   if (_block_vspace != 0) {
 477     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 478     _block_count = count;
 479     return true;
 480   }
 481   return false;
 482 }
 483 
 484 void ParallelCompactData::clear()
 485 {
 486   memset(_region_data, 0, _region_vspace->committed_size());
 487   memset(_block_data, 0, _block_vspace->committed_size());
 488 }
 489 
 490 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 491   assert(beg_region <= _region_count, "beg_region out of range");
 492   assert(end_region <= _region_count, "end_region out of range");
 493   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 494 
 495   const size_t region_cnt = end_region - beg_region;
 496   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 497 
 498   const size_t beg_block = beg_region * BlocksPerRegion;
 499   const size_t block_cnt = region_cnt * BlocksPerRegion;
 500   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 501 }
 502 
 503 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 504 {
 505   const RegionData* cur_cp = region(region_idx);
 506   const RegionData* const end_cp = region(region_count() - 1);
 507 
 508   HeapWord* result = region_to_addr(region_idx);
 509   if (cur_cp < end_cp) {
 510     do {
 511       result += cur_cp->partial_obj_size();
 512     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 513   }
 514   return result;
 515 }
 516 
 517 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 518 {
 519   const size_t obj_ofs = pointer_delta(addr, _region_start);
 520   const size_t beg_region = obj_ofs >> Log2RegionSize;
 521   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 522 
 523   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 524   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 525 
 526   if (beg_region == end_region) {
 527     // All in one region.
 528     _region_data[beg_region].add_live_obj(len);
 529     return;
 530   }
 531 
 532   // First region.
 533   const size_t beg_ofs = region_offset(addr);
 534   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 535 
 536   Klass* klass = ((oop)addr)->klass();
 537   // Middle regions--completely spanned by this object.
 538   for (size_t region = beg_region + 1; region < end_region; ++region) {
 539     _region_data[region].set_partial_obj_size(RegionSize);
 540     _region_data[region].set_partial_obj_addr(addr);
 541   }
 542 
 543   // Last region.
 544   const size_t end_ofs = region_offset(addr + len - 1);
 545   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 546   _region_data[end_region].set_partial_obj_addr(addr);
 547 }
 548 
 549 void
 550 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 551 {
 552   assert(region_offset(beg) == 0, "not RegionSize aligned");
 553   assert(region_offset(end) == 0, "not RegionSize aligned");
 554 
 555   size_t cur_region = addr_to_region_idx(beg);
 556   const size_t end_region = addr_to_region_idx(end);
 557   HeapWord* addr = beg;
 558   while (cur_region < end_region) {
 559     _region_data[cur_region].set_destination(addr);
 560     _region_data[cur_region].set_destination_count(0);
 561     _region_data[cur_region].set_source_region(cur_region);
 562     _region_data[cur_region].set_data_location(addr);
 563 
 564     // Update live_obj_size so the region appears completely full.
 565     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 566     _region_data[cur_region].set_live_obj_size(live_size);
 567 
 568     ++cur_region;
 569     addr += RegionSize;
 570   }
 571 }
 572 
 573 // Find the point at which a space can be split and, if necessary, record the
 574 // split point.
 575 //
 576 // If the current src region (which overflowed the destination space) doesn't
 577 // have a partial object, the split point is at the beginning of the current src
 578 // region (an "easy" split, no extra bookkeeping required).
 579 //
 580 // If the current src region has a partial object, the split point is in the
 581 // region where that partial object starts (call it the split_region).  If
 582 // split_region has a partial object, then the split point is just after that
 583 // partial object (a "hard" split where we have to record the split data and
 584 // zero the partial_obj_size field).  With a "hard" split, we know that the
 585 // partial_obj ends within split_region because the partial object that caused
 586 // the overflow starts in split_region.  If split_region doesn't have a partial
 587 // obj, then the split is at the beginning of split_region (another "easy"
 588 // split).
 589 HeapWord*
 590 ParallelCompactData::summarize_split_space(size_t src_region,
 591                                            SplitInfo& split_info,
 592                                            HeapWord* destination,
 593                                            HeapWord* target_end,
 594                                            HeapWord** target_next)
 595 {
 596   assert(destination <= target_end, "sanity");
 597   assert(destination + _region_data[src_region].data_size() > target_end,
 598     "region should not fit into target space");
 599   assert(is_region_aligned(target_end), "sanity");
 600 
 601   size_t split_region = src_region;
 602   HeapWord* split_destination = destination;
 603   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 604 
 605   if (destination + partial_obj_size > target_end) {
 606     // The split point is just after the partial object (if any) in the
 607     // src_region that contains the start of the object that overflowed the
 608     // destination space.
 609     //
 610     // Find the start of the "overflow" object and set split_region to the
 611     // region containing it.
 612     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 613     split_region = addr_to_region_idx(overflow_obj);
 614 
 615     // Clear the source_region field of all destination regions whose first word
 616     // came from data after the split point (a non-null source_region field
 617     // implies a region must be filled).
 618     //
 619     // An alternative to the simple loop below:  clear during post_compact(),
 620     // which uses memcpy instead of individual stores, and is easy to
 621     // parallelize.  (The downside is that it clears the entire RegionData
 622     // object as opposed to just one field.)
 623     //
 624     // post_compact() would have to clear the summary data up to the highest
 625     // address that was written during the summary phase, which would be
 626     //
 627     //         max(top, max(new_top, clear_top))
 628     //
 629     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 630     // to target_end.
 631     const RegionData* const sr = region(split_region);
 632     const size_t beg_idx =
 633       addr_to_region_idx(region_align_up(sr->destination() +
 634                                          sr->partial_obj_size()));
 635     const size_t end_idx = addr_to_region_idx(target_end);
 636 
 637     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 638     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 639       _region_data[idx].set_source_region(0);
 640     }
 641 
 642     // Set split_destination and partial_obj_size to reflect the split region.
 643     split_destination = sr->destination();
 644     partial_obj_size = sr->partial_obj_size();
 645   }
 646 
 647   // The split is recorded only if a partial object extends onto the region.
 648   if (partial_obj_size != 0) {
 649     _region_data[split_region].set_partial_obj_size(0);
 650     split_info.record(split_region, partial_obj_size, split_destination);
 651   }
 652 
 653   // Setup the continuation addresses.
 654   *target_next = split_destination + partial_obj_size;
 655   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 656 
 657   if (log_develop_is_enabled(Trace, gc, compaction)) {
 658     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 659     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 660                                       split_type, p2i(source_next), split_region, partial_obj_size);
 661     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 662                                       split_type, p2i(split_destination),
 663                                       addr_to_region_idx(split_destination),
 664                                       p2i(*target_next));
 665 
 666     if (partial_obj_size != 0) {
 667       HeapWord* const po_beg = split_info.destination();
 668       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 669       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 670                                         split_type,
 671                                         p2i(po_beg), addr_to_region_idx(po_beg),
 672                                         p2i(po_end), addr_to_region_idx(po_end));
 673     }
 674   }
 675 
 676   return source_next;
 677 }
 678 
 679 bool ParallelCompactData::summarize(SplitInfo& split_info,
 680                                     HeapWord* source_beg, HeapWord* source_end,
 681                                     HeapWord** source_next,
 682                                     HeapWord* target_beg, HeapWord* target_end,
 683                                     HeapWord** target_next)
 684 {
 685   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 686   log_develop_trace(gc, compaction)(
 687       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 688       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 689       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 690       p2i(target_beg), p2i(target_end), p2i(*target_next));
 691 
 692   size_t cur_region = addr_to_region_idx(source_beg);
 693   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 694 
 695   HeapWord *dest_addr = target_beg;
 696   while (cur_region < end_region) {
 697     // The destination must be set even if the region has no data.
 698     _region_data[cur_region].set_destination(dest_addr);
 699 
 700     size_t words = _region_data[cur_region].data_size();
 701     if (words > 0) {
 702       // If cur_region does not fit entirely into the target space, find a point
 703       // at which the source space can be 'split' so that part is copied to the
 704       // target space and the rest is copied elsewhere.
 705       if (dest_addr + words > target_end) {
 706         assert(source_next != NULL, "source_next is NULL when splitting");
 707         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 708                                              target_end, target_next);
 709         return false;
 710       }
 711 
 712       // Compute the destination_count for cur_region, and if necessary, update
 713       // source_region for a destination region.  The source_region field is
 714       // updated if cur_region is the first (left-most) region to be copied to a
 715       // destination region.
 716       //
 717       // The destination_count calculation is a bit subtle.  A region that has
 718       // data that compacts into itself does not count itself as a destination.
 719       // This maintains the invariant that a zero count means the region is
 720       // available and can be claimed and then filled.
 721       uint destination_count = 0;
 722       if (split_info.is_split(cur_region)) {
 723         // The current region has been split:  the partial object will be copied
 724         // to one destination space and the remaining data will be copied to
 725         // another destination space.  Adjust the initial destination_count and,
 726         // if necessary, set the source_region field if the partial object will
 727         // cross a destination region boundary.
 728         destination_count = split_info.destination_count();
 729         if (destination_count == 2) {
 730           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 731           _region_data[dest_idx].set_source_region(cur_region);
 732         }
 733       }
 734 
 735       HeapWord* const last_addr = dest_addr + words - 1;
 736       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 737       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 738 
 739       // Initially assume that the destination regions will be the same and
 740       // adjust the value below if necessary.  Under this assumption, if
 741       // cur_region == dest_region_2, then cur_region will be compacted
 742       // completely into itself.
 743       destination_count += cur_region == dest_region_2 ? 0 : 1;
 744       if (dest_region_1 != dest_region_2) {
 745         // Destination regions differ; adjust destination_count.
 746         destination_count += 1;
 747         // Data from cur_region will be copied to the start of dest_region_2.
 748         _region_data[dest_region_2].set_source_region(cur_region);
 749       } else if (region_offset(dest_addr) == 0) {
 750         // Data from cur_region will be copied to the start of the destination
 751         // region.
 752         _region_data[dest_region_1].set_source_region(cur_region);
 753       }
 754 
 755       _region_data[cur_region].set_destination_count(destination_count);
 756       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 757       dest_addr += words;
 758     }
 759 
 760     ++cur_region;
 761   }
 762 
 763   *target_next = dest_addr;
 764   return true;
 765 }
 766 
 767 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 768   assert(addr != NULL, "Should detect NULL oop earlier");
 769   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 770   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 771 
 772   // Region covering the object.
 773   RegionData* const region_ptr = addr_to_region_ptr(addr);
 774   HeapWord* result = region_ptr->destination();
 775 
 776   // If the entire Region is live, the new location is region->destination + the
 777   // offset of the object within in the Region.
 778 
 779   // Run some performance tests to determine if this special case pays off.  It
 780   // is worth it for pointers into the dense prefix.  If the optimization to
 781   // avoid pointer updates in regions that only point to the dense prefix is
 782   // ever implemented, this should be revisited.
 783   if (region_ptr->data_size() == RegionSize) {
 784     result += region_offset(addr);
 785     return result;
 786   }
 787 
 788   // Otherwise, the new location is region->destination + block offset + the
 789   // number of live words in the Block that are (a) to the left of addr and (b)
 790   // due to objects that start in the Block.
 791 
 792   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 793   // threads may fill the block table for a region (harmless, since it is
 794   // idempotent).
 795   if (!region_ptr->blocks_filled()) {
 796     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 797     region_ptr->set_blocks_filled();
 798   }
 799 
 800   HeapWord* const search_start = block_align_down(addr);
 801   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 802 
 803   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 804   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 805   result += block_offset + live;
 806   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 807   return result;
 808 }
 809 
 810 #ifdef ASSERT
 811 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 812 {
 813   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 814   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 815   for (const size_t* p = beg; p < end; ++p) {
 816     assert(*p == 0, "not zero");
 817   }
 818 }
 819 
 820 void ParallelCompactData::verify_clear()
 821 {
 822   verify_clear(_region_vspace);
 823   verify_clear(_block_vspace);
 824 }
 825 #endif  // #ifdef ASSERT
 826 
 827 STWGCTimer          PSParallelCompact::_gc_timer;
 828 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 829 elapsedTimer        PSParallelCompact::_accumulated_time;
 830 unsigned int        PSParallelCompact::_total_invocations = 0;
 831 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 832 jlong               PSParallelCompact::_time_of_last_gc = 0;
 833 CollectorCounters*  PSParallelCompact::_counters = NULL;
 834 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 835 ParallelCompactData PSParallelCompact::_summary_data;
 836 
 837 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 838 
 839 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 840 
 841 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
 842   PSParallelCompact::AdjustPointerClosure closure(_cm);
 843   klass->oops_do(&closure);
 844 }
 845 
 846 void PSParallelCompact::post_initialize() {
 847   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 848   MemRegion mr = heap->reserved_region();
 849   _ref_processor =
 850     new ReferenceProcessor(mr,            // span
 851                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 852                            ParallelGCThreads, // mt processing degree
 853                            true,              // mt discovery
 854                            ParallelGCThreads, // mt discovery degree
 855                            true,              // atomic_discovery
 856                            &_is_alive_closure); // non-header is alive closure
 857   _counters = new CollectorCounters("PSParallelCompact", 1);
 858 
 859   // Initialize static fields in ParCompactionManager.
 860   ParCompactionManager::initialize(mark_bitmap());
 861 }
 862 
 863 bool PSParallelCompact::initialize() {
 864   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 865   MemRegion mr = heap->reserved_region();
 866 
 867   // Was the old gen get allocated successfully?
 868   if (!heap->old_gen()->is_allocated()) {
 869     return false;
 870   }
 871 
 872   initialize_space_info();
 873   initialize_dead_wood_limiter();
 874 
 875   if (!_mark_bitmap.initialize(mr)) {
 876     vm_shutdown_during_initialization(
 877       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 878       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 879       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 880     return false;
 881   }
 882 
 883   if (!_summary_data.initialize(mr)) {
 884     vm_shutdown_during_initialization(
 885       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 886       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 887       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 888     return false;
 889   }
 890 
 891   return true;
 892 }
 893 
 894 void PSParallelCompact::initialize_space_info()
 895 {
 896   memset(&_space_info, 0, sizeof(_space_info));
 897 
 898   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 899   PSYoungGen* young_gen = heap->young_gen();
 900 
 901   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 902   _space_info[eden_space_id].set_space(young_gen->eden_space());
 903   _space_info[from_space_id].set_space(young_gen->from_space());
 904   _space_info[to_space_id].set_space(young_gen->to_space());
 905 
 906   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 907 }
 908 
 909 void PSParallelCompact::initialize_dead_wood_limiter()
 910 {
 911   const size_t max = 100;
 912   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 913   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 914   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 915   DEBUG_ONLY(_dwl_initialized = true;)
 916   _dwl_adjustment = normal_distribution(1.0);
 917 }
 918 
 919 void
 920 PSParallelCompact::clear_data_covering_space(SpaceId id)
 921 {
 922   // At this point, top is the value before GC, new_top() is the value that will
 923   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 924   // should be marked above top.  The summary data is cleared to the larger of
 925   // top & new_top.
 926   MutableSpace* const space = _space_info[id].space();
 927   HeapWord* const bot = space->bottom();
 928   HeapWord* const top = space->top();
 929   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 930 
 931   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 932   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 933   _mark_bitmap.clear_range(beg_bit, end_bit);
 934 
 935   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 936   const size_t end_region =
 937     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 938   _summary_data.clear_range(beg_region, end_region);
 939 
 940   // Clear the data used to 'split' regions.
 941   SplitInfo& split_info = _space_info[id].split_info();
 942   if (split_info.is_valid()) {
 943     split_info.clear();
 944   }
 945   DEBUG_ONLY(split_info.verify_clear();)
 946 }
 947 
 948 void PSParallelCompact::pre_compact()
 949 {
 950   // Update the from & to space pointers in space_info, since they are swapped
 951   // at each young gen gc.  Do the update unconditionally (even though a
 952   // promotion failure does not swap spaces) because an unknown number of young
 953   // collections will have swapped the spaces an unknown number of times.
 954   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 955   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 956   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 957   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 958 
 959   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 960   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 961 
 962   // Increment the invocation count
 963   heap->increment_total_collections(true);
 964 
 965   // We need to track unique mark sweep invocations as well.
 966   _total_invocations++;
 967 
 968   heap->print_heap_before_gc();
 969   heap->trace_heap_before_gc(&_gc_tracer);
 970 
 971   // Fill in TLABs
 972   heap->accumulate_statistics_all_tlabs();
 973   heap->ensure_parsability(true);  // retire TLABs
 974 
 975   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 976     HandleMark hm;  // Discard invalid handles created during verification
 977     Universe::verify("Before GC");
 978   }
 979 
 980   // Verify object start arrays
 981   if (VerifyObjectStartArray &&
 982       VerifyBeforeGC) {
 983     heap->old_gen()->verify_object_start_array();
 984   }
 985 
 986   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 987   DEBUG_ONLY(summary_data().verify_clear();)
 988 
 989   // Have worker threads release resources the next time they run a task.
 990   gc_task_manager()->release_all_resources();
 991 
 992   ParCompactionManager::reset_all_bitmap_query_caches();
 993 }
 994 
 995 void PSParallelCompact::post_compact()
 996 {
 997   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
 998 
 999   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1000     // Clear the marking bitmap, summary data and split info.
1001     clear_data_covering_space(SpaceId(id));
1002     // Update top().  Must be done after clearing the bitmap and summary data.
1003     _space_info[id].publish_new_top();
1004   }
1005 
1006   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1007   MutableSpace* const from_space = _space_info[from_space_id].space();
1008   MutableSpace* const to_space   = _space_info[to_space_id].space();
1009 
1010   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1011   bool eden_empty = eden_space->is_empty();
1012   if (!eden_empty) {
1013     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1014                                             heap->young_gen(), heap->old_gen());
1015   }
1016 
1017   // Update heap occupancy information which is used as input to the soft ref
1018   // clearing policy at the next gc.
1019   Universe::update_heap_info_at_gc();
1020 
1021   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1022     to_space->is_empty();
1023 
1024   ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1025   MemRegion old_mr = heap->old_gen()->reserved();
1026   if (young_gen_empty) {
1027     modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1028   } else {
1029     modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1030   }
1031 
1032   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1033   ClassLoaderDataGraph::purge();
1034   MetaspaceAux::verify_metrics();
1035 
1036   CodeCache::gc_epilogue();
1037   JvmtiExport::gc_epilogue();
1038 
1039 #if defined(COMPILER2) || INCLUDE_JVMCI
1040   DerivedPointerTable::update_pointers();
1041 #endif
1042 
1043   ref_processor()->enqueue_discovered_references(NULL);
1044 
1045   if (ZapUnusedHeapArea) {
1046     heap->gen_mangle_unused_area();
1047   }
1048 
1049   // Update time of last GC
1050   reset_millis_since_last_gc();
1051 }
1052 
1053 HeapWord*
1054 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1055                                                     bool maximum_compaction)
1056 {
1057   const size_t region_size = ParallelCompactData::RegionSize;
1058   const ParallelCompactData& sd = summary_data();
1059 
1060   const MutableSpace* const space = _space_info[id].space();
1061   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1062   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1063   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1064 
1065   // Skip full regions at the beginning of the space--they are necessarily part
1066   // of the dense prefix.
1067   size_t full_count = 0;
1068   const RegionData* cp;
1069   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1070     ++full_count;
1071   }
1072 
1073   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1074   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1075   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1076   if (maximum_compaction || cp == end_cp || interval_ended) {
1077     _maximum_compaction_gc_num = total_invocations();
1078     return sd.region_to_addr(cp);
1079   }
1080 
1081   HeapWord* const new_top = _space_info[id].new_top();
1082   const size_t space_live = pointer_delta(new_top, space->bottom());
1083   const size_t space_used = space->used_in_words();
1084   const size_t space_capacity = space->capacity_in_words();
1085 
1086   const double cur_density = double(space_live) / space_capacity;
1087   const double deadwood_density =
1088     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1089   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1090 
1091   if (TraceParallelOldGCDensePrefix) {
1092     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1093                   cur_density, deadwood_density, deadwood_goal);
1094     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1095                   "space_cap=" SIZE_FORMAT,
1096                   space_live, space_used,
1097                   space_capacity);
1098   }
1099 
1100   // XXX - Use binary search?
1101   HeapWord* dense_prefix = sd.region_to_addr(cp);
1102   const RegionData* full_cp = cp;
1103   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1104   while (cp < end_cp) {
1105     HeapWord* region_destination = cp->destination();
1106     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1107     if (TraceParallelOldGCDensePrefix && Verbose) {
1108       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1109                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1110                     sd.region(cp), p2i(region_destination),
1111                     p2i(dense_prefix), cur_deadwood);
1112     }
1113 
1114     if (cur_deadwood >= deadwood_goal) {
1115       // Found the region that has the correct amount of deadwood to the left.
1116       // This typically occurs after crossing a fairly sparse set of regions, so
1117       // iterate backwards over those sparse regions, looking for the region
1118       // that has the lowest density of live objects 'to the right.'
1119       size_t space_to_left = sd.region(cp) * region_size;
1120       size_t live_to_left = space_to_left - cur_deadwood;
1121       size_t space_to_right = space_capacity - space_to_left;
1122       size_t live_to_right = space_live - live_to_left;
1123       double density_to_right = double(live_to_right) / space_to_right;
1124       while (cp > full_cp) {
1125         --cp;
1126         const size_t prev_region_live_to_right = live_to_right -
1127           cp->data_size();
1128         const size_t prev_region_space_to_right = space_to_right + region_size;
1129         double prev_region_density_to_right =
1130           double(prev_region_live_to_right) / prev_region_space_to_right;
1131         if (density_to_right <= prev_region_density_to_right) {
1132           return dense_prefix;
1133         }
1134         if (TraceParallelOldGCDensePrefix && Verbose) {
1135           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1136                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1137                         prev_region_density_to_right);
1138         }
1139         dense_prefix -= region_size;
1140         live_to_right = prev_region_live_to_right;
1141         space_to_right = prev_region_space_to_right;
1142         density_to_right = prev_region_density_to_right;
1143       }
1144       return dense_prefix;
1145     }
1146 
1147     dense_prefix += region_size;
1148     ++cp;
1149   }
1150 
1151   return dense_prefix;
1152 }
1153 
1154 #ifndef PRODUCT
1155 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1156                                                  const SpaceId id,
1157                                                  const bool maximum_compaction,
1158                                                  HeapWord* const addr)
1159 {
1160   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1161   RegionData* const cp = summary_data().region(region_idx);
1162   const MutableSpace* const space = _space_info[id].space();
1163   HeapWord* const new_top = _space_info[id].new_top();
1164 
1165   const size_t space_live = pointer_delta(new_top, space->bottom());
1166   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1167   const size_t space_cap = space->capacity_in_words();
1168   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1169   const size_t live_to_right = new_top - cp->destination();
1170   const size_t dead_to_right = space->top() - addr - live_to_right;
1171 
1172   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1173                 "spl=" SIZE_FORMAT " "
1174                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1175                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1176                 " ratio=%10.8f",
1177                 algorithm, p2i(addr), region_idx,
1178                 space_live,
1179                 dead_to_left, dead_to_left_pct,
1180                 dead_to_right, live_to_right,
1181                 double(dead_to_right) / live_to_right);
1182 }
1183 #endif  // #ifndef PRODUCT
1184 
1185 // Return a fraction indicating how much of the generation can be treated as
1186 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1187 // based on the density of live objects in the generation to determine a limit,
1188 // which is then adjusted so the return value is min_percent when the density is
1189 // 1.
1190 //
1191 // The following table shows some return values for a different values of the
1192 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1193 // min_percent is 1.
1194 //
1195 //                          fraction allowed as dead wood
1196 //         -----------------------------------------------------------------
1197 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1198 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1199 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1200 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1201 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1202 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1203 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1204 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1205 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1206 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1207 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1208 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1209 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1210 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1211 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1212 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1213 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1214 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1215 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1216 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1217 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1218 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1219 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1220 
1221 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1222 {
1223   assert(_dwl_initialized, "uninitialized");
1224 
1225   // The raw limit is the value of the normal distribution at x = density.
1226   const double raw_limit = normal_distribution(density);
1227 
1228   // Adjust the raw limit so it becomes the minimum when the density is 1.
1229   //
1230   // First subtract the adjustment value (which is simply the precomputed value
1231   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1232   // Then add the minimum value, so the minimum is returned when the density is
1233   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1234   const double min = double(min_percent) / 100.0;
1235   const double limit = raw_limit - _dwl_adjustment + min;
1236   return MAX2(limit, 0.0);
1237 }
1238 
1239 ParallelCompactData::RegionData*
1240 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1241                                            const RegionData* end)
1242 {
1243   const size_t region_size = ParallelCompactData::RegionSize;
1244   ParallelCompactData& sd = summary_data();
1245   size_t left = sd.region(beg);
1246   size_t right = end > beg ? sd.region(end) - 1 : left;
1247 
1248   // Binary search.
1249   while (left < right) {
1250     // Equivalent to (left + right) / 2, but does not overflow.
1251     const size_t middle = left + (right - left) / 2;
1252     RegionData* const middle_ptr = sd.region(middle);
1253     HeapWord* const dest = middle_ptr->destination();
1254     HeapWord* const addr = sd.region_to_addr(middle);
1255     assert(dest != NULL, "sanity");
1256     assert(dest <= addr, "must move left");
1257 
1258     if (middle > left && dest < addr) {
1259       right = middle - 1;
1260     } else if (middle < right && middle_ptr->data_size() == region_size) {
1261       left = middle + 1;
1262     } else {
1263       return middle_ptr;
1264     }
1265   }
1266   return sd.region(left);
1267 }
1268 
1269 ParallelCompactData::RegionData*
1270 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1271                                           const RegionData* end,
1272                                           size_t dead_words)
1273 {
1274   ParallelCompactData& sd = summary_data();
1275   size_t left = sd.region(beg);
1276   size_t right = end > beg ? sd.region(end) - 1 : left;
1277 
1278   // Binary search.
1279   while (left < right) {
1280     // Equivalent to (left + right) / 2, but does not overflow.
1281     const size_t middle = left + (right - left) / 2;
1282     RegionData* const middle_ptr = sd.region(middle);
1283     HeapWord* const dest = middle_ptr->destination();
1284     HeapWord* const addr = sd.region_to_addr(middle);
1285     assert(dest != NULL, "sanity");
1286     assert(dest <= addr, "must move left");
1287 
1288     const size_t dead_to_left = pointer_delta(addr, dest);
1289     if (middle > left && dead_to_left > dead_words) {
1290       right = middle - 1;
1291     } else if (middle < right && dead_to_left < dead_words) {
1292       left = middle + 1;
1293     } else {
1294       return middle_ptr;
1295     }
1296   }
1297   return sd.region(left);
1298 }
1299 
1300 // The result is valid during the summary phase, after the initial summarization
1301 // of each space into itself, and before final summarization.
1302 inline double
1303 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1304                                    HeapWord* const bottom,
1305                                    HeapWord* const top,
1306                                    HeapWord* const new_top)
1307 {
1308   ParallelCompactData& sd = summary_data();
1309 
1310   assert(cp != NULL, "sanity");
1311   assert(bottom != NULL, "sanity");
1312   assert(top != NULL, "sanity");
1313   assert(new_top != NULL, "sanity");
1314   assert(top >= new_top, "summary data problem?");
1315   assert(new_top > bottom, "space is empty; should not be here");
1316   assert(new_top >= cp->destination(), "sanity");
1317   assert(top >= sd.region_to_addr(cp), "sanity");
1318 
1319   HeapWord* const destination = cp->destination();
1320   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1321   const size_t compacted_region_live = pointer_delta(new_top, destination);
1322   const size_t compacted_region_used = pointer_delta(top,
1323                                                      sd.region_to_addr(cp));
1324   const size_t reclaimable = compacted_region_used - compacted_region_live;
1325 
1326   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1327   return double(reclaimable) / divisor;
1328 }
1329 
1330 // Return the address of the end of the dense prefix, a.k.a. the start of the
1331 // compacted region.  The address is always on a region boundary.
1332 //
1333 // Completely full regions at the left are skipped, since no compaction can
1334 // occur in those regions.  Then the maximum amount of dead wood to allow is
1335 // computed, based on the density (amount live / capacity) of the generation;
1336 // the region with approximately that amount of dead space to the left is
1337 // identified as the limit region.  Regions between the last completely full
1338 // region and the limit region are scanned and the one that has the best
1339 // (maximum) reclaimed_ratio() is selected.
1340 HeapWord*
1341 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1342                                         bool maximum_compaction)
1343 {
1344   const size_t region_size = ParallelCompactData::RegionSize;
1345   const ParallelCompactData& sd = summary_data();
1346 
1347   const MutableSpace* const space = _space_info[id].space();
1348   HeapWord* const top = space->top();
1349   HeapWord* const top_aligned_up = sd.region_align_up(top);
1350   HeapWord* const new_top = _space_info[id].new_top();
1351   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1352   HeapWord* const bottom = space->bottom();
1353   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1354   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1355   const RegionData* const new_top_cp =
1356     sd.addr_to_region_ptr(new_top_aligned_up);
1357 
1358   // Skip full regions at the beginning of the space--they are necessarily part
1359   // of the dense prefix.
1360   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1361   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1362          space->is_empty(), "no dead space allowed to the left");
1363   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1364          "region must have dead space");
1365 
1366   // The gc number is saved whenever a maximum compaction is done, and used to
1367   // determine when the maximum compaction interval has expired.  This avoids
1368   // successive max compactions for different reasons.
1369   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1370   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1371   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1372     total_invocations() == HeapFirstMaximumCompactionCount;
1373   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1374     _maximum_compaction_gc_num = total_invocations();
1375     return sd.region_to_addr(full_cp);
1376   }
1377 
1378   const size_t space_live = pointer_delta(new_top, bottom);
1379   const size_t space_used = space->used_in_words();
1380   const size_t space_capacity = space->capacity_in_words();
1381 
1382   const double density = double(space_live) / double(space_capacity);
1383   const size_t min_percent_free = MarkSweepDeadRatio;
1384   const double limiter = dead_wood_limiter(density, min_percent_free);
1385   const size_t dead_wood_max = space_used - space_live;
1386   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1387                                       dead_wood_max);
1388 
1389   if (TraceParallelOldGCDensePrefix) {
1390     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1391                   "space_cap=" SIZE_FORMAT,
1392                   space_live, space_used,
1393                   space_capacity);
1394     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1395                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1396                   density, min_percent_free, limiter,
1397                   dead_wood_max, dead_wood_limit);
1398   }
1399 
1400   // Locate the region with the desired amount of dead space to the left.
1401   const RegionData* const limit_cp =
1402     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1403 
1404   // Scan from the first region with dead space to the limit region and find the
1405   // one with the best (largest) reclaimed ratio.
1406   double best_ratio = 0.0;
1407   const RegionData* best_cp = full_cp;
1408   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1409     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1410     if (tmp_ratio > best_ratio) {
1411       best_cp = cp;
1412       best_ratio = tmp_ratio;
1413     }
1414   }
1415 
1416   return sd.region_to_addr(best_cp);
1417 }
1418 
1419 void PSParallelCompact::summarize_spaces_quick()
1420 {
1421   for (unsigned int i = 0; i < last_space_id; ++i) {
1422     const MutableSpace* space = _space_info[i].space();
1423     HeapWord** nta = _space_info[i].new_top_addr();
1424     bool result = _summary_data.summarize(_space_info[i].split_info(),
1425                                           space->bottom(), space->top(), NULL,
1426                                           space->bottom(), space->end(), nta);
1427     assert(result, "space must fit into itself");
1428     _space_info[i].set_dense_prefix(space->bottom());
1429   }
1430 }
1431 
1432 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1433 {
1434   HeapWord* const dense_prefix_end = dense_prefix(id);
1435   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1436   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1437   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1438     // Only enough dead space is filled so that any remaining dead space to the
1439     // left is larger than the minimum filler object.  (The remainder is filled
1440     // during the copy/update phase.)
1441     //
1442     // The size of the dead space to the right of the boundary is not a
1443     // concern, since compaction will be able to use whatever space is
1444     // available.
1445     //
1446     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1447     // surrounds the space to be filled with an object.
1448     //
1449     // In the 32-bit VM, each bit represents two 32-bit words:
1450     //                              +---+
1451     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1452     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1453     //                              +---+
1454     //
1455     // In the 64-bit VM, each bit represents one 64-bit word:
1456     //                              +------------+
1457     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1458     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1459     //                              +------------+
1460     //                          +-------+
1461     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1462     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1463     //                          +-------+
1464     //                      +-----------+
1465     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1466     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1467     //                      +-----------+
1468     //                          +-------+
1469     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1470     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1471     //                          +-------+
1472 
1473     // Initially assume case a, c or e will apply.
1474     size_t obj_len = CollectedHeap::min_fill_size();
1475     HeapWord* obj_beg = dense_prefix_end - obj_len;
1476 
1477 #ifdef  _LP64
1478     if (MinObjAlignment > 1) { // object alignment > heap word size
1479       // Cases a, c or e.
1480     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1481       // Case b above.
1482       obj_beg = dense_prefix_end - 1;
1483     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1484                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1485       // Case d above.
1486       obj_beg = dense_prefix_end - 3;
1487       obj_len = 3;
1488     }
1489 #endif  // #ifdef _LP64
1490 
1491     CollectedHeap::fill_with_object(obj_beg, obj_len);
1492     _mark_bitmap.mark_obj(obj_beg, obj_len);
1493     _summary_data.add_obj(obj_beg, obj_len);
1494     assert(start_array(id) != NULL, "sanity");
1495     start_array(id)->allocate_block(obj_beg);
1496   }
1497 }
1498 
1499 void
1500 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1501 {
1502   assert(id < last_space_id, "id out of range");
1503   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1504          "should have been reset in summarize_spaces_quick()");
1505 
1506   const MutableSpace* space = _space_info[id].space();
1507   if (_space_info[id].new_top() != space->bottom()) {
1508     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1509     _space_info[id].set_dense_prefix(dense_prefix_end);
1510 
1511 #ifndef PRODUCT
1512     if (TraceParallelOldGCDensePrefix) {
1513       print_dense_prefix_stats("ratio", id, maximum_compaction,
1514                                dense_prefix_end);
1515       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1516       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1517     }
1518 #endif  // #ifndef PRODUCT
1519 
1520     // Recompute the summary data, taking into account the dense prefix.  If
1521     // every last byte will be reclaimed, then the existing summary data which
1522     // compacts everything can be left in place.
1523     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1524       // If dead space crosses the dense prefix boundary, it is (at least
1525       // partially) filled with a dummy object, marked live and added to the
1526       // summary data.  This simplifies the copy/update phase and must be done
1527       // before the final locations of objects are determined, to prevent
1528       // leaving a fragment of dead space that is too small to fill.
1529       fill_dense_prefix_end(id);
1530 
1531       // Compute the destination of each Region, and thus each object.
1532       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1533       _summary_data.summarize(_space_info[id].split_info(),
1534                               dense_prefix_end, space->top(), NULL,
1535                               dense_prefix_end, space->end(),
1536                               _space_info[id].new_top_addr());
1537     }
1538   }
1539 
1540   if (log_develop_is_enabled(Trace, gc, compaction)) {
1541     const size_t region_size = ParallelCompactData::RegionSize;
1542     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1543     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1544     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1545     HeapWord* const new_top = _space_info[id].new_top();
1546     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1547     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1548     log_develop_trace(gc, compaction)(
1549         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1550         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1551         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1552         id, space->capacity_in_words(), p2i(dense_prefix_end),
1553         dp_region, dp_words / region_size,
1554         cr_words / region_size, p2i(new_top));
1555   }
1556 }
1557 
1558 #ifndef PRODUCT
1559 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1560                                           HeapWord* dst_beg, HeapWord* dst_end,
1561                                           SpaceId src_space_id,
1562                                           HeapWord* src_beg, HeapWord* src_end)
1563 {
1564   log_develop_trace(gc, compaction)(
1565       "Summarizing %d [%s] into %d [%s]:  "
1566       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1567       SIZE_FORMAT "-" SIZE_FORMAT " "
1568       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1569       SIZE_FORMAT "-" SIZE_FORMAT,
1570       src_space_id, space_names[src_space_id],
1571       dst_space_id, space_names[dst_space_id],
1572       p2i(src_beg), p2i(src_end),
1573       _summary_data.addr_to_region_idx(src_beg),
1574       _summary_data.addr_to_region_idx(src_end),
1575       p2i(dst_beg), p2i(dst_end),
1576       _summary_data.addr_to_region_idx(dst_beg),
1577       _summary_data.addr_to_region_idx(dst_end));
1578 }
1579 #endif  // #ifndef PRODUCT
1580 
1581 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1582                                       bool maximum_compaction)
1583 {
1584   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1585 
1586 #ifdef  ASSERT
1587   if (TraceParallelOldGCMarkingPhase) {
1588     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1589                   "add_obj_bytes=" SIZE_FORMAT,
1590                   add_obj_count, add_obj_size * HeapWordSize);
1591     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1592                   "mark_bitmap_bytes=" SIZE_FORMAT,
1593                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1594   }
1595 #endif  // #ifdef ASSERT
1596 
1597   // Quick summarization of each space into itself, to see how much is live.
1598   summarize_spaces_quick();
1599 
1600   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1601   NOT_PRODUCT(print_region_ranges());
1602   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1603 
1604   // The amount of live data that will end up in old space (assuming it fits).
1605   size_t old_space_total_live = 0;
1606   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1607     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1608                                           _space_info[id].space()->bottom());
1609   }
1610 
1611   MutableSpace* const old_space = _space_info[old_space_id].space();
1612   const size_t old_capacity = old_space->capacity_in_words();
1613   if (old_space_total_live > old_capacity) {
1614     // XXX - should also try to expand
1615     maximum_compaction = true;
1616   }
1617 
1618   // Old generations.
1619   summarize_space(old_space_id, maximum_compaction);
1620 
1621   // Summarize the remaining spaces in the young gen.  The initial target space
1622   // is the old gen.  If a space does not fit entirely into the target, then the
1623   // remainder is compacted into the space itself and that space becomes the new
1624   // target.
1625   SpaceId dst_space_id = old_space_id;
1626   HeapWord* dst_space_end = old_space->end();
1627   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1628   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1629     const MutableSpace* space = _space_info[id].space();
1630     const size_t live = pointer_delta(_space_info[id].new_top(),
1631                                       space->bottom());
1632     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1633 
1634     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1635                                   SpaceId(id), space->bottom(), space->top());)
1636     if (live > 0 && live <= available) {
1637       // All the live data will fit.
1638       bool done = _summary_data.summarize(_space_info[id].split_info(),
1639                                           space->bottom(), space->top(),
1640                                           NULL,
1641                                           *new_top_addr, dst_space_end,
1642                                           new_top_addr);
1643       assert(done, "space must fit into old gen");
1644 
1645       // Reset the new_top value for the space.
1646       _space_info[id].set_new_top(space->bottom());
1647     } else if (live > 0) {
1648       // Attempt to fit part of the source space into the target space.
1649       HeapWord* next_src_addr = NULL;
1650       bool done = _summary_data.summarize(_space_info[id].split_info(),
1651                                           space->bottom(), space->top(),
1652                                           &next_src_addr,
1653                                           *new_top_addr, dst_space_end,
1654                                           new_top_addr);
1655       assert(!done, "space should not fit into old gen");
1656       assert(next_src_addr != NULL, "sanity");
1657 
1658       // The source space becomes the new target, so the remainder is compacted
1659       // within the space itself.
1660       dst_space_id = SpaceId(id);
1661       dst_space_end = space->end();
1662       new_top_addr = _space_info[id].new_top_addr();
1663       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1664                                     space->bottom(), dst_space_end,
1665                                     SpaceId(id), next_src_addr, space->top());)
1666       done = _summary_data.summarize(_space_info[id].split_info(),
1667                                      next_src_addr, space->top(),
1668                                      NULL,
1669                                      space->bottom(), dst_space_end,
1670                                      new_top_addr);
1671       assert(done, "space must fit when compacted into itself");
1672       assert(*new_top_addr <= space->top(), "usage should not grow");
1673     }
1674   }
1675 
1676   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1677   NOT_PRODUCT(print_region_ranges());
1678   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1679 }
1680 
1681 // This method should contain all heap-specific policy for invoking a full
1682 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1683 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1684 // before full gc, or any other specialized behavior, it needs to be added here.
1685 //
1686 // Note that this method should only be called from the vm_thread while at a
1687 // safepoint.
1688 //
1689 // Note that the all_soft_refs_clear flag in the collector policy
1690 // may be true because this method can be called without intervening
1691 // activity.  For example when the heap space is tight and full measure
1692 // are being taken to free space.
1693 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1694   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1695   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1696          "should be in vm thread");
1697 
1698   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1699   GCCause::Cause gc_cause = heap->gc_cause();
1700   assert(!heap->is_gc_active(), "not reentrant");
1701 
1702   PSAdaptiveSizePolicy* policy = heap->size_policy();
1703   IsGCActiveMark mark;
1704 
1705   if (ScavengeBeforeFullGC) {
1706     PSScavenge::invoke_no_policy();
1707   }
1708 
1709   const bool clear_all_soft_refs =
1710     heap->collector_policy()->should_clear_all_soft_refs();
1711 
1712   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1713                                       maximum_heap_compaction);
1714 }
1715 
1716 // This method contains no policy. You should probably
1717 // be calling invoke() instead.
1718 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1719   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1720   assert(ref_processor() != NULL, "Sanity");
1721 
1722   if (GCLocker::check_active_before_gc()) {
1723     return false;
1724   }
1725 
1726   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1727 
1728   GCIdMark gc_id_mark;
1729   _gc_timer.register_gc_start();
1730   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1731 
1732   TimeStamp marking_start;
1733   TimeStamp compaction_start;
1734   TimeStamp collection_exit;
1735 
1736   GCCause::Cause gc_cause = heap->gc_cause();
1737   PSYoungGen* young_gen = heap->young_gen();
1738   PSOldGen* old_gen = heap->old_gen();
1739   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1740 
1741   // The scope of casr should end after code that can change
1742   // CollectorPolicy::_should_clear_all_soft_refs.
1743   ClearedAllSoftRefs casr(maximum_heap_compaction,
1744                           heap->collector_policy());
1745 
1746   if (ZapUnusedHeapArea) {
1747     // Save information needed to minimize mangling
1748     heap->record_gen_tops_before_GC();
1749   }
1750 
1751   // Make sure data structures are sane, make the heap parsable, and do other
1752   // miscellaneous bookkeeping.
1753   pre_compact();
1754 
1755   PreGCValues pre_gc_values(heap);
1756 
1757   // Get the compaction manager reserved for the VM thread.
1758   ParCompactionManager* const vmthread_cm =
1759     ParCompactionManager::manager_array(gc_task_manager()->workers());
1760 
1761   {
1762     ResourceMark rm;
1763     HandleMark hm;
1764 
1765     // Set the number of GC threads to be used in this collection
1766     gc_task_manager()->set_active_gang();
1767     gc_task_manager()->task_idle_workers();
1768 
1769     GCTraceCPUTime tcpu;
1770     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1771 
1772     heap->pre_full_gc_dump(&_gc_timer);
1773 
1774     TraceCollectorStats tcs(counters());
1775     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
1776 
1777     if (TraceOldGenTime) accumulated_time()->start();
1778 
1779     // Let the size policy know we're starting
1780     size_policy->major_collection_begin();
1781 
1782     CodeCache::gc_prologue();
1783 
1784 #if defined(COMPILER2) || INCLUDE_JVMCI
1785     DerivedPointerTable::clear();
1786 #endif
1787 
1788     ref_processor()->enable_discovery();
1789     ref_processor()->setup_policy(maximum_heap_compaction);
1790 
1791     bool marked_for_unloading = false;
1792 
1793     marking_start.update();
1794     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1795 
1796     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1797       && GCCause::is_user_requested_gc(gc_cause);
1798     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1799 
1800 #if defined(COMPILER2) || INCLUDE_JVMCI
1801     assert(DerivedPointerTable::is_active(), "Sanity");
1802     DerivedPointerTable::set_active(false);
1803 #endif
1804 
1805     // adjust_roots() updates Universe::_intArrayKlassObj which is
1806     // needed by the compaction for filling holes in the dense prefix.
1807     adjust_roots(vmthread_cm);
1808 
1809     compaction_start.update();
1810     compact();
1811 
1812     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1813     // done before resizing.
1814     post_compact();
1815 
1816     // Let the size policy know we're done
1817     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1818 
1819     if (UseAdaptiveSizePolicy) {
1820       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1821       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1822                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1823 
1824       // Don't check if the size_policy is ready here.  Let
1825       // the size_policy check that internally.
1826       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1827           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1828         // Swap the survivor spaces if from_space is empty. The
1829         // resize_young_gen() called below is normally used after
1830         // a successful young GC and swapping of survivor spaces;
1831         // otherwise, it will fail to resize the young gen with
1832         // the current implementation.
1833         if (young_gen->from_space()->is_empty()) {
1834           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1835           young_gen->swap_spaces();
1836         }
1837 
1838         // Calculate optimal free space amounts
1839         assert(young_gen->max_size() >
1840           young_gen->from_space()->capacity_in_bytes() +
1841           young_gen->to_space()->capacity_in_bytes(),
1842           "Sizes of space in young gen are out-of-bounds");
1843 
1844         size_t young_live = young_gen->used_in_bytes();
1845         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1846         size_t old_live = old_gen->used_in_bytes();
1847         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1848         size_t max_old_gen_size = old_gen->max_gen_size();
1849         size_t max_eden_size = young_gen->max_size() -
1850           young_gen->from_space()->capacity_in_bytes() -
1851           young_gen->to_space()->capacity_in_bytes();
1852 
1853         // Used for diagnostics
1854         size_policy->clear_generation_free_space_flags();
1855 
1856         size_policy->compute_generations_free_space(young_live,
1857                                                     eden_live,
1858                                                     old_live,
1859                                                     cur_eden,
1860                                                     max_old_gen_size,
1861                                                     max_eden_size,
1862                                                     true /* full gc*/);
1863 
1864         size_policy->check_gc_overhead_limit(young_live,
1865                                              eden_live,
1866                                              max_old_gen_size,
1867                                              max_eden_size,
1868                                              true /* full gc*/,
1869                                              gc_cause,
1870                                              heap->collector_policy());
1871 
1872         size_policy->decay_supplemental_growth(true /* full gc*/);
1873 
1874         heap->resize_old_gen(
1875           size_policy->calculated_old_free_size_in_bytes());
1876 
1877         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1878                                size_policy->calculated_survivor_size_in_bytes());
1879       }
1880 
1881       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1882     }
1883 
1884     if (UsePerfData) {
1885       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1886       counters->update_counters();
1887       counters->update_old_capacity(old_gen->capacity_in_bytes());
1888       counters->update_young_capacity(young_gen->capacity_in_bytes());
1889     }
1890 
1891     heap->resize_all_tlabs();
1892 
1893     // Resize the metaspace capacity after a collection
1894     MetaspaceGC::compute_new_size();
1895 
1896     if (TraceOldGenTime) {
1897       accumulated_time()->stop();
1898     }
1899 
1900     young_gen->print_used_change(pre_gc_values.young_gen_used());
1901     old_gen->print_used_change(pre_gc_values.old_gen_used());
1902     MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
1903 
1904     // Track memory usage and detect low memory
1905     MemoryService::track_memory_usage();
1906     heap->update_counters();
1907     gc_task_manager()->release_idle_workers();
1908 
1909     heap->post_full_gc_dump(&_gc_timer);
1910   }
1911 
1912 #ifdef ASSERT
1913   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1914     ParCompactionManager* const cm =
1915       ParCompactionManager::manager_array(int(i));
1916     assert(cm->marking_stack()->is_empty(),       "should be empty");
1917     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1918   }
1919 #endif // ASSERT
1920 
1921   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1922     HandleMark hm;  // Discard invalid handles created during verification
1923     Universe::verify("After GC");
1924   }
1925 
1926   // Re-verify object start arrays
1927   if (VerifyObjectStartArray &&
1928       VerifyAfterGC) {
1929     old_gen->verify_object_start_array();
1930   }
1931 
1932   if (ZapUnusedHeapArea) {
1933     old_gen->object_space()->check_mangled_unused_area_complete();
1934   }
1935 
1936   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1937 
1938   collection_exit.update();
1939 
1940   heap->print_heap_after_gc();
1941   heap->trace_heap_after_gc(&_gc_tracer);
1942 
1943   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1944                          marking_start.ticks(), compaction_start.ticks(),
1945                          collection_exit.ticks());
1946   gc_task_manager()->print_task_time_stamps();
1947 
1948 #ifdef TRACESPINNING
1949   ParallelTaskTerminator::print_termination_counts();
1950 #endif
1951 
1952   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1953 
1954   _gc_timer.register_gc_end();
1955 
1956   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1957   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1958 
1959   return true;
1960 }
1961 
1962 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1963                                              PSYoungGen* young_gen,
1964                                              PSOldGen* old_gen) {
1965   MutableSpace* const eden_space = young_gen->eden_space();
1966   assert(!eden_space->is_empty(), "eden must be non-empty");
1967   assert(young_gen->virtual_space()->alignment() ==
1968          old_gen->virtual_space()->alignment(), "alignments do not match");
1969 
1970   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
1971     return false;
1972   }
1973 
1974   // Both generations must be completely committed.
1975   if (young_gen->virtual_space()->uncommitted_size() != 0) {
1976     return false;
1977   }
1978   if (old_gen->virtual_space()->uncommitted_size() != 0) {
1979     return false;
1980   }
1981 
1982   // Figure out how much to take from eden.  Include the average amount promoted
1983   // in the total; otherwise the next young gen GC will simply bail out to a
1984   // full GC.
1985   const size_t alignment = old_gen->virtual_space()->alignment();
1986   const size_t eden_used = eden_space->used_in_bytes();
1987   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
1988   const size_t absorb_size = align_up(eden_used + promoted, alignment);
1989   const size_t eden_capacity = eden_space->capacity_in_bytes();
1990 
1991   if (absorb_size >= eden_capacity) {
1992     return false; // Must leave some space in eden.
1993   }
1994 
1995   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
1996   if (new_young_size < young_gen->min_gen_size()) {
1997     return false; // Respect young gen minimum size.
1998   }
1999 
2000   log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
2001                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2002                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2003                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2004                         absorb_size / K,
2005                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2006                         young_gen->from_space()->used_in_bytes() / K,
2007                         young_gen->to_space()->used_in_bytes() / K,
2008                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2009 
2010   // Fill the unused part of the old gen.
2011   MutableSpace* const old_space = old_gen->object_space();
2012   HeapWord* const unused_start = old_space->top();
2013   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2014 
2015   if (unused_words > 0) {
2016     if (unused_words < CollectedHeap::min_fill_size()) {
2017       return false;  // If the old gen cannot be filled, must give up.
2018     }
2019     CollectedHeap::fill_with_objects(unused_start, unused_words);
2020   }
2021 
2022   // Take the live data from eden and set both top and end in the old gen to
2023   // eden top.  (Need to set end because reset_after_change() mangles the region
2024   // from end to virtual_space->high() in debug builds).
2025   HeapWord* const new_top = eden_space->top();
2026   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2027                                         absorb_size);
2028   young_gen->reset_after_change();
2029   old_space->set_top(new_top);
2030   old_space->set_end(new_top);
2031   old_gen->reset_after_change();
2032 
2033   // Update the object start array for the filler object and the data from eden.
2034   ObjectStartArray* const start_array = old_gen->start_array();
2035   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2036     start_array->allocate_block(p);
2037   }
2038 
2039   // Could update the promoted average here, but it is not typically updated at
2040   // full GCs and the value to use is unclear.  Something like
2041   //
2042   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2043 
2044   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2045   return true;
2046 }
2047 
2048 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2049   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2050     "shouldn't return NULL");
2051   return ParallelScavengeHeap::gc_task_manager();
2052 }
2053 
2054 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2055                                       bool maximum_heap_compaction,
2056                                       ParallelOldTracer *gc_tracer) {
2057   // Recursively traverse all live objects and mark them
2058   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2059 
2060   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2061   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2062   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2063   TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2064   ParallelTaskTerminator terminator(active_gc_threads, qset);
2065 
2066   ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2067   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2068 
2069   // Need new claim bits before marking starts.
2070   ClassLoaderDataGraph::clear_claimed_marks();
2071 
2072   {
2073     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2074 
2075     ParallelScavengeHeap::ParStrongRootsScope psrs;
2076 
2077     GCTaskQueue* q = GCTaskQueue::create();
2078 
2079     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2080     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2081     // We scan the thread roots in parallel
2082     Threads::create_thread_roots_marking_tasks(q);
2083     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2084     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2085     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2086     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2087     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2088     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2089     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2090 
2091     if (active_gc_threads > 1) {
2092       for (uint j = 0; j < active_gc_threads; j++) {
2093         q->enqueue(new StealMarkingTask(&terminator));
2094       }
2095     }
2096 
2097     gc_task_manager()->execute_and_wait(q);
2098   }
2099 
2100   // Process reference objects found during marking
2101   {
2102     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2103 
2104     ReferenceProcessorStats stats;
2105     if (ref_processor()->processing_is_mt()) {
2106       RefProcTaskExecutor task_executor;
2107       stats = ref_processor()->process_discovered_references(
2108         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2109         &task_executor, &_gc_timer);
2110     } else {
2111       stats = ref_processor()->process_discovered_references(
2112         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2113         &_gc_timer);
2114     }
2115 
2116     gc_tracer->report_gc_reference_stats(stats);
2117   }
2118 
2119   // This is the point where the entire marking should have completed.
2120   assert(cm->marking_stacks_empty(), "Marking should have completed");
2121 
2122   {
2123     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2124 
2125     // Follow system dictionary roots and unload classes.
2126     bool purged_class = SystemDictionary::do_unloading(is_alive_closure(), &_gc_timer);
2127 
2128     // Unload nmethods.
2129     CodeCache::do_unloading(is_alive_closure(), purged_class);
2130 
2131     // Prune dead klasses from subklass/sibling/implementor lists.
2132     Klass::clean_weak_klass_links(is_alive_closure());
2133   }
2134 
2135   {
2136     GCTraceTime(Debug, gc, phases) t("Scrub String Table", &_gc_timer);
2137     // Delete entries for dead interned strings.
2138     StringTable::unlink(is_alive_closure());
2139   }
2140 
2141   {
2142     GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", &_gc_timer);
2143     // Clean up unreferenced symbols in symbol table.
2144     SymbolTable::unlink();
2145   }
2146 
2147   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2148 }
2149 
2150 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2151   // Adjust the pointers to reflect the new locations
2152   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2153 
2154   // Need new claim bits when tracing through and adjusting pointers.
2155   ClassLoaderDataGraph::clear_claimed_marks();
2156 
2157   PSParallelCompact::AdjustPointerClosure oop_closure(cm);
2158   PSParallelCompact::AdjustKlassClosure klass_closure(cm);
2159 
2160   // General strong roots.
2161   Universe::oops_do(&oop_closure);
2162   JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2163   Threads::oops_do(&oop_closure, NULL);
2164   ObjectSynchronizer::oops_do(&oop_closure);
2165   FlatProfiler::oops_do(&oop_closure);
2166   Management::oops_do(&oop_closure);
2167   JvmtiExport::oops_do(&oop_closure);
2168   SystemDictionary::oops_do(&oop_closure);
2169   ClassLoaderDataGraph::oops_do(&oop_closure, &klass_closure, true);
2170 
2171   // Now adjust pointers in remaining weak roots.  (All of which should
2172   // have been cleared if they pointed to non-surviving objects.)
2173   // Global (weak) JNI handles
2174   JNIHandles::weak_oops_do(&oop_closure);
2175 
2176   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2177   CodeCache::blobs_do(&adjust_from_blobs);
2178   AOTLoader::oops_do(&oop_closure);
2179   StringTable::oops_do(&oop_closure);
2180   ref_processor()->weak_oops_do(&oop_closure);
2181   // Roots were visited so references into the young gen in roots
2182   // may have been scanned.  Process them also.
2183   // Should the reference processor have a span that excludes
2184   // young gen objects?
2185   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2186 }
2187 
2188 // Helper class to print 8 region numbers per line and then print the total at the end.
2189 class FillableRegionLogger : public StackObj {
2190 private:
2191   Log(gc, compaction) log;
2192   static const int LineLength = 8;
2193   size_t _regions[LineLength];
2194   int _next_index;
2195   bool _enabled;
2196   size_t _total_regions;
2197 public:
2198   FillableRegionLogger() : _next_index(0), _total_regions(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)) { }
2199   ~FillableRegionLogger() {
2200     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2201   }
2202 
2203   void print_line() {
2204     if (!_enabled || _next_index == 0) {
2205       return;
2206     }
2207     FormatBuffer<> line("Fillable: ");
2208     for (int i = 0; i < _next_index; i++) {
2209       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2210     }
2211     log.trace("%s", line.buffer());
2212     _next_index = 0;
2213   }
2214 
2215   void handle(size_t region) {
2216     if (!_enabled) {
2217       return;
2218     }
2219     _regions[_next_index++] = region;
2220     if (_next_index == LineLength) {
2221       print_line();
2222     }
2223     _total_regions++;
2224   }
2225 };
2226 
2227 void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q,
2228                                                       uint parallel_gc_threads)
2229 {
2230   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2231 
2232   // Find the threads that are active
2233   unsigned int which = 0;
2234 
2235   // Find all regions that are available (can be filled immediately) and
2236   // distribute them to the thread stacks.  The iteration is done in reverse
2237   // order (high to low) so the regions will be removed in ascending order.
2238 
2239   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2240 
2241   which = 0;
2242   // id + 1 is used to test termination so unsigned  can
2243   // be used with an old_space_id == 0.
2244   FillableRegionLogger region_logger;
2245   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2246     SpaceInfo* const space_info = _space_info + id;
2247     MutableSpace* const space = space_info->space();
2248     HeapWord* const new_top = space_info->new_top();
2249 
2250     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2251     const size_t end_region =
2252       sd.addr_to_region_idx(sd.region_align_up(new_top));
2253 
2254     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2255       if (sd.region(cur)->claim_unsafe()) {
2256         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2257         cm->region_stack()->push(cur);
2258         region_logger.handle(cur);
2259         // Assign regions to tasks in round-robin fashion.
2260         if (++which == parallel_gc_threads) {
2261           which = 0;
2262         }
2263       }
2264     }
2265     region_logger.print_line();
2266   }
2267 }
2268 
2269 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2270 
2271 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2272                                                     uint parallel_gc_threads) {
2273   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2274 
2275   ParallelCompactData& sd = PSParallelCompact::summary_data();
2276 
2277   // Iterate over all the spaces adding tasks for updating
2278   // regions in the dense prefix.  Assume that 1 gc thread
2279   // will work on opening the gaps and the remaining gc threads
2280   // will work on the dense prefix.
2281   unsigned int space_id;
2282   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2283     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2284     const MutableSpace* const space = _space_info[space_id].space();
2285 
2286     if (dense_prefix_end == space->bottom()) {
2287       // There is no dense prefix for this space.
2288       continue;
2289     }
2290 
2291     // The dense prefix is before this region.
2292     size_t region_index_end_dense_prefix =
2293         sd.addr_to_region_idx(dense_prefix_end);
2294     RegionData* const dense_prefix_cp =
2295       sd.region(region_index_end_dense_prefix);
2296     assert(dense_prefix_end == space->end() ||
2297            dense_prefix_cp->available() ||
2298            dense_prefix_cp->claimed(),
2299            "The region after the dense prefix should always be ready to fill");
2300 
2301     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2302 
2303     // Is there dense prefix work?
2304     size_t total_dense_prefix_regions =
2305       region_index_end_dense_prefix - region_index_start;
2306     // How many regions of the dense prefix should be given to
2307     // each thread?
2308     if (total_dense_prefix_regions > 0) {
2309       uint tasks_for_dense_prefix = 1;
2310       if (total_dense_prefix_regions <=
2311           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2312         // Don't over partition.  This assumes that
2313         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2314         // so there are not many regions to process.
2315         tasks_for_dense_prefix = parallel_gc_threads;
2316       } else {
2317         // Over partition
2318         tasks_for_dense_prefix = parallel_gc_threads *
2319           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2320       }
2321       size_t regions_per_thread = total_dense_prefix_regions /
2322         tasks_for_dense_prefix;
2323       // Give each thread at least 1 region.
2324       if (regions_per_thread == 0) {
2325         regions_per_thread = 1;
2326       }
2327 
2328       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2329         if (region_index_start >= region_index_end_dense_prefix) {
2330           break;
2331         }
2332         // region_index_end is not processed
2333         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2334                                        region_index_end_dense_prefix);
2335         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2336                                              region_index_start,
2337                                              region_index_end));
2338         region_index_start = region_index_end;
2339       }
2340     }
2341     // This gets any part of the dense prefix that did not
2342     // fit evenly.
2343     if (region_index_start < region_index_end_dense_prefix) {
2344       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2345                                            region_index_start,
2346                                            region_index_end_dense_prefix));
2347     }
2348   }
2349 }
2350 
2351 void PSParallelCompact::enqueue_region_stealing_tasks(
2352                                      GCTaskQueue* q,
2353                                      ParallelTaskTerminator* terminator_ptr,
2354                                      uint parallel_gc_threads) {
2355   GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2356 
2357   // Once a thread has drained it's stack, it should try to steal regions from
2358   // other threads.
2359   for (uint j = 0; j < parallel_gc_threads; j++) {
2360     q->enqueue(new CompactionWithStealingTask(terminator_ptr));
2361   }
2362 }
2363 
2364 #ifdef ASSERT
2365 // Write a histogram of the number of times the block table was filled for a
2366 // region.
2367 void PSParallelCompact::write_block_fill_histogram()
2368 {
2369   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2370     return;
2371   }
2372 
2373   Log(gc, compaction) log;
2374   ResourceMark rm;
2375   outputStream* out = log.trace_stream();
2376 
2377   typedef ParallelCompactData::RegionData rd_t;
2378   ParallelCompactData& sd = summary_data();
2379 
2380   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2381     MutableSpace* const spc = _space_info[id].space();
2382     if (spc->bottom() != spc->top()) {
2383       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2384       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2385       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2386 
2387       size_t histo[5] = { 0, 0, 0, 0, 0 };
2388       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2389       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2390 
2391       for (const rd_t* cur = beg; cur < end; ++cur) {
2392         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2393       }
2394       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2395       for (size_t i = 0; i < histo_len; ++i) {
2396         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2397                    histo[i], 100.0 * histo[i] / region_cnt);
2398       }
2399       out->cr();
2400     }
2401   }
2402 }
2403 #endif // #ifdef ASSERT
2404 
2405 void PSParallelCompact::compact() {
2406   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2407 
2408   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2409   PSOldGen* old_gen = heap->old_gen();
2410   old_gen->start_array()->reset();
2411   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2412   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2413   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2414   ParallelTaskTerminator terminator(active_gc_threads, qset);
2415 
2416   GCTaskQueue* q = GCTaskQueue::create();
2417   prepare_region_draining_tasks(q, active_gc_threads);
2418   enqueue_dense_prefix_tasks(q, active_gc_threads);
2419   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2420 
2421   {
2422     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2423 
2424     gc_task_manager()->execute_and_wait(q);
2425 
2426 #ifdef  ASSERT
2427     // Verify that all regions have been processed before the deferred updates.
2428     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2429       verify_complete(SpaceId(id));
2430     }
2431 #endif
2432   }
2433 
2434   {
2435     // Update the deferred objects, if any.  Any compaction manager can be used.
2436     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2437     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2438     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2439       update_deferred_objects(cm, SpaceId(id));
2440     }
2441   }
2442 
2443   DEBUG_ONLY(write_block_fill_histogram());
2444 }
2445 
2446 #ifdef  ASSERT
2447 void PSParallelCompact::verify_complete(SpaceId space_id) {
2448   // All Regions between space bottom() to new_top() should be marked as filled
2449   // and all Regions between new_top() and top() should be available (i.e.,
2450   // should have been emptied).
2451   ParallelCompactData& sd = summary_data();
2452   SpaceInfo si = _space_info[space_id];
2453   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2454   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2455   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2456   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2457   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2458 
2459   bool issued_a_warning = false;
2460 
2461   size_t cur_region;
2462   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2463     const RegionData* const c = sd.region(cur_region);
2464     if (!c->completed()) {
2465       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2466                       cur_region, c->destination_count());
2467       issued_a_warning = true;
2468     }
2469   }
2470 
2471   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2472     const RegionData* const c = sd.region(cur_region);
2473     if (!c->available()) {
2474       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2475                       cur_region, c->destination_count());
2476       issued_a_warning = true;
2477     }
2478   }
2479 
2480   if (issued_a_warning) {
2481     print_region_ranges();
2482   }
2483 }
2484 #endif  // #ifdef ASSERT
2485 
2486 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2487   _start_array->allocate_block(addr);
2488   compaction_manager()->update_contents(oop(addr));
2489 }
2490 
2491 // Update interior oops in the ranges of regions [beg_region, end_region).
2492 void
2493 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2494                                                        SpaceId space_id,
2495                                                        size_t beg_region,
2496                                                        size_t end_region) {
2497   ParallelCompactData& sd = summary_data();
2498   ParMarkBitMap* const mbm = mark_bitmap();
2499 
2500   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2501   HeapWord* const end_addr = sd.region_to_addr(end_region);
2502   assert(beg_region <= end_region, "bad region range");
2503   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2504 
2505 #ifdef  ASSERT
2506   // Claim the regions to avoid triggering an assert when they are marked as
2507   // filled.
2508   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2509     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2510   }
2511 #endif  // #ifdef ASSERT
2512 
2513   if (beg_addr != space(space_id)->bottom()) {
2514     // Find the first live object or block of dead space that *starts* in this
2515     // range of regions.  If a partial object crosses onto the region, skip it;
2516     // it will be marked for 'deferred update' when the object head is
2517     // processed.  If dead space crosses onto the region, it is also skipped; it
2518     // will be filled when the prior region is processed.  If neither of those
2519     // apply, the first word in the region is the start of a live object or dead
2520     // space.
2521     assert(beg_addr > space(space_id)->bottom(), "sanity");
2522     const RegionData* const cp = sd.region(beg_region);
2523     if (cp->partial_obj_size() != 0) {
2524       beg_addr = sd.partial_obj_end(beg_region);
2525     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2526       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2527     }
2528   }
2529 
2530   if (beg_addr < end_addr) {
2531     // A live object or block of dead space starts in this range of Regions.
2532      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2533 
2534     // Create closures and iterate.
2535     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2536     FillClosure fill_closure(cm, space_id);
2537     ParMarkBitMap::IterationStatus status;
2538     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2539                           dense_prefix_end);
2540     if (status == ParMarkBitMap::incomplete) {
2541       update_closure.do_addr(update_closure.source());
2542     }
2543   }
2544 
2545   // Mark the regions as filled.
2546   RegionData* const beg_cp = sd.region(beg_region);
2547   RegionData* const end_cp = sd.region(end_region);
2548   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2549     cp->set_completed();
2550   }
2551 }
2552 
2553 // Return the SpaceId for the space containing addr.  If addr is not in the
2554 // heap, last_space_id is returned.  In debug mode it expects the address to be
2555 // in the heap and asserts such.
2556 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2557   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2558 
2559   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2560     if (_space_info[id].space()->contains(addr)) {
2561       return SpaceId(id);
2562     }
2563   }
2564 
2565   assert(false, "no space contains the addr");
2566   return last_space_id;
2567 }
2568 
2569 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2570                                                 SpaceId id) {
2571   assert(id < last_space_id, "bad space id");
2572 
2573   ParallelCompactData& sd = summary_data();
2574   const SpaceInfo* const space_info = _space_info + id;
2575   ObjectStartArray* const start_array = space_info->start_array();
2576 
2577   const MutableSpace* const space = space_info->space();
2578   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2579   HeapWord* const beg_addr = space_info->dense_prefix();
2580   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2581 
2582   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2583   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2584   const RegionData* cur_region;
2585   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2586     HeapWord* const addr = cur_region->deferred_obj_addr();
2587     if (addr != NULL) {
2588       if (start_array != NULL) {
2589         start_array->allocate_block(addr);
2590       }
2591       cm->update_contents(oop(addr));
2592       assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2593     }
2594   }
2595 }
2596 
2597 // Skip over count live words starting from beg, and return the address of the
2598 // next live word.  Unless marked, the word corresponding to beg is assumed to
2599 // be dead.  Callers must either ensure beg does not correspond to the middle of
2600 // an object, or account for those live words in some other way.  Callers must
2601 // also ensure that there are enough live words in the range [beg, end) to skip.
2602 HeapWord*
2603 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2604 {
2605   assert(count > 0, "sanity");
2606 
2607   ParMarkBitMap* m = mark_bitmap();
2608   idx_t bits_to_skip = m->words_to_bits(count);
2609   idx_t cur_beg = m->addr_to_bit(beg);
2610   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2611 
2612   do {
2613     cur_beg = m->find_obj_beg(cur_beg, search_end);
2614     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2615     const size_t obj_bits = cur_end - cur_beg + 1;
2616     if (obj_bits > bits_to_skip) {
2617       return m->bit_to_addr(cur_beg + bits_to_skip);
2618     }
2619     bits_to_skip -= obj_bits;
2620     cur_beg = cur_end + 1;
2621   } while (bits_to_skip > 0);
2622 
2623   // Skipping the desired number of words landed just past the end of an object.
2624   // Find the start of the next object.
2625   cur_beg = m->find_obj_beg(cur_beg, search_end);
2626   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2627   return m->bit_to_addr(cur_beg);
2628 }
2629 
2630 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2631                                             SpaceId src_space_id,
2632                                             size_t src_region_idx)
2633 {
2634   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2635 
2636   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2637   if (split_info.dest_region_addr() == dest_addr) {
2638     // The partial object ending at the split point contains the first word to
2639     // be copied to dest_addr.
2640     return split_info.first_src_addr();
2641   }
2642 
2643   const ParallelCompactData& sd = summary_data();
2644   ParMarkBitMap* const bitmap = mark_bitmap();
2645   const size_t RegionSize = ParallelCompactData::RegionSize;
2646 
2647   assert(sd.is_region_aligned(dest_addr), "not aligned");
2648   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2649   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2650   HeapWord* const src_region_destination = src_region_ptr->destination();
2651 
2652   assert(dest_addr >= src_region_destination, "wrong src region");
2653   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2654 
2655   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2656   HeapWord* const src_region_end = src_region_beg + RegionSize;
2657 
2658   HeapWord* addr = src_region_beg;
2659   if (dest_addr == src_region_destination) {
2660     // Return the first live word in the source region.
2661     if (partial_obj_size == 0) {
2662       addr = bitmap->find_obj_beg(addr, src_region_end);
2663       assert(addr < src_region_end, "no objects start in src region");
2664     }
2665     return addr;
2666   }
2667 
2668   // Must skip some live data.
2669   size_t words_to_skip = dest_addr - src_region_destination;
2670   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2671 
2672   if (partial_obj_size >= words_to_skip) {
2673     // All the live words to skip are part of the partial object.
2674     addr += words_to_skip;
2675     if (partial_obj_size == words_to_skip) {
2676       // Find the first live word past the partial object.
2677       addr = bitmap->find_obj_beg(addr, src_region_end);
2678       assert(addr < src_region_end, "wrong src region");
2679     }
2680     return addr;
2681   }
2682 
2683   // Skip over the partial object (if any).
2684   if (partial_obj_size != 0) {
2685     words_to_skip -= partial_obj_size;
2686     addr += partial_obj_size;
2687   }
2688 
2689   // Skip over live words due to objects that start in the region.
2690   addr = skip_live_words(addr, src_region_end, words_to_skip);
2691   assert(addr < src_region_end, "wrong src region");
2692   return addr;
2693 }
2694 
2695 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2696                                                      SpaceId src_space_id,
2697                                                      size_t beg_region,
2698                                                      HeapWord* end_addr)
2699 {
2700   ParallelCompactData& sd = summary_data();
2701 
2702 #ifdef ASSERT
2703   MutableSpace* const src_space = _space_info[src_space_id].space();
2704   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2705   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2706          "src_space_id does not match beg_addr");
2707   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2708          "src_space_id does not match end_addr");
2709 #endif // #ifdef ASSERT
2710 
2711   RegionData* const beg = sd.region(beg_region);
2712   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2713 
2714   // Regions up to new_top() are enqueued if they become available.
2715   HeapWord* const new_top = _space_info[src_space_id].new_top();
2716   RegionData* const enqueue_end =
2717     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2718 
2719   for (RegionData* cur = beg; cur < end; ++cur) {
2720     assert(cur->data_size() > 0, "region must have live data");
2721     cur->decrement_destination_count();
2722     if (cur < enqueue_end && cur->available() && cur->claim()) {
2723       cm->push_region(sd.region(cur));
2724     }
2725   }
2726 }
2727 
2728 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2729                                           SpaceId& src_space_id,
2730                                           HeapWord*& src_space_top,
2731                                           HeapWord* end_addr)
2732 {
2733   typedef ParallelCompactData::RegionData RegionData;
2734 
2735   ParallelCompactData& sd = PSParallelCompact::summary_data();
2736   const size_t region_size = ParallelCompactData::RegionSize;
2737 
2738   size_t src_region_idx = 0;
2739 
2740   // Skip empty regions (if any) up to the top of the space.
2741   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2742   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2743   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2744   const RegionData* const top_region_ptr =
2745     sd.addr_to_region_ptr(top_aligned_up);
2746   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2747     ++src_region_ptr;
2748   }
2749 
2750   if (src_region_ptr < top_region_ptr) {
2751     // The next source region is in the current space.  Update src_region_idx
2752     // and the source address to match src_region_ptr.
2753     src_region_idx = sd.region(src_region_ptr);
2754     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2755     if (src_region_addr > closure.source()) {
2756       closure.set_source(src_region_addr);
2757     }
2758     return src_region_idx;
2759   }
2760 
2761   // Switch to a new source space and find the first non-empty region.
2762   unsigned int space_id = src_space_id + 1;
2763   assert(space_id < last_space_id, "not enough spaces");
2764 
2765   HeapWord* const destination = closure.destination();
2766 
2767   do {
2768     MutableSpace* space = _space_info[space_id].space();
2769     HeapWord* const bottom = space->bottom();
2770     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2771 
2772     // Iterate over the spaces that do not compact into themselves.
2773     if (bottom_cp->destination() != bottom) {
2774       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2775       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2776 
2777       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2778         if (src_cp->live_obj_size() > 0) {
2779           // Found it.
2780           assert(src_cp->destination() == destination,
2781                  "first live obj in the space must match the destination");
2782           assert(src_cp->partial_obj_size() == 0,
2783                  "a space cannot begin with a partial obj");
2784 
2785           src_space_id = SpaceId(space_id);
2786           src_space_top = space->top();
2787           const size_t src_region_idx = sd.region(src_cp);
2788           closure.set_source(sd.region_to_addr(src_region_idx));
2789           return src_region_idx;
2790         } else {
2791           assert(src_cp->data_size() == 0, "sanity");
2792         }
2793       }
2794     }
2795   } while (++space_id < last_space_id);
2796 
2797   assert(false, "no source region was found");
2798   return 0;
2799 }
2800 
2801 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2802 {
2803   typedef ParMarkBitMap::IterationStatus IterationStatus;
2804   const size_t RegionSize = ParallelCompactData::RegionSize;
2805   ParMarkBitMap* const bitmap = mark_bitmap();
2806   ParallelCompactData& sd = summary_data();
2807   RegionData* const region_ptr = sd.region(region_idx);
2808 
2809   // Get the items needed to construct the closure.
2810   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2811   SpaceId dest_space_id = space_id(dest_addr);
2812   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2813   HeapWord* new_top = _space_info[dest_space_id].new_top();
2814   assert(dest_addr < new_top, "sanity");
2815   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2816 
2817   // Get the source region and related info.
2818   size_t src_region_idx = region_ptr->source_region();
2819   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2820   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2821 
2822   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2823   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2824 
2825   // Adjust src_region_idx to prepare for decrementing destination counts (the
2826   // destination count is not decremented when a region is copied to itself).
2827   if (src_region_idx == region_idx) {
2828     src_region_idx += 1;
2829   }
2830 
2831   if (bitmap->is_unmarked(closure.source())) {
2832     // The first source word is in the middle of an object; copy the remainder
2833     // of the object or as much as will fit.  The fact that pointer updates were
2834     // deferred will be noted when the object header is processed.
2835     HeapWord* const old_src_addr = closure.source();
2836     closure.copy_partial_obj();
2837     if (closure.is_full()) {
2838       decrement_destination_counts(cm, src_space_id, src_region_idx,
2839                                    closure.source());
2840       region_ptr->set_deferred_obj_addr(NULL);
2841       region_ptr->set_completed();
2842       return;
2843     }
2844 
2845     HeapWord* const end_addr = sd.region_align_down(closure.source());
2846     if (sd.region_align_down(old_src_addr) != end_addr) {
2847       // The partial object was copied from more than one source region.
2848       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2849 
2850       // Move to the next source region, possibly switching spaces as well.  All
2851       // args except end_addr may be modified.
2852       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2853                                        end_addr);
2854     }
2855   }
2856 
2857   do {
2858     HeapWord* const cur_addr = closure.source();
2859     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2860                                     src_space_top);
2861     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2862 
2863     if (status == ParMarkBitMap::incomplete) {
2864       // The last obj that starts in the source region does not end in the
2865       // region.
2866       assert(closure.source() < end_addr, "sanity");
2867       HeapWord* const obj_beg = closure.source();
2868       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2869                                        src_space_top);
2870       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2871       if (obj_end < range_end) {
2872         // The end was found; the entire object will fit.
2873         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2874         assert(status != ParMarkBitMap::would_overflow, "sanity");
2875       } else {
2876         // The end was not found; the object will not fit.
2877         assert(range_end < src_space_top, "obj cannot cross space boundary");
2878         status = ParMarkBitMap::would_overflow;
2879       }
2880     }
2881 
2882     if (status == ParMarkBitMap::would_overflow) {
2883       // The last object did not fit.  Note that interior oop updates were
2884       // deferred, then copy enough of the object to fill the region.
2885       region_ptr->set_deferred_obj_addr(closure.destination());
2886       status = closure.copy_until_full(); // copies from closure.source()
2887 
2888       decrement_destination_counts(cm, src_space_id, src_region_idx,
2889                                    closure.source());
2890       region_ptr->set_completed();
2891       return;
2892     }
2893 
2894     if (status == ParMarkBitMap::full) {
2895       decrement_destination_counts(cm, src_space_id, src_region_idx,
2896                                    closure.source());
2897       region_ptr->set_deferred_obj_addr(NULL);
2898       region_ptr->set_completed();
2899       return;
2900     }
2901 
2902     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2903 
2904     // Move to the next source region, possibly switching spaces as well.  All
2905     // args except end_addr may be modified.
2906     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2907                                      end_addr);
2908   } while (true);
2909 }
2910 
2911 void PSParallelCompact::fill_blocks(size_t region_idx)
2912 {
2913   // Fill in the block table elements for the specified region.  Each block
2914   // table element holds the number of live words in the region that are to the
2915   // left of the first object that starts in the block.  Thus only blocks in
2916   // which an object starts need to be filled.
2917   //
2918   // The algorithm scans the section of the bitmap that corresponds to the
2919   // region, keeping a running total of the live words.  When an object start is
2920   // found, if it's the first to start in the block that contains it, the
2921   // current total is written to the block table element.
2922   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2923   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2924   const size_t RegionSize = ParallelCompactData::RegionSize;
2925 
2926   ParallelCompactData& sd = summary_data();
2927   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2928   if (partial_obj_size >= RegionSize) {
2929     return; // No objects start in this region.
2930   }
2931 
2932   // Ensure the first loop iteration decides that the block has changed.
2933   size_t cur_block = sd.block_count();
2934 
2935   const ParMarkBitMap* const bitmap = mark_bitmap();
2936 
2937   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2938   assert((size_t)1 << Log2BitsPerBlock ==
2939          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2940 
2941   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2942   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2943   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2944   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2945   while (beg_bit < range_end) {
2946     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2947     if (new_block != cur_block) {
2948       cur_block = new_block;
2949       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2950     }
2951 
2952     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2953     if (end_bit < range_end - 1) {
2954       live_bits += end_bit - beg_bit + 1;
2955       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2956     } else {
2957       return;
2958     }
2959   }
2960 }
2961 
2962 void
2963 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
2964   const MutableSpace* sp = space(space_id);
2965   if (sp->is_empty()) {
2966     return;
2967   }
2968 
2969   ParallelCompactData& sd = PSParallelCompact::summary_data();
2970   ParMarkBitMap* const bitmap = mark_bitmap();
2971   HeapWord* const dp_addr = dense_prefix(space_id);
2972   HeapWord* beg_addr = sp->bottom();
2973   HeapWord* end_addr = sp->top();
2974 
2975   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
2976 
2977   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
2978   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
2979   if (beg_region < dp_region) {
2980     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
2981   }
2982 
2983   // The destination of the first live object that starts in the region is one
2984   // past the end of the partial object entering the region (if any).
2985   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
2986   HeapWord* const new_top = _space_info[space_id].new_top();
2987   assert(new_top >= dest_addr, "bad new_top value");
2988   const size_t words = pointer_delta(new_top, dest_addr);
2989 
2990   if (words > 0) {
2991     ObjectStartArray* start_array = _space_info[space_id].start_array();
2992     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2993 
2994     ParMarkBitMap::IterationStatus status;
2995     status = bitmap->iterate(&closure, dest_addr, end_addr);
2996     assert(status == ParMarkBitMap::full, "iteration not complete");
2997     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
2998            "live objects skipped because closure is full");
2999   }
3000 }
3001 
3002 jlong PSParallelCompact::millis_since_last_gc() {
3003   // We need a monotonically non-decreasing time in ms but
3004   // os::javaTimeMillis() does not guarantee monotonicity.
3005   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3006   jlong ret_val = now - _time_of_last_gc;
3007   // XXX See note in genCollectedHeap::millis_since_last_gc().
3008   if (ret_val < 0) {
3009     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3010     return 0;
3011   }
3012   return ret_val;
3013 }
3014 
3015 void PSParallelCompact::reset_millis_since_last_gc() {
3016   // We need a monotonically non-decreasing time in ms but
3017   // os::javaTimeMillis() does not guarantee monotonicity.
3018   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3019 }
3020 
3021 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3022 {
3023   if (source() != destination()) {
3024     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3025     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3026   }
3027   update_state(words_remaining());
3028   assert(is_full(), "sanity");
3029   return ParMarkBitMap::full;
3030 }
3031 
3032 void MoveAndUpdateClosure::copy_partial_obj()
3033 {
3034   size_t words = words_remaining();
3035 
3036   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3037   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3038   if (end_addr < range_end) {
3039     words = bitmap()->obj_size(source(), end_addr);
3040   }
3041 
3042   // This test is necessary; if omitted, the pointer updates to a partial object
3043   // that crosses the dense prefix boundary could be overwritten.
3044   if (source() != destination()) {
3045     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3046     Copy::aligned_conjoint_words(source(), destination(), words);
3047   }
3048   update_state(words);
3049 }
3050 
3051 void InstanceKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3052   PSParallelCompact::AdjustPointerClosure closure(cm);
3053   oop_oop_iterate_oop_maps<true>(obj, &closure);
3054 }
3055 
3056 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3057   InstanceKlass::oop_pc_update_pointers(obj, cm);
3058 
3059   PSParallelCompact::AdjustPointerClosure closure(cm);
3060   oop_oop_iterate_statics<true>(obj, &closure);
3061 }
3062 
3063 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3064   InstanceKlass::oop_pc_update_pointers(obj, cm);
3065 }
3066 
3067 #ifdef ASSERT
3068 template <class T> static void trace_reference_gc(const char *s, oop obj,
3069                                                   T* referent_addr,
3070                                                   T* next_addr,
3071                                                   T* discovered_addr) {
3072   log_develop_trace(gc, ref)("%s obj " PTR_FORMAT, s, p2i(obj));
3073   log_develop_trace(gc, ref)("     referent_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3074                              p2i(referent_addr), referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3075   log_develop_trace(gc, ref)("     next_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3076                              p2i(next_addr), next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3077   log_develop_trace(gc, ref)("     discovered_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3078                              p2i(discovered_addr), discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3079 }
3080 #endif
3081 
3082 template <class T>
3083 static void oop_pc_update_pointers_specialized(oop obj, ParCompactionManager* cm) {
3084   T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3085   PSParallelCompact::adjust_pointer(referent_addr, cm);
3086   T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3087   PSParallelCompact::adjust_pointer(next_addr, cm);
3088   T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3089   PSParallelCompact::adjust_pointer(discovered_addr, cm);
3090   debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3091                                 referent_addr, next_addr, discovered_addr);)
3092 }
3093 
3094 void InstanceRefKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3095   InstanceKlass::oop_pc_update_pointers(obj, cm);
3096 
3097   if (UseCompressedOops) {
3098     oop_pc_update_pointers_specialized<narrowOop>(obj, cm);
3099   } else {
3100     oop_pc_update_pointers_specialized<oop>(obj, cm);
3101   }
3102 }
3103 
3104 void ObjArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3105   assert(obj->is_objArray(), "obj must be obj array");
3106   PSParallelCompact::AdjustPointerClosure closure(cm);
3107   oop_oop_iterate_elements<true>(objArrayOop(obj), &closure);
3108 }
3109 
3110 void TypeArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3111   assert(obj->is_typeArray(),"must be a type array");
3112 }
3113 
3114 ParMarkBitMapClosure::IterationStatus
3115 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3116   assert(destination() != NULL, "sanity");
3117   assert(bitmap()->obj_size(addr) == words, "bad size");
3118 
3119   _source = addr;
3120   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3121          destination(), "wrong destination");
3122 
3123   if (words > words_remaining()) {
3124     return ParMarkBitMap::would_overflow;
3125   }
3126 
3127   // The start_array must be updated even if the object is not moving.
3128   if (_start_array != NULL) {
3129     _start_array->allocate_block(destination());
3130   }
3131 
3132   if (destination() != source()) {
3133     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3134     Copy::aligned_conjoint_words(source(), destination(), words);
3135   }
3136 
3137   oop moved_oop = (oop) destination();
3138   compaction_manager()->update_contents(moved_oop);
3139   assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3140 
3141   update_state(words);
3142   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3143   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3144 }
3145 
3146 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3147                                      ParCompactionManager* cm,
3148                                      PSParallelCompact::SpaceId space_id) :
3149   ParMarkBitMapClosure(mbm, cm),
3150   _space_id(space_id),
3151   _start_array(PSParallelCompact::start_array(space_id))
3152 {
3153 }
3154 
3155 // Updates the references in the object to their new values.
3156 ParMarkBitMapClosure::IterationStatus
3157 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3158   do_addr(addr);
3159   return ParMarkBitMap::incomplete;
3160 }
3161 
3162 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3163   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3164   _start_array(PSParallelCompact::start_array(space_id))
3165 {
3166   assert(space_id == PSParallelCompact::old_space_id,
3167          "cannot use FillClosure in the young gen");
3168 }
3169 
3170 ParMarkBitMapClosure::IterationStatus
3171 FillClosure::do_addr(HeapWord* addr, size_t size) {
3172   CollectedHeap::fill_with_objects(addr, size);
3173   HeapWord* const end = addr + size;
3174   do {
3175     _start_array->allocate_block(addr);
3176     addr += oop(addr)->size();
3177   } while (addr < end);
3178   return ParMarkBitMap::incomplete;
3179 }