1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsOopClosures.inline.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/vmCMSOperations.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/collectorPolicy.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "logging/log.hpp"
  58 #include "logging/logStream.hpp"
  59 #include "memory/allocation.hpp"
  60 #include "memory/iterator.inline.hpp"
  61 #include "memory/padded.hpp"
  62 #include "memory/resourceArea.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/globals_extension.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/java.hpp"
  69 #include "runtime/orderAccess.inline.hpp"
  70 #include "runtime/timer.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "services/memoryService.hpp"
  73 #include "services/runtimeService.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 // statics
  77 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  78 bool CMSCollector::_full_gc_requested = false;
  79 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  80 
  81 //////////////////////////////////////////////////////////////////
  82 // In support of CMS/VM thread synchronization
  83 //////////////////////////////////////////////////////////////////
  84 // We split use of the CGC_lock into 2 "levels".
  85 // The low-level locking is of the usual CGC_lock monitor. We introduce
  86 // a higher level "token" (hereafter "CMS token") built on top of the
  87 // low level monitor (hereafter "CGC lock").
  88 // The token-passing protocol gives priority to the VM thread. The
  89 // CMS-lock doesn't provide any fairness guarantees, but clients
  90 // should ensure that it is only held for very short, bounded
  91 // durations.
  92 //
  93 // When either of the CMS thread or the VM thread is involved in
  94 // collection operations during which it does not want the other
  95 // thread to interfere, it obtains the CMS token.
  96 //
  97 // If either thread tries to get the token while the other has
  98 // it, that thread waits. However, if the VM thread and CMS thread
  99 // both want the token, then the VM thread gets priority while the
 100 // CMS thread waits. This ensures, for instance, that the "concurrent"
 101 // phases of the CMS thread's work do not block out the VM thread
 102 // for long periods of time as the CMS thread continues to hog
 103 // the token. (See bug 4616232).
 104 //
 105 // The baton-passing functions are, however, controlled by the
 106 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 107 // and here the low-level CMS lock, not the high level token,
 108 // ensures mutual exclusion.
 109 //
 110 // Two important conditions that we have to satisfy:
 111 // 1. if a thread does a low-level wait on the CMS lock, then it
 112 //    relinquishes the CMS token if it were holding that token
 113 //    when it acquired the low-level CMS lock.
 114 // 2. any low-level notifications on the low-level lock
 115 //    should only be sent when a thread has relinquished the token.
 116 //
 117 // In the absence of either property, we'd have potential deadlock.
 118 //
 119 // We protect each of the CMS (concurrent and sequential) phases
 120 // with the CMS _token_, not the CMS _lock_.
 121 //
 122 // The only code protected by CMS lock is the token acquisition code
 123 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 124 // baton-passing code.
 125 //
 126 // Unfortunately, i couldn't come up with a good abstraction to factor and
 127 // hide the naked CGC_lock manipulation in the baton-passing code
 128 // further below. That's something we should try to do. Also, the proof
 129 // of correctness of this 2-level locking scheme is far from obvious,
 130 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 131 // that there may be a theoretical possibility of delay/starvation in the
 132 // low-level lock/wait/notify scheme used for the baton-passing because of
 133 // potential interference with the priority scheme embodied in the
 134 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 135 // invocation further below and marked with "XXX 20011219YSR".
 136 // Indeed, as we note elsewhere, this may become yet more slippery
 137 // in the presence of multiple CMS and/or multiple VM threads. XXX
 138 
 139 class CMSTokenSync: public StackObj {
 140  private:
 141   bool _is_cms_thread;
 142  public:
 143   CMSTokenSync(bool is_cms_thread):
 144     _is_cms_thread(is_cms_thread) {
 145     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 146            "Incorrect argument to constructor");
 147     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 148   }
 149 
 150   ~CMSTokenSync() {
 151     assert(_is_cms_thread ?
 152              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 153              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 154           "Incorrect state");
 155     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 156   }
 157 };
 158 
 159 // Convenience class that does a CMSTokenSync, and then acquires
 160 // upto three locks.
 161 class CMSTokenSyncWithLocks: public CMSTokenSync {
 162  private:
 163   // Note: locks are acquired in textual declaration order
 164   // and released in the opposite order
 165   MutexLockerEx _locker1, _locker2, _locker3;
 166  public:
 167   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 168                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 169     CMSTokenSync(is_cms_thread),
 170     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 171     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 172     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 173   { }
 174 };
 175 
 176 
 177 //////////////////////////////////////////////////////////////////
 178 //  Concurrent Mark-Sweep Generation /////////////////////////////
 179 //////////////////////////////////////////////////////////////////
 180 
 181 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 182 
 183 // This struct contains per-thread things necessary to support parallel
 184 // young-gen collection.
 185 class CMSParGCThreadState: public CHeapObj<mtGC> {
 186  public:
 187   CompactibleFreeListSpaceLAB lab;
 188   PromotionInfo promo;
 189 
 190   // Constructor.
 191   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 192     promo.setSpace(cfls);
 193   }
 194 };
 195 
 196 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 197      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 198   CardGeneration(rs, initial_byte_size, ct),
 199   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 200   _did_compact(false)
 201 {
 202   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 203   HeapWord* end    = (HeapWord*) _virtual_space.high();
 204 
 205   _direct_allocated_words = 0;
 206   NOT_PRODUCT(
 207     _numObjectsPromoted = 0;
 208     _numWordsPromoted = 0;
 209     _numObjectsAllocated = 0;
 210     _numWordsAllocated = 0;
 211   )
 212 
 213   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   _cmsSpace->_old_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedClassPointers ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229 
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              ParallelGCThreads,                   // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 308   // Generation Counters - generation 1, 1 subspace
 309   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 310       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 311 
 312   _space_counters = new GSpaceCounters(gen_name, 0,
 313                                        _virtual_space.reserved_size(),
 314                                        this, _gen_counters);
 315 }
 316 
 317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 318   _cms_gen(cms_gen)
 319 {
 320   assert(alpha <= 100, "bad value");
 321   _saved_alpha = alpha;
 322 
 323   // Initialize the alphas to the bootstrap value of 100.
 324   _gc0_alpha = _cms_alpha = 100;
 325 
 326   _cms_begin_time.update();
 327   _cms_end_time.update();
 328 
 329   _gc0_duration = 0.0;
 330   _gc0_period = 0.0;
 331   _gc0_promoted = 0;
 332 
 333   _cms_duration = 0.0;
 334   _cms_period = 0.0;
 335   _cms_allocated = 0;
 336 
 337   _cms_used_at_gc0_begin = 0;
 338   _cms_used_at_gc0_end = 0;
 339   _allow_duty_cycle_reduction = false;
 340   _valid_bits = 0;
 341 }
 342 
 343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 344   // TBD: CR 6909490
 345   return 1.0;
 346 }
 347 
 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 349 }
 350 
 351 // If promotion failure handling is on use
 352 // the padded average size of the promotion for each
 353 // young generation collection.
 354 double CMSStats::time_until_cms_gen_full() const {
 355   size_t cms_free = _cms_gen->cmsSpace()->free();
 356   GenCollectedHeap* gch = GenCollectedHeap::heap();
 357   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 358                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 359   if (cms_free > expected_promotion) {
 360     // Start a cms collection if there isn't enough space to promote
 361     // for the next young collection.  Use the padded average as
 362     // a safety factor.
 363     cms_free -= expected_promotion;
 364 
 365     // Adjust by the safety factor.
 366     double cms_free_dbl = (double)cms_free;
 367     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 368     // Apply a further correction factor which tries to adjust
 369     // for recent occurance of concurrent mode failures.
 370     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 371     cms_free_dbl = cms_free_dbl * cms_adjustment;
 372 
 373     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 374                   cms_free, expected_promotion);
 375     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 376     // Add 1 in case the consumption rate goes to zero.
 377     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 378   }
 379   return 0.0;
 380 }
 381 
 382 // Compare the duration of the cms collection to the
 383 // time remaining before the cms generation is empty.
 384 // Note that the time from the start of the cms collection
 385 // to the start of the cms sweep (less than the total
 386 // duration of the cms collection) can be used.  This
 387 // has been tried and some applications experienced
 388 // promotion failures early in execution.  This was
 389 // possibly because the averages were not accurate
 390 // enough at the beginning.
 391 double CMSStats::time_until_cms_start() const {
 392   // We add "gc0_period" to the "work" calculation
 393   // below because this query is done (mostly) at the
 394   // end of a scavenge, so we need to conservatively
 395   // account for that much possible delay
 396   // in the query so as to avoid concurrent mode failures
 397   // due to starting the collection just a wee bit too
 398   // late.
 399   double work = cms_duration() + gc0_period();
 400   double deadline = time_until_cms_gen_full();
 401   // If a concurrent mode failure occurred recently, we want to be
 402   // more conservative and halve our expected time_until_cms_gen_full()
 403   if (work > deadline) {
 404     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 405                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 406     return 0.0;
 407   }
 408   return work - deadline;
 409 }
 410 
 411 #ifndef PRODUCT
 412 void CMSStats::print_on(outputStream *st) const {
 413   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 414   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 415                gc0_duration(), gc0_period(), gc0_promoted());
 416   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 417             cms_duration(), cms_period(), cms_allocated());
 418   st->print(",cms_since_beg=%g,cms_since_end=%g",
 419             cms_time_since_begin(), cms_time_since_end());
 420   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 421             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 422 
 423   if (valid()) {
 424     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 425               promotion_rate(), cms_allocation_rate());
 426     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 427               cms_consumption_rate(), time_until_cms_gen_full());
 428   }
 429   st->cr();
 430 }
 431 #endif // #ifndef PRODUCT
 432 
 433 CMSCollector::CollectorState CMSCollector::_collectorState =
 434                              CMSCollector::Idling;
 435 bool CMSCollector::_foregroundGCIsActive = false;
 436 bool CMSCollector::_foregroundGCShouldWait = false;
 437 
 438 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 439                            CardTableRS*                   ct,
 440                            ConcurrentMarkSweepPolicy*     cp):
 441   _cmsGen(cmsGen),
 442   _ct(ct),
 443   _ref_processor(NULL),    // will be set later
 444   _conc_workers(NULL),     // may be set later
 445   _abort_preclean(false),
 446   _start_sampling(false),
 447   _between_prologue_and_epilogue(false),
 448   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 449   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 450                  -1 /* lock-free */, "No_lock" /* dummy */),
 451   _modUnionClosurePar(&_modUnionTable),
 452   // Adjust my span to cover old (cms) gen
 453   _span(cmsGen->reserved()),
 454   // Construct the is_alive_closure with _span & markBitMap
 455   _is_alive_closure(_span, &_markBitMap),
 456   _restart_addr(NULL),
 457   _overflow_list(NULL),
 458   _stats(cmsGen),
 459   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 460                              //verify that this lock should be acquired with safepoint check.
 461                              Monitor::_safepoint_check_sometimes)),
 462   _eden_chunk_array(NULL),     // may be set in ctor body
 463   _eden_chunk_capacity(0),     // -- ditto --
 464   _eden_chunk_index(0),        // -- ditto --
 465   _survivor_plab_array(NULL),  // -- ditto --
 466   _survivor_chunk_array(NULL), // -- ditto --
 467   _survivor_chunk_capacity(0), // -- ditto --
 468   _survivor_chunk_index(0),    // -- ditto --
 469   _ser_pmc_preclean_ovflw(0),
 470   _ser_kac_preclean_ovflw(0),
 471   _ser_pmc_remark_ovflw(0),
 472   _par_pmc_remark_ovflw(0),
 473   _ser_kac_ovflw(0),
 474   _par_kac_ovflw(0),
 475 #ifndef PRODUCT
 476   _num_par_pushes(0),
 477 #endif
 478   _collection_count_start(0),
 479   _verifying(false),
 480   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 481   _completed_initialization(false),
 482   _collector_policy(cp),
 483   _should_unload_classes(CMSClassUnloadingEnabled),
 484   _concurrent_cycles_since_last_unload(0),
 485   _roots_scanning_options(GenCollectedHeap::SO_None),
 486   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 487   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 488   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 489   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 490   _cms_start_registered(false)
 491 {
 492   // Now expand the span and allocate the collection support structures
 493   // (MUT, marking bit map etc.) to cover both generations subject to
 494   // collection.
 495 
 496   // For use by dirty card to oop closures.
 497   _cmsGen->cmsSpace()->set_collector(this);
 498 
 499   // Allocate MUT and marking bit map
 500   {
 501     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 502     if (!_markBitMap.allocate(_span)) {
 503       log_warning(gc)("Failed to allocate CMS Bit Map");
 504       return;
 505     }
 506     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 507   }
 508   {
 509     _modUnionTable.allocate(_span);
 510     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 511   }
 512 
 513   if (!_markStack.allocate(MarkStackSize)) {
 514     log_warning(gc)("Failed to allocate CMS Marking Stack");
 515     return;
 516   }
 517 
 518   // Support for multi-threaded concurrent phases
 519   if (CMSConcurrentMTEnabled) {
 520     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 521       // just for now
 522       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 523     }
 524     if (ConcGCThreads > 1) {
 525       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 526                                  ConcGCThreads, true);
 527       if (_conc_workers == NULL) {
 528         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 529         CMSConcurrentMTEnabled = false;
 530       } else {
 531         _conc_workers->initialize_workers();
 532       }
 533     } else {
 534       CMSConcurrentMTEnabled = false;
 535     }
 536   }
 537   if (!CMSConcurrentMTEnabled) {
 538     ConcGCThreads = 0;
 539   } else {
 540     // Turn off CMSCleanOnEnter optimization temporarily for
 541     // the MT case where it's not fixed yet; see 6178663.
 542     CMSCleanOnEnter = false;
 543   }
 544   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 545          "Inconsistency");
 546   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 547   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 548 
 549   // Parallel task queues; these are shared for the
 550   // concurrent and stop-world phases of CMS, but
 551   // are not shared with parallel scavenge (ParNew).
 552   {
 553     uint i;
 554     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 555 
 556     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 557          || ParallelRefProcEnabled)
 558         && num_queues > 0) {
 559       _task_queues = new OopTaskQueueSet(num_queues);
 560       if (_task_queues == NULL) {
 561         log_warning(gc)("task_queues allocation failure.");
 562         return;
 563       }
 564       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 565       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 566       for (i = 0; i < num_queues; i++) {
 567         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 568         if (q == NULL) {
 569           log_warning(gc)("work_queue allocation failure.");
 570           return;
 571         }
 572         _task_queues->register_queue(i, q);
 573       }
 574       for (i = 0; i < num_queues; i++) {
 575         _task_queues->queue(i)->initialize();
 576         _hash_seed[i] = 17;  // copied from ParNew
 577       }
 578     }
 579   }
 580 
 581   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 582 
 583   // Clip CMSBootstrapOccupancy between 0 and 100.
 584   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 585 
 586   // Now tell CMS generations the identity of their collector
 587   ConcurrentMarkSweepGeneration::set_collector(this);
 588 
 589   // Create & start a CMS thread for this CMS collector
 590   _cmsThread = ConcurrentMarkSweepThread::start(this);
 591   assert(cmsThread() != NULL, "CMS Thread should have been created");
 592   assert(cmsThread()->collector() == this,
 593          "CMS Thread should refer to this gen");
 594   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 595 
 596   // Support for parallelizing young gen rescan
 597   GenCollectedHeap* gch = GenCollectedHeap::heap();
 598   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 599   _young_gen = (ParNewGeneration*)gch->young_gen();
 600   if (gch->supports_inline_contig_alloc()) {
 601     _top_addr = gch->top_addr();
 602     _end_addr = gch->end_addr();
 603     assert(_young_gen != NULL, "no _young_gen");
 604     _eden_chunk_index = 0;
 605     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 606     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 607   }
 608 
 609   // Support for parallelizing survivor space rescan
 610   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 611     const size_t max_plab_samples =
 612       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 613 
 614     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 615     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 616     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 617     _survivor_chunk_capacity = max_plab_samples;
 618     for (uint i = 0; i < ParallelGCThreads; i++) {
 619       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 620       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 621       assert(cur->end() == 0, "Should be 0");
 622       assert(cur->array() == vec, "Should be vec");
 623       assert(cur->capacity() == max_plab_samples, "Error");
 624     }
 625   }
 626 
 627   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 628   _gc_counters = new CollectorCounters("CMS", 1);
 629   _completed_initialization = true;
 630   _inter_sweep_timer.start();  // start of time
 631 }
 632 
 633 const char* ConcurrentMarkSweepGeneration::name() const {
 634   return "concurrent mark-sweep generation";
 635 }
 636 void ConcurrentMarkSweepGeneration::update_counters() {
 637   if (UsePerfData) {
 638     _space_counters->update_all();
 639     _gen_counters->update_all();
 640   }
 641 }
 642 
 643 // this is an optimized version of update_counters(). it takes the
 644 // used value as a parameter rather than computing it.
 645 //
 646 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 647   if (UsePerfData) {
 648     _space_counters->update_used(used);
 649     _space_counters->update_capacity();
 650     _gen_counters->update_all();
 651   }
 652 }
 653 
 654 void ConcurrentMarkSweepGeneration::print() const {
 655   Generation::print();
 656   cmsSpace()->print();
 657 }
 658 
 659 #ifndef PRODUCT
 660 void ConcurrentMarkSweepGeneration::print_statistics() {
 661   cmsSpace()->printFLCensus(0);
 662 }
 663 #endif
 664 
 665 size_t
 666 ConcurrentMarkSweepGeneration::contiguous_available() const {
 667   // dld proposes an improvement in precision here. If the committed
 668   // part of the space ends in a free block we should add that to
 669   // uncommitted size in the calculation below. Will make this
 670   // change later, staying with the approximation below for the
 671   // time being. -- ysr.
 672   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 673 }
 674 
 675 size_t
 676 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 677   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 678 }
 679 
 680 size_t ConcurrentMarkSweepGeneration::max_available() const {
 681   return free() + _virtual_space.uncommitted_size();
 682 }
 683 
 684 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 685   size_t available = max_available();
 686   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 687   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 688   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 689                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 690   return res;
 691 }
 692 
 693 // At a promotion failure dump information on block layout in heap
 694 // (cms old generation).
 695 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 696   Log(gc, promotion) log;
 697   if (log.is_trace()) {
 698     LogStream ls(log.trace());
 699     cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls);
 700   }
 701 }
 702 
 703 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 704   // Clear the promotion information.  These pointers can be adjusted
 705   // along with all the other pointers into the heap but
 706   // compaction is expected to be a rare event with
 707   // a heap using cms so don't do it without seeing the need.
 708   for (uint i = 0; i < ParallelGCThreads; i++) {
 709     _par_gc_thread_states[i]->promo.reset();
 710   }
 711 }
 712 
 713 void ConcurrentMarkSweepGeneration::compute_new_size() {
 714   assert_locked_or_safepoint(Heap_lock);
 715 
 716   // If incremental collection failed, we just want to expand
 717   // to the limit.
 718   if (incremental_collection_failed()) {
 719     clear_incremental_collection_failed();
 720     grow_to_reserved();
 721     return;
 722   }
 723 
 724   // The heap has been compacted but not reset yet.
 725   // Any metric such as free() or used() will be incorrect.
 726 
 727   CardGeneration::compute_new_size();
 728 
 729   // Reset again after a possible resizing
 730   if (did_compact()) {
 731     cmsSpace()->reset_after_compaction();
 732   }
 733 }
 734 
 735 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 736   assert_locked_or_safepoint(Heap_lock);
 737 
 738   // If incremental collection failed, we just want to expand
 739   // to the limit.
 740   if (incremental_collection_failed()) {
 741     clear_incremental_collection_failed();
 742     grow_to_reserved();
 743     return;
 744   }
 745 
 746   double free_percentage = ((double) free()) / capacity();
 747   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 748   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 749 
 750   // compute expansion delta needed for reaching desired free percentage
 751   if (free_percentage < desired_free_percentage) {
 752     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 753     assert(desired_capacity >= capacity(), "invalid expansion size");
 754     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 755     Log(gc) log;
 756     if (log.is_trace()) {
 757       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 758       log.trace("From compute_new_size: ");
 759       log.trace("  Free fraction %f", free_percentage);
 760       log.trace("  Desired free fraction %f", desired_free_percentage);
 761       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 762       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 763       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 764       GenCollectedHeap* gch = GenCollectedHeap::heap();
 765       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 766       size_t young_size = gch->young_gen()->capacity();
 767       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 768       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 769       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 770       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 771     }
 772     // safe if expansion fails
 773     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 774     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 775   } else {
 776     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 777     assert(desired_capacity <= capacity(), "invalid expansion size");
 778     size_t shrink_bytes = capacity() - desired_capacity;
 779     // Don't shrink unless the delta is greater than the minimum shrink we want
 780     if (shrink_bytes >= MinHeapDeltaBytes) {
 781       shrink_free_list_by(shrink_bytes);
 782     }
 783   }
 784 }
 785 
 786 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 787   return cmsSpace()->freelistLock();
 788 }
 789 
 790 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 791   CMSSynchronousYieldRequest yr;
 792   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 793   return have_lock_and_allocate(size, tlab);
 794 }
 795 
 796 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 797                                                                 bool   tlab /* ignored */) {
 798   assert_lock_strong(freelistLock());
 799   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 800   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 801   // Allocate the object live (grey) if the background collector has
 802   // started marking. This is necessary because the marker may
 803   // have passed this address and consequently this object will
 804   // not otherwise be greyed and would be incorrectly swept up.
 805   // Note that if this object contains references, the writing
 806   // of those references will dirty the card containing this object
 807   // allowing the object to be blackened (and its references scanned)
 808   // either during a preclean phase or at the final checkpoint.
 809   if (res != NULL) {
 810     // We may block here with an uninitialized object with
 811     // its mark-bit or P-bits not yet set. Such objects need
 812     // to be safely navigable by block_start().
 813     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 814     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 815     collector()->direct_allocated(res, adjustedSize);
 816     _direct_allocated_words += adjustedSize;
 817     // allocation counters
 818     NOT_PRODUCT(
 819       _numObjectsAllocated++;
 820       _numWordsAllocated += (int)adjustedSize;
 821     )
 822   }
 823   return res;
 824 }
 825 
 826 // In the case of direct allocation by mutators in a generation that
 827 // is being concurrently collected, the object must be allocated
 828 // live (grey) if the background collector has started marking.
 829 // This is necessary because the marker may
 830 // have passed this address and consequently this object will
 831 // not otherwise be greyed and would be incorrectly swept up.
 832 // Note that if this object contains references, the writing
 833 // of those references will dirty the card containing this object
 834 // allowing the object to be blackened (and its references scanned)
 835 // either during a preclean phase or at the final checkpoint.
 836 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 837   assert(_markBitMap.covers(start, size), "Out of bounds");
 838   if (_collectorState >= Marking) {
 839     MutexLockerEx y(_markBitMap.lock(),
 840                     Mutex::_no_safepoint_check_flag);
 841     // [see comments preceding SweepClosure::do_blk() below for details]
 842     //
 843     // Can the P-bits be deleted now?  JJJ
 844     //
 845     // 1. need to mark the object as live so it isn't collected
 846     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 847     // 3. need to mark the end of the object so marking, precleaning or sweeping
 848     //    can skip over uninitialized or unparsable objects. An allocated
 849     //    object is considered uninitialized for our purposes as long as
 850     //    its klass word is NULL.  All old gen objects are parsable
 851     //    as soon as they are initialized.)
 852     _markBitMap.mark(start);          // object is live
 853     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 854     _markBitMap.mark(start + size - 1);
 855                                       // mark end of object
 856   }
 857   // check that oop looks uninitialized
 858   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 859 }
 860 
 861 void CMSCollector::promoted(bool par, HeapWord* start,
 862                             bool is_obj_array, size_t obj_size) {
 863   assert(_markBitMap.covers(start), "Out of bounds");
 864   // See comment in direct_allocated() about when objects should
 865   // be allocated live.
 866   if (_collectorState >= Marking) {
 867     // we already hold the marking bit map lock, taken in
 868     // the prologue
 869     if (par) {
 870       _markBitMap.par_mark(start);
 871     } else {
 872       _markBitMap.mark(start);
 873     }
 874     // We don't need to mark the object as uninitialized (as
 875     // in direct_allocated above) because this is being done with the
 876     // world stopped and the object will be initialized by the
 877     // time the marking, precleaning or sweeping get to look at it.
 878     // But see the code for copying objects into the CMS generation,
 879     // where we need to ensure that concurrent readers of the
 880     // block offset table are able to safely navigate a block that
 881     // is in flux from being free to being allocated (and in
 882     // transition while being copied into) and subsequently
 883     // becoming a bona-fide object when the copy/promotion is complete.
 884     assert(SafepointSynchronize::is_at_safepoint(),
 885            "expect promotion only at safepoints");
 886 
 887     if (_collectorState < Sweeping) {
 888       // Mark the appropriate cards in the modUnionTable, so that
 889       // this object gets scanned before the sweep. If this is
 890       // not done, CMS generation references in the object might
 891       // not get marked.
 892       // For the case of arrays, which are otherwise precisely
 893       // marked, we need to dirty the entire array, not just its head.
 894       if (is_obj_array) {
 895         // The [par_]mark_range() method expects mr.end() below to
 896         // be aligned to the granularity of a bit's representation
 897         // in the heap. In the case of the MUT below, that's a
 898         // card size.
 899         MemRegion mr(start,
 900                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 901                         CardTableModRefBS::card_size /* bytes */));
 902         if (par) {
 903           _modUnionTable.par_mark_range(mr);
 904         } else {
 905           _modUnionTable.mark_range(mr);
 906         }
 907       } else {  // not an obj array; we can just mark the head
 908         if (par) {
 909           _modUnionTable.par_mark(start);
 910         } else {
 911           _modUnionTable.mark(start);
 912         }
 913       }
 914     }
 915   }
 916 }
 917 
 918 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 919   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 920   // allocate, copy and if necessary update promoinfo --
 921   // delegate to underlying space.
 922   assert_lock_strong(freelistLock());
 923 
 924 #ifndef PRODUCT
 925   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 926     return NULL;
 927   }
 928 #endif  // #ifndef PRODUCT
 929 
 930   oop res = _cmsSpace->promote(obj, obj_size);
 931   if (res == NULL) {
 932     // expand and retry
 933     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 934     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 935     // Since this is the old generation, we don't try to promote
 936     // into a more senior generation.
 937     res = _cmsSpace->promote(obj, obj_size);
 938   }
 939   if (res != NULL) {
 940     // See comment in allocate() about when objects should
 941     // be allocated live.
 942     assert(obj->is_oop(), "Will dereference klass pointer below");
 943     collector()->promoted(false,           // Not parallel
 944                           (HeapWord*)res, obj->is_objArray(), obj_size);
 945     // promotion counters
 946     NOT_PRODUCT(
 947       _numObjectsPromoted++;
 948       _numWordsPromoted +=
 949         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 950     )
 951   }
 952   return res;
 953 }
 954 
 955 
 956 // IMPORTANT: Notes on object size recognition in CMS.
 957 // ---------------------------------------------------
 958 // A block of storage in the CMS generation is always in
 959 // one of three states. A free block (FREE), an allocated
 960 // object (OBJECT) whose size() method reports the correct size,
 961 // and an intermediate state (TRANSIENT) in which its size cannot
 962 // be accurately determined.
 963 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 964 // -----------------------------------------------------
 965 // FREE:      klass_word & 1 == 1; mark_word holds block size
 966 //
 967 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 968 //            obj->size() computes correct size
 969 //
 970 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 971 //
 972 // STATE IDENTIFICATION: (64 bit+COOPS)
 973 // ------------------------------------
 974 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 975 //
 976 // OBJECT:    klass_word installed; klass_word != 0;
 977 //            obj->size() computes correct size
 978 //
 979 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 980 //
 981 //
 982 // STATE TRANSITION DIAGRAM
 983 //
 984 //        mut / parnew                     mut  /  parnew
 985 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 986 //  ^                                                                   |
 987 //  |------------------------ DEAD <------------------------------------|
 988 //         sweep                            mut
 989 //
 990 // While a block is in TRANSIENT state its size cannot be determined
 991 // so readers will either need to come back later or stall until
 992 // the size can be determined. Note that for the case of direct
 993 // allocation, P-bits, when available, may be used to determine the
 994 // size of an object that may not yet have been initialized.
 995 
 996 // Things to support parallel young-gen collection.
 997 oop
 998 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
 999                                            oop old, markOop m,
1000                                            size_t word_sz) {
1001 #ifndef PRODUCT
1002   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1003     return NULL;
1004   }
1005 #endif  // #ifndef PRODUCT
1006 
1007   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1008   PromotionInfo* promoInfo = &ps->promo;
1009   // if we are tracking promotions, then first ensure space for
1010   // promotion (including spooling space for saving header if necessary).
1011   // then allocate and copy, then track promoted info if needed.
1012   // When tracking (see PromotionInfo::track()), the mark word may
1013   // be displaced and in this case restoration of the mark word
1014   // occurs in the (oop_since_save_marks_)iterate phase.
1015   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1016     // Out of space for allocating spooling buffers;
1017     // try expanding and allocating spooling buffers.
1018     if (!expand_and_ensure_spooling_space(promoInfo)) {
1019       return NULL;
1020     }
1021   }
1022   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1023   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1024   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1025   if (obj_ptr == NULL) {
1026      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1027      if (obj_ptr == NULL) {
1028        return NULL;
1029      }
1030   }
1031   oop obj = oop(obj_ptr);
1032   OrderAccess::storestore();
1033   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1034   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1035   // IMPORTANT: See note on object initialization for CMS above.
1036   // Otherwise, copy the object.  Here we must be careful to insert the
1037   // klass pointer last, since this marks the block as an allocated object.
1038   // Except with compressed oops it's the mark word.
1039   HeapWord* old_ptr = (HeapWord*)old;
1040   // Restore the mark word copied above.
1041   obj->set_mark(m);
1042   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1043   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1044   OrderAccess::storestore();
1045 
1046   if (UseCompressedClassPointers) {
1047     // Copy gap missed by (aligned) header size calculation below
1048     obj->set_klass_gap(old->klass_gap());
1049   }
1050   if (word_sz > (size_t)oopDesc::header_size()) {
1051     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1052                                  obj_ptr + oopDesc::header_size(),
1053                                  word_sz - oopDesc::header_size());
1054   }
1055 
1056   // Now we can track the promoted object, if necessary.  We take care
1057   // to delay the transition from uninitialized to full object
1058   // (i.e., insertion of klass pointer) until after, so that it
1059   // atomically becomes a promoted object.
1060   if (promoInfo->tracking()) {
1061     promoInfo->track((PromotedObject*)obj, old->klass());
1062   }
1063   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1064   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1065   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1066 
1067   // Finally, install the klass pointer (this should be volatile).
1068   OrderAccess::storestore();
1069   obj->set_klass(old->klass());
1070   // We should now be able to calculate the right size for this object
1071   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1072 
1073   collector()->promoted(true,          // parallel
1074                         obj_ptr, old->is_objArray(), word_sz);
1075 
1076   NOT_PRODUCT(
1077     Atomic::inc_ptr(&_numObjectsPromoted);
1078     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1079   )
1080 
1081   return obj;
1082 }
1083 
1084 void
1085 ConcurrentMarkSweepGeneration::
1086 par_promote_alloc_done(int thread_num) {
1087   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1088   ps->lab.retire(thread_num);
1089 }
1090 
1091 void
1092 ConcurrentMarkSweepGeneration::
1093 par_oop_since_save_marks_iterate_done(int thread_num) {
1094   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1095   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1096   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1097 
1098   // Because card-scanning has been completed, subsequent phases
1099   // (e.g., reference processing) will not need to recognize which
1100   // objects have been promoted during this GC. So, we can now disable
1101   // promotion tracking.
1102   ps->promo.stopTrackingPromotions();
1103 }
1104 
1105 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1106                                                    size_t size,
1107                                                    bool   tlab)
1108 {
1109   // We allow a STW collection only if a full
1110   // collection was requested.
1111   return full || should_allocate(size, tlab); // FIX ME !!!
1112   // This and promotion failure handling are connected at the
1113   // hip and should be fixed by untying them.
1114 }
1115 
1116 bool CMSCollector::shouldConcurrentCollect() {
1117   LogTarget(Trace, gc) log;
1118 
1119   if (_full_gc_requested) {
1120     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1121     return true;
1122   }
1123 
1124   FreelistLocker x(this);
1125   // ------------------------------------------------------------------
1126   // Print out lots of information which affects the initiation of
1127   // a collection.
1128   if (log.is_enabled() && stats().valid()) {
1129     log.print("CMSCollector shouldConcurrentCollect: ");
1130 
1131     LogStream out(log);
1132     stats().print_on(&out);
1133 
1134     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1135     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1136     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1137     log.print("promotion_rate=%g", stats().promotion_rate());
1138     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1139     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1140     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1141     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1142     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1143     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1144   }
1145   // ------------------------------------------------------------------
1146 
1147   // If the estimated time to complete a cms collection (cms_duration())
1148   // is less than the estimated time remaining until the cms generation
1149   // is full, start a collection.
1150   if (!UseCMSInitiatingOccupancyOnly) {
1151     if (stats().valid()) {
1152       if (stats().time_until_cms_start() == 0.0) {
1153         return true;
1154       }
1155     } else {
1156       // We want to conservatively collect somewhat early in order
1157       // to try and "bootstrap" our CMS/promotion statistics;
1158       // this branch will not fire after the first successful CMS
1159       // collection because the stats should then be valid.
1160       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1161         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1162                   _cmsGen->occupancy(), _bootstrap_occupancy);
1163         return true;
1164       }
1165     }
1166   }
1167 
1168   // Otherwise, we start a collection cycle if
1169   // old gen want a collection cycle started. Each may use
1170   // an appropriate criterion for making this decision.
1171   // XXX We need to make sure that the gen expansion
1172   // criterion dovetails well with this. XXX NEED TO FIX THIS
1173   if (_cmsGen->should_concurrent_collect()) {
1174     log.print("CMS old gen initiated");
1175     return true;
1176   }
1177 
1178   // We start a collection if we believe an incremental collection may fail;
1179   // this is not likely to be productive in practice because it's probably too
1180   // late anyway.
1181   GenCollectedHeap* gch = GenCollectedHeap::heap();
1182   assert(gch->collector_policy()->is_generation_policy(),
1183          "You may want to check the correctness of the following");
1184   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1185     log.print("CMSCollector: collect because incremental collection will fail ");
1186     return true;
1187   }
1188 
1189   if (MetaspaceGC::should_concurrent_collect()) {
1190     log.print("CMSCollector: collect for metadata allocation ");
1191     return true;
1192   }
1193 
1194   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1195   if (CMSTriggerInterval >= 0) {
1196     if (CMSTriggerInterval == 0) {
1197       // Trigger always
1198       return true;
1199     }
1200 
1201     // Check the CMS time since begin (we do not check the stats validity
1202     // as we want to be able to trigger the first CMS cycle as well)
1203     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1204       if (stats().valid()) {
1205         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1206                   stats().cms_time_since_begin());
1207       } else {
1208         log.print("CMSCollector: collect because of trigger interval (first collection)");
1209       }
1210       return true;
1211     }
1212   }
1213 
1214   return false;
1215 }
1216 
1217 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1218 
1219 // Clear _expansion_cause fields of constituent generations
1220 void CMSCollector::clear_expansion_cause() {
1221   _cmsGen->clear_expansion_cause();
1222 }
1223 
1224 // We should be conservative in starting a collection cycle.  To
1225 // start too eagerly runs the risk of collecting too often in the
1226 // extreme.  To collect too rarely falls back on full collections,
1227 // which works, even if not optimum in terms of concurrent work.
1228 // As a work around for too eagerly collecting, use the flag
1229 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1230 // giving the user an easily understandable way of controlling the
1231 // collections.
1232 // We want to start a new collection cycle if any of the following
1233 // conditions hold:
1234 // . our current occupancy exceeds the configured initiating occupancy
1235 //   for this generation, or
1236 // . we recently needed to expand this space and have not, since that
1237 //   expansion, done a collection of this generation, or
1238 // . the underlying space believes that it may be a good idea to initiate
1239 //   a concurrent collection (this may be based on criteria such as the
1240 //   following: the space uses linear allocation and linear allocation is
1241 //   going to fail, or there is believed to be excessive fragmentation in
1242 //   the generation, etc... or ...
1243 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1244 //   the case of the old generation; see CR 6543076):
1245 //   we may be approaching a point at which allocation requests may fail because
1246 //   we will be out of sufficient free space given allocation rate estimates.]
1247 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1248 
1249   assert_lock_strong(freelistLock());
1250   if (occupancy() > initiating_occupancy()) {
1251     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1252                   short_name(), occupancy(), initiating_occupancy());
1253     return true;
1254   }
1255   if (UseCMSInitiatingOccupancyOnly) {
1256     return false;
1257   }
1258   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1259     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1260     return true;
1261   }
1262   return false;
1263 }
1264 
1265 void ConcurrentMarkSweepGeneration::collect(bool   full,
1266                                             bool   clear_all_soft_refs,
1267                                             size_t size,
1268                                             bool   tlab)
1269 {
1270   collector()->collect(full, clear_all_soft_refs, size, tlab);
1271 }
1272 
1273 void CMSCollector::collect(bool   full,
1274                            bool   clear_all_soft_refs,
1275                            size_t size,
1276                            bool   tlab)
1277 {
1278   // The following "if" branch is present for defensive reasons.
1279   // In the current uses of this interface, it can be replaced with:
1280   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1281   // But I am not placing that assert here to allow future
1282   // generality in invoking this interface.
1283   if (GCLocker::is_active()) {
1284     // A consistency test for GCLocker
1285     assert(GCLocker::needs_gc(), "Should have been set already");
1286     // Skip this foreground collection, instead
1287     // expanding the heap if necessary.
1288     // Need the free list locks for the call to free() in compute_new_size()
1289     compute_new_size();
1290     return;
1291   }
1292   acquire_control_and_collect(full, clear_all_soft_refs);
1293 }
1294 
1295 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1296   GenCollectedHeap* gch = GenCollectedHeap::heap();
1297   unsigned int gc_count = gch->total_full_collections();
1298   if (gc_count == full_gc_count) {
1299     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1300     _full_gc_requested = true;
1301     _full_gc_cause = cause;
1302     CGC_lock->notify();   // nudge CMS thread
1303   } else {
1304     assert(gc_count > full_gc_count, "Error: causal loop");
1305   }
1306 }
1307 
1308 bool CMSCollector::is_external_interruption() {
1309   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1310   return GCCause::is_user_requested_gc(cause) ||
1311          GCCause::is_serviceability_requested_gc(cause);
1312 }
1313 
1314 void CMSCollector::report_concurrent_mode_interruption() {
1315   if (is_external_interruption()) {
1316     log_debug(gc)("Concurrent mode interrupted");
1317   } else {
1318     log_debug(gc)("Concurrent mode failure");
1319     _gc_tracer_cm->report_concurrent_mode_failure();
1320   }
1321 }
1322 
1323 
1324 // The foreground and background collectors need to coordinate in order
1325 // to make sure that they do not mutually interfere with CMS collections.
1326 // When a background collection is active,
1327 // the foreground collector may need to take over (preempt) and
1328 // synchronously complete an ongoing collection. Depending on the
1329 // frequency of the background collections and the heap usage
1330 // of the application, this preemption can be seldom or frequent.
1331 // There are only certain
1332 // points in the background collection that the "collection-baton"
1333 // can be passed to the foreground collector.
1334 //
1335 // The foreground collector will wait for the baton before
1336 // starting any part of the collection.  The foreground collector
1337 // will only wait at one location.
1338 //
1339 // The background collector will yield the baton before starting a new
1340 // phase of the collection (e.g., before initial marking, marking from roots,
1341 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1342 // of the loop which switches the phases. The background collector does some
1343 // of the phases (initial mark, final re-mark) with the world stopped.
1344 // Because of locking involved in stopping the world,
1345 // the foreground collector should not block waiting for the background
1346 // collector when it is doing a stop-the-world phase.  The background
1347 // collector will yield the baton at an additional point just before
1348 // it enters a stop-the-world phase.  Once the world is stopped, the
1349 // background collector checks the phase of the collection.  If the
1350 // phase has not changed, it proceeds with the collection.  If the
1351 // phase has changed, it skips that phase of the collection.  See
1352 // the comments on the use of the Heap_lock in collect_in_background().
1353 //
1354 // Variable used in baton passing.
1355 //   _foregroundGCIsActive - Set to true by the foreground collector when
1356 //      it wants the baton.  The foreground clears it when it has finished
1357 //      the collection.
1358 //   _foregroundGCShouldWait - Set to true by the background collector
1359 //        when it is running.  The foreground collector waits while
1360 //      _foregroundGCShouldWait is true.
1361 //  CGC_lock - monitor used to protect access to the above variables
1362 //      and to notify the foreground and background collectors.
1363 //  _collectorState - current state of the CMS collection.
1364 //
1365 // The foreground collector
1366 //   acquires the CGC_lock
1367 //   sets _foregroundGCIsActive
1368 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1369 //     various locks acquired in preparation for the collection
1370 //     are released so as not to block the background collector
1371 //     that is in the midst of a collection
1372 //   proceeds with the collection
1373 //   clears _foregroundGCIsActive
1374 //   returns
1375 //
1376 // The background collector in a loop iterating on the phases of the
1377 //      collection
1378 //   acquires the CGC_lock
1379 //   sets _foregroundGCShouldWait
1380 //   if _foregroundGCIsActive is set
1381 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1382 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1383 //     and exits the loop.
1384 //   otherwise
1385 //     proceed with that phase of the collection
1386 //     if the phase is a stop-the-world phase,
1387 //       yield the baton once more just before enqueueing
1388 //       the stop-world CMS operation (executed by the VM thread).
1389 //   returns after all phases of the collection are done
1390 //
1391 
1392 void CMSCollector::acquire_control_and_collect(bool full,
1393         bool clear_all_soft_refs) {
1394   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1395   assert(!Thread::current()->is_ConcurrentGC_thread(),
1396          "shouldn't try to acquire control from self!");
1397 
1398   // Start the protocol for acquiring control of the
1399   // collection from the background collector (aka CMS thread).
1400   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1401          "VM thread should have CMS token");
1402   // Remember the possibly interrupted state of an ongoing
1403   // concurrent collection
1404   CollectorState first_state = _collectorState;
1405 
1406   // Signal to a possibly ongoing concurrent collection that
1407   // we want to do a foreground collection.
1408   _foregroundGCIsActive = true;
1409 
1410   // release locks and wait for a notify from the background collector
1411   // releasing the locks in only necessary for phases which
1412   // do yields to improve the granularity of the collection.
1413   assert_lock_strong(bitMapLock());
1414   // We need to lock the Free list lock for the space that we are
1415   // currently collecting.
1416   assert(haveFreelistLocks(), "Must be holding free list locks");
1417   bitMapLock()->unlock();
1418   releaseFreelistLocks();
1419   {
1420     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1421     if (_foregroundGCShouldWait) {
1422       // We are going to be waiting for action for the CMS thread;
1423       // it had better not be gone (for instance at shutdown)!
1424       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1425              "CMS thread must be running");
1426       // Wait here until the background collector gives us the go-ahead
1427       ConcurrentMarkSweepThread::clear_CMS_flag(
1428         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1429       // Get a possibly blocked CMS thread going:
1430       //   Note that we set _foregroundGCIsActive true above,
1431       //   without protection of the CGC_lock.
1432       CGC_lock->notify();
1433       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1434              "Possible deadlock");
1435       while (_foregroundGCShouldWait) {
1436         // wait for notification
1437         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1438         // Possibility of delay/starvation here, since CMS token does
1439         // not know to give priority to VM thread? Actually, i think
1440         // there wouldn't be any delay/starvation, but the proof of
1441         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1442       }
1443       ConcurrentMarkSweepThread::set_CMS_flag(
1444         ConcurrentMarkSweepThread::CMS_vm_has_token);
1445     }
1446   }
1447   // The CMS_token is already held.  Get back the other locks.
1448   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1449          "VM thread should have CMS token");
1450   getFreelistLocks();
1451   bitMapLock()->lock_without_safepoint_check();
1452   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1453                        p2i(Thread::current()), first_state);
1454   log_debug(gc, state)("    gets control with state %d", _collectorState);
1455 
1456   // Inform cms gen if this was due to partial collection failing.
1457   // The CMS gen may use this fact to determine its expansion policy.
1458   GenCollectedHeap* gch = GenCollectedHeap::heap();
1459   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1460     assert(!_cmsGen->incremental_collection_failed(),
1461            "Should have been noticed, reacted to and cleared");
1462     _cmsGen->set_incremental_collection_failed();
1463   }
1464 
1465   if (first_state > Idling) {
1466     report_concurrent_mode_interruption();
1467   }
1468 
1469   set_did_compact(true);
1470 
1471   // If the collection is being acquired from the background
1472   // collector, there may be references on the discovered
1473   // references lists.  Abandon those references, since some
1474   // of them may have become unreachable after concurrent
1475   // discovery; the STW compacting collector will redo discovery
1476   // more precisely, without being subject to floating garbage.
1477   // Leaving otherwise unreachable references in the discovered
1478   // lists would require special handling.
1479   ref_processor()->disable_discovery();
1480   ref_processor()->abandon_partial_discovery();
1481   ref_processor()->verify_no_references_recorded();
1482 
1483   if (first_state > Idling) {
1484     save_heap_summary();
1485   }
1486 
1487   do_compaction_work(clear_all_soft_refs);
1488 
1489   // Has the GC time limit been exceeded?
1490   size_t max_eden_size = _young_gen->max_eden_size();
1491   GCCause::Cause gc_cause = gch->gc_cause();
1492   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1493                                          _young_gen->eden()->used(),
1494                                          _cmsGen->max_capacity(),
1495                                          max_eden_size,
1496                                          full,
1497                                          gc_cause,
1498                                          gch->collector_policy());
1499 
1500   // Reset the expansion cause, now that we just completed
1501   // a collection cycle.
1502   clear_expansion_cause();
1503   _foregroundGCIsActive = false;
1504   return;
1505 }
1506 
1507 // Resize the tenured generation
1508 // after obtaining the free list locks for the
1509 // two generations.
1510 void CMSCollector::compute_new_size() {
1511   assert_locked_or_safepoint(Heap_lock);
1512   FreelistLocker z(this);
1513   MetaspaceGC::compute_new_size();
1514   _cmsGen->compute_new_size_free_list();
1515 }
1516 
1517 // A work method used by the foreground collector to do
1518 // a mark-sweep-compact.
1519 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1520   GenCollectedHeap* gch = GenCollectedHeap::heap();
1521 
1522   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1523   gc_timer->register_gc_start();
1524 
1525   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1526   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1527 
1528   gch->pre_full_gc_dump(gc_timer);
1529 
1530   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1531 
1532   // Temporarily widen the span of the weak reference processing to
1533   // the entire heap.
1534   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1535   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1536   // Temporarily, clear the "is_alive_non_header" field of the
1537   // reference processor.
1538   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1539   // Temporarily make reference _processing_ single threaded (non-MT).
1540   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1541   // Temporarily make refs discovery atomic
1542   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1543   // Temporarily make reference _discovery_ single threaded (non-MT)
1544   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1545 
1546   ref_processor()->set_enqueuing_is_done(false);
1547   ref_processor()->enable_discovery();
1548   ref_processor()->setup_policy(clear_all_soft_refs);
1549   // If an asynchronous collection finishes, the _modUnionTable is
1550   // all clear.  If we are assuming the collection from an asynchronous
1551   // collection, clear the _modUnionTable.
1552   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1553     "_modUnionTable should be clear if the baton was not passed");
1554   _modUnionTable.clear_all();
1555   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1556     "mod union for klasses should be clear if the baton was passed");
1557   _ct->klass_rem_set()->clear_mod_union();
1558 
1559   // We must adjust the allocation statistics being maintained
1560   // in the free list space. We do so by reading and clearing
1561   // the sweep timer and updating the block flux rate estimates below.
1562   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1563   if (_inter_sweep_timer.is_active()) {
1564     _inter_sweep_timer.stop();
1565     // Note that we do not use this sample to update the _inter_sweep_estimate.
1566     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1567                                             _inter_sweep_estimate.padded_average(),
1568                                             _intra_sweep_estimate.padded_average());
1569   }
1570 
1571   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1572   #ifdef ASSERT
1573     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1574     size_t free_size = cms_space->free();
1575     assert(free_size ==
1576            pointer_delta(cms_space->end(), cms_space->compaction_top())
1577            * HeapWordSize,
1578       "All the free space should be compacted into one chunk at top");
1579     assert(cms_space->dictionary()->total_chunk_size(
1580                                       debug_only(cms_space->freelistLock())) == 0 ||
1581            cms_space->totalSizeInIndexedFreeLists() == 0,
1582       "All the free space should be in a single chunk");
1583     size_t num = cms_space->totalCount();
1584     assert((free_size == 0 && num == 0) ||
1585            (free_size > 0  && (num == 1 || num == 2)),
1586          "There should be at most 2 free chunks after compaction");
1587   #endif // ASSERT
1588   _collectorState = Resetting;
1589   assert(_restart_addr == NULL,
1590          "Should have been NULL'd before baton was passed");
1591   reset_stw();
1592   _cmsGen->reset_after_compaction();
1593   _concurrent_cycles_since_last_unload = 0;
1594 
1595   // Clear any data recorded in the PLAB chunk arrays.
1596   if (_survivor_plab_array != NULL) {
1597     reset_survivor_plab_arrays();
1598   }
1599 
1600   // Adjust the per-size allocation stats for the next epoch.
1601   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1602   // Restart the "inter sweep timer" for the next epoch.
1603   _inter_sweep_timer.reset();
1604   _inter_sweep_timer.start();
1605 
1606   // No longer a need to do a concurrent collection for Metaspace.
1607   MetaspaceGC::set_should_concurrent_collect(false);
1608 
1609   gch->post_full_gc_dump(gc_timer);
1610 
1611   gc_timer->register_gc_end();
1612 
1613   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1614 
1615   // For a mark-sweep-compact, compute_new_size() will be called
1616   // in the heap's do_collection() method.
1617 }
1618 
1619 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1620   Log(gc, heap) log;
1621   if (!log.is_trace()) {
1622     return;
1623   }
1624 
1625   ContiguousSpace* eden_space = _young_gen->eden();
1626   ContiguousSpace* from_space = _young_gen->from();
1627   ContiguousSpace* to_space   = _young_gen->to();
1628   // Eden
1629   if (_eden_chunk_array != NULL) {
1630     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1631               p2i(eden_space->bottom()), p2i(eden_space->top()),
1632               p2i(eden_space->end()), eden_space->capacity());
1633     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1634               _eden_chunk_index, _eden_chunk_capacity);
1635     for (size_t i = 0; i < _eden_chunk_index; i++) {
1636       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1637     }
1638   }
1639   // Survivor
1640   if (_survivor_chunk_array != NULL) {
1641     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1642               p2i(from_space->bottom()), p2i(from_space->top()),
1643               p2i(from_space->end()), from_space->capacity());
1644     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1645               _survivor_chunk_index, _survivor_chunk_capacity);
1646     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1647       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1648     }
1649   }
1650 }
1651 
1652 void CMSCollector::getFreelistLocks() const {
1653   // Get locks for all free lists in all generations that this
1654   // collector is responsible for
1655   _cmsGen->freelistLock()->lock_without_safepoint_check();
1656 }
1657 
1658 void CMSCollector::releaseFreelistLocks() const {
1659   // Release locks for all free lists in all generations that this
1660   // collector is responsible for
1661   _cmsGen->freelistLock()->unlock();
1662 }
1663 
1664 bool CMSCollector::haveFreelistLocks() const {
1665   // Check locks for all free lists in all generations that this
1666   // collector is responsible for
1667   assert_lock_strong(_cmsGen->freelistLock());
1668   PRODUCT_ONLY(ShouldNotReachHere());
1669   return true;
1670 }
1671 
1672 // A utility class that is used by the CMS collector to
1673 // temporarily "release" the foreground collector from its
1674 // usual obligation to wait for the background collector to
1675 // complete an ongoing phase before proceeding.
1676 class ReleaseForegroundGC: public StackObj {
1677  private:
1678   CMSCollector* _c;
1679  public:
1680   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1681     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1682     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1683     // allow a potentially blocked foreground collector to proceed
1684     _c->_foregroundGCShouldWait = false;
1685     if (_c->_foregroundGCIsActive) {
1686       CGC_lock->notify();
1687     }
1688     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1689            "Possible deadlock");
1690   }
1691 
1692   ~ReleaseForegroundGC() {
1693     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1694     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1695     _c->_foregroundGCShouldWait = true;
1696   }
1697 };
1698 
1699 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1700   assert(Thread::current()->is_ConcurrentGC_thread(),
1701     "A CMS asynchronous collection is only allowed on a CMS thread.");
1702 
1703   GenCollectedHeap* gch = GenCollectedHeap::heap();
1704   {
1705     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1706     MutexLockerEx hl(Heap_lock, safepoint_check);
1707     FreelistLocker fll(this);
1708     MutexLockerEx x(CGC_lock, safepoint_check);
1709     if (_foregroundGCIsActive) {
1710       // The foreground collector is. Skip this
1711       // background collection.
1712       assert(!_foregroundGCShouldWait, "Should be clear");
1713       return;
1714     } else {
1715       assert(_collectorState == Idling, "Should be idling before start.");
1716       _collectorState = InitialMarking;
1717       register_gc_start(cause);
1718       // Reset the expansion cause, now that we are about to begin
1719       // a new cycle.
1720       clear_expansion_cause();
1721 
1722       // Clear the MetaspaceGC flag since a concurrent collection
1723       // is starting but also clear it after the collection.
1724       MetaspaceGC::set_should_concurrent_collect(false);
1725     }
1726     // Decide if we want to enable class unloading as part of the
1727     // ensuing concurrent GC cycle.
1728     update_should_unload_classes();
1729     _full_gc_requested = false;           // acks all outstanding full gc requests
1730     _full_gc_cause = GCCause::_no_gc;
1731     // Signal that we are about to start a collection
1732     gch->increment_total_full_collections();  // ... starting a collection cycle
1733     _collection_count_start = gch->total_full_collections();
1734   }
1735 
1736   size_t prev_used = _cmsGen->used();
1737 
1738   // The change of the collection state is normally done at this level;
1739   // the exceptions are phases that are executed while the world is
1740   // stopped.  For those phases the change of state is done while the
1741   // world is stopped.  For baton passing purposes this allows the
1742   // background collector to finish the phase and change state atomically.
1743   // The foreground collector cannot wait on a phase that is done
1744   // while the world is stopped because the foreground collector already
1745   // has the world stopped and would deadlock.
1746   while (_collectorState != Idling) {
1747     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1748                          p2i(Thread::current()), _collectorState);
1749     // The foreground collector
1750     //   holds the Heap_lock throughout its collection.
1751     //   holds the CMS token (but not the lock)
1752     //     except while it is waiting for the background collector to yield.
1753     //
1754     // The foreground collector should be blocked (not for long)
1755     //   if the background collector is about to start a phase
1756     //   executed with world stopped.  If the background
1757     //   collector has already started such a phase, the
1758     //   foreground collector is blocked waiting for the
1759     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1760     //   are executed in the VM thread.
1761     //
1762     // The locking order is
1763     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1764     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1765     //   CMS token  (claimed in
1766     //                stop_world_and_do() -->
1767     //                  safepoint_synchronize() -->
1768     //                    CMSThread::synchronize())
1769 
1770     {
1771       // Check if the FG collector wants us to yield.
1772       CMSTokenSync x(true); // is cms thread
1773       if (waitForForegroundGC()) {
1774         // We yielded to a foreground GC, nothing more to be
1775         // done this round.
1776         assert(_foregroundGCShouldWait == false, "We set it to false in "
1777                "waitForForegroundGC()");
1778         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1779                              p2i(Thread::current()), _collectorState);
1780         return;
1781       } else {
1782         // The background collector can run but check to see if the
1783         // foreground collector has done a collection while the
1784         // background collector was waiting to get the CGC_lock
1785         // above.  If yes, break so that _foregroundGCShouldWait
1786         // is cleared before returning.
1787         if (_collectorState == Idling) {
1788           break;
1789         }
1790       }
1791     }
1792 
1793     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1794       "should be waiting");
1795 
1796     switch (_collectorState) {
1797       case InitialMarking:
1798         {
1799           ReleaseForegroundGC x(this);
1800           stats().record_cms_begin();
1801           VM_CMS_Initial_Mark initial_mark_op(this);
1802           VMThread::execute(&initial_mark_op);
1803         }
1804         // The collector state may be any legal state at this point
1805         // since the background collector may have yielded to the
1806         // foreground collector.
1807         break;
1808       case Marking:
1809         // initial marking in checkpointRootsInitialWork has been completed
1810         if (markFromRoots()) { // we were successful
1811           assert(_collectorState == Precleaning, "Collector state should "
1812             "have changed");
1813         } else {
1814           assert(_foregroundGCIsActive, "Internal state inconsistency");
1815         }
1816         break;
1817       case Precleaning:
1818         // marking from roots in markFromRoots has been completed
1819         preclean();
1820         assert(_collectorState == AbortablePreclean ||
1821                _collectorState == FinalMarking,
1822                "Collector state should have changed");
1823         break;
1824       case AbortablePreclean:
1825         abortable_preclean();
1826         assert(_collectorState == FinalMarking, "Collector state should "
1827           "have changed");
1828         break;
1829       case FinalMarking:
1830         {
1831           ReleaseForegroundGC x(this);
1832 
1833           VM_CMS_Final_Remark final_remark_op(this);
1834           VMThread::execute(&final_remark_op);
1835         }
1836         assert(_foregroundGCShouldWait, "block post-condition");
1837         break;
1838       case Sweeping:
1839         // final marking in checkpointRootsFinal has been completed
1840         sweep();
1841         assert(_collectorState == Resizing, "Collector state change "
1842           "to Resizing must be done under the free_list_lock");
1843 
1844       case Resizing: {
1845         // Sweeping has been completed...
1846         // At this point the background collection has completed.
1847         // Don't move the call to compute_new_size() down
1848         // into code that might be executed if the background
1849         // collection was preempted.
1850         {
1851           ReleaseForegroundGC x(this);   // unblock FG collection
1852           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1853           CMSTokenSync        z(true);   // not strictly needed.
1854           if (_collectorState == Resizing) {
1855             compute_new_size();
1856             save_heap_summary();
1857             _collectorState = Resetting;
1858           } else {
1859             assert(_collectorState == Idling, "The state should only change"
1860                    " because the foreground collector has finished the collection");
1861           }
1862         }
1863         break;
1864       }
1865       case Resetting:
1866         // CMS heap resizing has been completed
1867         reset_concurrent();
1868         assert(_collectorState == Idling, "Collector state should "
1869           "have changed");
1870 
1871         MetaspaceGC::set_should_concurrent_collect(false);
1872 
1873         stats().record_cms_end();
1874         // Don't move the concurrent_phases_end() and compute_new_size()
1875         // calls to here because a preempted background collection
1876         // has it's state set to "Resetting".
1877         break;
1878       case Idling:
1879       default:
1880         ShouldNotReachHere();
1881         break;
1882     }
1883     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1884                          p2i(Thread::current()), _collectorState);
1885     assert(_foregroundGCShouldWait, "block post-condition");
1886   }
1887 
1888   // Should this be in gc_epilogue?
1889   collector_policy()->counters()->update_counters();
1890 
1891   {
1892     // Clear _foregroundGCShouldWait and, in the event that the
1893     // foreground collector is waiting, notify it, before
1894     // returning.
1895     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1896     _foregroundGCShouldWait = false;
1897     if (_foregroundGCIsActive) {
1898       CGC_lock->notify();
1899     }
1900     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1901            "Possible deadlock");
1902   }
1903   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1904                        p2i(Thread::current()), _collectorState);
1905   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1906                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1907 }
1908 
1909 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1910   _cms_start_registered = true;
1911   _gc_timer_cm->register_gc_start();
1912   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1913 }
1914 
1915 void CMSCollector::register_gc_end() {
1916   if (_cms_start_registered) {
1917     report_heap_summary(GCWhen::AfterGC);
1918 
1919     _gc_timer_cm->register_gc_end();
1920     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1921     _cms_start_registered = false;
1922   }
1923 }
1924 
1925 void CMSCollector::save_heap_summary() {
1926   GenCollectedHeap* gch = GenCollectedHeap::heap();
1927   _last_heap_summary = gch->create_heap_summary();
1928   _last_metaspace_summary = gch->create_metaspace_summary();
1929 }
1930 
1931 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1932   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1933   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1934 }
1935 
1936 bool CMSCollector::waitForForegroundGC() {
1937   bool res = false;
1938   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1939          "CMS thread should have CMS token");
1940   // Block the foreground collector until the
1941   // background collectors decides whether to
1942   // yield.
1943   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1944   _foregroundGCShouldWait = true;
1945   if (_foregroundGCIsActive) {
1946     // The background collector yields to the
1947     // foreground collector and returns a value
1948     // indicating that it has yielded.  The foreground
1949     // collector can proceed.
1950     res = true;
1951     _foregroundGCShouldWait = false;
1952     ConcurrentMarkSweepThread::clear_CMS_flag(
1953       ConcurrentMarkSweepThread::CMS_cms_has_token);
1954     ConcurrentMarkSweepThread::set_CMS_flag(
1955       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1956     // Get a possibly blocked foreground thread going
1957     CGC_lock->notify();
1958     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1959                          p2i(Thread::current()), _collectorState);
1960     while (_foregroundGCIsActive) {
1961       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1962     }
1963     ConcurrentMarkSweepThread::set_CMS_flag(
1964       ConcurrentMarkSweepThread::CMS_cms_has_token);
1965     ConcurrentMarkSweepThread::clear_CMS_flag(
1966       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1967   }
1968   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1969                        p2i(Thread::current()), _collectorState);
1970   return res;
1971 }
1972 
1973 // Because of the need to lock the free lists and other structures in
1974 // the collector, common to all the generations that the collector is
1975 // collecting, we need the gc_prologues of individual CMS generations
1976 // delegate to their collector. It may have been simpler had the
1977 // current infrastructure allowed one to call a prologue on a
1978 // collector. In the absence of that we have the generation's
1979 // prologue delegate to the collector, which delegates back
1980 // some "local" work to a worker method in the individual generations
1981 // that it's responsible for collecting, while itself doing any
1982 // work common to all generations it's responsible for. A similar
1983 // comment applies to the  gc_epilogue()'s.
1984 // The role of the variable _between_prologue_and_epilogue is to
1985 // enforce the invocation protocol.
1986 void CMSCollector::gc_prologue(bool full) {
1987   // Call gc_prologue_work() for the CMSGen
1988   // we are responsible for.
1989 
1990   // The following locking discipline assumes that we are only called
1991   // when the world is stopped.
1992   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1993 
1994   // The CMSCollector prologue must call the gc_prologues for the
1995   // "generations" that it's responsible
1996   // for.
1997 
1998   assert(   Thread::current()->is_VM_thread()
1999          || (   CMSScavengeBeforeRemark
2000              && Thread::current()->is_ConcurrentGC_thread()),
2001          "Incorrect thread type for prologue execution");
2002 
2003   if (_between_prologue_and_epilogue) {
2004     // We have already been invoked; this is a gc_prologue delegation
2005     // from yet another CMS generation that we are responsible for, just
2006     // ignore it since all relevant work has already been done.
2007     return;
2008   }
2009 
2010   // set a bit saying prologue has been called; cleared in epilogue
2011   _between_prologue_and_epilogue = true;
2012   // Claim locks for common data structures, then call gc_prologue_work()
2013   // for each CMSGen.
2014 
2015   getFreelistLocks();   // gets free list locks on constituent spaces
2016   bitMapLock()->lock_without_safepoint_check();
2017 
2018   // Should call gc_prologue_work() for all cms gens we are responsible for
2019   bool duringMarking =    _collectorState >= Marking
2020                          && _collectorState < Sweeping;
2021 
2022   // The young collections clear the modified oops state, which tells if
2023   // there are any modified oops in the class. The remark phase also needs
2024   // that information. Tell the young collection to save the union of all
2025   // modified klasses.
2026   if (duringMarking) {
2027     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2028   }
2029 
2030   bool registerClosure = duringMarking;
2031 
2032   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2033 
2034   if (!full) {
2035     stats().record_gc0_begin();
2036   }
2037 }
2038 
2039 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2040 
2041   _capacity_at_prologue = capacity();
2042   _used_at_prologue = used();
2043 
2044   // We enable promotion tracking so that card-scanning can recognize
2045   // which objects have been promoted during this GC and skip them.
2046   for (uint i = 0; i < ParallelGCThreads; i++) {
2047     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2048   }
2049 
2050   // Delegate to CMScollector which knows how to coordinate between
2051   // this and any other CMS generations that it is responsible for
2052   // collecting.
2053   collector()->gc_prologue(full);
2054 }
2055 
2056 // This is a "private" interface for use by this generation's CMSCollector.
2057 // Not to be called directly by any other entity (for instance,
2058 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2059 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2060   bool registerClosure, ModUnionClosure* modUnionClosure) {
2061   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2062   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2063     "Should be NULL");
2064   if (registerClosure) {
2065     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2066   }
2067   cmsSpace()->gc_prologue();
2068   // Clear stat counters
2069   NOT_PRODUCT(
2070     assert(_numObjectsPromoted == 0, "check");
2071     assert(_numWordsPromoted   == 0, "check");
2072     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2073                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2074     _numObjectsAllocated = 0;
2075     _numWordsAllocated   = 0;
2076   )
2077 }
2078 
2079 void CMSCollector::gc_epilogue(bool full) {
2080   // The following locking discipline assumes that we are only called
2081   // when the world is stopped.
2082   assert(SafepointSynchronize::is_at_safepoint(),
2083          "world is stopped assumption");
2084 
2085   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2086   // if linear allocation blocks need to be appropriately marked to allow the
2087   // the blocks to be parsable. We also check here whether we need to nudge the
2088   // CMS collector thread to start a new cycle (if it's not already active).
2089   assert(   Thread::current()->is_VM_thread()
2090          || (   CMSScavengeBeforeRemark
2091              && Thread::current()->is_ConcurrentGC_thread()),
2092          "Incorrect thread type for epilogue execution");
2093 
2094   if (!_between_prologue_and_epilogue) {
2095     // We have already been invoked; this is a gc_epilogue delegation
2096     // from yet another CMS generation that we are responsible for, just
2097     // ignore it since all relevant work has already been done.
2098     return;
2099   }
2100   assert(haveFreelistLocks(), "must have freelist locks");
2101   assert_lock_strong(bitMapLock());
2102 
2103   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2104 
2105   _cmsGen->gc_epilogue_work(full);
2106 
2107   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2108     // in case sampling was not already enabled, enable it
2109     _start_sampling = true;
2110   }
2111   // reset _eden_chunk_array so sampling starts afresh
2112   _eden_chunk_index = 0;
2113 
2114   size_t cms_used   = _cmsGen->cmsSpace()->used();
2115 
2116   // update performance counters - this uses a special version of
2117   // update_counters() that allows the utilization to be passed as a
2118   // parameter, avoiding multiple calls to used().
2119   //
2120   _cmsGen->update_counters(cms_used);
2121 
2122   bitMapLock()->unlock();
2123   releaseFreelistLocks();
2124 
2125   if (!CleanChunkPoolAsync) {
2126     Chunk::clean_chunk_pool();
2127   }
2128 
2129   set_did_compact(false);
2130   _between_prologue_and_epilogue = false;  // ready for next cycle
2131 }
2132 
2133 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2134   collector()->gc_epilogue(full);
2135 
2136   // When using ParNew, promotion tracking should have already been
2137   // disabled. However, the prologue (which enables promotion
2138   // tracking) and epilogue are called irrespective of the type of
2139   // GC. So they will also be called before and after Full GCs, during
2140   // which promotion tracking will not be explicitly disabled. So,
2141   // it's safer to also disable it here too (to be symmetric with
2142   // enabling it in the prologue).
2143   for (uint i = 0; i < ParallelGCThreads; i++) {
2144     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2145   }
2146 }
2147 
2148 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2149   assert(!incremental_collection_failed(), "Should have been cleared");
2150   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2151   cmsSpace()->gc_epilogue();
2152     // Print stat counters
2153   NOT_PRODUCT(
2154     assert(_numObjectsAllocated == 0, "check");
2155     assert(_numWordsAllocated == 0, "check");
2156     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2157                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2158     _numObjectsPromoted = 0;
2159     _numWordsPromoted   = 0;
2160   )
2161 
2162   // Call down the chain in contiguous_available needs the freelistLock
2163   // so print this out before releasing the freeListLock.
2164   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2165 }
2166 
2167 #ifndef PRODUCT
2168 bool CMSCollector::have_cms_token() {
2169   Thread* thr = Thread::current();
2170   if (thr->is_VM_thread()) {
2171     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2172   } else if (thr->is_ConcurrentGC_thread()) {
2173     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2174   } else if (thr->is_GC_task_thread()) {
2175     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2176            ParGCRareEvent_lock->owned_by_self();
2177   }
2178   return false;
2179 }
2180 
2181 // Check reachability of the given heap address in CMS generation,
2182 // treating all other generations as roots.
2183 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2184   // We could "guarantee" below, rather than assert, but I'll
2185   // leave these as "asserts" so that an adventurous debugger
2186   // could try this in the product build provided some subset of
2187   // the conditions were met, provided they were interested in the
2188   // results and knew that the computation below wouldn't interfere
2189   // with other concurrent computations mutating the structures
2190   // being read or written.
2191   assert(SafepointSynchronize::is_at_safepoint(),
2192          "Else mutations in object graph will make answer suspect");
2193   assert(have_cms_token(), "Should hold cms token");
2194   assert(haveFreelistLocks(), "must hold free list locks");
2195   assert_lock_strong(bitMapLock());
2196 
2197   // Clear the marking bit map array before starting, but, just
2198   // for kicks, first report if the given address is already marked
2199   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2200                 _markBitMap.isMarked(addr) ? "" : " not");
2201 
2202   if (verify_after_remark()) {
2203     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2204     bool result = verification_mark_bm()->isMarked(addr);
2205     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2206                   result ? "IS" : "is NOT");
2207     return result;
2208   } else {
2209     tty->print_cr("Could not compute result");
2210     return false;
2211   }
2212 }
2213 #endif
2214 
2215 void
2216 CMSCollector::print_on_error(outputStream* st) {
2217   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2218   if (collector != NULL) {
2219     CMSBitMap* bitmap = &collector->_markBitMap;
2220     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2221     bitmap->print_on_error(st, " Bits: ");
2222 
2223     st->cr();
2224 
2225     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2226     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2227     mut_bitmap->print_on_error(st, " Bits: ");
2228   }
2229 }
2230 
2231 ////////////////////////////////////////////////////////
2232 // CMS Verification Support
2233 ////////////////////////////////////////////////////////
2234 // Following the remark phase, the following invariant
2235 // should hold -- each object in the CMS heap which is
2236 // marked in markBitMap() should be marked in the verification_mark_bm().
2237 
2238 class VerifyMarkedClosure: public BitMapClosure {
2239   CMSBitMap* _marks;
2240   bool       _failed;
2241 
2242  public:
2243   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2244 
2245   bool do_bit(size_t offset) {
2246     HeapWord* addr = _marks->offsetToHeapWord(offset);
2247     if (!_marks->isMarked(addr)) {
2248       Log(gc, verify) log;
2249       ResourceMark rm;
2250       // Unconditional write?
2251       LogStream ls(log.error());
2252       oop(addr)->print_on(&ls);
2253       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2254       _failed = true;
2255     }
2256     return true;
2257   }
2258 
2259   bool failed() { return _failed; }
2260 };
2261 
2262 bool CMSCollector::verify_after_remark() {
2263   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2264   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2265   static bool init = false;
2266 
2267   assert(SafepointSynchronize::is_at_safepoint(),
2268          "Else mutations in object graph will make answer suspect");
2269   assert(have_cms_token(),
2270          "Else there may be mutual interference in use of "
2271          " verification data structures");
2272   assert(_collectorState > Marking && _collectorState <= Sweeping,
2273          "Else marking info checked here may be obsolete");
2274   assert(haveFreelistLocks(), "must hold free list locks");
2275   assert_lock_strong(bitMapLock());
2276 
2277 
2278   // Allocate marking bit map if not already allocated
2279   if (!init) { // first time
2280     if (!verification_mark_bm()->allocate(_span)) {
2281       return false;
2282     }
2283     init = true;
2284   }
2285 
2286   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2287 
2288   // Turn off refs discovery -- so we will be tracing through refs.
2289   // This is as intended, because by this time
2290   // GC must already have cleared any refs that need to be cleared,
2291   // and traced those that need to be marked; moreover,
2292   // the marking done here is not going to interfere in any
2293   // way with the marking information used by GC.
2294   NoRefDiscovery no_discovery(ref_processor());
2295 
2296 #if defined(COMPILER2) || INCLUDE_JVMCI
2297   DerivedPointerTableDeactivate dpt_deact;
2298 #endif
2299 
2300   // Clear any marks from a previous round
2301   verification_mark_bm()->clear_all();
2302   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2303   verify_work_stacks_empty();
2304 
2305   GenCollectedHeap* gch = GenCollectedHeap::heap();
2306   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2307   // Update the saved marks which may affect the root scans.
2308   gch->save_marks();
2309 
2310   if (CMSRemarkVerifyVariant == 1) {
2311     // In this first variant of verification, we complete
2312     // all marking, then check if the new marks-vector is
2313     // a subset of the CMS marks-vector.
2314     verify_after_remark_work_1();
2315   } else {
2316     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2317     // In this second variant of verification, we flag an error
2318     // (i.e. an object reachable in the new marks-vector not reachable
2319     // in the CMS marks-vector) immediately, also indicating the
2320     // identify of an object (A) that references the unmarked object (B) --
2321     // presumably, a mutation to A failed to be picked up by preclean/remark?
2322     verify_after_remark_work_2();
2323   }
2324 
2325   return true;
2326 }
2327 
2328 void CMSCollector::verify_after_remark_work_1() {
2329   ResourceMark rm;
2330   HandleMark  hm;
2331   GenCollectedHeap* gch = GenCollectedHeap::heap();
2332 
2333   // Get a clear set of claim bits for the roots processing to work with.
2334   ClassLoaderDataGraph::clear_claimed_marks();
2335 
2336   // Mark from roots one level into CMS
2337   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2338   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2339 
2340   {
2341     StrongRootsScope srs(1);
2342 
2343     gch->cms_process_roots(&srs,
2344                            true,   // young gen as roots
2345                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2346                            should_unload_classes(),
2347                            &notOlder,
2348                            NULL);
2349   }
2350 
2351   // Now mark from the roots
2352   MarkFromRootsClosure markFromRootsClosure(this, _span,
2353     verification_mark_bm(), verification_mark_stack(),
2354     false /* don't yield */, true /* verifying */);
2355   assert(_restart_addr == NULL, "Expected pre-condition");
2356   verification_mark_bm()->iterate(&markFromRootsClosure);
2357   while (_restart_addr != NULL) {
2358     // Deal with stack overflow: by restarting at the indicated
2359     // address.
2360     HeapWord* ra = _restart_addr;
2361     markFromRootsClosure.reset(ra);
2362     _restart_addr = NULL;
2363     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2364   }
2365   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2366   verify_work_stacks_empty();
2367 
2368   // Marking completed -- now verify that each bit marked in
2369   // verification_mark_bm() is also marked in markBitMap(); flag all
2370   // errors by printing corresponding objects.
2371   VerifyMarkedClosure vcl(markBitMap());
2372   verification_mark_bm()->iterate(&vcl);
2373   if (vcl.failed()) {
2374     Log(gc, verify) log;
2375     log.error("Failed marking verification after remark");
2376     ResourceMark rm;
2377     // Unconditional write?
2378     LogStream ls(log.error());
2379     gch->print_on(&ls);
2380     fatal("CMS: failed marking verification after remark");
2381   }
2382 }
2383 
2384 class VerifyKlassOopsKlassClosure : public KlassClosure {
2385   class VerifyKlassOopsClosure : public OopClosure {
2386     CMSBitMap* _bitmap;
2387    public:
2388     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2389     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2390     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2391   } _oop_closure;
2392  public:
2393   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2394   void do_klass(Klass* k) {
2395     k->oops_do(&_oop_closure);
2396   }
2397 };
2398 
2399 void CMSCollector::verify_after_remark_work_2() {
2400   ResourceMark rm;
2401   HandleMark  hm;
2402   GenCollectedHeap* gch = GenCollectedHeap::heap();
2403 
2404   // Get a clear set of claim bits for the roots processing to work with.
2405   ClassLoaderDataGraph::clear_claimed_marks();
2406 
2407   // Mark from roots one level into CMS
2408   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2409                                      markBitMap());
2410   CLDToOopClosure cld_closure(&notOlder, true);
2411 
2412   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2413 
2414   {
2415     StrongRootsScope srs(1);
2416 
2417     gch->cms_process_roots(&srs,
2418                            true,   // young gen as roots
2419                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2420                            should_unload_classes(),
2421                            &notOlder,
2422                            &cld_closure);
2423   }
2424 
2425   // Now mark from the roots
2426   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2427     verification_mark_bm(), markBitMap(), verification_mark_stack());
2428   assert(_restart_addr == NULL, "Expected pre-condition");
2429   verification_mark_bm()->iterate(&markFromRootsClosure);
2430   while (_restart_addr != NULL) {
2431     // Deal with stack overflow: by restarting at the indicated
2432     // address.
2433     HeapWord* ra = _restart_addr;
2434     markFromRootsClosure.reset(ra);
2435     _restart_addr = NULL;
2436     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2437   }
2438   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2439   verify_work_stacks_empty();
2440 
2441   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2442   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2443 
2444   // Marking completed -- now verify that each bit marked in
2445   // verification_mark_bm() is also marked in markBitMap(); flag all
2446   // errors by printing corresponding objects.
2447   VerifyMarkedClosure vcl(markBitMap());
2448   verification_mark_bm()->iterate(&vcl);
2449   assert(!vcl.failed(), "Else verification above should not have succeeded");
2450 }
2451 
2452 void ConcurrentMarkSweepGeneration::save_marks() {
2453   // delegate to CMS space
2454   cmsSpace()->save_marks();
2455 }
2456 
2457 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2458   return cmsSpace()->no_allocs_since_save_marks();
2459 }
2460 
2461 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2462                                                                 \
2463 void ConcurrentMarkSweepGeneration::                            \
2464 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2465   cl->set_generation(this);                                     \
2466   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2467   cl->reset_generation();                                       \
2468   save_marks();                                                 \
2469 }
2470 
2471 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2472 
2473 void
2474 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2475   if (freelistLock()->owned_by_self()) {
2476     Generation::oop_iterate(cl);
2477   } else {
2478     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2479     Generation::oop_iterate(cl);
2480   }
2481 }
2482 
2483 void
2484 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2485   if (freelistLock()->owned_by_self()) {
2486     Generation::object_iterate(cl);
2487   } else {
2488     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2489     Generation::object_iterate(cl);
2490   }
2491 }
2492 
2493 void
2494 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2495   if (freelistLock()->owned_by_self()) {
2496     Generation::safe_object_iterate(cl);
2497   } else {
2498     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2499     Generation::safe_object_iterate(cl);
2500   }
2501 }
2502 
2503 void
2504 ConcurrentMarkSweepGeneration::post_compact() {
2505 }
2506 
2507 void
2508 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2509   // Fix the linear allocation blocks to look like free blocks.
2510 
2511   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2512   // are not called when the heap is verified during universe initialization and
2513   // at vm shutdown.
2514   if (freelistLock()->owned_by_self()) {
2515     cmsSpace()->prepare_for_verify();
2516   } else {
2517     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2518     cmsSpace()->prepare_for_verify();
2519   }
2520 }
2521 
2522 void
2523 ConcurrentMarkSweepGeneration::verify() {
2524   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2525   // are not called when the heap is verified during universe initialization and
2526   // at vm shutdown.
2527   if (freelistLock()->owned_by_self()) {
2528     cmsSpace()->verify();
2529   } else {
2530     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2531     cmsSpace()->verify();
2532   }
2533 }
2534 
2535 void CMSCollector::verify() {
2536   _cmsGen->verify();
2537 }
2538 
2539 #ifndef PRODUCT
2540 bool CMSCollector::overflow_list_is_empty() const {
2541   assert(_num_par_pushes >= 0, "Inconsistency");
2542   if (_overflow_list == NULL) {
2543     assert(_num_par_pushes == 0, "Inconsistency");
2544   }
2545   return _overflow_list == NULL;
2546 }
2547 
2548 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2549 // merely consolidate assertion checks that appear to occur together frequently.
2550 void CMSCollector::verify_work_stacks_empty() const {
2551   assert(_markStack.isEmpty(), "Marking stack should be empty");
2552   assert(overflow_list_is_empty(), "Overflow list should be empty");
2553 }
2554 
2555 void CMSCollector::verify_overflow_empty() const {
2556   assert(overflow_list_is_empty(), "Overflow list should be empty");
2557   assert(no_preserved_marks(), "No preserved marks");
2558 }
2559 #endif // PRODUCT
2560 
2561 // Decide if we want to enable class unloading as part of the
2562 // ensuing concurrent GC cycle. We will collect and
2563 // unload classes if it's the case that:
2564 //  (a) class unloading is enabled at the command line, and
2565 //  (b) old gen is getting really full
2566 // NOTE: Provided there is no change in the state of the heap between
2567 // calls to this method, it should have idempotent results. Moreover,
2568 // its results should be monotonically increasing (i.e. going from 0 to 1,
2569 // but not 1 to 0) between successive calls between which the heap was
2570 // not collected. For the implementation below, it must thus rely on
2571 // the property that concurrent_cycles_since_last_unload()
2572 // will not decrease unless a collection cycle happened and that
2573 // _cmsGen->is_too_full() are
2574 // themselves also monotonic in that sense. See check_monotonicity()
2575 // below.
2576 void CMSCollector::update_should_unload_classes() {
2577   _should_unload_classes = false;
2578   if (CMSClassUnloadingEnabled) {
2579     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2580                               CMSClassUnloadingMaxInterval)
2581                            || _cmsGen->is_too_full();
2582   }
2583 }
2584 
2585 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2586   bool res = should_concurrent_collect();
2587   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2588   return res;
2589 }
2590 
2591 void CMSCollector::setup_cms_unloading_and_verification_state() {
2592   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2593                              || VerifyBeforeExit;
2594   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2595 
2596   // We set the proper root for this CMS cycle here.
2597   if (should_unload_classes()) {   // Should unload classes this cycle
2598     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2599     set_verifying(should_verify);    // Set verification state for this cycle
2600     return;                            // Nothing else needs to be done at this time
2601   }
2602 
2603   // Not unloading classes this cycle
2604   assert(!should_unload_classes(), "Inconsistency!");
2605 
2606   // If we are not unloading classes then add SO_AllCodeCache to root
2607   // scanning options.
2608   add_root_scanning_option(rso);
2609 
2610   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2611     set_verifying(true);
2612   } else if (verifying() && !should_verify) {
2613     // We were verifying, but some verification flags got disabled.
2614     set_verifying(false);
2615     // Exclude symbols, strings and code cache elements from root scanning to
2616     // reduce IM and RM pauses.
2617     remove_root_scanning_option(rso);
2618   }
2619 }
2620 
2621 
2622 #ifndef PRODUCT
2623 HeapWord* CMSCollector::block_start(const void* p) const {
2624   const HeapWord* addr = (HeapWord*)p;
2625   if (_span.contains(p)) {
2626     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2627       return _cmsGen->cmsSpace()->block_start(p);
2628     }
2629   }
2630   return NULL;
2631 }
2632 #endif
2633 
2634 HeapWord*
2635 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2636                                                    bool   tlab,
2637                                                    bool   parallel) {
2638   CMSSynchronousYieldRequest yr;
2639   assert(!tlab, "Can't deal with TLAB allocation");
2640   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2641   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2642   if (GCExpandToAllocateDelayMillis > 0) {
2643     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2644   }
2645   return have_lock_and_allocate(word_size, tlab);
2646 }
2647 
2648 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2649     size_t bytes,
2650     size_t expand_bytes,
2651     CMSExpansionCause::Cause cause)
2652 {
2653 
2654   bool success = expand(bytes, expand_bytes);
2655 
2656   // remember why we expanded; this information is used
2657   // by shouldConcurrentCollect() when making decisions on whether to start
2658   // a new CMS cycle.
2659   if (success) {
2660     set_expansion_cause(cause);
2661     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2662   }
2663 }
2664 
2665 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2666   HeapWord* res = NULL;
2667   MutexLocker x(ParGCRareEvent_lock);
2668   while (true) {
2669     // Expansion by some other thread might make alloc OK now:
2670     res = ps->lab.alloc(word_sz);
2671     if (res != NULL) return res;
2672     // If there's not enough expansion space available, give up.
2673     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2674       return NULL;
2675     }
2676     // Otherwise, we try expansion.
2677     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2678     // Now go around the loop and try alloc again;
2679     // A competing par_promote might beat us to the expansion space,
2680     // so we may go around the loop again if promotion fails again.
2681     if (GCExpandToAllocateDelayMillis > 0) {
2682       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2683     }
2684   }
2685 }
2686 
2687 
2688 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2689   PromotionInfo* promo) {
2690   MutexLocker x(ParGCRareEvent_lock);
2691   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2692   while (true) {
2693     // Expansion by some other thread might make alloc OK now:
2694     if (promo->ensure_spooling_space()) {
2695       assert(promo->has_spooling_space(),
2696              "Post-condition of successful ensure_spooling_space()");
2697       return true;
2698     }
2699     // If there's not enough expansion space available, give up.
2700     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2701       return false;
2702     }
2703     // Otherwise, we try expansion.
2704     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2705     // Now go around the loop and try alloc again;
2706     // A competing allocation might beat us to the expansion space,
2707     // so we may go around the loop again if allocation fails again.
2708     if (GCExpandToAllocateDelayMillis > 0) {
2709       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2710     }
2711   }
2712 }
2713 
2714 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2715   // Only shrink if a compaction was done so that all the free space
2716   // in the generation is in a contiguous block at the end.
2717   if (did_compact()) {
2718     CardGeneration::shrink(bytes);
2719   }
2720 }
2721 
2722 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2723   assert_locked_or_safepoint(Heap_lock);
2724 }
2725 
2726 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2727   assert_locked_or_safepoint(Heap_lock);
2728   assert_lock_strong(freelistLock());
2729   log_trace(gc)("Shrinking of CMS not yet implemented");
2730   return;
2731 }
2732 
2733 
2734 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2735 // phases.
2736 class CMSPhaseAccounting: public StackObj {
2737  public:
2738   CMSPhaseAccounting(CMSCollector *collector,
2739                      const char *title);
2740   ~CMSPhaseAccounting();
2741 
2742  private:
2743   CMSCollector *_collector;
2744   const char *_title;
2745   GCTraceConcTime(Info, gc) _trace_time;
2746 
2747  public:
2748   // Not MT-safe; so do not pass around these StackObj's
2749   // where they may be accessed by other threads.
2750   double wallclock_millis() {
2751     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2752   }
2753 };
2754 
2755 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2756                                        const char *title) :
2757   _collector(collector), _title(title), _trace_time(title) {
2758 
2759   _collector->resetYields();
2760   _collector->resetTimer();
2761   _collector->startTimer();
2762   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2763 }
2764 
2765 CMSPhaseAccounting::~CMSPhaseAccounting() {
2766   _collector->gc_timer_cm()->register_gc_concurrent_end();
2767   _collector->stopTimer();
2768   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2769   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2770 }
2771 
2772 // CMS work
2773 
2774 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2775 class CMSParMarkTask : public AbstractGangTask {
2776  protected:
2777   CMSCollector*     _collector;
2778   uint              _n_workers;
2779   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2780       AbstractGangTask(name),
2781       _collector(collector),
2782       _n_workers(n_workers) {}
2783   // Work method in support of parallel rescan ... of young gen spaces
2784   void do_young_space_rescan(OopsInGenClosure* cl,
2785                              ContiguousSpace* space,
2786                              HeapWord** chunk_array, size_t chunk_top);
2787   void work_on_young_gen_roots(OopsInGenClosure* cl);
2788 };
2789 
2790 // Parallel initial mark task
2791 class CMSParInitialMarkTask: public CMSParMarkTask {
2792   StrongRootsScope* _strong_roots_scope;
2793  public:
2794   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2795       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2796       _strong_roots_scope(strong_roots_scope) {}
2797   void work(uint worker_id);
2798 };
2799 
2800 // Checkpoint the roots into this generation from outside
2801 // this generation. [Note this initial checkpoint need only
2802 // be approximate -- we'll do a catch up phase subsequently.]
2803 void CMSCollector::checkpointRootsInitial() {
2804   assert(_collectorState == InitialMarking, "Wrong collector state");
2805   check_correct_thread_executing();
2806   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2807 
2808   save_heap_summary();
2809   report_heap_summary(GCWhen::BeforeGC);
2810 
2811   ReferenceProcessor* rp = ref_processor();
2812   assert(_restart_addr == NULL, "Control point invariant");
2813   {
2814     // acquire locks for subsequent manipulations
2815     MutexLockerEx x(bitMapLock(),
2816                     Mutex::_no_safepoint_check_flag);
2817     checkpointRootsInitialWork();
2818     // enable ("weak") refs discovery
2819     rp->enable_discovery();
2820     _collectorState = Marking;
2821   }
2822 }
2823 
2824 void CMSCollector::checkpointRootsInitialWork() {
2825   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2826   assert(_collectorState == InitialMarking, "just checking");
2827 
2828   // Already have locks.
2829   assert_lock_strong(bitMapLock());
2830   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2831 
2832   // Setup the verification and class unloading state for this
2833   // CMS collection cycle.
2834   setup_cms_unloading_and_verification_state();
2835 
2836   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2837 
2838   // Reset all the PLAB chunk arrays if necessary.
2839   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2840     reset_survivor_plab_arrays();
2841   }
2842 
2843   ResourceMark rm;
2844   HandleMark  hm;
2845 
2846   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2847   GenCollectedHeap* gch = GenCollectedHeap::heap();
2848 
2849   verify_work_stacks_empty();
2850   verify_overflow_empty();
2851 
2852   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2853   // Update the saved marks which may affect the root scans.
2854   gch->save_marks();
2855 
2856   // weak reference processing has not started yet.
2857   ref_processor()->set_enqueuing_is_done(false);
2858 
2859   // Need to remember all newly created CLDs,
2860   // so that we can guarantee that the remark finds them.
2861   ClassLoaderDataGraph::remember_new_clds(true);
2862 
2863   // Whenever a CLD is found, it will be claimed before proceeding to mark
2864   // the klasses. The claimed marks need to be cleared before marking starts.
2865   ClassLoaderDataGraph::clear_claimed_marks();
2866 
2867   print_eden_and_survivor_chunk_arrays();
2868 
2869   {
2870 #if defined(COMPILER2) || INCLUDE_JVMCI
2871     DerivedPointerTableDeactivate dpt_deact;
2872 #endif
2873     if (CMSParallelInitialMarkEnabled) {
2874       // The parallel version.
2875       WorkGang* workers = gch->workers();
2876       assert(workers != NULL, "Need parallel worker threads.");
2877       uint n_workers = workers->active_workers();
2878 
2879       StrongRootsScope srs(n_workers);
2880 
2881       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2882       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2883       // If the total workers is greater than 1, then multiple workers
2884       // may be used at some time and the initialization has been set
2885       // such that the single threaded path cannot be used.
2886       if (workers->total_workers() > 1) {
2887         workers->run_task(&tsk);
2888       } else {
2889         tsk.work(0);
2890       }
2891     } else {
2892       // The serial version.
2893       CLDToOopClosure cld_closure(&notOlder, true);
2894       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2895 
2896       StrongRootsScope srs(1);
2897 
2898       gch->cms_process_roots(&srs,
2899                              true,   // young gen as roots
2900                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2901                              should_unload_classes(),
2902                              &notOlder,
2903                              &cld_closure);
2904     }
2905   }
2906 
2907   // Clear mod-union table; it will be dirtied in the prologue of
2908   // CMS generation per each young generation collection.
2909 
2910   assert(_modUnionTable.isAllClear(),
2911        "Was cleared in most recent final checkpoint phase"
2912        " or no bits are set in the gc_prologue before the start of the next "
2913        "subsequent marking phase.");
2914 
2915   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2916 
2917   // Save the end of the used_region of the constituent generations
2918   // to be used to limit the extent of sweep in each generation.
2919   save_sweep_limits();
2920   verify_overflow_empty();
2921 }
2922 
2923 bool CMSCollector::markFromRoots() {
2924   // we might be tempted to assert that:
2925   // assert(!SafepointSynchronize::is_at_safepoint(),
2926   //        "inconsistent argument?");
2927   // However that wouldn't be right, because it's possible that
2928   // a safepoint is indeed in progress as a young generation
2929   // stop-the-world GC happens even as we mark in this generation.
2930   assert(_collectorState == Marking, "inconsistent state?");
2931   check_correct_thread_executing();
2932   verify_overflow_empty();
2933 
2934   // Weak ref discovery note: We may be discovering weak
2935   // refs in this generation concurrent (but interleaved) with
2936   // weak ref discovery by the young generation collector.
2937 
2938   CMSTokenSyncWithLocks ts(true, bitMapLock());
2939   GCTraceCPUTime tcpu;
2940   CMSPhaseAccounting pa(this, "Concurrent Mark");
2941   bool res = markFromRootsWork();
2942   if (res) {
2943     _collectorState = Precleaning;
2944   } else { // We failed and a foreground collection wants to take over
2945     assert(_foregroundGCIsActive, "internal state inconsistency");
2946     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2947     log_debug(gc)("bailing out to foreground collection");
2948   }
2949   verify_overflow_empty();
2950   return res;
2951 }
2952 
2953 bool CMSCollector::markFromRootsWork() {
2954   // iterate over marked bits in bit map, doing a full scan and mark
2955   // from these roots using the following algorithm:
2956   // . if oop is to the right of the current scan pointer,
2957   //   mark corresponding bit (we'll process it later)
2958   // . else (oop is to left of current scan pointer)
2959   //   push oop on marking stack
2960   // . drain the marking stack
2961 
2962   // Note that when we do a marking step we need to hold the
2963   // bit map lock -- recall that direct allocation (by mutators)
2964   // and promotion (by the young generation collector) is also
2965   // marking the bit map. [the so-called allocate live policy.]
2966   // Because the implementation of bit map marking is not
2967   // robust wrt simultaneous marking of bits in the same word,
2968   // we need to make sure that there is no such interference
2969   // between concurrent such updates.
2970 
2971   // already have locks
2972   assert_lock_strong(bitMapLock());
2973 
2974   verify_work_stacks_empty();
2975   verify_overflow_empty();
2976   bool result = false;
2977   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2978     result = do_marking_mt();
2979   } else {
2980     result = do_marking_st();
2981   }
2982   return result;
2983 }
2984 
2985 // Forward decl
2986 class CMSConcMarkingTask;
2987 
2988 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2989   CMSCollector*       _collector;
2990   CMSConcMarkingTask* _task;
2991  public:
2992   virtual void yield();
2993 
2994   // "n_threads" is the number of threads to be terminated.
2995   // "queue_set" is a set of work queues of other threads.
2996   // "collector" is the CMS collector associated with this task terminator.
2997   // "yield" indicates whether we need the gang as a whole to yield.
2998   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2999     ParallelTaskTerminator(n_threads, queue_set),
3000     _collector(collector) { }
3001 
3002   void set_task(CMSConcMarkingTask* task) {
3003     _task = task;
3004   }
3005 };
3006 
3007 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3008   CMSConcMarkingTask* _task;
3009  public:
3010   bool should_exit_termination();
3011   void set_task(CMSConcMarkingTask* task) {
3012     _task = task;
3013   }
3014 };
3015 
3016 // MT Concurrent Marking Task
3017 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3018   CMSCollector*             _collector;
3019   uint                      _n_workers;      // requested/desired # workers
3020   bool                      _result;
3021   CompactibleFreeListSpace* _cms_space;
3022   char                      _pad_front[64];   // padding to ...
3023   HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
3024   char                      _pad_back[64];
3025   HeapWord*                 _restart_addr;
3026 
3027   //  Exposed here for yielding support
3028   Mutex* const _bit_map_lock;
3029 
3030   // The per thread work queues, available here for stealing
3031   OopTaskQueueSet*  _task_queues;
3032 
3033   // Termination (and yielding) support
3034   CMSConcMarkingTerminator _term;
3035   CMSConcMarkingTerminatorTerminator _term_term;
3036 
3037  public:
3038   CMSConcMarkingTask(CMSCollector* collector,
3039                  CompactibleFreeListSpace* cms_space,
3040                  YieldingFlexibleWorkGang* workers,
3041                  OopTaskQueueSet* task_queues):
3042     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3043     _collector(collector),
3044     _cms_space(cms_space),
3045     _n_workers(0), _result(true),
3046     _task_queues(task_queues),
3047     _term(_n_workers, task_queues, _collector),
3048     _bit_map_lock(collector->bitMapLock())
3049   {
3050     _requested_size = _n_workers;
3051     _term.set_task(this);
3052     _term_term.set_task(this);
3053     _restart_addr = _global_finger = _cms_space->bottom();
3054   }
3055 
3056 
3057   OopTaskQueueSet* task_queues()  { return _task_queues; }
3058 
3059   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3060 
3061   HeapWord* volatile* global_finger_addr() { return &_global_finger; }
3062 
3063   CMSConcMarkingTerminator* terminator() { return &_term; }
3064 
3065   virtual void set_for_termination(uint active_workers) {
3066     terminator()->reset_for_reuse(active_workers);
3067   }
3068 
3069   void work(uint worker_id);
3070   bool should_yield() {
3071     return    ConcurrentMarkSweepThread::should_yield()
3072            && !_collector->foregroundGCIsActive();
3073   }
3074 
3075   virtual void coordinator_yield();  // stuff done by coordinator
3076   bool result() { return _result; }
3077 
3078   void reset(HeapWord* ra) {
3079     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3080     _restart_addr = _global_finger = ra;
3081     _term.reset_for_reuse();
3082   }
3083 
3084   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3085                                            OopTaskQueue* work_q);
3086 
3087  private:
3088   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3089   void do_work_steal(int i);
3090   void bump_global_finger(HeapWord* f);
3091 };
3092 
3093 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3094   assert(_task != NULL, "Error");
3095   return _task->yielding();
3096   // Note that we do not need the disjunct || _task->should_yield() above
3097   // because we want terminating threads to yield only if the task
3098   // is already in the midst of yielding, which happens only after at least one
3099   // thread has yielded.
3100 }
3101 
3102 void CMSConcMarkingTerminator::yield() {
3103   if (_task->should_yield()) {
3104     _task->yield();
3105   } else {
3106     ParallelTaskTerminator::yield();
3107   }
3108 }
3109 
3110 ////////////////////////////////////////////////////////////////
3111 // Concurrent Marking Algorithm Sketch
3112 ////////////////////////////////////////////////////////////////
3113 // Until all tasks exhausted (both spaces):
3114 // -- claim next available chunk
3115 // -- bump global finger via CAS
3116 // -- find first object that starts in this chunk
3117 //    and start scanning bitmap from that position
3118 // -- scan marked objects for oops
3119 // -- CAS-mark target, and if successful:
3120 //    . if target oop is above global finger (volatile read)
3121 //      nothing to do
3122 //    . if target oop is in chunk and above local finger
3123 //        then nothing to do
3124 //    . else push on work-queue
3125 // -- Deal with possible overflow issues:
3126 //    . local work-queue overflow causes stuff to be pushed on
3127 //      global (common) overflow queue
3128 //    . always first empty local work queue
3129 //    . then get a batch of oops from global work queue if any
3130 //    . then do work stealing
3131 // -- When all tasks claimed (both spaces)
3132 //    and local work queue empty,
3133 //    then in a loop do:
3134 //    . check global overflow stack; steal a batch of oops and trace
3135 //    . try to steal from other threads oif GOS is empty
3136 //    . if neither is available, offer termination
3137 // -- Terminate and return result
3138 //
3139 void CMSConcMarkingTask::work(uint worker_id) {
3140   elapsedTimer _timer;
3141   ResourceMark rm;
3142   HandleMark hm;
3143 
3144   DEBUG_ONLY(_collector->verify_overflow_empty();)
3145 
3146   // Before we begin work, our work queue should be empty
3147   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3148   // Scan the bitmap covering _cms_space, tracing through grey objects.
3149   _timer.start();
3150   do_scan_and_mark(worker_id, _cms_space);
3151   _timer.stop();
3152   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3153 
3154   // ... do work stealing
3155   _timer.reset();
3156   _timer.start();
3157   do_work_steal(worker_id);
3158   _timer.stop();
3159   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3160   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3161   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3162   // Note that under the current task protocol, the
3163   // following assertion is true even of the spaces
3164   // expanded since the completion of the concurrent
3165   // marking. XXX This will likely change under a strict
3166   // ABORT semantics.
3167   // After perm removal the comparison was changed to
3168   // greater than or equal to from strictly greater than.
3169   // Before perm removal the highest address sweep would
3170   // have been at the end of perm gen but now is at the
3171   // end of the tenured gen.
3172   assert(_global_finger >=  _cms_space->end(),
3173          "All tasks have been completed");
3174   DEBUG_ONLY(_collector->verify_overflow_empty();)
3175 }
3176 
3177 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3178   HeapWord* read = _global_finger;
3179   HeapWord* cur  = read;
3180   while (f > read) {
3181     cur = read;
3182     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3183     if (cur == read) {
3184       // our cas succeeded
3185       assert(_global_finger >= f, "protocol consistency");
3186       break;
3187     }
3188   }
3189 }
3190 
3191 // This is really inefficient, and should be redone by
3192 // using (not yet available) block-read and -write interfaces to the
3193 // stack and the work_queue. XXX FIX ME !!!
3194 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3195                                                       OopTaskQueue* work_q) {
3196   // Fast lock-free check
3197   if (ovflw_stk->length() == 0) {
3198     return false;
3199   }
3200   assert(work_q->size() == 0, "Shouldn't steal");
3201   MutexLockerEx ml(ovflw_stk->par_lock(),
3202                    Mutex::_no_safepoint_check_flag);
3203   // Grab up to 1/4 the size of the work queue
3204   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3205                     (size_t)ParGCDesiredObjsFromOverflowList);
3206   num = MIN2(num, ovflw_stk->length());
3207   for (int i = (int) num; i > 0; i--) {
3208     oop cur = ovflw_stk->pop();
3209     assert(cur != NULL, "Counted wrong?");
3210     work_q->push(cur);
3211   }
3212   return num > 0;
3213 }
3214 
3215 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3216   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3217   int n_tasks = pst->n_tasks();
3218   // We allow that there may be no tasks to do here because
3219   // we are restarting after a stack overflow.
3220   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3221   uint nth_task = 0;
3222 
3223   HeapWord* aligned_start = sp->bottom();
3224   if (sp->used_region().contains(_restart_addr)) {
3225     // Align down to a card boundary for the start of 0th task
3226     // for this space.
3227     aligned_start =
3228       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3229                                  CardTableModRefBS::card_size);
3230   }
3231 
3232   size_t chunk_size = sp->marking_task_size();
3233   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3234     // Having claimed the nth task in this space,
3235     // compute the chunk that it corresponds to:
3236     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3237                                aligned_start + (nth_task+1)*chunk_size);
3238     // Try and bump the global finger via a CAS;
3239     // note that we need to do the global finger bump
3240     // _before_ taking the intersection below, because
3241     // the task corresponding to that region will be
3242     // deemed done even if the used_region() expands
3243     // because of allocation -- as it almost certainly will
3244     // during start-up while the threads yield in the
3245     // closure below.
3246     HeapWord* finger = span.end();
3247     bump_global_finger(finger);   // atomically
3248     // There are null tasks here corresponding to chunks
3249     // beyond the "top" address of the space.
3250     span = span.intersection(sp->used_region());
3251     if (!span.is_empty()) {  // Non-null task
3252       HeapWord* prev_obj;
3253       assert(!span.contains(_restart_addr) || nth_task == 0,
3254              "Inconsistency");
3255       if (nth_task == 0) {
3256         // For the 0th task, we'll not need to compute a block_start.
3257         if (span.contains(_restart_addr)) {
3258           // In the case of a restart because of stack overflow,
3259           // we might additionally skip a chunk prefix.
3260           prev_obj = _restart_addr;
3261         } else {
3262           prev_obj = span.start();
3263         }
3264       } else {
3265         // We want to skip the first object because
3266         // the protocol is to scan any object in its entirety
3267         // that _starts_ in this span; a fortiori, any
3268         // object starting in an earlier span is scanned
3269         // as part of an earlier claimed task.
3270         // Below we use the "careful" version of block_start
3271         // so we do not try to navigate uninitialized objects.
3272         prev_obj = sp->block_start_careful(span.start());
3273         // Below we use a variant of block_size that uses the
3274         // Printezis bits to avoid waiting for allocated
3275         // objects to become initialized/parsable.
3276         while (prev_obj < span.start()) {
3277           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3278           if (sz > 0) {
3279             prev_obj += sz;
3280           } else {
3281             // In this case we may end up doing a bit of redundant
3282             // scanning, but that appears unavoidable, short of
3283             // locking the free list locks; see bug 6324141.
3284             break;
3285           }
3286         }
3287       }
3288       if (prev_obj < span.end()) {
3289         MemRegion my_span = MemRegion(prev_obj, span.end());
3290         // Do the marking work within a non-empty span --
3291         // the last argument to the constructor indicates whether the
3292         // iteration should be incremental with periodic yields.
3293         ParMarkFromRootsClosure cl(this, _collector, my_span,
3294                                    &_collector->_markBitMap,
3295                                    work_queue(i),
3296                                    &_collector->_markStack);
3297         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3298       } // else nothing to do for this task
3299     }   // else nothing to do for this task
3300   }
3301   // We'd be tempted to assert here that since there are no
3302   // more tasks left to claim in this space, the global_finger
3303   // must exceed space->top() and a fortiori space->end(). However,
3304   // that would not quite be correct because the bumping of
3305   // global_finger occurs strictly after the claiming of a task,
3306   // so by the time we reach here the global finger may not yet
3307   // have been bumped up by the thread that claimed the last
3308   // task.
3309   pst->all_tasks_completed();
3310 }
3311 
3312 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3313  private:
3314   CMSCollector* _collector;
3315   CMSConcMarkingTask* _task;
3316   MemRegion     _span;
3317   CMSBitMap*    _bit_map;
3318   CMSMarkStack* _overflow_stack;
3319   OopTaskQueue* _work_queue;
3320  protected:
3321   DO_OOP_WORK_DEFN
3322  public:
3323   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3324                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3325     MetadataAwareOopClosure(collector->ref_processor()),
3326     _collector(collector),
3327     _task(task),
3328     _span(collector->_span),
3329     _work_queue(work_queue),
3330     _bit_map(bit_map),
3331     _overflow_stack(overflow_stack)
3332   { }
3333   virtual void do_oop(oop* p);
3334   virtual void do_oop(narrowOop* p);
3335 
3336   void trim_queue(size_t max);
3337   void handle_stack_overflow(HeapWord* lost);
3338   void do_yield_check() {
3339     if (_task->should_yield()) {
3340       _task->yield();
3341     }
3342   }
3343 };
3344 
3345 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3346 
3347 // Grey object scanning during work stealing phase --
3348 // the salient assumption here is that any references
3349 // that are in these stolen objects being scanned must
3350 // already have been initialized (else they would not have
3351 // been published), so we do not need to check for
3352 // uninitialized objects before pushing here.
3353 void ParConcMarkingClosure::do_oop(oop obj) {
3354   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3355   HeapWord* addr = (HeapWord*)obj;
3356   // Check if oop points into the CMS generation
3357   // and is not marked
3358   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3359     // a white object ...
3360     // If we manage to "claim" the object, by being the
3361     // first thread to mark it, then we push it on our
3362     // marking stack
3363     if (_bit_map->par_mark(addr)) {     // ... now grey
3364       // push on work queue (grey set)
3365       bool simulate_overflow = false;
3366       NOT_PRODUCT(
3367         if (CMSMarkStackOverflowALot &&
3368             _collector->simulate_overflow()) {
3369           // simulate a stack overflow
3370           simulate_overflow = true;
3371         }
3372       )
3373       if (simulate_overflow ||
3374           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3375         // stack overflow
3376         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3377         // We cannot assert that the overflow stack is full because
3378         // it may have been emptied since.
3379         assert(simulate_overflow ||
3380                _work_queue->size() == _work_queue->max_elems(),
3381               "Else push should have succeeded");
3382         handle_stack_overflow(addr);
3383       }
3384     } // Else, some other thread got there first
3385     do_yield_check();
3386   }
3387 }
3388 
3389 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3390 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3391 
3392 void ParConcMarkingClosure::trim_queue(size_t max) {
3393   while (_work_queue->size() > max) {
3394     oop new_oop;
3395     if (_work_queue->pop_local(new_oop)) {
3396       assert(new_oop->is_oop(), "Should be an oop");
3397       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3398       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3399       new_oop->oop_iterate(this);  // do_oop() above
3400       do_yield_check();
3401     }
3402   }
3403 }
3404 
3405 // Upon stack overflow, we discard (part of) the stack,
3406 // remembering the least address amongst those discarded
3407 // in CMSCollector's _restart_address.
3408 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3409   // We need to do this under a mutex to prevent other
3410   // workers from interfering with the work done below.
3411   MutexLockerEx ml(_overflow_stack->par_lock(),
3412                    Mutex::_no_safepoint_check_flag);
3413   // Remember the least grey address discarded
3414   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3415   _collector->lower_restart_addr(ra);
3416   _overflow_stack->reset();  // discard stack contents
3417   _overflow_stack->expand(); // expand the stack if possible
3418 }
3419 
3420 
3421 void CMSConcMarkingTask::do_work_steal(int i) {
3422   OopTaskQueue* work_q = work_queue(i);
3423   oop obj_to_scan;
3424   CMSBitMap* bm = &(_collector->_markBitMap);
3425   CMSMarkStack* ovflw = &(_collector->_markStack);
3426   int* seed = _collector->hash_seed(i);
3427   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3428   while (true) {
3429     cl.trim_queue(0);
3430     assert(work_q->size() == 0, "Should have been emptied above");
3431     if (get_work_from_overflow_stack(ovflw, work_q)) {
3432       // Can't assert below because the work obtained from the
3433       // overflow stack may already have been stolen from us.
3434       // assert(work_q->size() > 0, "Work from overflow stack");
3435       continue;
3436     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3437       assert(obj_to_scan->is_oop(), "Should be an oop");
3438       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3439       obj_to_scan->oop_iterate(&cl);
3440     } else if (terminator()->offer_termination(&_term_term)) {
3441       assert(work_q->size() == 0, "Impossible!");
3442       break;
3443     } else if (yielding() || should_yield()) {
3444       yield();
3445     }
3446   }
3447 }
3448 
3449 // This is run by the CMS (coordinator) thread.
3450 void CMSConcMarkingTask::coordinator_yield() {
3451   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3452          "CMS thread should hold CMS token");
3453   // First give up the locks, then yield, then re-lock
3454   // We should probably use a constructor/destructor idiom to
3455   // do this unlock/lock or modify the MutexUnlocker class to
3456   // serve our purpose. XXX
3457   assert_lock_strong(_bit_map_lock);
3458   _bit_map_lock->unlock();
3459   ConcurrentMarkSweepThread::desynchronize(true);
3460   _collector->stopTimer();
3461   _collector->incrementYields();
3462 
3463   // It is possible for whichever thread initiated the yield request
3464   // not to get a chance to wake up and take the bitmap lock between
3465   // this thread releasing it and reacquiring it. So, while the
3466   // should_yield() flag is on, let's sleep for a bit to give the
3467   // other thread a chance to wake up. The limit imposed on the number
3468   // of iterations is defensive, to avoid any unforseen circumstances
3469   // putting us into an infinite loop. Since it's always been this
3470   // (coordinator_yield()) method that was observed to cause the
3471   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3472   // which is by default non-zero. For the other seven methods that
3473   // also perform the yield operation, as are using a different
3474   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3475   // can enable the sleeping for those methods too, if necessary.
3476   // See 6442774.
3477   //
3478   // We really need to reconsider the synchronization between the GC
3479   // thread and the yield-requesting threads in the future and we
3480   // should really use wait/notify, which is the recommended
3481   // way of doing this type of interaction. Additionally, we should
3482   // consolidate the eight methods that do the yield operation and they
3483   // are almost identical into one for better maintainability and
3484   // readability. See 6445193.
3485   //
3486   // Tony 2006.06.29
3487   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3488                    ConcurrentMarkSweepThread::should_yield() &&
3489                    !CMSCollector::foregroundGCIsActive(); ++i) {
3490     os::sleep(Thread::current(), 1, false);
3491   }
3492 
3493   ConcurrentMarkSweepThread::synchronize(true);
3494   _bit_map_lock->lock_without_safepoint_check();
3495   _collector->startTimer();
3496 }
3497 
3498 bool CMSCollector::do_marking_mt() {
3499   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3500   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3501                                                                   conc_workers()->active_workers(),
3502                                                                   Threads::number_of_non_daemon_threads());
3503   num_workers = conc_workers()->update_active_workers(num_workers);
3504   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3505 
3506   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3507 
3508   CMSConcMarkingTask tsk(this,
3509                          cms_space,
3510                          conc_workers(),
3511                          task_queues());
3512 
3513   // Since the actual number of workers we get may be different
3514   // from the number we requested above, do we need to do anything different
3515   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3516   // class?? XXX
3517   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3518 
3519   // Refs discovery is already non-atomic.
3520   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3521   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3522   conc_workers()->start_task(&tsk);
3523   while (tsk.yielded()) {
3524     tsk.coordinator_yield();
3525     conc_workers()->continue_task(&tsk);
3526   }
3527   // If the task was aborted, _restart_addr will be non-NULL
3528   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3529   while (_restart_addr != NULL) {
3530     // XXX For now we do not make use of ABORTED state and have not
3531     // yet implemented the right abort semantics (even in the original
3532     // single-threaded CMS case). That needs some more investigation
3533     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3534     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3535     // If _restart_addr is non-NULL, a marking stack overflow
3536     // occurred; we need to do a fresh marking iteration from the
3537     // indicated restart address.
3538     if (_foregroundGCIsActive) {
3539       // We may be running into repeated stack overflows, having
3540       // reached the limit of the stack size, while making very
3541       // slow forward progress. It may be best to bail out and
3542       // let the foreground collector do its job.
3543       // Clear _restart_addr, so that foreground GC
3544       // works from scratch. This avoids the headache of
3545       // a "rescan" which would otherwise be needed because
3546       // of the dirty mod union table & card table.
3547       _restart_addr = NULL;
3548       return false;
3549     }
3550     // Adjust the task to restart from _restart_addr
3551     tsk.reset(_restart_addr);
3552     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3553                   _restart_addr);
3554     _restart_addr = NULL;
3555     // Get the workers going again
3556     conc_workers()->start_task(&tsk);
3557     while (tsk.yielded()) {
3558       tsk.coordinator_yield();
3559       conc_workers()->continue_task(&tsk);
3560     }
3561   }
3562   assert(tsk.completed(), "Inconsistency");
3563   assert(tsk.result() == true, "Inconsistency");
3564   return true;
3565 }
3566 
3567 bool CMSCollector::do_marking_st() {
3568   ResourceMark rm;
3569   HandleMark   hm;
3570 
3571   // Temporarily make refs discovery single threaded (non-MT)
3572   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3573   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3574     &_markStack, CMSYield);
3575   // the last argument to iterate indicates whether the iteration
3576   // should be incremental with periodic yields.
3577   _markBitMap.iterate(&markFromRootsClosure);
3578   // If _restart_addr is non-NULL, a marking stack overflow
3579   // occurred; we need to do a fresh iteration from the
3580   // indicated restart address.
3581   while (_restart_addr != NULL) {
3582     if (_foregroundGCIsActive) {
3583       // We may be running into repeated stack overflows, having
3584       // reached the limit of the stack size, while making very
3585       // slow forward progress. It may be best to bail out and
3586       // let the foreground collector do its job.
3587       // Clear _restart_addr, so that foreground GC
3588       // works from scratch. This avoids the headache of
3589       // a "rescan" which would otherwise be needed because
3590       // of the dirty mod union table & card table.
3591       _restart_addr = NULL;
3592       return false;  // indicating failure to complete marking
3593     }
3594     // Deal with stack overflow:
3595     // we restart marking from _restart_addr
3596     HeapWord* ra = _restart_addr;
3597     markFromRootsClosure.reset(ra);
3598     _restart_addr = NULL;
3599     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3600   }
3601   return true;
3602 }
3603 
3604 void CMSCollector::preclean() {
3605   check_correct_thread_executing();
3606   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3607   verify_work_stacks_empty();
3608   verify_overflow_empty();
3609   _abort_preclean = false;
3610   if (CMSPrecleaningEnabled) {
3611     if (!CMSEdenChunksRecordAlways) {
3612       _eden_chunk_index = 0;
3613     }
3614     size_t used = get_eden_used();
3615     size_t capacity = get_eden_capacity();
3616     // Don't start sampling unless we will get sufficiently
3617     // many samples.
3618     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3619                 * CMSScheduleRemarkEdenPenetration)) {
3620       _start_sampling = true;
3621     } else {
3622       _start_sampling = false;
3623     }
3624     GCTraceCPUTime tcpu;
3625     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3626     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3627   }
3628   CMSTokenSync x(true); // is cms thread
3629   if (CMSPrecleaningEnabled) {
3630     sample_eden();
3631     _collectorState = AbortablePreclean;
3632   } else {
3633     _collectorState = FinalMarking;
3634   }
3635   verify_work_stacks_empty();
3636   verify_overflow_empty();
3637 }
3638 
3639 // Try and schedule the remark such that young gen
3640 // occupancy is CMSScheduleRemarkEdenPenetration %.
3641 void CMSCollector::abortable_preclean() {
3642   check_correct_thread_executing();
3643   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3644   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3645 
3646   // If Eden's current occupancy is below this threshold,
3647   // immediately schedule the remark; else preclean
3648   // past the next scavenge in an effort to
3649   // schedule the pause as described above. By choosing
3650   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3651   // we will never do an actual abortable preclean cycle.
3652   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3653     GCTraceCPUTime tcpu;
3654     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3655     // We need more smarts in the abortable preclean
3656     // loop below to deal with cases where allocation
3657     // in young gen is very very slow, and our precleaning
3658     // is running a losing race against a horde of
3659     // mutators intent on flooding us with CMS updates
3660     // (dirty cards).
3661     // One, admittedly dumb, strategy is to give up
3662     // after a certain number of abortable precleaning loops
3663     // or after a certain maximum time. We want to make
3664     // this smarter in the next iteration.
3665     // XXX FIX ME!!! YSR
3666     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3667     while (!(should_abort_preclean() ||
3668              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3669       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3670       cumworkdone += workdone;
3671       loops++;
3672       // Voluntarily terminate abortable preclean phase if we have
3673       // been at it for too long.
3674       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3675           loops >= CMSMaxAbortablePrecleanLoops) {
3676         log_debug(gc)(" CMS: abort preclean due to loops ");
3677         break;
3678       }
3679       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3680         log_debug(gc)(" CMS: abort preclean due to time ");
3681         break;
3682       }
3683       // If we are doing little work each iteration, we should
3684       // take a short break.
3685       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3686         // Sleep for some time, waiting for work to accumulate
3687         stopTimer();
3688         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3689         startTimer();
3690         waited++;
3691       }
3692     }
3693     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3694                                loops, waited, cumworkdone);
3695   }
3696   CMSTokenSync x(true); // is cms thread
3697   if (_collectorState != Idling) {
3698     assert(_collectorState == AbortablePreclean,
3699            "Spontaneous state transition?");
3700     _collectorState = FinalMarking;
3701   } // Else, a foreground collection completed this CMS cycle.
3702   return;
3703 }
3704 
3705 // Respond to an Eden sampling opportunity
3706 void CMSCollector::sample_eden() {
3707   // Make sure a young gc cannot sneak in between our
3708   // reading and recording of a sample.
3709   assert(Thread::current()->is_ConcurrentGC_thread(),
3710          "Only the cms thread may collect Eden samples");
3711   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3712          "Should collect samples while holding CMS token");
3713   if (!_start_sampling) {
3714     return;
3715   }
3716   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3717   // is populated by the young generation.
3718   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3719     if (_eden_chunk_index < _eden_chunk_capacity) {
3720       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3721       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3722              "Unexpected state of Eden");
3723       // We'd like to check that what we just sampled is an oop-start address;
3724       // however, we cannot do that here since the object may not yet have been
3725       // initialized. So we'll instead do the check when we _use_ this sample
3726       // later.
3727       if (_eden_chunk_index == 0 ||
3728           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3729                          _eden_chunk_array[_eden_chunk_index-1])
3730            >= CMSSamplingGrain)) {
3731         _eden_chunk_index++;  // commit sample
3732       }
3733     }
3734   }
3735   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3736     size_t used = get_eden_used();
3737     size_t capacity = get_eden_capacity();
3738     assert(used <= capacity, "Unexpected state of Eden");
3739     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3740       _abort_preclean = true;
3741     }
3742   }
3743 }
3744 
3745 
3746 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3747   assert(_collectorState == Precleaning ||
3748          _collectorState == AbortablePreclean, "incorrect state");
3749   ResourceMark rm;
3750   HandleMark   hm;
3751 
3752   // Precleaning is currently not MT but the reference processor
3753   // may be set for MT.  Disable it temporarily here.
3754   ReferenceProcessor* rp = ref_processor();
3755   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3756 
3757   // Do one pass of scrubbing the discovered reference lists
3758   // to remove any reference objects with strongly-reachable
3759   // referents.
3760   if (clean_refs) {
3761     CMSPrecleanRefsYieldClosure yield_cl(this);
3762     assert(rp->span().equals(_span), "Spans should be equal");
3763     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3764                                    &_markStack, true /* preclean */);
3765     CMSDrainMarkingStackClosure complete_trace(this,
3766                                    _span, &_markBitMap, &_markStack,
3767                                    &keep_alive, true /* preclean */);
3768 
3769     // We don't want this step to interfere with a young
3770     // collection because we don't want to take CPU
3771     // or memory bandwidth away from the young GC threads
3772     // (which may be as many as there are CPUs).
3773     // Note that we don't need to protect ourselves from
3774     // interference with mutators because they can't
3775     // manipulate the discovered reference lists nor affect
3776     // the computed reachability of the referents, the
3777     // only properties manipulated by the precleaning
3778     // of these reference lists.
3779     stopTimer();
3780     CMSTokenSyncWithLocks x(true /* is cms thread */,
3781                             bitMapLock());
3782     startTimer();
3783     sample_eden();
3784 
3785     // The following will yield to allow foreground
3786     // collection to proceed promptly. XXX YSR:
3787     // The code in this method may need further
3788     // tweaking for better performance and some restructuring
3789     // for cleaner interfaces.
3790     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3791     rp->preclean_discovered_references(
3792           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3793           gc_timer);
3794   }
3795 
3796   if (clean_survivor) {  // preclean the active survivor space(s)
3797     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3798                              &_markBitMap, &_modUnionTable,
3799                              &_markStack, true /* precleaning phase */);
3800     stopTimer();
3801     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3802                              bitMapLock());
3803     startTimer();
3804     unsigned int before_count =
3805       GenCollectedHeap::heap()->total_collections();
3806     SurvivorSpacePrecleanClosure
3807       sss_cl(this, _span, &_markBitMap, &_markStack,
3808              &pam_cl, before_count, CMSYield);
3809     _young_gen->from()->object_iterate_careful(&sss_cl);
3810     _young_gen->to()->object_iterate_careful(&sss_cl);
3811   }
3812   MarkRefsIntoAndScanClosure
3813     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3814              &_markStack, this, CMSYield,
3815              true /* precleaning phase */);
3816   // CAUTION: The following closure has persistent state that may need to
3817   // be reset upon a decrease in the sequence of addresses it
3818   // processes.
3819   ScanMarkedObjectsAgainCarefullyClosure
3820     smoac_cl(this, _span,
3821       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3822 
3823   // Preclean dirty cards in ModUnionTable and CardTable using
3824   // appropriate convergence criterion;
3825   // repeat CMSPrecleanIter times unless we find that
3826   // we are losing.
3827   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3828   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3829          "Bad convergence multiplier");
3830   assert(CMSPrecleanThreshold >= 100,
3831          "Unreasonably low CMSPrecleanThreshold");
3832 
3833   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3834   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3835        numIter < CMSPrecleanIter;
3836        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3837     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3838     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3839     // Either there are very few dirty cards, so re-mark
3840     // pause will be small anyway, or our pre-cleaning isn't
3841     // that much faster than the rate at which cards are being
3842     // dirtied, so we might as well stop and re-mark since
3843     // precleaning won't improve our re-mark time by much.
3844     if (curNumCards <= CMSPrecleanThreshold ||
3845         (numIter > 0 &&
3846          (curNumCards * CMSPrecleanDenominator >
3847          lastNumCards * CMSPrecleanNumerator))) {
3848       numIter++;
3849       cumNumCards += curNumCards;
3850       break;
3851     }
3852   }
3853 
3854   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3855 
3856   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3857   cumNumCards += curNumCards;
3858   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3859                              curNumCards, cumNumCards, numIter);
3860   return cumNumCards;   // as a measure of useful work done
3861 }
3862 
3863 // PRECLEANING NOTES:
3864 // Precleaning involves:
3865 // . reading the bits of the modUnionTable and clearing the set bits.
3866 // . For the cards corresponding to the set bits, we scan the
3867 //   objects on those cards. This means we need the free_list_lock
3868 //   so that we can safely iterate over the CMS space when scanning
3869 //   for oops.
3870 // . When we scan the objects, we'll be both reading and setting
3871 //   marks in the marking bit map, so we'll need the marking bit map.
3872 // . For protecting _collector_state transitions, we take the CGC_lock.
3873 //   Note that any races in the reading of of card table entries by the
3874 //   CMS thread on the one hand and the clearing of those entries by the
3875 //   VM thread or the setting of those entries by the mutator threads on the
3876 //   other are quite benign. However, for efficiency it makes sense to keep
3877 //   the VM thread from racing with the CMS thread while the latter is
3878 //   dirty card info to the modUnionTable. We therefore also use the
3879 //   CGC_lock to protect the reading of the card table and the mod union
3880 //   table by the CM thread.
3881 // . We run concurrently with mutator updates, so scanning
3882 //   needs to be done carefully  -- we should not try to scan
3883 //   potentially uninitialized objects.
3884 //
3885 // Locking strategy: While holding the CGC_lock, we scan over and
3886 // reset a maximal dirty range of the mod union / card tables, then lock
3887 // the free_list_lock and bitmap lock to do a full marking, then
3888 // release these locks; and repeat the cycle. This allows for a
3889 // certain amount of fairness in the sharing of these locks between
3890 // the CMS collector on the one hand, and the VM thread and the
3891 // mutators on the other.
3892 
3893 // NOTE: preclean_mod_union_table() and preclean_card_table()
3894 // further below are largely identical; if you need to modify
3895 // one of these methods, please check the other method too.
3896 
3897 size_t CMSCollector::preclean_mod_union_table(
3898   ConcurrentMarkSweepGeneration* old_gen,
3899   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3900   verify_work_stacks_empty();
3901   verify_overflow_empty();
3902 
3903   // strategy: starting with the first card, accumulate contiguous
3904   // ranges of dirty cards; clear these cards, then scan the region
3905   // covered by these cards.
3906 
3907   // Since all of the MUT is committed ahead, we can just use
3908   // that, in case the generations expand while we are precleaning.
3909   // It might also be fine to just use the committed part of the
3910   // generation, but we might potentially miss cards when the
3911   // generation is rapidly expanding while we are in the midst
3912   // of precleaning.
3913   HeapWord* startAddr = old_gen->reserved().start();
3914   HeapWord* endAddr   = old_gen->reserved().end();
3915 
3916   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3917 
3918   size_t numDirtyCards, cumNumDirtyCards;
3919   HeapWord *nextAddr, *lastAddr;
3920   for (cumNumDirtyCards = numDirtyCards = 0,
3921        nextAddr = lastAddr = startAddr;
3922        nextAddr < endAddr;
3923        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3924 
3925     ResourceMark rm;
3926     HandleMark   hm;
3927 
3928     MemRegion dirtyRegion;
3929     {
3930       stopTimer();
3931       // Potential yield point
3932       CMSTokenSync ts(true);
3933       startTimer();
3934       sample_eden();
3935       // Get dirty region starting at nextOffset (inclusive),
3936       // simultaneously clearing it.
3937       dirtyRegion =
3938         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3939       assert(dirtyRegion.start() >= nextAddr,
3940              "returned region inconsistent?");
3941     }
3942     // Remember where the next search should begin.
3943     // The returned region (if non-empty) is a right open interval,
3944     // so lastOffset is obtained from the right end of that
3945     // interval.
3946     lastAddr = dirtyRegion.end();
3947     // Should do something more transparent and less hacky XXX
3948     numDirtyCards =
3949       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3950 
3951     // We'll scan the cards in the dirty region (with periodic
3952     // yields for foreground GC as needed).
3953     if (!dirtyRegion.is_empty()) {
3954       assert(numDirtyCards > 0, "consistency check");
3955       HeapWord* stop_point = NULL;
3956       stopTimer();
3957       // Potential yield point
3958       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3959                                bitMapLock());
3960       startTimer();
3961       {
3962         verify_work_stacks_empty();
3963         verify_overflow_empty();
3964         sample_eden();
3965         stop_point =
3966           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3967       }
3968       if (stop_point != NULL) {
3969         // The careful iteration stopped early either because it found an
3970         // uninitialized object, or because we were in the midst of an
3971         // "abortable preclean", which should now be aborted. Redirty
3972         // the bits corresponding to the partially-scanned or unscanned
3973         // cards. We'll either restart at the next block boundary or
3974         // abort the preclean.
3975         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3976                "Should only be AbortablePreclean.");
3977         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3978         if (should_abort_preclean()) {
3979           break; // out of preclean loop
3980         } else {
3981           // Compute the next address at which preclean should pick up;
3982           // might need bitMapLock in order to read P-bits.
3983           lastAddr = next_card_start_after_block(stop_point);
3984         }
3985       }
3986     } else {
3987       assert(lastAddr == endAddr, "consistency check");
3988       assert(numDirtyCards == 0, "consistency check");
3989       break;
3990     }
3991   }
3992   verify_work_stacks_empty();
3993   verify_overflow_empty();
3994   return cumNumDirtyCards;
3995 }
3996 
3997 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3998 // below are largely identical; if you need to modify
3999 // one of these methods, please check the other method too.
4000 
4001 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4002   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4003   // strategy: it's similar to precleamModUnionTable above, in that
4004   // we accumulate contiguous ranges of dirty cards, mark these cards
4005   // precleaned, then scan the region covered by these cards.
4006   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4007   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4008 
4009   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4010 
4011   size_t numDirtyCards, cumNumDirtyCards;
4012   HeapWord *lastAddr, *nextAddr;
4013 
4014   for (cumNumDirtyCards = numDirtyCards = 0,
4015        nextAddr = lastAddr = startAddr;
4016        nextAddr < endAddr;
4017        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4018 
4019     ResourceMark rm;
4020     HandleMark   hm;
4021 
4022     MemRegion dirtyRegion;
4023     {
4024       // See comments in "Precleaning notes" above on why we
4025       // do this locking. XXX Could the locking overheads be
4026       // too high when dirty cards are sparse? [I don't think so.]
4027       stopTimer();
4028       CMSTokenSync x(true); // is cms thread
4029       startTimer();
4030       sample_eden();
4031       // Get and clear dirty region from card table
4032       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4033                                     MemRegion(nextAddr, endAddr),
4034                                     true,
4035                                     CardTableModRefBS::precleaned_card_val());
4036 
4037       assert(dirtyRegion.start() >= nextAddr,
4038              "returned region inconsistent?");
4039     }
4040     lastAddr = dirtyRegion.end();
4041     numDirtyCards =
4042       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4043 
4044     if (!dirtyRegion.is_empty()) {
4045       stopTimer();
4046       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4047       startTimer();
4048       sample_eden();
4049       verify_work_stacks_empty();
4050       verify_overflow_empty();
4051       HeapWord* stop_point =
4052         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4053       if (stop_point != NULL) {
4054         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4055                "Should only be AbortablePreclean.");
4056         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4057         if (should_abort_preclean()) {
4058           break; // out of preclean loop
4059         } else {
4060           // Compute the next address at which preclean should pick up.
4061           lastAddr = next_card_start_after_block(stop_point);
4062         }
4063       }
4064     } else {
4065       break;
4066     }
4067   }
4068   verify_work_stacks_empty();
4069   verify_overflow_empty();
4070   return cumNumDirtyCards;
4071 }
4072 
4073 class PrecleanKlassClosure : public KlassClosure {
4074   KlassToOopClosure _cm_klass_closure;
4075  public:
4076   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4077   void do_klass(Klass* k) {
4078     if (k->has_accumulated_modified_oops()) {
4079       k->clear_accumulated_modified_oops();
4080 
4081       _cm_klass_closure.do_klass(k);
4082     }
4083   }
4084 };
4085 
4086 // The freelist lock is needed to prevent asserts, is it really needed?
4087 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4088 
4089   cl->set_freelistLock(freelistLock);
4090 
4091   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4092 
4093   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4094   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4095   PrecleanKlassClosure preclean_klass_closure(cl);
4096   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4097 
4098   verify_work_stacks_empty();
4099   verify_overflow_empty();
4100 }
4101 
4102 void CMSCollector::checkpointRootsFinal() {
4103   assert(_collectorState == FinalMarking, "incorrect state transition?");
4104   check_correct_thread_executing();
4105   // world is stopped at this checkpoint
4106   assert(SafepointSynchronize::is_at_safepoint(),
4107          "world should be stopped");
4108   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4109 
4110   verify_work_stacks_empty();
4111   verify_overflow_empty();
4112 
4113   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4114                 _young_gen->used() / K, _young_gen->capacity() / K);
4115   {
4116     if (CMSScavengeBeforeRemark) {
4117       GenCollectedHeap* gch = GenCollectedHeap::heap();
4118       // Temporarily set flag to false, GCH->do_collection will
4119       // expect it to be false and set to true
4120       FlagSetting fl(gch->_is_gc_active, false);
4121 
4122       gch->do_collection(true,                      // full (i.e. force, see below)
4123                          false,                     // !clear_all_soft_refs
4124                          0,                         // size
4125                          false,                     // is_tlab
4126                          GenCollectedHeap::YoungGen // type
4127         );
4128     }
4129     FreelistLocker x(this);
4130     MutexLockerEx y(bitMapLock(),
4131                     Mutex::_no_safepoint_check_flag);
4132     checkpointRootsFinalWork();
4133   }
4134   verify_work_stacks_empty();
4135   verify_overflow_empty();
4136 }
4137 
4138 void CMSCollector::checkpointRootsFinalWork() {
4139   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4140 
4141   assert(haveFreelistLocks(), "must have free list locks");
4142   assert_lock_strong(bitMapLock());
4143 
4144   ResourceMark rm;
4145   HandleMark   hm;
4146 
4147   GenCollectedHeap* gch = GenCollectedHeap::heap();
4148 
4149   if (should_unload_classes()) {
4150     CodeCache::gc_prologue();
4151   }
4152   assert(haveFreelistLocks(), "must have free list locks");
4153   assert_lock_strong(bitMapLock());
4154 
4155   // We might assume that we need not fill TLAB's when
4156   // CMSScavengeBeforeRemark is set, because we may have just done
4157   // a scavenge which would have filled all TLAB's -- and besides
4158   // Eden would be empty. This however may not always be the case --
4159   // for instance although we asked for a scavenge, it may not have
4160   // happened because of a JNI critical section. We probably need
4161   // a policy for deciding whether we can in that case wait until
4162   // the critical section releases and then do the remark following
4163   // the scavenge, and skip it here. In the absence of that policy,
4164   // or of an indication of whether the scavenge did indeed occur,
4165   // we cannot rely on TLAB's having been filled and must do
4166   // so here just in case a scavenge did not happen.
4167   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4168   // Update the saved marks which may affect the root scans.
4169   gch->save_marks();
4170 
4171   print_eden_and_survivor_chunk_arrays();
4172 
4173   {
4174 #if defined(COMPILER2) || INCLUDE_JVMCI
4175     DerivedPointerTableDeactivate dpt_deact;
4176 #endif
4177 
4178     // Note on the role of the mod union table:
4179     // Since the marker in "markFromRoots" marks concurrently with
4180     // mutators, it is possible for some reachable objects not to have been
4181     // scanned. For instance, an only reference to an object A was
4182     // placed in object B after the marker scanned B. Unless B is rescanned,
4183     // A would be collected. Such updates to references in marked objects
4184     // are detected via the mod union table which is the set of all cards
4185     // dirtied since the first checkpoint in this GC cycle and prior to
4186     // the most recent young generation GC, minus those cleaned up by the
4187     // concurrent precleaning.
4188     if (CMSParallelRemarkEnabled) {
4189       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4190       do_remark_parallel();
4191     } else {
4192       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4193       do_remark_non_parallel();
4194     }
4195   }
4196   verify_work_stacks_empty();
4197   verify_overflow_empty();
4198 
4199   {
4200     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4201     refProcessingWork();
4202   }
4203   verify_work_stacks_empty();
4204   verify_overflow_empty();
4205 
4206   if (should_unload_classes()) {
4207     CodeCache::gc_epilogue();
4208   }
4209   JvmtiExport::gc_epilogue();
4210 
4211   // If we encountered any (marking stack / work queue) overflow
4212   // events during the current CMS cycle, take appropriate
4213   // remedial measures, where possible, so as to try and avoid
4214   // recurrence of that condition.
4215   assert(_markStack.isEmpty(), "No grey objects");
4216   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4217                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4218   if (ser_ovflw > 0) {
4219     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4220                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4221     _markStack.expand();
4222     _ser_pmc_remark_ovflw = 0;
4223     _ser_pmc_preclean_ovflw = 0;
4224     _ser_kac_preclean_ovflw = 0;
4225     _ser_kac_ovflw = 0;
4226   }
4227   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4228      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4229                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4230      _par_pmc_remark_ovflw = 0;
4231     _par_kac_ovflw = 0;
4232   }
4233    if (_markStack._hit_limit > 0) {
4234      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4235                           _markStack._hit_limit);
4236    }
4237    if (_markStack._failed_double > 0) {
4238      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4239                           _markStack._failed_double, _markStack.capacity());
4240    }
4241   _markStack._hit_limit = 0;
4242   _markStack._failed_double = 0;
4243 
4244   if ((VerifyAfterGC || VerifyDuringGC) &&
4245       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4246     verify_after_remark();
4247   }
4248 
4249   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4250 
4251   // Change under the freelistLocks.
4252   _collectorState = Sweeping;
4253   // Call isAllClear() under bitMapLock
4254   assert(_modUnionTable.isAllClear(),
4255       "Should be clear by end of the final marking");
4256   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4257       "Should be clear by end of the final marking");
4258 }
4259 
4260 void CMSParInitialMarkTask::work(uint worker_id) {
4261   elapsedTimer _timer;
4262   ResourceMark rm;
4263   HandleMark   hm;
4264 
4265   // ---------- scan from roots --------------
4266   _timer.start();
4267   GenCollectedHeap* gch = GenCollectedHeap::heap();
4268   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4269 
4270   // ---------- young gen roots --------------
4271   {
4272     work_on_young_gen_roots(&par_mri_cl);
4273     _timer.stop();
4274     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4275   }
4276 
4277   // ---------- remaining roots --------------
4278   _timer.reset();
4279   _timer.start();
4280 
4281   CLDToOopClosure cld_closure(&par_mri_cl, true);
4282 
4283   gch->cms_process_roots(_strong_roots_scope,
4284                          false,     // yg was scanned above
4285                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4286                          _collector->should_unload_classes(),
4287                          &par_mri_cl,
4288                          &cld_closure);
4289   assert(_collector->should_unload_classes()
4290          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4291          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4292   _timer.stop();
4293   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4294 }
4295 
4296 // Parallel remark task
4297 class CMSParRemarkTask: public CMSParMarkTask {
4298   CompactibleFreeListSpace* _cms_space;
4299 
4300   // The per-thread work queues, available here for stealing.
4301   OopTaskQueueSet*       _task_queues;
4302   ParallelTaskTerminator _term;
4303   StrongRootsScope*      _strong_roots_scope;
4304 
4305  public:
4306   // A value of 0 passed to n_workers will cause the number of
4307   // workers to be taken from the active workers in the work gang.
4308   CMSParRemarkTask(CMSCollector* collector,
4309                    CompactibleFreeListSpace* cms_space,
4310                    uint n_workers, WorkGang* workers,
4311                    OopTaskQueueSet* task_queues,
4312                    StrongRootsScope* strong_roots_scope):
4313     CMSParMarkTask("Rescan roots and grey objects in parallel",
4314                    collector, n_workers),
4315     _cms_space(cms_space),
4316     _task_queues(task_queues),
4317     _term(n_workers, task_queues),
4318     _strong_roots_scope(strong_roots_scope) { }
4319 
4320   OopTaskQueueSet* task_queues() { return _task_queues; }
4321 
4322   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4323 
4324   ParallelTaskTerminator* terminator() { return &_term; }
4325   uint n_workers() { return _n_workers; }
4326 
4327   void work(uint worker_id);
4328 
4329  private:
4330   // ... of  dirty cards in old space
4331   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4332                                   ParMarkRefsIntoAndScanClosure* cl);
4333 
4334   // ... work stealing for the above
4335   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4336 };
4337 
4338 class RemarkKlassClosure : public KlassClosure {
4339   KlassToOopClosure _cm_klass_closure;
4340  public:
4341   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4342   void do_klass(Klass* k) {
4343     // Check if we have modified any oops in the Klass during the concurrent marking.
4344     if (k->has_accumulated_modified_oops()) {
4345       k->clear_accumulated_modified_oops();
4346 
4347       // We could have transfered the current modified marks to the accumulated marks,
4348       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4349     } else if (k->has_modified_oops()) {
4350       // Don't clear anything, this info is needed by the next young collection.
4351     } else {
4352       // No modified oops in the Klass.
4353       return;
4354     }
4355 
4356     // The klass has modified fields, need to scan the klass.
4357     _cm_klass_closure.do_klass(k);
4358   }
4359 };
4360 
4361 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4362   ParNewGeneration* young_gen = _collector->_young_gen;
4363   ContiguousSpace* eden_space = young_gen->eden();
4364   ContiguousSpace* from_space = young_gen->from();
4365   ContiguousSpace* to_space   = young_gen->to();
4366 
4367   HeapWord** eca = _collector->_eden_chunk_array;
4368   size_t     ect = _collector->_eden_chunk_index;
4369   HeapWord** sca = _collector->_survivor_chunk_array;
4370   size_t     sct = _collector->_survivor_chunk_index;
4371 
4372   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4373   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4374 
4375   do_young_space_rescan(cl, to_space, NULL, 0);
4376   do_young_space_rescan(cl, from_space, sca, sct);
4377   do_young_space_rescan(cl, eden_space, eca, ect);
4378 }
4379 
4380 // work_queue(i) is passed to the closure
4381 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4382 // also is passed to do_dirty_card_rescan_tasks() and to
4383 // do_work_steal() to select the i-th task_queue.
4384 
4385 void CMSParRemarkTask::work(uint worker_id) {
4386   elapsedTimer _timer;
4387   ResourceMark rm;
4388   HandleMark   hm;
4389 
4390   // ---------- rescan from roots --------------
4391   _timer.start();
4392   GenCollectedHeap* gch = GenCollectedHeap::heap();
4393   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4394     _collector->_span, _collector->ref_processor(),
4395     &(_collector->_markBitMap),
4396     work_queue(worker_id));
4397 
4398   // Rescan young gen roots first since these are likely
4399   // coarsely partitioned and may, on that account, constitute
4400   // the critical path; thus, it's best to start off that
4401   // work first.
4402   // ---------- young gen roots --------------
4403   {
4404     work_on_young_gen_roots(&par_mrias_cl);
4405     _timer.stop();
4406     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4407   }
4408 
4409   // ---------- remaining roots --------------
4410   _timer.reset();
4411   _timer.start();
4412   gch->cms_process_roots(_strong_roots_scope,
4413                          false,     // yg was scanned above
4414                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4415                          _collector->should_unload_classes(),
4416                          &par_mrias_cl,
4417                          NULL);     // The dirty klasses will be handled below
4418 
4419   assert(_collector->should_unload_classes()
4420          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4421          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4422   _timer.stop();
4423   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4424 
4425   // ---------- unhandled CLD scanning ----------
4426   if (worker_id == 0) { // Single threaded at the moment.
4427     _timer.reset();
4428     _timer.start();
4429 
4430     // Scan all new class loader data objects and new dependencies that were
4431     // introduced during concurrent marking.
4432     ResourceMark rm;
4433     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4434     for (int i = 0; i < array->length(); i++) {
4435       par_mrias_cl.do_cld_nv(array->at(i));
4436     }
4437 
4438     // We don't need to keep track of new CLDs anymore.
4439     ClassLoaderDataGraph::remember_new_clds(false);
4440 
4441     _timer.stop();
4442     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4443   }
4444 
4445   // ---------- dirty klass scanning ----------
4446   if (worker_id == 0) { // Single threaded at the moment.
4447     _timer.reset();
4448     _timer.start();
4449 
4450     // Scan all classes that was dirtied during the concurrent marking phase.
4451     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4452     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4453 
4454     _timer.stop();
4455     log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4456   }
4457 
4458   // We might have added oops to ClassLoaderData::_handles during the
4459   // concurrent marking phase. These oops point to newly allocated objects
4460   // that are guaranteed to be kept alive. Either by the direct allocation
4461   // code, or when the young collector processes the roots. Hence,
4462   // we don't have to revisit the _handles block during the remark phase.
4463 
4464   // ---------- rescan dirty cards ------------
4465   _timer.reset();
4466   _timer.start();
4467 
4468   // Do the rescan tasks for each of the two spaces
4469   // (cms_space) in turn.
4470   // "worker_id" is passed to select the task_queue for "worker_id"
4471   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4472   _timer.stop();
4473   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4474 
4475   // ---------- steal work from other threads ...
4476   // ---------- ... and drain overflow list.
4477   _timer.reset();
4478   _timer.start();
4479   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4480   _timer.stop();
4481   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4482 }
4483 
4484 void
4485 CMSParMarkTask::do_young_space_rescan(
4486   OopsInGenClosure* cl, ContiguousSpace* space,
4487   HeapWord** chunk_array, size_t chunk_top) {
4488   // Until all tasks completed:
4489   // . claim an unclaimed task
4490   // . compute region boundaries corresponding to task claimed
4491   //   using chunk_array
4492   // . par_oop_iterate(cl) over that region
4493 
4494   ResourceMark rm;
4495   HandleMark   hm;
4496 
4497   SequentialSubTasksDone* pst = space->par_seq_tasks();
4498 
4499   uint nth_task = 0;
4500   uint n_tasks  = pst->n_tasks();
4501 
4502   if (n_tasks > 0) {
4503     assert(pst->valid(), "Uninitialized use?");
4504     HeapWord *start, *end;
4505     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4506       // We claimed task # nth_task; compute its boundaries.
4507       if (chunk_top == 0) {  // no samples were taken
4508         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4509         start = space->bottom();
4510         end   = space->top();
4511       } else if (nth_task == 0) {
4512         start = space->bottom();
4513         end   = chunk_array[nth_task];
4514       } else if (nth_task < (uint)chunk_top) {
4515         assert(nth_task >= 1, "Control point invariant");
4516         start = chunk_array[nth_task - 1];
4517         end   = chunk_array[nth_task];
4518       } else {
4519         assert(nth_task == (uint)chunk_top, "Control point invariant");
4520         start = chunk_array[chunk_top - 1];
4521         end   = space->top();
4522       }
4523       MemRegion mr(start, end);
4524       // Verify that mr is in space
4525       assert(mr.is_empty() || space->used_region().contains(mr),
4526              "Should be in space");
4527       // Verify that "start" is an object boundary
4528       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4529              "Should be an oop");
4530       space->par_oop_iterate(mr, cl);
4531     }
4532     pst->all_tasks_completed();
4533   }
4534 }
4535 
4536 void
4537 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4538   CompactibleFreeListSpace* sp, int i,
4539   ParMarkRefsIntoAndScanClosure* cl) {
4540   // Until all tasks completed:
4541   // . claim an unclaimed task
4542   // . compute region boundaries corresponding to task claimed
4543   // . transfer dirty bits ct->mut for that region
4544   // . apply rescanclosure to dirty mut bits for that region
4545 
4546   ResourceMark rm;
4547   HandleMark   hm;
4548 
4549   OopTaskQueue* work_q = work_queue(i);
4550   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4551   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4552   // CAUTION: This closure has state that persists across calls to
4553   // the work method dirty_range_iterate_clear() in that it has
4554   // embedded in it a (subtype of) UpwardsObjectClosure. The
4555   // use of that state in the embedded UpwardsObjectClosure instance
4556   // assumes that the cards are always iterated (even if in parallel
4557   // by several threads) in monotonically increasing order per each
4558   // thread. This is true of the implementation below which picks
4559   // card ranges (chunks) in monotonically increasing order globally
4560   // and, a-fortiori, in monotonically increasing order per thread
4561   // (the latter order being a subsequence of the former).
4562   // If the work code below is ever reorganized into a more chaotic
4563   // work-partitioning form than the current "sequential tasks"
4564   // paradigm, the use of that persistent state will have to be
4565   // revisited and modified appropriately. See also related
4566   // bug 4756801 work on which should examine this code to make
4567   // sure that the changes there do not run counter to the
4568   // assumptions made here and necessary for correctness and
4569   // efficiency. Note also that this code might yield inefficient
4570   // behavior in the case of very large objects that span one or
4571   // more work chunks. Such objects would potentially be scanned
4572   // several times redundantly. Work on 4756801 should try and
4573   // address that performance anomaly if at all possible. XXX
4574   MemRegion  full_span  = _collector->_span;
4575   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4576   MarkFromDirtyCardsClosure
4577     greyRescanClosure(_collector, full_span, // entire span of interest
4578                       sp, bm, work_q, cl);
4579 
4580   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4581   assert(pst->valid(), "Uninitialized use?");
4582   uint nth_task = 0;
4583   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4584   MemRegion span = sp->used_region();
4585   HeapWord* start_addr = span.start();
4586   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4587                                            alignment);
4588   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4589   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4590          start_addr, "Check alignment");
4591   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4592          chunk_size, "Check alignment");
4593 
4594   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4595     // Having claimed the nth_task, compute corresponding mem-region,
4596     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4597     // The alignment restriction ensures that we do not need any
4598     // synchronization with other gang-workers while setting or
4599     // clearing bits in thus chunk of the MUT.
4600     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4601                                     start_addr + (nth_task+1)*chunk_size);
4602     // The last chunk's end might be way beyond end of the
4603     // used region. In that case pull back appropriately.
4604     if (this_span.end() > end_addr) {
4605       this_span.set_end(end_addr);
4606       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4607     }
4608     // Iterate over the dirty cards covering this chunk, marking them
4609     // precleaned, and setting the corresponding bits in the mod union
4610     // table. Since we have been careful to partition at Card and MUT-word
4611     // boundaries no synchronization is needed between parallel threads.
4612     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4613                                                  &modUnionClosure);
4614 
4615     // Having transferred these marks into the modUnionTable,
4616     // rescan the marked objects on the dirty cards in the modUnionTable.
4617     // Even if this is at a synchronous collection, the initial marking
4618     // may have been done during an asynchronous collection so there
4619     // may be dirty bits in the mod-union table.
4620     _collector->_modUnionTable.dirty_range_iterate_clear(
4621                   this_span, &greyRescanClosure);
4622     _collector->_modUnionTable.verifyNoOneBitsInRange(
4623                                  this_span.start(),
4624                                  this_span.end());
4625   }
4626   pst->all_tasks_completed();  // declare that i am done
4627 }
4628 
4629 // . see if we can share work_queues with ParNew? XXX
4630 void
4631 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4632                                 int* seed) {
4633   OopTaskQueue* work_q = work_queue(i);
4634   NOT_PRODUCT(int num_steals = 0;)
4635   oop obj_to_scan;
4636   CMSBitMap* bm = &(_collector->_markBitMap);
4637 
4638   while (true) {
4639     // Completely finish any left over work from (an) earlier round(s)
4640     cl->trim_queue(0);
4641     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4642                                          (size_t)ParGCDesiredObjsFromOverflowList);
4643     // Now check if there's any work in the overflow list
4644     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4645     // only affects the number of attempts made to get work from the
4646     // overflow list and does not affect the number of workers.  Just
4647     // pass ParallelGCThreads so this behavior is unchanged.
4648     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4649                                                 work_q,
4650                                                 ParallelGCThreads)) {
4651       // found something in global overflow list;
4652       // not yet ready to go stealing work from others.
4653       // We'd like to assert(work_q->size() != 0, ...)
4654       // because we just took work from the overflow list,
4655       // but of course we can't since all of that could have
4656       // been already stolen from us.
4657       // "He giveth and He taketh away."
4658       continue;
4659     }
4660     // Verify that we have no work before we resort to stealing
4661     assert(work_q->size() == 0, "Have work, shouldn't steal");
4662     // Try to steal from other queues that have work
4663     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4664       NOT_PRODUCT(num_steals++;)
4665       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4666       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4667       // Do scanning work
4668       obj_to_scan->oop_iterate(cl);
4669       // Loop around, finish this work, and try to steal some more
4670     } else if (terminator()->offer_termination()) {
4671         break;  // nirvana from the infinite cycle
4672     }
4673   }
4674   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4675   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4676          "Else our work is not yet done");
4677 }
4678 
4679 // Record object boundaries in _eden_chunk_array by sampling the eden
4680 // top in the slow-path eden object allocation code path and record
4681 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4682 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4683 // sampling in sample_eden() that activates during the part of the
4684 // preclean phase.
4685 void CMSCollector::sample_eden_chunk() {
4686   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4687     if (_eden_chunk_lock->try_lock()) {
4688       // Record a sample. This is the critical section. The contents
4689       // of the _eden_chunk_array have to be non-decreasing in the
4690       // address order.
4691       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4692       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4693              "Unexpected state of Eden");
4694       if (_eden_chunk_index == 0 ||
4695           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4696            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4697                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4698         _eden_chunk_index++;  // commit sample
4699       }
4700       _eden_chunk_lock->unlock();
4701     }
4702   }
4703 }
4704 
4705 // Return a thread-local PLAB recording array, as appropriate.
4706 void* CMSCollector::get_data_recorder(int thr_num) {
4707   if (_survivor_plab_array != NULL &&
4708       (CMSPLABRecordAlways ||
4709        (_collectorState > Marking && _collectorState < FinalMarking))) {
4710     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4711     ChunkArray* ca = &_survivor_plab_array[thr_num];
4712     ca->reset();   // clear it so that fresh data is recorded
4713     return (void*) ca;
4714   } else {
4715     return NULL;
4716   }
4717 }
4718 
4719 // Reset all the thread-local PLAB recording arrays
4720 void CMSCollector::reset_survivor_plab_arrays() {
4721   for (uint i = 0; i < ParallelGCThreads; i++) {
4722     _survivor_plab_array[i].reset();
4723   }
4724 }
4725 
4726 // Merge the per-thread plab arrays into the global survivor chunk
4727 // array which will provide the partitioning of the survivor space
4728 // for CMS initial scan and rescan.
4729 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4730                                               int no_of_gc_threads) {
4731   assert(_survivor_plab_array  != NULL, "Error");
4732   assert(_survivor_chunk_array != NULL, "Error");
4733   assert(_collectorState == FinalMarking ||
4734          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4735   for (int j = 0; j < no_of_gc_threads; j++) {
4736     _cursor[j] = 0;
4737   }
4738   HeapWord* top = surv->top();
4739   size_t i;
4740   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4741     HeapWord* min_val = top;          // Higher than any PLAB address
4742     uint      min_tid = 0;            // position of min_val this round
4743     for (int j = 0; j < no_of_gc_threads; j++) {
4744       ChunkArray* cur_sca = &_survivor_plab_array[j];
4745       if (_cursor[j] == cur_sca->end()) {
4746         continue;
4747       }
4748       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4749       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4750       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4751       if (cur_val < min_val) {
4752         min_tid = j;
4753         min_val = cur_val;
4754       } else {
4755         assert(cur_val < top, "All recorded addresses should be less");
4756       }
4757     }
4758     // At this point min_val and min_tid are respectively
4759     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4760     // and the thread (j) that witnesses that address.
4761     // We record this address in the _survivor_chunk_array[i]
4762     // and increment _cursor[min_tid] prior to the next round i.
4763     if (min_val == top) {
4764       break;
4765     }
4766     _survivor_chunk_array[i] = min_val;
4767     _cursor[min_tid]++;
4768   }
4769   // We are all done; record the size of the _survivor_chunk_array
4770   _survivor_chunk_index = i; // exclusive: [0, i)
4771   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4772   // Verify that we used up all the recorded entries
4773   #ifdef ASSERT
4774     size_t total = 0;
4775     for (int j = 0; j < no_of_gc_threads; j++) {
4776       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4777       total += _cursor[j];
4778     }
4779     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4780     // Check that the merged array is in sorted order
4781     if (total > 0) {
4782       for (size_t i = 0; i < total - 1; i++) {
4783         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4784                                      i, p2i(_survivor_chunk_array[i]));
4785         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4786                "Not sorted");
4787       }
4788     }
4789   #endif // ASSERT
4790 }
4791 
4792 // Set up the space's par_seq_tasks structure for work claiming
4793 // for parallel initial scan and rescan of young gen.
4794 // See ParRescanTask where this is currently used.
4795 void
4796 CMSCollector::
4797 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4798   assert(n_threads > 0, "Unexpected n_threads argument");
4799 
4800   // Eden space
4801   if (!_young_gen->eden()->is_empty()) {
4802     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4803     assert(!pst->valid(), "Clobbering existing data?");
4804     // Each valid entry in [0, _eden_chunk_index) represents a task.
4805     size_t n_tasks = _eden_chunk_index + 1;
4806     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4807     // Sets the condition for completion of the subtask (how many threads
4808     // need to finish in order to be done).
4809     pst->set_n_threads(n_threads);
4810     pst->set_n_tasks((int)n_tasks);
4811   }
4812 
4813   // Merge the survivor plab arrays into _survivor_chunk_array
4814   if (_survivor_plab_array != NULL) {
4815     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4816   } else {
4817     assert(_survivor_chunk_index == 0, "Error");
4818   }
4819 
4820   // To space
4821   {
4822     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4823     assert(!pst->valid(), "Clobbering existing data?");
4824     // Sets the condition for completion of the subtask (how many threads
4825     // need to finish in order to be done).
4826     pst->set_n_threads(n_threads);
4827     pst->set_n_tasks(1);
4828     assert(pst->valid(), "Error");
4829   }
4830 
4831   // From space
4832   {
4833     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4834     assert(!pst->valid(), "Clobbering existing data?");
4835     size_t n_tasks = _survivor_chunk_index + 1;
4836     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4837     // Sets the condition for completion of the subtask (how many threads
4838     // need to finish in order to be done).
4839     pst->set_n_threads(n_threads);
4840     pst->set_n_tasks((int)n_tasks);
4841     assert(pst->valid(), "Error");
4842   }
4843 }
4844 
4845 // Parallel version of remark
4846 void CMSCollector::do_remark_parallel() {
4847   GenCollectedHeap* gch = GenCollectedHeap::heap();
4848   WorkGang* workers = gch->workers();
4849   assert(workers != NULL, "Need parallel worker threads.");
4850   // Choose to use the number of GC workers most recently set
4851   // into "active_workers".
4852   uint n_workers = workers->active_workers();
4853 
4854   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4855 
4856   StrongRootsScope srs(n_workers);
4857 
4858   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4859 
4860   // We won't be iterating over the cards in the card table updating
4861   // the younger_gen cards, so we shouldn't call the following else
4862   // the verification code as well as subsequent younger_refs_iterate
4863   // code would get confused. XXX
4864   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4865 
4866   // The young gen rescan work will not be done as part of
4867   // process_roots (which currently doesn't know how to
4868   // parallelize such a scan), but rather will be broken up into
4869   // a set of parallel tasks (via the sampling that the [abortable]
4870   // preclean phase did of eden, plus the [two] tasks of
4871   // scanning the [two] survivor spaces. Further fine-grain
4872   // parallelization of the scanning of the survivor spaces
4873   // themselves, and of precleaning of the young gen itself
4874   // is deferred to the future.
4875   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4876 
4877   // The dirty card rescan work is broken up into a "sequence"
4878   // of parallel tasks (per constituent space) that are dynamically
4879   // claimed by the parallel threads.
4880   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4881 
4882   // It turns out that even when we're using 1 thread, doing the work in a
4883   // separate thread causes wide variance in run times.  We can't help this
4884   // in the multi-threaded case, but we special-case n=1 here to get
4885   // repeatable measurements of the 1-thread overhead of the parallel code.
4886   if (n_workers > 1) {
4887     // Make refs discovery MT-safe, if it isn't already: it may not
4888     // necessarily be so, since it's possible that we are doing
4889     // ST marking.
4890     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4891     workers->run_task(&tsk);
4892   } else {
4893     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4894     tsk.work(0);
4895   }
4896 
4897   // restore, single-threaded for now, any preserved marks
4898   // as a result of work_q overflow
4899   restore_preserved_marks_if_any();
4900 }
4901 
4902 // Non-parallel version of remark
4903 void CMSCollector::do_remark_non_parallel() {
4904   ResourceMark rm;
4905   HandleMark   hm;
4906   GenCollectedHeap* gch = GenCollectedHeap::heap();
4907   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4908 
4909   MarkRefsIntoAndScanClosure
4910     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4911              &_markStack, this,
4912              false /* should_yield */, false /* not precleaning */);
4913   MarkFromDirtyCardsClosure
4914     markFromDirtyCardsClosure(this, _span,
4915                               NULL,  // space is set further below
4916                               &_markBitMap, &_markStack, &mrias_cl);
4917   {
4918     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4919     // Iterate over the dirty cards, setting the corresponding bits in the
4920     // mod union table.
4921     {
4922       ModUnionClosure modUnionClosure(&_modUnionTable);
4923       _ct->ct_bs()->dirty_card_iterate(
4924                       _cmsGen->used_region(),
4925                       &modUnionClosure);
4926     }
4927     // Having transferred these marks into the modUnionTable, we just need
4928     // to rescan the marked objects on the dirty cards in the modUnionTable.
4929     // The initial marking may have been done during an asynchronous
4930     // collection so there may be dirty bits in the mod-union table.
4931     const int alignment =
4932       CardTableModRefBS::card_size * BitsPerWord;
4933     {
4934       // ... First handle dirty cards in CMS gen
4935       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4936       MemRegion ur = _cmsGen->used_region();
4937       HeapWord* lb = ur.start();
4938       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4939       MemRegion cms_span(lb, ub);
4940       _modUnionTable.dirty_range_iterate_clear(cms_span,
4941                                                &markFromDirtyCardsClosure);
4942       verify_work_stacks_empty();
4943       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4944     }
4945   }
4946   if (VerifyDuringGC &&
4947       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4948     HandleMark hm;  // Discard invalid handles created during verification
4949     Universe::verify();
4950   }
4951   {
4952     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4953 
4954     verify_work_stacks_empty();
4955 
4956     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4957     StrongRootsScope srs(1);
4958 
4959     gch->cms_process_roots(&srs,
4960                            true,  // young gen as roots
4961                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4962                            should_unload_classes(),
4963                            &mrias_cl,
4964                            NULL); // The dirty klasses will be handled below
4965 
4966     assert(should_unload_classes()
4967            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4968            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4969   }
4970 
4971   {
4972     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4973 
4974     verify_work_stacks_empty();
4975 
4976     // Scan all class loader data objects that might have been introduced
4977     // during concurrent marking.
4978     ResourceMark rm;
4979     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4980     for (int i = 0; i < array->length(); i++) {
4981       mrias_cl.do_cld_nv(array->at(i));
4982     }
4983 
4984     // We don't need to keep track of new CLDs anymore.
4985     ClassLoaderDataGraph::remember_new_clds(false);
4986 
4987     verify_work_stacks_empty();
4988   }
4989 
4990   {
4991     GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
4992 
4993     verify_work_stacks_empty();
4994 
4995     RemarkKlassClosure remark_klass_closure(&mrias_cl);
4996     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4997 
4998     verify_work_stacks_empty();
4999   }
5000 
5001   // We might have added oops to ClassLoaderData::_handles during the
5002   // concurrent marking phase. These oops point to newly allocated objects
5003   // that are guaranteed to be kept alive. Either by the direct allocation
5004   // code, or when the young collector processes the roots. Hence,
5005   // we don't have to revisit the _handles block during the remark phase.
5006 
5007   verify_work_stacks_empty();
5008   // Restore evacuated mark words, if any, used for overflow list links
5009   restore_preserved_marks_if_any();
5010 
5011   verify_overflow_empty();
5012 }
5013 
5014 ////////////////////////////////////////////////////////
5015 // Parallel Reference Processing Task Proxy Class
5016 ////////////////////////////////////////////////////////
5017 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5018   OopTaskQueueSet*       _queues;
5019   ParallelTaskTerminator _terminator;
5020  public:
5021   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5022     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5023   ParallelTaskTerminator* terminator() { return &_terminator; }
5024   OopTaskQueueSet* queues() { return _queues; }
5025 };
5026 
5027 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5028   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5029   CMSCollector*          _collector;
5030   CMSBitMap*             _mark_bit_map;
5031   const MemRegion        _span;
5032   ProcessTask&           _task;
5033 
5034 public:
5035   CMSRefProcTaskProxy(ProcessTask&     task,
5036                       CMSCollector*    collector,
5037                       const MemRegion& span,
5038                       CMSBitMap*       mark_bit_map,
5039                       AbstractWorkGang* workers,
5040                       OopTaskQueueSet* task_queues):
5041     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5042       task_queues,
5043       workers->active_workers()),
5044     _task(task),
5045     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5046   {
5047     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5048            "Inconsistency in _span");
5049   }
5050 
5051   OopTaskQueueSet* task_queues() { return queues(); }
5052 
5053   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5054 
5055   void do_work_steal(int i,
5056                      CMSParDrainMarkingStackClosure* drain,
5057                      CMSParKeepAliveClosure* keep_alive,
5058                      int* seed);
5059 
5060   virtual void work(uint worker_id);
5061 };
5062 
5063 void CMSRefProcTaskProxy::work(uint worker_id) {
5064   ResourceMark rm;
5065   HandleMark hm;
5066   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5067   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5068                                         _mark_bit_map,
5069                                         work_queue(worker_id));
5070   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5071                                                  _mark_bit_map,
5072                                                  work_queue(worker_id));
5073   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5074   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5075   if (_task.marks_oops_alive()) {
5076     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5077                   _collector->hash_seed(worker_id));
5078   }
5079   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5080   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5081 }
5082 
5083 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5084   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5085   EnqueueTask& _task;
5086 
5087 public:
5088   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5089     : AbstractGangTask("Enqueue reference objects in parallel"),
5090       _task(task)
5091   { }
5092 
5093   virtual void work(uint worker_id)
5094   {
5095     _task.work(worker_id);
5096   }
5097 };
5098 
5099 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5100   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5101    _span(span),
5102    _bit_map(bit_map),
5103    _work_queue(work_queue),
5104    _mark_and_push(collector, span, bit_map, work_queue),
5105    _low_water_mark(MIN2((work_queue->max_elems()/4),
5106                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5107 { }
5108 
5109 // . see if we can share work_queues with ParNew? XXX
5110 void CMSRefProcTaskProxy::do_work_steal(int i,
5111   CMSParDrainMarkingStackClosure* drain,
5112   CMSParKeepAliveClosure* keep_alive,
5113   int* seed) {
5114   OopTaskQueue* work_q = work_queue(i);
5115   NOT_PRODUCT(int num_steals = 0;)
5116   oop obj_to_scan;
5117 
5118   while (true) {
5119     // Completely finish any left over work from (an) earlier round(s)
5120     drain->trim_queue(0);
5121     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5122                                          (size_t)ParGCDesiredObjsFromOverflowList);
5123     // Now check if there's any work in the overflow list
5124     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5125     // only affects the number of attempts made to get work from the
5126     // overflow list and does not affect the number of workers.  Just
5127     // pass ParallelGCThreads so this behavior is unchanged.
5128     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5129                                                 work_q,
5130                                                 ParallelGCThreads)) {
5131       // Found something in global overflow list;
5132       // not yet ready to go stealing work from others.
5133       // We'd like to assert(work_q->size() != 0, ...)
5134       // because we just took work from the overflow list,
5135       // but of course we can't, since all of that might have
5136       // been already stolen from us.
5137       continue;
5138     }
5139     // Verify that we have no work before we resort to stealing
5140     assert(work_q->size() == 0, "Have work, shouldn't steal");
5141     // Try to steal from other queues that have work
5142     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5143       NOT_PRODUCT(num_steals++;)
5144       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5145       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5146       // Do scanning work
5147       obj_to_scan->oop_iterate(keep_alive);
5148       // Loop around, finish this work, and try to steal some more
5149     } else if (terminator()->offer_termination()) {
5150       break;  // nirvana from the infinite cycle
5151     }
5152   }
5153   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5154 }
5155 
5156 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5157 {
5158   GenCollectedHeap* gch = GenCollectedHeap::heap();
5159   WorkGang* workers = gch->workers();
5160   assert(workers != NULL, "Need parallel worker threads.");
5161   CMSRefProcTaskProxy rp_task(task, &_collector,
5162                               _collector.ref_processor()->span(),
5163                               _collector.markBitMap(),
5164                               workers, _collector.task_queues());
5165   workers->run_task(&rp_task);
5166 }
5167 
5168 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5169 {
5170 
5171   GenCollectedHeap* gch = GenCollectedHeap::heap();
5172   WorkGang* workers = gch->workers();
5173   assert(workers != NULL, "Need parallel worker threads.");
5174   CMSRefEnqueueTaskProxy enq_task(task);
5175   workers->run_task(&enq_task);
5176 }
5177 
5178 void CMSCollector::refProcessingWork() {
5179   ResourceMark rm;
5180   HandleMark   hm;
5181 
5182   ReferenceProcessor* rp = ref_processor();
5183   assert(rp->span().equals(_span), "Spans should be equal");
5184   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5185   // Process weak references.
5186   rp->setup_policy(false);
5187   verify_work_stacks_empty();
5188 
5189   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5190                                           &_markStack, false /* !preclean */);
5191   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5192                                 _span, &_markBitMap, &_markStack,
5193                                 &cmsKeepAliveClosure, false /* !preclean */);
5194   {
5195     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5196 
5197     ReferenceProcessorStats stats;
5198     if (rp->processing_is_mt()) {
5199       // Set the degree of MT here.  If the discovery is done MT, there
5200       // may have been a different number of threads doing the discovery
5201       // and a different number of discovered lists may have Ref objects.
5202       // That is OK as long as the Reference lists are balanced (see
5203       // balance_all_queues() and balance_queues()).
5204       GenCollectedHeap* gch = GenCollectedHeap::heap();
5205       uint active_workers = ParallelGCThreads;
5206       WorkGang* workers = gch->workers();
5207       if (workers != NULL) {
5208         active_workers = workers->active_workers();
5209         // The expectation is that active_workers will have already
5210         // been set to a reasonable value.  If it has not been set,
5211         // investigate.
5212         assert(active_workers > 0, "Should have been set during scavenge");
5213       }
5214       rp->set_active_mt_degree(active_workers);
5215       CMSRefProcTaskExecutor task_executor(*this);
5216       stats = rp->process_discovered_references(&_is_alive_closure,
5217                                         &cmsKeepAliveClosure,
5218                                         &cmsDrainMarkingStackClosure,
5219                                         &task_executor,
5220                                         _gc_timer_cm);
5221     } else {
5222       stats = rp->process_discovered_references(&_is_alive_closure,
5223                                         &cmsKeepAliveClosure,
5224                                         &cmsDrainMarkingStackClosure,
5225                                         NULL,
5226                                         _gc_timer_cm);
5227     }
5228     _gc_tracer_cm->report_gc_reference_stats(stats);
5229 
5230   }
5231 
5232   // This is the point where the entire marking should have completed.
5233   verify_work_stacks_empty();
5234 
5235   if (should_unload_classes()) {
5236     {
5237       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5238 
5239       // Unload classes and purge the SystemDictionary.
5240       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure, _gc_timer_cm);
5241 
5242       // Unload nmethods.
5243       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5244 
5245       // Prune dead klasses from subklass/sibling/implementor lists.
5246       Klass::clean_weak_klass_links(&_is_alive_closure);
5247     }
5248 
5249     {
5250       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5251       // Clean up unreferenced symbols in symbol table.
5252       SymbolTable::unlink();
5253     }
5254 
5255     {
5256       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5257       // Delete entries for dead interned strings.
5258       StringTable::unlink(&_is_alive_closure);
5259     }
5260   }
5261 
5262   // Restore any preserved marks as a result of mark stack or
5263   // work queue overflow
5264   restore_preserved_marks_if_any();  // done single-threaded for now
5265 
5266   rp->set_enqueuing_is_done(true);
5267   if (rp->processing_is_mt()) {
5268     rp->balance_all_queues();
5269     CMSRefProcTaskExecutor task_executor(*this);
5270     rp->enqueue_discovered_references(&task_executor);
5271   } else {
5272     rp->enqueue_discovered_references(NULL);
5273   }
5274   rp->verify_no_references_recorded();
5275   assert(!rp->discovery_enabled(), "should have been disabled");
5276 }
5277 
5278 #ifndef PRODUCT
5279 void CMSCollector::check_correct_thread_executing() {
5280   Thread* t = Thread::current();
5281   // Only the VM thread or the CMS thread should be here.
5282   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5283          "Unexpected thread type");
5284   // If this is the vm thread, the foreground process
5285   // should not be waiting.  Note that _foregroundGCIsActive is
5286   // true while the foreground collector is waiting.
5287   if (_foregroundGCShouldWait) {
5288     // We cannot be the VM thread
5289     assert(t->is_ConcurrentGC_thread(),
5290            "Should be CMS thread");
5291   } else {
5292     // We can be the CMS thread only if we are in a stop-world
5293     // phase of CMS collection.
5294     if (t->is_ConcurrentGC_thread()) {
5295       assert(_collectorState == InitialMarking ||
5296              _collectorState == FinalMarking,
5297              "Should be a stop-world phase");
5298       // The CMS thread should be holding the CMS_token.
5299       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5300              "Potential interference with concurrently "
5301              "executing VM thread");
5302     }
5303   }
5304 }
5305 #endif
5306 
5307 void CMSCollector::sweep() {
5308   assert(_collectorState == Sweeping, "just checking");
5309   check_correct_thread_executing();
5310   verify_work_stacks_empty();
5311   verify_overflow_empty();
5312   increment_sweep_count();
5313   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5314 
5315   _inter_sweep_timer.stop();
5316   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5317 
5318   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5319   _intra_sweep_timer.reset();
5320   _intra_sweep_timer.start();
5321   {
5322     GCTraceCPUTime tcpu;
5323     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5324     // First sweep the old gen
5325     {
5326       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5327                                bitMapLock());
5328       sweepWork(_cmsGen);
5329     }
5330 
5331     // Update Universe::_heap_*_at_gc figures.
5332     // We need all the free list locks to make the abstract state
5333     // transition from Sweeping to Resetting. See detailed note
5334     // further below.
5335     {
5336       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5337       // Update heap occupancy information which is used as
5338       // input to soft ref clearing policy at the next gc.
5339       Universe::update_heap_info_at_gc();
5340       _collectorState = Resizing;
5341     }
5342   }
5343   verify_work_stacks_empty();
5344   verify_overflow_empty();
5345 
5346   if (should_unload_classes()) {
5347     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5348     // requires that the virtual spaces are stable and not deleted.
5349     ClassLoaderDataGraph::set_should_purge(true);
5350   }
5351 
5352   _intra_sweep_timer.stop();
5353   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5354 
5355   _inter_sweep_timer.reset();
5356   _inter_sweep_timer.start();
5357 
5358   // We need to use a monotonically non-decreasing time in ms
5359   // or we will see time-warp warnings and os::javaTimeMillis()
5360   // does not guarantee monotonicity.
5361   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5362   update_time_of_last_gc(now);
5363 
5364   // NOTE on abstract state transitions:
5365   // Mutators allocate-live and/or mark the mod-union table dirty
5366   // based on the state of the collection.  The former is done in
5367   // the interval [Marking, Sweeping] and the latter in the interval
5368   // [Marking, Sweeping).  Thus the transitions into the Marking state
5369   // and out of the Sweeping state must be synchronously visible
5370   // globally to the mutators.
5371   // The transition into the Marking state happens with the world
5372   // stopped so the mutators will globally see it.  Sweeping is
5373   // done asynchronously by the background collector so the transition
5374   // from the Sweeping state to the Resizing state must be done
5375   // under the freelistLock (as is the check for whether to
5376   // allocate-live and whether to dirty the mod-union table).
5377   assert(_collectorState == Resizing, "Change of collector state to"
5378     " Resizing must be done under the freelistLocks (plural)");
5379 
5380   // Now that sweeping has been completed, we clear
5381   // the incremental_collection_failed flag,
5382   // thus inviting a younger gen collection to promote into
5383   // this generation. If such a promotion may still fail,
5384   // the flag will be set again when a young collection is
5385   // attempted.
5386   GenCollectedHeap* gch = GenCollectedHeap::heap();
5387   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5388   gch->update_full_collections_completed(_collection_count_start);
5389 }
5390 
5391 // FIX ME!!! Looks like this belongs in CFLSpace, with
5392 // CMSGen merely delegating to it.
5393 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5394   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5395   HeapWord*  minAddr        = _cmsSpace->bottom();
5396   HeapWord*  largestAddr    =
5397     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5398   if (largestAddr == NULL) {
5399     // The dictionary appears to be empty.  In this case
5400     // try to coalesce at the end of the heap.
5401     largestAddr = _cmsSpace->end();
5402   }
5403   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5404   size_t nearLargestOffset =
5405     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5406   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5407                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5408   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5409 }
5410 
5411 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5412   return addr >= _cmsSpace->nearLargestChunk();
5413 }
5414 
5415 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5416   return _cmsSpace->find_chunk_at_end();
5417 }
5418 
5419 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5420                                                     bool full) {
5421   // If the young generation has been collected, gather any statistics
5422   // that are of interest at this point.
5423   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5424   if (!full && current_is_young) {
5425     // Gather statistics on the young generation collection.
5426     collector()->stats().record_gc0_end(used());
5427   }
5428 }
5429 
5430 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5431   // We iterate over the space(s) underlying this generation,
5432   // checking the mark bit map to see if the bits corresponding
5433   // to specific blocks are marked or not. Blocks that are
5434   // marked are live and are not swept up. All remaining blocks
5435   // are swept up, with coalescing on-the-fly as we sweep up
5436   // contiguous free and/or garbage blocks:
5437   // We need to ensure that the sweeper synchronizes with allocators
5438   // and stop-the-world collectors. In particular, the following
5439   // locks are used:
5440   // . CMS token: if this is held, a stop the world collection cannot occur
5441   // . freelistLock: if this is held no allocation can occur from this
5442   //                 generation by another thread
5443   // . bitMapLock: if this is held, no other thread can access or update
5444   //
5445 
5446   // Note that we need to hold the freelistLock if we use
5447   // block iterate below; else the iterator might go awry if
5448   // a mutator (or promotion) causes block contents to change
5449   // (for instance if the allocator divvies up a block).
5450   // If we hold the free list lock, for all practical purposes
5451   // young generation GC's can't occur (they'll usually need to
5452   // promote), so we might as well prevent all young generation
5453   // GC's while we do a sweeping step. For the same reason, we might
5454   // as well take the bit map lock for the entire duration
5455 
5456   // check that we hold the requisite locks
5457   assert(have_cms_token(), "Should hold cms token");
5458   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5459   assert_lock_strong(old_gen->freelistLock());
5460   assert_lock_strong(bitMapLock());
5461 
5462   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5463   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5464   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5465                                           _inter_sweep_estimate.padded_average(),
5466                                           _intra_sweep_estimate.padded_average());
5467   old_gen->setNearLargestChunk();
5468 
5469   {
5470     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5471     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5472     // We need to free-up/coalesce garbage/blocks from a
5473     // co-terminal free run. This is done in the SweepClosure
5474     // destructor; so, do not remove this scope, else the
5475     // end-of-sweep-census below will be off by a little bit.
5476   }
5477   old_gen->cmsSpace()->sweep_completed();
5478   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5479   if (should_unload_classes()) {                // unloaded classes this cycle,
5480     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5481   } else {                                      // did not unload classes,
5482     _concurrent_cycles_since_last_unload++;     // ... increment count
5483   }
5484 }
5485 
5486 // Reset CMS data structures (for now just the marking bit map)
5487 // preparatory for the next cycle.
5488 void CMSCollector::reset_concurrent() {
5489   CMSTokenSyncWithLocks ts(true, bitMapLock());
5490 
5491   // If the state is not "Resetting", the foreground  thread
5492   // has done a collection and the resetting.
5493   if (_collectorState != Resetting) {
5494     assert(_collectorState == Idling, "The state should only change"
5495       " because the foreground collector has finished the collection");
5496     return;
5497   }
5498 
5499   {
5500     // Clear the mark bitmap (no grey objects to start with)
5501     // for the next cycle.
5502     GCTraceCPUTime tcpu;
5503     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5504 
5505     HeapWord* curAddr = _markBitMap.startWord();
5506     while (curAddr < _markBitMap.endWord()) {
5507       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5508       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5509       _markBitMap.clear_large_range(chunk);
5510       if (ConcurrentMarkSweepThread::should_yield() &&
5511           !foregroundGCIsActive() &&
5512           CMSYield) {
5513         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5514                "CMS thread should hold CMS token");
5515         assert_lock_strong(bitMapLock());
5516         bitMapLock()->unlock();
5517         ConcurrentMarkSweepThread::desynchronize(true);
5518         stopTimer();
5519         incrementYields();
5520 
5521         // See the comment in coordinator_yield()
5522         for (unsigned i = 0; i < CMSYieldSleepCount &&
5523                          ConcurrentMarkSweepThread::should_yield() &&
5524                          !CMSCollector::foregroundGCIsActive(); ++i) {
5525           os::sleep(Thread::current(), 1, false);
5526         }
5527 
5528         ConcurrentMarkSweepThread::synchronize(true);
5529         bitMapLock()->lock_without_safepoint_check();
5530         startTimer();
5531       }
5532       curAddr = chunk.end();
5533     }
5534     // A successful mostly concurrent collection has been done.
5535     // Because only the full (i.e., concurrent mode failure) collections
5536     // are being measured for gc overhead limits, clean the "near" flag
5537     // and count.
5538     size_policy()->reset_gc_overhead_limit_count();
5539     _collectorState = Idling;
5540   }
5541 
5542   register_gc_end();
5543 }
5544 
5545 // Same as above but for STW paths
5546 void CMSCollector::reset_stw() {
5547   // already have the lock
5548   assert(_collectorState == Resetting, "just checking");
5549   assert_lock_strong(bitMapLock());
5550   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5551   _markBitMap.clear_all();
5552   _collectorState = Idling;
5553   register_gc_end();
5554 }
5555 
5556 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5557   GCTraceCPUTime tcpu;
5558   TraceCollectorStats tcs(counters());
5559 
5560   switch (op) {
5561     case CMS_op_checkpointRootsInitial: {
5562       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5563       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5564       checkpointRootsInitial();
5565       break;
5566     }
5567     case CMS_op_checkpointRootsFinal: {
5568       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5569       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5570       checkpointRootsFinal();
5571       break;
5572     }
5573     default:
5574       fatal("No such CMS_op");
5575   }
5576 }
5577 
5578 #ifndef PRODUCT
5579 size_t const CMSCollector::skip_header_HeapWords() {
5580   return FreeChunk::header_size();
5581 }
5582 
5583 // Try and collect here conditions that should hold when
5584 // CMS thread is exiting. The idea is that the foreground GC
5585 // thread should not be blocked if it wants to terminate
5586 // the CMS thread and yet continue to run the VM for a while
5587 // after that.
5588 void CMSCollector::verify_ok_to_terminate() const {
5589   assert(Thread::current()->is_ConcurrentGC_thread(),
5590          "should be called by CMS thread");
5591   assert(!_foregroundGCShouldWait, "should be false");
5592   // We could check here that all the various low-level locks
5593   // are not held by the CMS thread, but that is overkill; see
5594   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5595   // is checked.
5596 }
5597 #endif
5598 
5599 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5600    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5601           "missing Printezis mark?");
5602   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5603   size_t size = pointer_delta(nextOneAddr + 1, addr);
5604   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5605          "alignment problem");
5606   assert(size >= 3, "Necessary for Printezis marks to work");
5607   return size;
5608 }
5609 
5610 // A variant of the above (block_size_using_printezis_bits()) except
5611 // that we return 0 if the P-bits are not yet set.
5612 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5613   if (_markBitMap.isMarked(addr + 1)) {
5614     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5615     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5616     size_t size = pointer_delta(nextOneAddr + 1, addr);
5617     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5618            "alignment problem");
5619     assert(size >= 3, "Necessary for Printezis marks to work");
5620     return size;
5621   }
5622   return 0;
5623 }
5624 
5625 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5626   size_t sz = 0;
5627   oop p = (oop)addr;
5628   if (p->klass_or_null_acquire() != NULL) {
5629     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5630   } else {
5631     sz = block_size_using_printezis_bits(addr);
5632   }
5633   assert(sz > 0, "size must be nonzero");
5634   HeapWord* next_block = addr + sz;
5635   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5636                                              CardTableModRefBS::card_size);
5637   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5638          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5639          "must be different cards");
5640   return next_card;
5641 }
5642 
5643 
5644 // CMS Bit Map Wrapper /////////////////////////////////////////
5645 
5646 // Construct a CMS bit map infrastructure, but don't create the
5647 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5648 // further below.
5649 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5650   _bm(),
5651   _shifter(shifter),
5652   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5653                                     Monitor::_safepoint_check_sometimes) : NULL)
5654 {
5655   _bmStartWord = 0;
5656   _bmWordSize  = 0;
5657 }
5658 
5659 bool CMSBitMap::allocate(MemRegion mr) {
5660   _bmStartWord = mr.start();
5661   _bmWordSize  = mr.word_size();
5662   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5663                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5664   if (!brs.is_reserved()) {
5665     log_warning(gc)("CMS bit map allocation failure");
5666     return false;
5667   }
5668   // For now we'll just commit all of the bit map up front.
5669   // Later on we'll try to be more parsimonious with swap.
5670   if (!_virtual_space.initialize(brs, brs.size())) {
5671     log_warning(gc)("CMS bit map backing store failure");
5672     return false;
5673   }
5674   assert(_virtual_space.committed_size() == brs.size(),
5675          "didn't reserve backing store for all of CMS bit map?");
5676   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5677          _bmWordSize, "inconsistency in bit map sizing");
5678   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5679 
5680   // bm.clear(); // can we rely on getting zero'd memory? verify below
5681   assert(isAllClear(),
5682          "Expected zero'd memory from ReservedSpace constructor");
5683   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5684          "consistency check");
5685   return true;
5686 }
5687 
5688 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5689   HeapWord *next_addr, *end_addr, *last_addr;
5690   assert_locked();
5691   assert(covers(mr), "out-of-range error");
5692   // XXX assert that start and end are appropriately aligned
5693   for (next_addr = mr.start(), end_addr = mr.end();
5694        next_addr < end_addr; next_addr = last_addr) {
5695     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5696     last_addr = dirty_region.end();
5697     if (!dirty_region.is_empty()) {
5698       cl->do_MemRegion(dirty_region);
5699     } else {
5700       assert(last_addr == end_addr, "program logic");
5701       return;
5702     }
5703   }
5704 }
5705 
5706 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5707   _bm.print_on_error(st, prefix);
5708 }
5709 
5710 #ifndef PRODUCT
5711 void CMSBitMap::assert_locked() const {
5712   CMSLockVerifier::assert_locked(lock());
5713 }
5714 
5715 bool CMSBitMap::covers(MemRegion mr) const {
5716   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5717   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5718          "size inconsistency");
5719   return (mr.start() >= _bmStartWord) &&
5720          (mr.end()   <= endWord());
5721 }
5722 
5723 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5724     return (start >= _bmStartWord && (start + size) <= endWord());
5725 }
5726 
5727 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5728   // verify that there are no 1 bits in the interval [left, right)
5729   FalseBitMapClosure falseBitMapClosure;
5730   iterate(&falseBitMapClosure, left, right);
5731 }
5732 
5733 void CMSBitMap::region_invariant(MemRegion mr)
5734 {
5735   assert_locked();
5736   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5737   assert(!mr.is_empty(), "unexpected empty region");
5738   assert(covers(mr), "mr should be covered by bit map");
5739   // convert address range into offset range
5740   size_t start_ofs = heapWordToOffset(mr.start());
5741   // Make sure that end() is appropriately aligned
5742   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5743                         (1 << (_shifter+LogHeapWordSize))),
5744          "Misaligned mr.end()");
5745   size_t end_ofs   = heapWordToOffset(mr.end());
5746   assert(end_ofs > start_ofs, "Should mark at least one bit");
5747 }
5748 
5749 #endif
5750 
5751 bool CMSMarkStack::allocate(size_t size) {
5752   // allocate a stack of the requisite depth
5753   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5754                    size * sizeof(oop)));
5755   if (!rs.is_reserved()) {
5756     log_warning(gc)("CMSMarkStack allocation failure");
5757     return false;
5758   }
5759   if (!_virtual_space.initialize(rs, rs.size())) {
5760     log_warning(gc)("CMSMarkStack backing store failure");
5761     return false;
5762   }
5763   assert(_virtual_space.committed_size() == rs.size(),
5764          "didn't reserve backing store for all of CMS stack?");
5765   _base = (oop*)(_virtual_space.low());
5766   _index = 0;
5767   _capacity = size;
5768   NOT_PRODUCT(_max_depth = 0);
5769   return true;
5770 }
5771 
5772 // XXX FIX ME !!! In the MT case we come in here holding a
5773 // leaf lock. For printing we need to take a further lock
5774 // which has lower rank. We need to recalibrate the two
5775 // lock-ranks involved in order to be able to print the
5776 // messages below. (Or defer the printing to the caller.
5777 // For now we take the expedient path of just disabling the
5778 // messages for the problematic case.)
5779 void CMSMarkStack::expand() {
5780   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5781   if (_capacity == MarkStackSizeMax) {
5782     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5783       // We print a warning message only once per CMS cycle.
5784       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5785     }
5786     return;
5787   }
5788   // Double capacity if possible
5789   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5790   // Do not give up existing stack until we have managed to
5791   // get the double capacity that we desired.
5792   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5793                    new_capacity * sizeof(oop)));
5794   if (rs.is_reserved()) {
5795     // Release the backing store associated with old stack
5796     _virtual_space.release();
5797     // Reinitialize virtual space for new stack
5798     if (!_virtual_space.initialize(rs, rs.size())) {
5799       fatal("Not enough swap for expanded marking stack");
5800     }
5801     _base = (oop*)(_virtual_space.low());
5802     _index = 0;
5803     _capacity = new_capacity;
5804   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5805     // Failed to double capacity, continue;
5806     // we print a detail message only once per CMS cycle.
5807     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5808                         _capacity / K, new_capacity / K);
5809   }
5810 }
5811 
5812 
5813 // Closures
5814 // XXX: there seems to be a lot of code  duplication here;
5815 // should refactor and consolidate common code.
5816 
5817 // This closure is used to mark refs into the CMS generation in
5818 // the CMS bit map. Called at the first checkpoint. This closure
5819 // assumes that we do not need to re-mark dirty cards; if the CMS
5820 // generation on which this is used is not an oldest
5821 // generation then this will lose younger_gen cards!
5822 
5823 MarkRefsIntoClosure::MarkRefsIntoClosure(
5824   MemRegion span, CMSBitMap* bitMap):
5825     _span(span),
5826     _bitMap(bitMap)
5827 {
5828   assert(ref_processor() == NULL, "deliberately left NULL");
5829   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5830 }
5831 
5832 void MarkRefsIntoClosure::do_oop(oop obj) {
5833   // if p points into _span, then mark corresponding bit in _markBitMap
5834   assert(obj->is_oop(), "expected an oop");
5835   HeapWord* addr = (HeapWord*)obj;
5836   if (_span.contains(addr)) {
5837     // this should be made more efficient
5838     _bitMap->mark(addr);
5839   }
5840 }
5841 
5842 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5843 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5844 
5845 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5846   MemRegion span, CMSBitMap* bitMap):
5847     _span(span),
5848     _bitMap(bitMap)
5849 {
5850   assert(ref_processor() == NULL, "deliberately left NULL");
5851   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5852 }
5853 
5854 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5855   // if p points into _span, then mark corresponding bit in _markBitMap
5856   assert(obj->is_oop(), "expected an oop");
5857   HeapWord* addr = (HeapWord*)obj;
5858   if (_span.contains(addr)) {
5859     // this should be made more efficient
5860     _bitMap->par_mark(addr);
5861   }
5862 }
5863 
5864 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5865 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5866 
5867 // A variant of the above, used for CMS marking verification.
5868 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5869   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5870     _span(span),
5871     _verification_bm(verification_bm),
5872     _cms_bm(cms_bm)
5873 {
5874   assert(ref_processor() == NULL, "deliberately left NULL");
5875   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5876 }
5877 
5878 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5879   // if p points into _span, then mark corresponding bit in _markBitMap
5880   assert(obj->is_oop(), "expected an oop");
5881   HeapWord* addr = (HeapWord*)obj;
5882   if (_span.contains(addr)) {
5883     _verification_bm->mark(addr);
5884     if (!_cms_bm->isMarked(addr)) {
5885       Log(gc, verify) log;
5886       ResourceMark rm;
5887       // Unconditional write?
5888       LogStream ls(log.error());
5889       oop(addr)->print_on(&ls);
5890       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5891       fatal("... aborting");
5892     }
5893   }
5894 }
5895 
5896 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5897 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5898 
5899 //////////////////////////////////////////////////
5900 // MarkRefsIntoAndScanClosure
5901 //////////////////////////////////////////////////
5902 
5903 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5904                                                        ReferenceProcessor* rp,
5905                                                        CMSBitMap* bit_map,
5906                                                        CMSBitMap* mod_union_table,
5907                                                        CMSMarkStack*  mark_stack,
5908                                                        CMSCollector* collector,
5909                                                        bool should_yield,
5910                                                        bool concurrent_precleaning):
5911   _collector(collector),
5912   _span(span),
5913   _bit_map(bit_map),
5914   _mark_stack(mark_stack),
5915   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5916                       mark_stack, concurrent_precleaning),
5917   _yield(should_yield),
5918   _concurrent_precleaning(concurrent_precleaning),
5919   _freelistLock(NULL)
5920 {
5921   // FIXME: Should initialize in base class constructor.
5922   assert(rp != NULL, "ref_processor shouldn't be NULL");
5923   set_ref_processor_internal(rp);
5924 }
5925 
5926 // This closure is used to mark refs into the CMS generation at the
5927 // second (final) checkpoint, and to scan and transitively follow
5928 // the unmarked oops. It is also used during the concurrent precleaning
5929 // phase while scanning objects on dirty cards in the CMS generation.
5930 // The marks are made in the marking bit map and the marking stack is
5931 // used for keeping the (newly) grey objects during the scan.
5932 // The parallel version (Par_...) appears further below.
5933 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5934   if (obj != NULL) {
5935     assert(obj->is_oop(), "expected an oop");
5936     HeapWord* addr = (HeapWord*)obj;
5937     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5938     assert(_collector->overflow_list_is_empty(),
5939            "overflow list should be empty");
5940     if (_span.contains(addr) &&
5941         !_bit_map->isMarked(addr)) {
5942       // mark bit map (object is now grey)
5943       _bit_map->mark(addr);
5944       // push on marking stack (stack should be empty), and drain the
5945       // stack by applying this closure to the oops in the oops popped
5946       // from the stack (i.e. blacken the grey objects)
5947       bool res = _mark_stack->push(obj);
5948       assert(res, "Should have space to push on empty stack");
5949       do {
5950         oop new_oop = _mark_stack->pop();
5951         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5952         assert(_bit_map->isMarked((HeapWord*)new_oop),
5953                "only grey objects on this stack");
5954         // iterate over the oops in this oop, marking and pushing
5955         // the ones in CMS heap (i.e. in _span).
5956         new_oop->oop_iterate(&_pushAndMarkClosure);
5957         // check if it's time to yield
5958         do_yield_check();
5959       } while (!_mark_stack->isEmpty() ||
5960                (!_concurrent_precleaning && take_from_overflow_list()));
5961         // if marking stack is empty, and we are not doing this
5962         // during precleaning, then check the overflow list
5963     }
5964     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5965     assert(_collector->overflow_list_is_empty(),
5966            "overflow list was drained above");
5967 
5968     assert(_collector->no_preserved_marks(),
5969            "All preserved marks should have been restored above");
5970   }
5971 }
5972 
5973 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5974 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5975 
5976 void MarkRefsIntoAndScanClosure::do_yield_work() {
5977   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5978          "CMS thread should hold CMS token");
5979   assert_lock_strong(_freelistLock);
5980   assert_lock_strong(_bit_map->lock());
5981   // relinquish the free_list_lock and bitMaplock()
5982   _bit_map->lock()->unlock();
5983   _freelistLock->unlock();
5984   ConcurrentMarkSweepThread::desynchronize(true);
5985   _collector->stopTimer();
5986   _collector->incrementYields();
5987 
5988   // See the comment in coordinator_yield()
5989   for (unsigned i = 0;
5990        i < CMSYieldSleepCount &&
5991        ConcurrentMarkSweepThread::should_yield() &&
5992        !CMSCollector::foregroundGCIsActive();
5993        ++i) {
5994     os::sleep(Thread::current(), 1, false);
5995   }
5996 
5997   ConcurrentMarkSweepThread::synchronize(true);
5998   _freelistLock->lock_without_safepoint_check();
5999   _bit_map->lock()->lock_without_safepoint_check();
6000   _collector->startTimer();
6001 }
6002 
6003 ///////////////////////////////////////////////////////////
6004 // ParMarkRefsIntoAndScanClosure: a parallel version of
6005 //                                MarkRefsIntoAndScanClosure
6006 ///////////////////////////////////////////////////////////
6007 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6008   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6009   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6010   _span(span),
6011   _bit_map(bit_map),
6012   _work_queue(work_queue),
6013   _low_water_mark(MIN2((work_queue->max_elems()/4),
6014                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6015   _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6016 {
6017   // FIXME: Should initialize in base class constructor.
6018   assert(rp != NULL, "ref_processor shouldn't be NULL");
6019   set_ref_processor_internal(rp);
6020 }
6021 
6022 // This closure is used to mark refs into the CMS generation at the
6023 // second (final) checkpoint, and to scan and transitively follow
6024 // the unmarked oops. The marks are made in the marking bit map and
6025 // the work_queue is used for keeping the (newly) grey objects during
6026 // the scan phase whence they are also available for stealing by parallel
6027 // threads. Since the marking bit map is shared, updates are
6028 // synchronized (via CAS).
6029 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6030   if (obj != NULL) {
6031     // Ignore mark word because this could be an already marked oop
6032     // that may be chained at the end of the overflow list.
6033     assert(obj->is_oop(true), "expected an oop");
6034     HeapWord* addr = (HeapWord*)obj;
6035     if (_span.contains(addr) &&
6036         !_bit_map->isMarked(addr)) {
6037       // mark bit map (object will become grey):
6038       // It is possible for several threads to be
6039       // trying to "claim" this object concurrently;
6040       // the unique thread that succeeds in marking the
6041       // object first will do the subsequent push on
6042       // to the work queue (or overflow list).
6043       if (_bit_map->par_mark(addr)) {
6044         // push on work_queue (which may not be empty), and trim the
6045         // queue to an appropriate length by applying this closure to
6046         // the oops in the oops popped from the stack (i.e. blacken the
6047         // grey objects)
6048         bool res = _work_queue->push(obj);
6049         assert(res, "Low water mark should be less than capacity?");
6050         trim_queue(_low_water_mark);
6051       } // Else, another thread claimed the object
6052     }
6053   }
6054 }
6055 
6056 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6057 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6058 
6059 // This closure is used to rescan the marked objects on the dirty cards
6060 // in the mod union table and the card table proper.
6061 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6062   oop p, MemRegion mr) {
6063 
6064   size_t size = 0;
6065   HeapWord* addr = (HeapWord*)p;
6066   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6067   assert(_span.contains(addr), "we are scanning the CMS generation");
6068   // check if it's time to yield
6069   if (do_yield_check()) {
6070     // We yielded for some foreground stop-world work,
6071     // and we have been asked to abort this ongoing preclean cycle.
6072     return 0;
6073   }
6074   if (_bitMap->isMarked(addr)) {
6075     // it's marked; is it potentially uninitialized?
6076     if (p->klass_or_null_acquire() != NULL) {
6077         // an initialized object; ignore mark word in verification below
6078         // since we are running concurrent with mutators
6079         assert(p->is_oop(true), "should be an oop");
6080         if (p->is_objArray()) {
6081           // objArrays are precisely marked; restrict scanning
6082           // to dirty cards only.
6083           size = CompactibleFreeListSpace::adjustObjectSize(
6084                    p->oop_iterate_size(_scanningClosure, mr));
6085         } else {
6086           // A non-array may have been imprecisely marked; we need
6087           // to scan object in its entirety.
6088           size = CompactibleFreeListSpace::adjustObjectSize(
6089                    p->oop_iterate_size(_scanningClosure));
6090         }
6091       #ifdef ASSERT
6092         size_t direct_size =
6093           CompactibleFreeListSpace::adjustObjectSize(p->size());
6094         assert(size == direct_size, "Inconsistency in size");
6095         assert(size >= 3, "Necessary for Printezis marks to work");
6096         HeapWord* start_pbit = addr + 1;
6097         HeapWord* end_pbit = addr + size - 1;
6098         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6099                "inconsistent Printezis mark");
6100         // Verify inner mark bits (between Printezis bits) are clear,
6101         // but don't repeat if there are multiple dirty regions for
6102         // the same object, to avoid potential O(N^2) performance.
6103         if (addr != _last_scanned_object) {
6104           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6105           _last_scanned_object = addr;
6106         }
6107       #endif // ASSERT
6108     } else {
6109       // An uninitialized object.
6110       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6111       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6112       size = pointer_delta(nextOneAddr + 1, addr);
6113       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6114              "alignment problem");
6115       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6116       // will dirty the card when the klass pointer is installed in the
6117       // object (signaling the completion of initialization).
6118     }
6119   } else {
6120     // Either a not yet marked object or an uninitialized object
6121     if (p->klass_or_null_acquire() == NULL) {
6122       // An uninitialized object, skip to the next card, since
6123       // we may not be able to read its P-bits yet.
6124       assert(size == 0, "Initial value");
6125     } else {
6126       // An object not (yet) reached by marking: we merely need to
6127       // compute its size so as to go look at the next block.
6128       assert(p->is_oop(true), "should be an oop");
6129       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6130     }
6131   }
6132   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6133   return size;
6134 }
6135 
6136 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6137   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6138          "CMS thread should hold CMS token");
6139   assert_lock_strong(_freelistLock);
6140   assert_lock_strong(_bitMap->lock());
6141   // relinquish the free_list_lock and bitMaplock()
6142   _bitMap->lock()->unlock();
6143   _freelistLock->unlock();
6144   ConcurrentMarkSweepThread::desynchronize(true);
6145   _collector->stopTimer();
6146   _collector->incrementYields();
6147 
6148   // See the comment in coordinator_yield()
6149   for (unsigned i = 0; i < CMSYieldSleepCount &&
6150                    ConcurrentMarkSweepThread::should_yield() &&
6151                    !CMSCollector::foregroundGCIsActive(); ++i) {
6152     os::sleep(Thread::current(), 1, false);
6153   }
6154 
6155   ConcurrentMarkSweepThread::synchronize(true);
6156   _freelistLock->lock_without_safepoint_check();
6157   _bitMap->lock()->lock_without_safepoint_check();
6158   _collector->startTimer();
6159 }
6160 
6161 
6162 //////////////////////////////////////////////////////////////////
6163 // SurvivorSpacePrecleanClosure
6164 //////////////////////////////////////////////////////////////////
6165 // This (single-threaded) closure is used to preclean the oops in
6166 // the survivor spaces.
6167 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6168 
6169   HeapWord* addr = (HeapWord*)p;
6170   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6171   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6172   assert(p->klass_or_null() != NULL, "object should be initialized");
6173   // an initialized object; ignore mark word in verification below
6174   // since we are running concurrent with mutators
6175   assert(p->is_oop(true), "should be an oop");
6176   // Note that we do not yield while we iterate over
6177   // the interior oops of p, pushing the relevant ones
6178   // on our marking stack.
6179   size_t size = p->oop_iterate_size(_scanning_closure);
6180   do_yield_check();
6181   // Observe that below, we do not abandon the preclean
6182   // phase as soon as we should; rather we empty the
6183   // marking stack before returning. This is to satisfy
6184   // some existing assertions. In general, it may be a
6185   // good idea to abort immediately and complete the marking
6186   // from the grey objects at a later time.
6187   while (!_mark_stack->isEmpty()) {
6188     oop new_oop = _mark_stack->pop();
6189     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6190     assert(_bit_map->isMarked((HeapWord*)new_oop),
6191            "only grey objects on this stack");
6192     // iterate over the oops in this oop, marking and pushing
6193     // the ones in CMS heap (i.e. in _span).
6194     new_oop->oop_iterate(_scanning_closure);
6195     // check if it's time to yield
6196     do_yield_check();
6197   }
6198   unsigned int after_count =
6199     GenCollectedHeap::heap()->total_collections();
6200   bool abort = (_before_count != after_count) ||
6201                _collector->should_abort_preclean();
6202   return abort ? 0 : size;
6203 }
6204 
6205 void SurvivorSpacePrecleanClosure::do_yield_work() {
6206   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6207          "CMS thread should hold CMS token");
6208   assert_lock_strong(_bit_map->lock());
6209   // Relinquish the bit map lock
6210   _bit_map->lock()->unlock();
6211   ConcurrentMarkSweepThread::desynchronize(true);
6212   _collector->stopTimer();
6213   _collector->incrementYields();
6214 
6215   // See the comment in coordinator_yield()
6216   for (unsigned i = 0; i < CMSYieldSleepCount &&
6217                        ConcurrentMarkSweepThread::should_yield() &&
6218                        !CMSCollector::foregroundGCIsActive(); ++i) {
6219     os::sleep(Thread::current(), 1, false);
6220   }
6221 
6222   ConcurrentMarkSweepThread::synchronize(true);
6223   _bit_map->lock()->lock_without_safepoint_check();
6224   _collector->startTimer();
6225 }
6226 
6227 // This closure is used to rescan the marked objects on the dirty cards
6228 // in the mod union table and the card table proper. In the parallel
6229 // case, although the bitMap is shared, we do a single read so the
6230 // isMarked() query is "safe".
6231 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6232   // Ignore mark word because we are running concurrent with mutators
6233   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6234   HeapWord* addr = (HeapWord*)p;
6235   assert(_span.contains(addr), "we are scanning the CMS generation");
6236   bool is_obj_array = false;
6237   #ifdef ASSERT
6238     if (!_parallel) {
6239       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6240       assert(_collector->overflow_list_is_empty(),
6241              "overflow list should be empty");
6242 
6243     }
6244   #endif // ASSERT
6245   if (_bit_map->isMarked(addr)) {
6246     // Obj arrays are precisely marked, non-arrays are not;
6247     // so we scan objArrays precisely and non-arrays in their
6248     // entirety.
6249     if (p->is_objArray()) {
6250       is_obj_array = true;
6251       if (_parallel) {
6252         p->oop_iterate(_par_scan_closure, mr);
6253       } else {
6254         p->oop_iterate(_scan_closure, mr);
6255       }
6256     } else {
6257       if (_parallel) {
6258         p->oop_iterate(_par_scan_closure);
6259       } else {
6260         p->oop_iterate(_scan_closure);
6261       }
6262     }
6263   }
6264   #ifdef ASSERT
6265     if (!_parallel) {
6266       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6267       assert(_collector->overflow_list_is_empty(),
6268              "overflow list should be empty");
6269 
6270     }
6271   #endif // ASSERT
6272   return is_obj_array;
6273 }
6274 
6275 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6276                         MemRegion span,
6277                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6278                         bool should_yield, bool verifying):
6279   _collector(collector),
6280   _span(span),
6281   _bitMap(bitMap),
6282   _mut(&collector->_modUnionTable),
6283   _markStack(markStack),
6284   _yield(should_yield),
6285   _skipBits(0)
6286 {
6287   assert(_markStack->isEmpty(), "stack should be empty");
6288   _finger = _bitMap->startWord();
6289   _threshold = _finger;
6290   assert(_collector->_restart_addr == NULL, "Sanity check");
6291   assert(_span.contains(_finger), "Out of bounds _finger?");
6292   DEBUG_ONLY(_verifying = verifying;)
6293 }
6294 
6295 void MarkFromRootsClosure::reset(HeapWord* addr) {
6296   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6297   assert(_span.contains(addr), "Out of bounds _finger?");
6298   _finger = addr;
6299   _threshold = (HeapWord*)round_to(
6300                  (intptr_t)_finger, CardTableModRefBS::card_size);
6301 }
6302 
6303 // Should revisit to see if this should be restructured for
6304 // greater efficiency.
6305 bool MarkFromRootsClosure::do_bit(size_t offset) {
6306   if (_skipBits > 0) {
6307     _skipBits--;
6308     return true;
6309   }
6310   // convert offset into a HeapWord*
6311   HeapWord* addr = _bitMap->startWord() + offset;
6312   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6313          "address out of range");
6314   assert(_bitMap->isMarked(addr), "tautology");
6315   if (_bitMap->isMarked(addr+1)) {
6316     // this is an allocated but not yet initialized object
6317     assert(_skipBits == 0, "tautology");
6318     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6319     oop p = oop(addr);
6320     if (p->klass_or_null_acquire() == NULL) {
6321       DEBUG_ONLY(if (!_verifying) {)
6322         // We re-dirty the cards on which this object lies and increase
6323         // the _threshold so that we'll come back to scan this object
6324         // during the preclean or remark phase. (CMSCleanOnEnter)
6325         if (CMSCleanOnEnter) {
6326           size_t sz = _collector->block_size_using_printezis_bits(addr);
6327           HeapWord* end_card_addr   = (HeapWord*)round_to(
6328                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6329           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6330           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6331           // Bump _threshold to end_card_addr; note that
6332           // _threshold cannot possibly exceed end_card_addr, anyhow.
6333           // This prevents future clearing of the card as the scan proceeds
6334           // to the right.
6335           assert(_threshold <= end_card_addr,
6336                  "Because we are just scanning into this object");
6337           if (_threshold < end_card_addr) {
6338             _threshold = end_card_addr;
6339           }
6340           if (p->klass_or_null_acquire() != NULL) {
6341             // Redirty the range of cards...
6342             _mut->mark_range(redirty_range);
6343           } // ...else the setting of klass will dirty the card anyway.
6344         }
6345       DEBUG_ONLY(})
6346       return true;
6347     }
6348   }
6349   scanOopsInOop(addr);
6350   return true;
6351 }
6352 
6353 // We take a break if we've been at this for a while,
6354 // so as to avoid monopolizing the locks involved.
6355 void MarkFromRootsClosure::do_yield_work() {
6356   // First give up the locks, then yield, then re-lock
6357   // We should probably use a constructor/destructor idiom to
6358   // do this unlock/lock or modify the MutexUnlocker class to
6359   // serve our purpose. XXX
6360   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6361          "CMS thread should hold CMS token");
6362   assert_lock_strong(_bitMap->lock());
6363   _bitMap->lock()->unlock();
6364   ConcurrentMarkSweepThread::desynchronize(true);
6365   _collector->stopTimer();
6366   _collector->incrementYields();
6367 
6368   // See the comment in coordinator_yield()
6369   for (unsigned i = 0; i < CMSYieldSleepCount &&
6370                        ConcurrentMarkSweepThread::should_yield() &&
6371                        !CMSCollector::foregroundGCIsActive(); ++i) {
6372     os::sleep(Thread::current(), 1, false);
6373   }
6374 
6375   ConcurrentMarkSweepThread::synchronize(true);
6376   _bitMap->lock()->lock_without_safepoint_check();
6377   _collector->startTimer();
6378 }
6379 
6380 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6381   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6382   assert(_markStack->isEmpty(),
6383          "should drain stack to limit stack usage");
6384   // convert ptr to an oop preparatory to scanning
6385   oop obj = oop(ptr);
6386   // Ignore mark word in verification below, since we
6387   // may be running concurrent with mutators.
6388   assert(obj->is_oop(true), "should be an oop");
6389   assert(_finger <= ptr, "_finger runneth ahead");
6390   // advance the finger to right end of this object
6391   _finger = ptr + obj->size();
6392   assert(_finger > ptr, "we just incremented it above");
6393   // On large heaps, it may take us some time to get through
6394   // the marking phase. During
6395   // this time it's possible that a lot of mutations have
6396   // accumulated in the card table and the mod union table --
6397   // these mutation records are redundant until we have
6398   // actually traced into the corresponding card.
6399   // Here, we check whether advancing the finger would make
6400   // us cross into a new card, and if so clear corresponding
6401   // cards in the MUT (preclean them in the card-table in the
6402   // future).
6403 
6404   DEBUG_ONLY(if (!_verifying) {)
6405     // The clean-on-enter optimization is disabled by default,
6406     // until we fix 6178663.
6407     if (CMSCleanOnEnter && (_finger > _threshold)) {
6408       // [_threshold, _finger) represents the interval
6409       // of cards to be cleared  in MUT (or precleaned in card table).
6410       // The set of cards to be cleared is all those that overlap
6411       // with the interval [_threshold, _finger); note that
6412       // _threshold is always kept card-aligned but _finger isn't
6413       // always card-aligned.
6414       HeapWord* old_threshold = _threshold;
6415       assert(old_threshold == (HeapWord*)round_to(
6416               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6417              "_threshold should always be card-aligned");
6418       _threshold = (HeapWord*)round_to(
6419                      (intptr_t)_finger, CardTableModRefBS::card_size);
6420       MemRegion mr(old_threshold, _threshold);
6421       assert(!mr.is_empty(), "Control point invariant");
6422       assert(_span.contains(mr), "Should clear within span");
6423       _mut->clear_range(mr);
6424     }
6425   DEBUG_ONLY(})
6426   // Note: the finger doesn't advance while we drain
6427   // the stack below.
6428   PushOrMarkClosure pushOrMarkClosure(_collector,
6429                                       _span, _bitMap, _markStack,
6430                                       _finger, this);
6431   bool res = _markStack->push(obj);
6432   assert(res, "Empty non-zero size stack should have space for single push");
6433   while (!_markStack->isEmpty()) {
6434     oop new_oop = _markStack->pop();
6435     // Skip verifying header mark word below because we are
6436     // running concurrent with mutators.
6437     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6438     // now scan this oop's oops
6439     new_oop->oop_iterate(&pushOrMarkClosure);
6440     do_yield_check();
6441   }
6442   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6443 }
6444 
6445 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6446                        CMSCollector* collector, MemRegion span,
6447                        CMSBitMap* bit_map,
6448                        OopTaskQueue* work_queue,
6449                        CMSMarkStack*  overflow_stack):
6450   _collector(collector),
6451   _whole_span(collector->_span),
6452   _span(span),
6453   _bit_map(bit_map),
6454   _mut(&collector->_modUnionTable),
6455   _work_queue(work_queue),
6456   _overflow_stack(overflow_stack),
6457   _skip_bits(0),
6458   _task(task)
6459 {
6460   assert(_work_queue->size() == 0, "work_queue should be empty");
6461   _finger = span.start();
6462   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6463   assert(_span.contains(_finger), "Out of bounds _finger?");
6464 }
6465 
6466 // Should revisit to see if this should be restructured for
6467 // greater efficiency.
6468 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6469   if (_skip_bits > 0) {
6470     _skip_bits--;
6471     return true;
6472   }
6473   // convert offset into a HeapWord*
6474   HeapWord* addr = _bit_map->startWord() + offset;
6475   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6476          "address out of range");
6477   assert(_bit_map->isMarked(addr), "tautology");
6478   if (_bit_map->isMarked(addr+1)) {
6479     // this is an allocated object that might not yet be initialized
6480     assert(_skip_bits == 0, "tautology");
6481     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6482     oop p = oop(addr);
6483     if (p->klass_or_null_acquire() == NULL) {
6484       // in the case of Clean-on-Enter optimization, redirty card
6485       // and avoid clearing card by increasing  the threshold.
6486       return true;
6487     }
6488   }
6489   scan_oops_in_oop(addr);
6490   return true;
6491 }
6492 
6493 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6494   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6495   // Should we assert that our work queue is empty or
6496   // below some drain limit?
6497   assert(_work_queue->size() == 0,
6498          "should drain stack to limit stack usage");
6499   // convert ptr to an oop preparatory to scanning
6500   oop obj = oop(ptr);
6501   // Ignore mark word in verification below, since we
6502   // may be running concurrent with mutators.
6503   assert(obj->is_oop(true), "should be an oop");
6504   assert(_finger <= ptr, "_finger runneth ahead");
6505   // advance the finger to right end of this object
6506   _finger = ptr + obj->size();
6507   assert(_finger > ptr, "we just incremented it above");
6508   // On large heaps, it may take us some time to get through
6509   // the marking phase. During
6510   // this time it's possible that a lot of mutations have
6511   // accumulated in the card table and the mod union table --
6512   // these mutation records are redundant until we have
6513   // actually traced into the corresponding card.
6514   // Here, we check whether advancing the finger would make
6515   // us cross into a new card, and if so clear corresponding
6516   // cards in the MUT (preclean them in the card-table in the
6517   // future).
6518 
6519   // The clean-on-enter optimization is disabled by default,
6520   // until we fix 6178663.
6521   if (CMSCleanOnEnter && (_finger > _threshold)) {
6522     // [_threshold, _finger) represents the interval
6523     // of cards to be cleared  in MUT (or precleaned in card table).
6524     // The set of cards to be cleared is all those that overlap
6525     // with the interval [_threshold, _finger); note that
6526     // _threshold is always kept card-aligned but _finger isn't
6527     // always card-aligned.
6528     HeapWord* old_threshold = _threshold;
6529     assert(old_threshold == (HeapWord*)round_to(
6530             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6531            "_threshold should always be card-aligned");
6532     _threshold = (HeapWord*)round_to(
6533                    (intptr_t)_finger, CardTableModRefBS::card_size);
6534     MemRegion mr(old_threshold, _threshold);
6535     assert(!mr.is_empty(), "Control point invariant");
6536     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6537     _mut->clear_range(mr);
6538   }
6539 
6540   // Note: the local finger doesn't advance while we drain
6541   // the stack below, but the global finger sure can and will.
6542   HeapWord* volatile* gfa = _task->global_finger_addr();
6543   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6544                                          _span, _bit_map,
6545                                          _work_queue,
6546                                          _overflow_stack,
6547                                          _finger,
6548                                          gfa, this);
6549   bool res = _work_queue->push(obj);   // overflow could occur here
6550   assert(res, "Will hold once we use workqueues");
6551   while (true) {
6552     oop new_oop;
6553     if (!_work_queue->pop_local(new_oop)) {
6554       // We emptied our work_queue; check if there's stuff that can
6555       // be gotten from the overflow stack.
6556       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6557             _overflow_stack, _work_queue)) {
6558         do_yield_check();
6559         continue;
6560       } else {  // done
6561         break;
6562       }
6563     }
6564     // Skip verifying header mark word below because we are
6565     // running concurrent with mutators.
6566     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6567     // now scan this oop's oops
6568     new_oop->oop_iterate(&pushOrMarkClosure);
6569     do_yield_check();
6570   }
6571   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6572 }
6573 
6574 // Yield in response to a request from VM Thread or
6575 // from mutators.
6576 void ParMarkFromRootsClosure::do_yield_work() {
6577   assert(_task != NULL, "sanity");
6578   _task->yield();
6579 }
6580 
6581 // A variant of the above used for verifying CMS marking work.
6582 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6583                         MemRegion span,
6584                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6585                         CMSMarkStack*  mark_stack):
6586   _collector(collector),
6587   _span(span),
6588   _verification_bm(verification_bm),
6589   _cms_bm(cms_bm),
6590   _mark_stack(mark_stack),
6591   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6592                       mark_stack)
6593 {
6594   assert(_mark_stack->isEmpty(), "stack should be empty");
6595   _finger = _verification_bm->startWord();
6596   assert(_collector->_restart_addr == NULL, "Sanity check");
6597   assert(_span.contains(_finger), "Out of bounds _finger?");
6598 }
6599 
6600 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6601   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6602   assert(_span.contains(addr), "Out of bounds _finger?");
6603   _finger = addr;
6604 }
6605 
6606 // Should revisit to see if this should be restructured for
6607 // greater efficiency.
6608 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6609   // convert offset into a HeapWord*
6610   HeapWord* addr = _verification_bm->startWord() + offset;
6611   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6612          "address out of range");
6613   assert(_verification_bm->isMarked(addr), "tautology");
6614   assert(_cms_bm->isMarked(addr), "tautology");
6615 
6616   assert(_mark_stack->isEmpty(),
6617          "should drain stack to limit stack usage");
6618   // convert addr to an oop preparatory to scanning
6619   oop obj = oop(addr);
6620   assert(obj->is_oop(), "should be an oop");
6621   assert(_finger <= addr, "_finger runneth ahead");
6622   // advance the finger to right end of this object
6623   _finger = addr + obj->size();
6624   assert(_finger > addr, "we just incremented it above");
6625   // Note: the finger doesn't advance while we drain
6626   // the stack below.
6627   bool res = _mark_stack->push(obj);
6628   assert(res, "Empty non-zero size stack should have space for single push");
6629   while (!_mark_stack->isEmpty()) {
6630     oop new_oop = _mark_stack->pop();
6631     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6632     // now scan this oop's oops
6633     new_oop->oop_iterate(&_pam_verify_closure);
6634   }
6635   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6636   return true;
6637 }
6638 
6639 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6640   CMSCollector* collector, MemRegion span,
6641   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6642   CMSMarkStack*  mark_stack):
6643   MetadataAwareOopClosure(collector->ref_processor()),
6644   _collector(collector),
6645   _span(span),
6646   _verification_bm(verification_bm),
6647   _cms_bm(cms_bm),
6648   _mark_stack(mark_stack)
6649 { }
6650 
6651 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6652 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6653 
6654 // Upon stack overflow, we discard (part of) the stack,
6655 // remembering the least address amongst those discarded
6656 // in CMSCollector's _restart_address.
6657 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6658   // Remember the least grey address discarded
6659   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6660   _collector->lower_restart_addr(ra);
6661   _mark_stack->reset();  // discard stack contents
6662   _mark_stack->expand(); // expand the stack if possible
6663 }
6664 
6665 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6666   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6667   HeapWord* addr = (HeapWord*)obj;
6668   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6669     // Oop lies in _span and isn't yet grey or black
6670     _verification_bm->mark(addr);            // now grey
6671     if (!_cms_bm->isMarked(addr)) {
6672       Log(gc, verify) log;
6673       ResourceMark rm;
6674       // Unconditional write?
6675       LogStream ls(log.error());
6676       oop(addr)->print_on(&ls);
6677       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6678       fatal("... aborting");
6679     }
6680 
6681     if (!_mark_stack->push(obj)) { // stack overflow
6682       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6683       assert(_mark_stack->isFull(), "Else push should have succeeded");
6684       handle_stack_overflow(addr);
6685     }
6686     // anything including and to the right of _finger
6687     // will be scanned as we iterate over the remainder of the
6688     // bit map
6689   }
6690 }
6691 
6692 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6693                      MemRegion span,
6694                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6695                      HeapWord* finger, MarkFromRootsClosure* parent) :
6696   MetadataAwareOopClosure(collector->ref_processor()),
6697   _collector(collector),
6698   _span(span),
6699   _bitMap(bitMap),
6700   _markStack(markStack),
6701   _finger(finger),
6702   _parent(parent)
6703 { }
6704 
6705 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6706                                            MemRegion span,
6707                                            CMSBitMap* bit_map,
6708                                            OopTaskQueue* work_queue,
6709                                            CMSMarkStack*  overflow_stack,
6710                                            HeapWord* finger,
6711                                            HeapWord* volatile* global_finger_addr,
6712                                            ParMarkFromRootsClosure* parent) :
6713   MetadataAwareOopClosure(collector->ref_processor()),
6714   _collector(collector),
6715   _whole_span(collector->_span),
6716   _span(span),
6717   _bit_map(bit_map),
6718   _work_queue(work_queue),
6719   _overflow_stack(overflow_stack),
6720   _finger(finger),
6721   _global_finger_addr(global_finger_addr),
6722   _parent(parent)
6723 { }
6724 
6725 // Assumes thread-safe access by callers, who are
6726 // responsible for mutual exclusion.
6727 void CMSCollector::lower_restart_addr(HeapWord* low) {
6728   assert(_span.contains(low), "Out of bounds addr");
6729   if (_restart_addr == NULL) {
6730     _restart_addr = low;
6731   } else {
6732     _restart_addr = MIN2(_restart_addr, low);
6733   }
6734 }
6735 
6736 // Upon stack overflow, we discard (part of) the stack,
6737 // remembering the least address amongst those discarded
6738 // in CMSCollector's _restart_address.
6739 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6740   // Remember the least grey address discarded
6741   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6742   _collector->lower_restart_addr(ra);
6743   _markStack->reset();  // discard stack contents
6744   _markStack->expand(); // expand the stack if possible
6745 }
6746 
6747 // Upon stack overflow, we discard (part of) the stack,
6748 // remembering the least address amongst those discarded
6749 // in CMSCollector's _restart_address.
6750 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6751   // We need to do this under a mutex to prevent other
6752   // workers from interfering with the work done below.
6753   MutexLockerEx ml(_overflow_stack->par_lock(),
6754                    Mutex::_no_safepoint_check_flag);
6755   // Remember the least grey address discarded
6756   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6757   _collector->lower_restart_addr(ra);
6758   _overflow_stack->reset();  // discard stack contents
6759   _overflow_stack->expand(); // expand the stack if possible
6760 }
6761 
6762 void PushOrMarkClosure::do_oop(oop obj) {
6763   // Ignore mark word because we are running concurrent with mutators.
6764   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6765   HeapWord* addr = (HeapWord*)obj;
6766   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6767     // Oop lies in _span and isn't yet grey or black
6768     _bitMap->mark(addr);            // now grey
6769     if (addr < _finger) {
6770       // the bit map iteration has already either passed, or
6771       // sampled, this bit in the bit map; we'll need to
6772       // use the marking stack to scan this oop's oops.
6773       bool simulate_overflow = false;
6774       NOT_PRODUCT(
6775         if (CMSMarkStackOverflowALot &&
6776             _collector->simulate_overflow()) {
6777           // simulate a stack overflow
6778           simulate_overflow = true;
6779         }
6780       )
6781       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6782         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6783         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6784         handle_stack_overflow(addr);
6785       }
6786     }
6787     // anything including and to the right of _finger
6788     // will be scanned as we iterate over the remainder of the
6789     // bit map
6790     do_yield_check();
6791   }
6792 }
6793 
6794 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6795 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6796 
6797 void ParPushOrMarkClosure::do_oop(oop obj) {
6798   // Ignore mark word because we are running concurrent with mutators.
6799   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6800   HeapWord* addr = (HeapWord*)obj;
6801   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6802     // Oop lies in _span and isn't yet grey or black
6803     // We read the global_finger (volatile read) strictly after marking oop
6804     bool res = _bit_map->par_mark(addr);    // now grey
6805     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6806     // Should we push this marked oop on our stack?
6807     // -- if someone else marked it, nothing to do
6808     // -- if target oop is above global finger nothing to do
6809     // -- if target oop is in chunk and above local finger
6810     //      then nothing to do
6811     // -- else push on work queue
6812     if (   !res       // someone else marked it, they will deal with it
6813         || (addr >= *gfa)  // will be scanned in a later task
6814         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6815       return;
6816     }
6817     // the bit map iteration has already either passed, or
6818     // sampled, this bit in the bit map; we'll need to
6819     // use the marking stack to scan this oop's oops.
6820     bool simulate_overflow = false;
6821     NOT_PRODUCT(
6822       if (CMSMarkStackOverflowALot &&
6823           _collector->simulate_overflow()) {
6824         // simulate a stack overflow
6825         simulate_overflow = true;
6826       }
6827     )
6828     if (simulate_overflow ||
6829         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6830       // stack overflow
6831       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6832       // We cannot assert that the overflow stack is full because
6833       // it may have been emptied since.
6834       assert(simulate_overflow ||
6835              _work_queue->size() == _work_queue->max_elems(),
6836             "Else push should have succeeded");
6837       handle_stack_overflow(addr);
6838     }
6839     do_yield_check();
6840   }
6841 }
6842 
6843 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6844 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6845 
6846 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6847                                        MemRegion span,
6848                                        ReferenceProcessor* rp,
6849                                        CMSBitMap* bit_map,
6850                                        CMSBitMap* mod_union_table,
6851                                        CMSMarkStack*  mark_stack,
6852                                        bool           concurrent_precleaning):
6853   MetadataAwareOopClosure(rp),
6854   _collector(collector),
6855   _span(span),
6856   _bit_map(bit_map),
6857   _mod_union_table(mod_union_table),
6858   _mark_stack(mark_stack),
6859   _concurrent_precleaning(concurrent_precleaning)
6860 {
6861   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6862 }
6863 
6864 // Grey object rescan during pre-cleaning and second checkpoint phases --
6865 // the non-parallel version (the parallel version appears further below.)
6866 void PushAndMarkClosure::do_oop(oop obj) {
6867   // Ignore mark word verification. If during concurrent precleaning,
6868   // the object monitor may be locked. If during the checkpoint
6869   // phases, the object may already have been reached by a  different
6870   // path and may be at the end of the global overflow list (so
6871   // the mark word may be NULL).
6872   assert(obj->is_oop_or_null(true /* ignore mark word */),
6873          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6874   HeapWord* addr = (HeapWord*)obj;
6875   // Check if oop points into the CMS generation
6876   // and is not marked
6877   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6878     // a white object ...
6879     _bit_map->mark(addr);         // ... now grey
6880     // push on the marking stack (grey set)
6881     bool simulate_overflow = false;
6882     NOT_PRODUCT(
6883       if (CMSMarkStackOverflowALot &&
6884           _collector->simulate_overflow()) {
6885         // simulate a stack overflow
6886         simulate_overflow = true;
6887       }
6888     )
6889     if (simulate_overflow || !_mark_stack->push(obj)) {
6890       if (_concurrent_precleaning) {
6891          // During precleaning we can just dirty the appropriate card(s)
6892          // in the mod union table, thus ensuring that the object remains
6893          // in the grey set  and continue. In the case of object arrays
6894          // we need to dirty all of the cards that the object spans,
6895          // since the rescan of object arrays will be limited to the
6896          // dirty cards.
6897          // Note that no one can be interfering with us in this action
6898          // of dirtying the mod union table, so no locking or atomics
6899          // are required.
6900          if (obj->is_objArray()) {
6901            size_t sz = obj->size();
6902            HeapWord* end_card_addr = (HeapWord*)round_to(
6903                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6904            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6905            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6906            _mod_union_table->mark_range(redirty_range);
6907          } else {
6908            _mod_union_table->mark(addr);
6909          }
6910          _collector->_ser_pmc_preclean_ovflw++;
6911       } else {
6912          // During the remark phase, we need to remember this oop
6913          // in the overflow list.
6914          _collector->push_on_overflow_list(obj);
6915          _collector->_ser_pmc_remark_ovflw++;
6916       }
6917     }
6918   }
6919 }
6920 
6921 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6922                                              MemRegion span,
6923                                              ReferenceProcessor* rp,
6924                                              CMSBitMap* bit_map,
6925                                              OopTaskQueue* work_queue):
6926   MetadataAwareOopClosure(rp),
6927   _collector(collector),
6928   _span(span),
6929   _bit_map(bit_map),
6930   _work_queue(work_queue)
6931 {
6932   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6933 }
6934 
6935 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6936 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6937 
6938 // Grey object rescan during second checkpoint phase --
6939 // the parallel version.
6940 void ParPushAndMarkClosure::do_oop(oop obj) {
6941   // In the assert below, we ignore the mark word because
6942   // this oop may point to an already visited object that is
6943   // on the overflow stack (in which case the mark word has
6944   // been hijacked for chaining into the overflow stack --
6945   // if this is the last object in the overflow stack then
6946   // its mark word will be NULL). Because this object may
6947   // have been subsequently popped off the global overflow
6948   // stack, and the mark word possibly restored to the prototypical
6949   // value, by the time we get to examined this failing assert in
6950   // the debugger, is_oop_or_null(false) may subsequently start
6951   // to hold.
6952   assert(obj->is_oop_or_null(true),
6953          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6954   HeapWord* addr = (HeapWord*)obj;
6955   // Check if oop points into the CMS generation
6956   // and is not marked
6957   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6958     // a white object ...
6959     // If we manage to "claim" the object, by being the
6960     // first thread to mark it, then we push it on our
6961     // marking stack
6962     if (_bit_map->par_mark(addr)) {     // ... now grey
6963       // push on work queue (grey set)
6964       bool simulate_overflow = false;
6965       NOT_PRODUCT(
6966         if (CMSMarkStackOverflowALot &&
6967             _collector->par_simulate_overflow()) {
6968           // simulate a stack overflow
6969           simulate_overflow = true;
6970         }
6971       )
6972       if (simulate_overflow || !_work_queue->push(obj)) {
6973         _collector->par_push_on_overflow_list(obj);
6974         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6975       }
6976     } // Else, some other thread got there first
6977   }
6978 }
6979 
6980 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6981 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6982 
6983 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6984   Mutex* bml = _collector->bitMapLock();
6985   assert_lock_strong(bml);
6986   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6987          "CMS thread should hold CMS token");
6988 
6989   bml->unlock();
6990   ConcurrentMarkSweepThread::desynchronize(true);
6991 
6992   _collector->stopTimer();
6993   _collector->incrementYields();
6994 
6995   // See the comment in coordinator_yield()
6996   for (unsigned i = 0; i < CMSYieldSleepCount &&
6997                        ConcurrentMarkSweepThread::should_yield() &&
6998                        !CMSCollector::foregroundGCIsActive(); ++i) {
6999     os::sleep(Thread::current(), 1, false);
7000   }
7001 
7002   ConcurrentMarkSweepThread::synchronize(true);
7003   bml->lock();
7004 
7005   _collector->startTimer();
7006 }
7007 
7008 bool CMSPrecleanRefsYieldClosure::should_return() {
7009   if (ConcurrentMarkSweepThread::should_yield()) {
7010     do_yield_work();
7011   }
7012   return _collector->foregroundGCIsActive();
7013 }
7014 
7015 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7016   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7017          "mr should be aligned to start at a card boundary");
7018   // We'd like to assert:
7019   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7020   //        "mr should be a range of cards");
7021   // However, that would be too strong in one case -- the last
7022   // partition ends at _unallocated_block which, in general, can be
7023   // an arbitrary boundary, not necessarily card aligned.
7024   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7025   _space->object_iterate_mem(mr, &_scan_cl);
7026 }
7027 
7028 SweepClosure::SweepClosure(CMSCollector* collector,
7029                            ConcurrentMarkSweepGeneration* g,
7030                            CMSBitMap* bitMap, bool should_yield) :
7031   _collector(collector),
7032   _g(g),
7033   _sp(g->cmsSpace()),
7034   _limit(_sp->sweep_limit()),
7035   _freelistLock(_sp->freelistLock()),
7036   _bitMap(bitMap),
7037   _yield(should_yield),
7038   _inFreeRange(false),           // No free range at beginning of sweep
7039   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7040   _lastFreeRangeCoalesced(false),
7041   _freeFinger(g->used_region().start())
7042 {
7043   NOT_PRODUCT(
7044     _numObjectsFreed = 0;
7045     _numWordsFreed   = 0;
7046     _numObjectsLive = 0;
7047     _numWordsLive = 0;
7048     _numObjectsAlreadyFree = 0;
7049     _numWordsAlreadyFree = 0;
7050     _last_fc = NULL;
7051 
7052     _sp->initializeIndexedFreeListArrayReturnedBytes();
7053     _sp->dictionary()->initialize_dict_returned_bytes();
7054   )
7055   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7056          "sweep _limit out of bounds");
7057   log_develop_trace(gc, sweep)("====================");
7058   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7059 }
7060 
7061 void SweepClosure::print_on(outputStream* st) const {
7062   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7063                p2i(_sp->bottom()), p2i(_sp->end()));
7064   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7065   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7066   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7067   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7068                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7069 }
7070 
7071 #ifndef PRODUCT
7072 // Assertion checking only:  no useful work in product mode --
7073 // however, if any of the flags below become product flags,
7074 // you may need to review this code to see if it needs to be
7075 // enabled in product mode.
7076 SweepClosure::~SweepClosure() {
7077   assert_lock_strong(_freelistLock);
7078   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7079          "sweep _limit out of bounds");
7080   if (inFreeRange()) {
7081     Log(gc, sweep) log;
7082     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7083     ResourceMark rm;
7084     // Unconditional write?
7085     LogStream ls(log.error());
7086     print_on(&ls);
7087     ShouldNotReachHere();
7088   }
7089 
7090   if (log_is_enabled(Debug, gc, sweep)) {
7091     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7092                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7093     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7094                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7095     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7096     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7097   }
7098 
7099   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7100     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7101     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7102     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7103     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7104                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7105   }
7106   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7107   log_develop_trace(gc, sweep)("================");
7108 }
7109 #endif  // PRODUCT
7110 
7111 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7112     bool freeRangeInFreeLists) {
7113   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7114                                p2i(freeFinger), freeRangeInFreeLists);
7115   assert(!inFreeRange(), "Trampling existing free range");
7116   set_inFreeRange(true);
7117   set_lastFreeRangeCoalesced(false);
7118 
7119   set_freeFinger(freeFinger);
7120   set_freeRangeInFreeLists(freeRangeInFreeLists);
7121   if (CMSTestInFreeList) {
7122     if (freeRangeInFreeLists) {
7123       FreeChunk* fc = (FreeChunk*) freeFinger;
7124       assert(fc->is_free(), "A chunk on the free list should be free.");
7125       assert(fc->size() > 0, "Free range should have a size");
7126       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7127     }
7128   }
7129 }
7130 
7131 // Note that the sweeper runs concurrently with mutators. Thus,
7132 // it is possible for direct allocation in this generation to happen
7133 // in the middle of the sweep. Note that the sweeper also coalesces
7134 // contiguous free blocks. Thus, unless the sweeper and the allocator
7135 // synchronize appropriately freshly allocated blocks may get swept up.
7136 // This is accomplished by the sweeper locking the free lists while
7137 // it is sweeping. Thus blocks that are determined to be free are
7138 // indeed free. There is however one additional complication:
7139 // blocks that have been allocated since the final checkpoint and
7140 // mark, will not have been marked and so would be treated as
7141 // unreachable and swept up. To prevent this, the allocator marks
7142 // the bit map when allocating during the sweep phase. This leads,
7143 // however, to a further complication -- objects may have been allocated
7144 // but not yet initialized -- in the sense that the header isn't yet
7145 // installed. The sweeper can not then determine the size of the block
7146 // in order to skip over it. To deal with this case, we use a technique
7147 // (due to Printezis) to encode such uninitialized block sizes in the
7148 // bit map. Since the bit map uses a bit per every HeapWord, but the
7149 // CMS generation has a minimum object size of 3 HeapWords, it follows
7150 // that "normal marks" won't be adjacent in the bit map (there will
7151 // always be at least two 0 bits between successive 1 bits). We make use
7152 // of these "unused" bits to represent uninitialized blocks -- the bit
7153 // corresponding to the start of the uninitialized object and the next
7154 // bit are both set. Finally, a 1 bit marks the end of the object that
7155 // started with the two consecutive 1 bits to indicate its potentially
7156 // uninitialized state.
7157 
7158 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7159   FreeChunk* fc = (FreeChunk*)addr;
7160   size_t res;
7161 
7162   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7163   // than "addr == _limit" because although _limit was a block boundary when
7164   // we started the sweep, it may no longer be one because heap expansion
7165   // may have caused us to coalesce the block ending at the address _limit
7166   // with a newly expanded chunk (this happens when _limit was set to the
7167   // previous _end of the space), so we may have stepped past _limit:
7168   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7169   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7170     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7171            "sweep _limit out of bounds");
7172     assert(addr < _sp->end(), "addr out of bounds");
7173     // Flush any free range we might be holding as a single
7174     // coalesced chunk to the appropriate free list.
7175     if (inFreeRange()) {
7176       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7177              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7178       flush_cur_free_chunk(freeFinger(),
7179                            pointer_delta(addr, freeFinger()));
7180       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7181                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7182                                    lastFreeRangeCoalesced() ? 1 : 0);
7183     }
7184 
7185     // help the iterator loop finish
7186     return pointer_delta(_sp->end(), addr);
7187   }
7188 
7189   assert(addr < _limit, "sweep invariant");
7190   // check if we should yield
7191   do_yield_check(addr);
7192   if (fc->is_free()) {
7193     // Chunk that is already free
7194     res = fc->size();
7195     do_already_free_chunk(fc);
7196     debug_only(_sp->verifyFreeLists());
7197     // If we flush the chunk at hand in lookahead_and_flush()
7198     // and it's coalesced with a preceding chunk, then the
7199     // process of "mangling" the payload of the coalesced block
7200     // will cause erasure of the size information from the
7201     // (erstwhile) header of all the coalesced blocks but the
7202     // first, so the first disjunct in the assert will not hold
7203     // in that specific case (in which case the second disjunct
7204     // will hold).
7205     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7206            "Otherwise the size info doesn't change at this step");
7207     NOT_PRODUCT(
7208       _numObjectsAlreadyFree++;
7209       _numWordsAlreadyFree += res;
7210     )
7211     NOT_PRODUCT(_last_fc = fc;)
7212   } else if (!_bitMap->isMarked(addr)) {
7213     // Chunk is fresh garbage
7214     res = do_garbage_chunk(fc);
7215     debug_only(_sp->verifyFreeLists());
7216     NOT_PRODUCT(
7217       _numObjectsFreed++;
7218       _numWordsFreed += res;
7219     )
7220   } else {
7221     // Chunk that is alive.
7222     res = do_live_chunk(fc);
7223     debug_only(_sp->verifyFreeLists());
7224     NOT_PRODUCT(
7225         _numObjectsLive++;
7226         _numWordsLive += res;
7227     )
7228   }
7229   return res;
7230 }
7231 
7232 // For the smart allocation, record following
7233 //  split deaths - a free chunk is removed from its free list because
7234 //      it is being split into two or more chunks.
7235 //  split birth - a free chunk is being added to its free list because
7236 //      a larger free chunk has been split and resulted in this free chunk.
7237 //  coal death - a free chunk is being removed from its free list because
7238 //      it is being coalesced into a large free chunk.
7239 //  coal birth - a free chunk is being added to its free list because
7240 //      it was created when two or more free chunks where coalesced into
7241 //      this free chunk.
7242 //
7243 // These statistics are used to determine the desired number of free
7244 // chunks of a given size.  The desired number is chosen to be relative
7245 // to the end of a CMS sweep.  The desired number at the end of a sweep
7246 // is the
7247 //      count-at-end-of-previous-sweep (an amount that was enough)
7248 //              - count-at-beginning-of-current-sweep  (the excess)
7249 //              + split-births  (gains in this size during interval)
7250 //              - split-deaths  (demands on this size during interval)
7251 // where the interval is from the end of one sweep to the end of the
7252 // next.
7253 //
7254 // When sweeping the sweeper maintains an accumulated chunk which is
7255 // the chunk that is made up of chunks that have been coalesced.  That
7256 // will be termed the left-hand chunk.  A new chunk of garbage that
7257 // is being considered for coalescing will be referred to as the
7258 // right-hand chunk.
7259 //
7260 // When making a decision on whether to coalesce a right-hand chunk with
7261 // the current left-hand chunk, the current count vs. the desired count
7262 // of the left-hand chunk is considered.  Also if the right-hand chunk
7263 // is near the large chunk at the end of the heap (see
7264 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7265 // left-hand chunk is coalesced.
7266 //
7267 // When making a decision about whether to split a chunk, the desired count
7268 // vs. the current count of the candidate to be split is also considered.
7269 // If the candidate is underpopulated (currently fewer chunks than desired)
7270 // a chunk of an overpopulated (currently more chunks than desired) size may
7271 // be chosen.  The "hint" associated with a free list, if non-null, points
7272 // to a free list which may be overpopulated.
7273 //
7274 
7275 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7276   const size_t size = fc->size();
7277   // Chunks that cannot be coalesced are not in the
7278   // free lists.
7279   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7280     assert(_sp->verify_chunk_in_free_list(fc),
7281            "free chunk should be in free lists");
7282   }
7283   // a chunk that is already free, should not have been
7284   // marked in the bit map
7285   HeapWord* const addr = (HeapWord*) fc;
7286   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7287   // Verify that the bit map has no bits marked between
7288   // addr and purported end of this block.
7289   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7290 
7291   // Some chunks cannot be coalesced under any circumstances.
7292   // See the definition of cantCoalesce().
7293   if (!fc->cantCoalesce()) {
7294     // This chunk can potentially be coalesced.
7295     // All the work is done in
7296     do_post_free_or_garbage_chunk(fc, size);
7297     // Note that if the chunk is not coalescable (the else arm
7298     // below), we unconditionally flush, without needing to do
7299     // a "lookahead," as we do below.
7300     if (inFreeRange()) lookahead_and_flush(fc, size);
7301   } else {
7302     // Code path common to both original and adaptive free lists.
7303 
7304     // cant coalesce with previous block; this should be treated
7305     // as the end of a free run if any
7306     if (inFreeRange()) {
7307       // we kicked some butt; time to pick up the garbage
7308       assert(freeFinger() < addr, "freeFinger points too high");
7309       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7310     }
7311     // else, nothing to do, just continue
7312   }
7313 }
7314 
7315 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7316   // This is a chunk of garbage.  It is not in any free list.
7317   // Add it to a free list or let it possibly be coalesced into
7318   // a larger chunk.
7319   HeapWord* const addr = (HeapWord*) fc;
7320   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7321 
7322   // Verify that the bit map has no bits marked between
7323   // addr and purported end of just dead object.
7324   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7325   do_post_free_or_garbage_chunk(fc, size);
7326 
7327   assert(_limit >= addr + size,
7328          "A freshly garbage chunk can't possibly straddle over _limit");
7329   if (inFreeRange()) lookahead_and_flush(fc, size);
7330   return size;
7331 }
7332 
7333 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7334   HeapWord* addr = (HeapWord*) fc;
7335   // The sweeper has just found a live object. Return any accumulated
7336   // left hand chunk to the free lists.
7337   if (inFreeRange()) {
7338     assert(freeFinger() < addr, "freeFinger points too high");
7339     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7340   }
7341 
7342   // This object is live: we'd normally expect this to be
7343   // an oop, and like to assert the following:
7344   // assert(oop(addr)->is_oop(), "live block should be an oop");
7345   // However, as we commented above, this may be an object whose
7346   // header hasn't yet been initialized.
7347   size_t size;
7348   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7349   if (_bitMap->isMarked(addr + 1)) {
7350     // Determine the size from the bit map, rather than trying to
7351     // compute it from the object header.
7352     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7353     size = pointer_delta(nextOneAddr + 1, addr);
7354     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7355            "alignment problem");
7356 
7357 #ifdef ASSERT
7358       if (oop(addr)->klass_or_null_acquire() != NULL) {
7359         // Ignore mark word because we are running concurrent with mutators
7360         assert(oop(addr)->is_oop(true), "live block should be an oop");
7361         assert(size ==
7362                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7363                "P-mark and computed size do not agree");
7364       }
7365 #endif
7366 
7367   } else {
7368     // This should be an initialized object that's alive.
7369     assert(oop(addr)->klass_or_null_acquire() != NULL,
7370            "Should be an initialized object");
7371     // Ignore mark word because we are running concurrent with mutators
7372     assert(oop(addr)->is_oop(true), "live block should be an oop");
7373     // Verify that the bit map has no bits marked between
7374     // addr and purported end of this block.
7375     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7376     assert(size >= 3, "Necessary for Printezis marks to work");
7377     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7378     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7379   }
7380   return size;
7381 }
7382 
7383 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7384                                                  size_t chunkSize) {
7385   // do_post_free_or_garbage_chunk() should only be called in the case
7386   // of the adaptive free list allocator.
7387   const bool fcInFreeLists = fc->is_free();
7388   assert((HeapWord*)fc <= _limit, "sweep invariant");
7389   if (CMSTestInFreeList && fcInFreeLists) {
7390     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7391   }
7392 
7393   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7394 
7395   HeapWord* const fc_addr = (HeapWord*) fc;
7396 
7397   bool coalesce = false;
7398   const size_t left  = pointer_delta(fc_addr, freeFinger());
7399   const size_t right = chunkSize;
7400   switch (FLSCoalescePolicy) {
7401     // numeric value forms a coalition aggressiveness metric
7402     case 0:  { // never coalesce
7403       coalesce = false;
7404       break;
7405     }
7406     case 1: { // coalesce if left & right chunks on overpopulated lists
7407       coalesce = _sp->coalOverPopulated(left) &&
7408                  _sp->coalOverPopulated(right);
7409       break;
7410     }
7411     case 2: { // coalesce if left chunk on overpopulated list (default)
7412       coalesce = _sp->coalOverPopulated(left);
7413       break;
7414     }
7415     case 3: { // coalesce if left OR right chunk on overpopulated list
7416       coalesce = _sp->coalOverPopulated(left) ||
7417                  _sp->coalOverPopulated(right);
7418       break;
7419     }
7420     case 4: { // always coalesce
7421       coalesce = true;
7422       break;
7423     }
7424     default:
7425      ShouldNotReachHere();
7426   }
7427 
7428   // Should the current free range be coalesced?
7429   // If the chunk is in a free range and either we decided to coalesce above
7430   // or the chunk is near the large block at the end of the heap
7431   // (isNearLargestChunk() returns true), then coalesce this chunk.
7432   const bool doCoalesce = inFreeRange()
7433                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7434   if (doCoalesce) {
7435     // Coalesce the current free range on the left with the new
7436     // chunk on the right.  If either is on a free list,
7437     // it must be removed from the list and stashed in the closure.
7438     if (freeRangeInFreeLists()) {
7439       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7440       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7441              "Size of free range is inconsistent with chunk size.");
7442       if (CMSTestInFreeList) {
7443         assert(_sp->verify_chunk_in_free_list(ffc),
7444                "Chunk is not in free lists");
7445       }
7446       _sp->coalDeath(ffc->size());
7447       _sp->removeFreeChunkFromFreeLists(ffc);
7448       set_freeRangeInFreeLists(false);
7449     }
7450     if (fcInFreeLists) {
7451       _sp->coalDeath(chunkSize);
7452       assert(fc->size() == chunkSize,
7453         "The chunk has the wrong size or is not in the free lists");
7454       _sp->removeFreeChunkFromFreeLists(fc);
7455     }
7456     set_lastFreeRangeCoalesced(true);
7457     print_free_block_coalesced(fc);
7458   } else {  // not in a free range and/or should not coalesce
7459     // Return the current free range and start a new one.
7460     if (inFreeRange()) {
7461       // In a free range but cannot coalesce with the right hand chunk.
7462       // Put the current free range into the free lists.
7463       flush_cur_free_chunk(freeFinger(),
7464                            pointer_delta(fc_addr, freeFinger()));
7465     }
7466     // Set up for new free range.  Pass along whether the right hand
7467     // chunk is in the free lists.
7468     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7469   }
7470 }
7471 
7472 // Lookahead flush:
7473 // If we are tracking a free range, and this is the last chunk that
7474 // we'll look at because its end crosses past _limit, we'll preemptively
7475 // flush it along with any free range we may be holding on to. Note that
7476 // this can be the case only for an already free or freshly garbage
7477 // chunk. If this block is an object, it can never straddle
7478 // over _limit. The "straddling" occurs when _limit is set at
7479 // the previous end of the space when this cycle started, and
7480 // a subsequent heap expansion caused the previously co-terminal
7481 // free block to be coalesced with the newly expanded portion,
7482 // thus rendering _limit a non-block-boundary making it dangerous
7483 // for the sweeper to step over and examine.
7484 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7485   assert(inFreeRange(), "Should only be called if currently in a free range.");
7486   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7487   assert(_sp->used_region().contains(eob - 1),
7488          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7489          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7490          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7491          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7492   if (eob >= _limit) {
7493     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7494     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7495                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7496                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7497                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7498     // Return the storage we are tracking back into the free lists.
7499     log_develop_trace(gc, sweep)("Flushing ... ");
7500     assert(freeFinger() < eob, "Error");
7501     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7502   }
7503 }
7504 
7505 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7506   assert(inFreeRange(), "Should only be called if currently in a free range.");
7507   assert(size > 0,
7508     "A zero sized chunk cannot be added to the free lists.");
7509   if (!freeRangeInFreeLists()) {
7510     if (CMSTestInFreeList) {
7511       FreeChunk* fc = (FreeChunk*) chunk;
7512       fc->set_size(size);
7513       assert(!_sp->verify_chunk_in_free_list(fc),
7514              "chunk should not be in free lists yet");
7515     }
7516     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7517     // A new free range is going to be starting.  The current
7518     // free range has not been added to the free lists yet or
7519     // was removed so add it back.
7520     // If the current free range was coalesced, then the death
7521     // of the free range was recorded.  Record a birth now.
7522     if (lastFreeRangeCoalesced()) {
7523       _sp->coalBirth(size);
7524     }
7525     _sp->addChunkAndRepairOffsetTable(chunk, size,
7526             lastFreeRangeCoalesced());
7527   } else {
7528     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7529   }
7530   set_inFreeRange(false);
7531   set_freeRangeInFreeLists(false);
7532 }
7533 
7534 // We take a break if we've been at this for a while,
7535 // so as to avoid monopolizing the locks involved.
7536 void SweepClosure::do_yield_work(HeapWord* addr) {
7537   // Return current free chunk being used for coalescing (if any)
7538   // to the appropriate freelist.  After yielding, the next
7539   // free block encountered will start a coalescing range of
7540   // free blocks.  If the next free block is adjacent to the
7541   // chunk just flushed, they will need to wait for the next
7542   // sweep to be coalesced.
7543   if (inFreeRange()) {
7544     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7545   }
7546 
7547   // First give up the locks, then yield, then re-lock.
7548   // We should probably use a constructor/destructor idiom to
7549   // do this unlock/lock or modify the MutexUnlocker class to
7550   // serve our purpose. XXX
7551   assert_lock_strong(_bitMap->lock());
7552   assert_lock_strong(_freelistLock);
7553   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7554          "CMS thread should hold CMS token");
7555   _bitMap->lock()->unlock();
7556   _freelistLock->unlock();
7557   ConcurrentMarkSweepThread::desynchronize(true);
7558   _collector->stopTimer();
7559   _collector->incrementYields();
7560 
7561   // See the comment in coordinator_yield()
7562   for (unsigned i = 0; i < CMSYieldSleepCount &&
7563                        ConcurrentMarkSweepThread::should_yield() &&
7564                        !CMSCollector::foregroundGCIsActive(); ++i) {
7565     os::sleep(Thread::current(), 1, false);
7566   }
7567 
7568   ConcurrentMarkSweepThread::synchronize(true);
7569   _freelistLock->lock();
7570   _bitMap->lock()->lock_without_safepoint_check();
7571   _collector->startTimer();
7572 }
7573 
7574 #ifndef PRODUCT
7575 // This is actually very useful in a product build if it can
7576 // be called from the debugger.  Compile it into the product
7577 // as needed.
7578 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7579   return debug_cms_space->verify_chunk_in_free_list(fc);
7580 }
7581 #endif
7582 
7583 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7584   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7585                                p2i(fc), fc->size());
7586 }
7587 
7588 // CMSIsAliveClosure
7589 bool CMSIsAliveClosure::do_object_b(oop obj) {
7590   HeapWord* addr = (HeapWord*)obj;
7591   return addr != NULL &&
7592          (!_span.contains(addr) || _bit_map->isMarked(addr));
7593 }
7594 
7595 
7596 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7597                       MemRegion span,
7598                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7599                       bool cpc):
7600   _collector(collector),
7601   _span(span),
7602   _bit_map(bit_map),
7603   _mark_stack(mark_stack),
7604   _concurrent_precleaning(cpc) {
7605   assert(!_span.is_empty(), "Empty span could spell trouble");
7606 }
7607 
7608 
7609 // CMSKeepAliveClosure: the serial version
7610 void CMSKeepAliveClosure::do_oop(oop obj) {
7611   HeapWord* addr = (HeapWord*)obj;
7612   if (_span.contains(addr) &&
7613       !_bit_map->isMarked(addr)) {
7614     _bit_map->mark(addr);
7615     bool simulate_overflow = false;
7616     NOT_PRODUCT(
7617       if (CMSMarkStackOverflowALot &&
7618           _collector->simulate_overflow()) {
7619         // simulate a stack overflow
7620         simulate_overflow = true;
7621       }
7622     )
7623     if (simulate_overflow || !_mark_stack->push(obj)) {
7624       if (_concurrent_precleaning) {
7625         // We dirty the overflown object and let the remark
7626         // phase deal with it.
7627         assert(_collector->overflow_list_is_empty(), "Error");
7628         // In the case of object arrays, we need to dirty all of
7629         // the cards that the object spans. No locking or atomics
7630         // are needed since no one else can be mutating the mod union
7631         // table.
7632         if (obj->is_objArray()) {
7633           size_t sz = obj->size();
7634           HeapWord* end_card_addr =
7635             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7636           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7637           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7638           _collector->_modUnionTable.mark_range(redirty_range);
7639         } else {
7640           _collector->_modUnionTable.mark(addr);
7641         }
7642         _collector->_ser_kac_preclean_ovflw++;
7643       } else {
7644         _collector->push_on_overflow_list(obj);
7645         _collector->_ser_kac_ovflw++;
7646       }
7647     }
7648   }
7649 }
7650 
7651 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7652 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7653 
7654 // CMSParKeepAliveClosure: a parallel version of the above.
7655 // The work queues are private to each closure (thread),
7656 // but (may be) available for stealing by other threads.
7657 void CMSParKeepAliveClosure::do_oop(oop obj) {
7658   HeapWord* addr = (HeapWord*)obj;
7659   if (_span.contains(addr) &&
7660       !_bit_map->isMarked(addr)) {
7661     // In general, during recursive tracing, several threads
7662     // may be concurrently getting here; the first one to
7663     // "tag" it, claims it.
7664     if (_bit_map->par_mark(addr)) {
7665       bool res = _work_queue->push(obj);
7666       assert(res, "Low water mark should be much less than capacity");
7667       // Do a recursive trim in the hope that this will keep
7668       // stack usage lower, but leave some oops for potential stealers
7669       trim_queue(_low_water_mark);
7670     } // Else, another thread got there first
7671   }
7672 }
7673 
7674 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7675 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7676 
7677 void CMSParKeepAliveClosure::trim_queue(uint max) {
7678   while (_work_queue->size() > max) {
7679     oop new_oop;
7680     if (_work_queue->pop_local(new_oop)) {
7681       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7682       assert(_bit_map->isMarked((HeapWord*)new_oop),
7683              "no white objects on this stack!");
7684       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7685       // iterate over the oops in this oop, marking and pushing
7686       // the ones in CMS heap (i.e. in _span).
7687       new_oop->oop_iterate(&_mark_and_push);
7688     }
7689   }
7690 }
7691 
7692 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7693                                 CMSCollector* collector,
7694                                 MemRegion span, CMSBitMap* bit_map,
7695                                 OopTaskQueue* work_queue):
7696   _collector(collector),
7697   _span(span),
7698   _bit_map(bit_map),
7699   _work_queue(work_queue) { }
7700 
7701 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7702   HeapWord* addr = (HeapWord*)obj;
7703   if (_span.contains(addr) &&
7704       !_bit_map->isMarked(addr)) {
7705     if (_bit_map->par_mark(addr)) {
7706       bool simulate_overflow = false;
7707       NOT_PRODUCT(
7708         if (CMSMarkStackOverflowALot &&
7709             _collector->par_simulate_overflow()) {
7710           // simulate a stack overflow
7711           simulate_overflow = true;
7712         }
7713       )
7714       if (simulate_overflow || !_work_queue->push(obj)) {
7715         _collector->par_push_on_overflow_list(obj);
7716         _collector->_par_kac_ovflw++;
7717       }
7718     } // Else another thread got there already
7719   }
7720 }
7721 
7722 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7723 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7724 
7725 //////////////////////////////////////////////////////////////////
7726 //  CMSExpansionCause                /////////////////////////////
7727 //////////////////////////////////////////////////////////////////
7728 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7729   switch (cause) {
7730     case _no_expansion:
7731       return "No expansion";
7732     case _satisfy_free_ratio:
7733       return "Free ratio";
7734     case _satisfy_promotion:
7735       return "Satisfy promotion";
7736     case _satisfy_allocation:
7737       return "allocation";
7738     case _allocate_par_lab:
7739       return "Par LAB";
7740     case _allocate_par_spooling_space:
7741       return "Par Spooling Space";
7742     case _adaptive_size_policy:
7743       return "Ergonomics";
7744     default:
7745       return "unknown";
7746   }
7747 }
7748 
7749 void CMSDrainMarkingStackClosure::do_void() {
7750   // the max number to take from overflow list at a time
7751   const size_t num = _mark_stack->capacity()/4;
7752   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7753          "Overflow list should be NULL during concurrent phases");
7754   while (!_mark_stack->isEmpty() ||
7755          // if stack is empty, check the overflow list
7756          _collector->take_from_overflow_list(num, _mark_stack)) {
7757     oop obj = _mark_stack->pop();
7758     HeapWord* addr = (HeapWord*)obj;
7759     assert(_span.contains(addr), "Should be within span");
7760     assert(_bit_map->isMarked(addr), "Should be marked");
7761     assert(obj->is_oop(), "Should be an oop");
7762     obj->oop_iterate(_keep_alive);
7763   }
7764 }
7765 
7766 void CMSParDrainMarkingStackClosure::do_void() {
7767   // drain queue
7768   trim_queue(0);
7769 }
7770 
7771 // Trim our work_queue so its length is below max at return
7772 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7773   while (_work_queue->size() > max) {
7774     oop new_oop;
7775     if (_work_queue->pop_local(new_oop)) {
7776       assert(new_oop->is_oop(), "Expected an oop");
7777       assert(_bit_map->isMarked((HeapWord*)new_oop),
7778              "no white objects on this stack!");
7779       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7780       // iterate over the oops in this oop, marking and pushing
7781       // the ones in CMS heap (i.e. in _span).
7782       new_oop->oop_iterate(&_mark_and_push);
7783     }
7784   }
7785 }
7786 
7787 ////////////////////////////////////////////////////////////////////
7788 // Support for Marking Stack Overflow list handling and related code
7789 ////////////////////////////////////////////////////////////////////
7790 // Much of the following code is similar in shape and spirit to the
7791 // code used in ParNewGC. We should try and share that code
7792 // as much as possible in the future.
7793 
7794 #ifndef PRODUCT
7795 // Debugging support for CMSStackOverflowALot
7796 
7797 // It's OK to call this multi-threaded;  the worst thing
7798 // that can happen is that we'll get a bunch of closely
7799 // spaced simulated overflows, but that's OK, in fact
7800 // probably good as it would exercise the overflow code
7801 // under contention.
7802 bool CMSCollector::simulate_overflow() {
7803   if (_overflow_counter-- <= 0) { // just being defensive
7804     _overflow_counter = CMSMarkStackOverflowInterval;
7805     return true;
7806   } else {
7807     return false;
7808   }
7809 }
7810 
7811 bool CMSCollector::par_simulate_overflow() {
7812   return simulate_overflow();
7813 }
7814 #endif
7815 
7816 // Single-threaded
7817 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7818   assert(stack->isEmpty(), "Expected precondition");
7819   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7820   size_t i = num;
7821   oop  cur = _overflow_list;
7822   const markOop proto = markOopDesc::prototype();
7823   NOT_PRODUCT(ssize_t n = 0;)
7824   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7825     next = oop(cur->mark());
7826     cur->set_mark(proto);   // until proven otherwise
7827     assert(cur->is_oop(), "Should be an oop");
7828     bool res = stack->push(cur);
7829     assert(res, "Bit off more than can chew?");
7830     NOT_PRODUCT(n++;)
7831   }
7832   _overflow_list = cur;
7833 #ifndef PRODUCT
7834   assert(_num_par_pushes >= n, "Too many pops?");
7835   _num_par_pushes -=n;
7836 #endif
7837   return !stack->isEmpty();
7838 }
7839 
7840 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7841 // (MT-safe) Get a prefix of at most "num" from the list.
7842 // The overflow list is chained through the mark word of
7843 // each object in the list. We fetch the entire list,
7844 // break off a prefix of the right size and return the
7845 // remainder. If other threads try to take objects from
7846 // the overflow list at that time, they will wait for
7847 // some time to see if data becomes available. If (and
7848 // only if) another thread places one or more object(s)
7849 // on the global list before we have returned the suffix
7850 // to the global list, we will walk down our local list
7851 // to find its end and append the global list to
7852 // our suffix before returning it. This suffix walk can
7853 // prove to be expensive (quadratic in the amount of traffic)
7854 // when there are many objects in the overflow list and
7855 // there is much producer-consumer contention on the list.
7856 // *NOTE*: The overflow list manipulation code here and
7857 // in ParNewGeneration:: are very similar in shape,
7858 // except that in the ParNew case we use the old (from/eden)
7859 // copy of the object to thread the list via its klass word.
7860 // Because of the common code, if you make any changes in
7861 // the code below, please check the ParNew version to see if
7862 // similar changes might be needed.
7863 // CR 6797058 has been filed to consolidate the common code.
7864 bool CMSCollector::par_take_from_overflow_list(size_t num,
7865                                                OopTaskQueue* work_q,
7866                                                int no_of_gc_threads) {
7867   assert(work_q->size() == 0, "First empty local work queue");
7868   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7869   if (_overflow_list == NULL) {
7870     return false;
7871   }
7872   // Grab the entire list; we'll put back a suffix
7873   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7874   Thread* tid = Thread::current();
7875   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7876   // set to ParallelGCThreads.
7877   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7878   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7879   // If the list is busy, we spin for a short while,
7880   // sleeping between attempts to get the list.
7881   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7882     os::sleep(tid, sleep_time_millis, false);
7883     if (_overflow_list == NULL) {
7884       // Nothing left to take
7885       return false;
7886     } else if (_overflow_list != BUSY) {
7887       // Try and grab the prefix
7888       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7889     }
7890   }
7891   // If the list was found to be empty, or we spun long
7892   // enough, we give up and return empty-handed. If we leave
7893   // the list in the BUSY state below, it must be the case that
7894   // some other thread holds the overflow list and will set it
7895   // to a non-BUSY state in the future.
7896   if (prefix == NULL || prefix == BUSY) {
7897      // Nothing to take or waited long enough
7898      if (prefix == NULL) {
7899        // Write back the NULL in case we overwrote it with BUSY above
7900        // and it is still the same value.
7901        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7902      }
7903      return false;
7904   }
7905   assert(prefix != NULL && prefix != BUSY, "Error");
7906   size_t i = num;
7907   oop cur = prefix;
7908   // Walk down the first "num" objects, unless we reach the end.
7909   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7910   if (cur->mark() == NULL) {
7911     // We have "num" or fewer elements in the list, so there
7912     // is nothing to return to the global list.
7913     // Write back the NULL in lieu of the BUSY we wrote
7914     // above, if it is still the same value.
7915     if (_overflow_list == BUSY) {
7916       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7917     }
7918   } else {
7919     // Chop off the suffix and return it to the global list.
7920     assert(cur->mark() != BUSY, "Error");
7921     oop suffix_head = cur->mark(); // suffix will be put back on global list
7922     cur->set_mark(NULL);           // break off suffix
7923     // It's possible that the list is still in the empty(busy) state
7924     // we left it in a short while ago; in that case we may be
7925     // able to place back the suffix without incurring the cost
7926     // of a walk down the list.
7927     oop observed_overflow_list = _overflow_list;
7928     oop cur_overflow_list = observed_overflow_list;
7929     bool attached = false;
7930     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7931       observed_overflow_list =
7932         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7933       if (cur_overflow_list == observed_overflow_list) {
7934         attached = true;
7935         break;
7936       } else cur_overflow_list = observed_overflow_list;
7937     }
7938     if (!attached) {
7939       // Too bad, someone else sneaked in (at least) an element; we'll need
7940       // to do a splice. Find tail of suffix so we can prepend suffix to global
7941       // list.
7942       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7943       oop suffix_tail = cur;
7944       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7945              "Tautology");
7946       observed_overflow_list = _overflow_list;
7947       do {
7948         cur_overflow_list = observed_overflow_list;
7949         if (cur_overflow_list != BUSY) {
7950           // Do the splice ...
7951           suffix_tail->set_mark(markOop(cur_overflow_list));
7952         } else { // cur_overflow_list == BUSY
7953           suffix_tail->set_mark(NULL);
7954         }
7955         // ... and try to place spliced list back on overflow_list ...
7956         observed_overflow_list =
7957           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7958       } while (cur_overflow_list != observed_overflow_list);
7959       // ... until we have succeeded in doing so.
7960     }
7961   }
7962 
7963   // Push the prefix elements on work_q
7964   assert(prefix != NULL, "control point invariant");
7965   const markOop proto = markOopDesc::prototype();
7966   oop next;
7967   NOT_PRODUCT(ssize_t n = 0;)
7968   for (cur = prefix; cur != NULL; cur = next) {
7969     next = oop(cur->mark());
7970     cur->set_mark(proto);   // until proven otherwise
7971     assert(cur->is_oop(), "Should be an oop");
7972     bool res = work_q->push(cur);
7973     assert(res, "Bit off more than we can chew?");
7974     NOT_PRODUCT(n++;)
7975   }
7976 #ifndef PRODUCT
7977   assert(_num_par_pushes >= n, "Too many pops?");
7978   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7979 #endif
7980   return true;
7981 }
7982 
7983 // Single-threaded
7984 void CMSCollector::push_on_overflow_list(oop p) {
7985   NOT_PRODUCT(_num_par_pushes++;)
7986   assert(p->is_oop(), "Not an oop");
7987   preserve_mark_if_necessary(p);
7988   p->set_mark((markOop)_overflow_list);
7989   _overflow_list = p;
7990 }
7991 
7992 // Multi-threaded; use CAS to prepend to overflow list
7993 void CMSCollector::par_push_on_overflow_list(oop p) {
7994   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7995   assert(p->is_oop(), "Not an oop");
7996   par_preserve_mark_if_necessary(p);
7997   oop observed_overflow_list = _overflow_list;
7998   oop cur_overflow_list;
7999   do {
8000     cur_overflow_list = observed_overflow_list;
8001     if (cur_overflow_list != BUSY) {
8002       p->set_mark(markOop(cur_overflow_list));
8003     } else {
8004       p->set_mark(NULL);
8005     }
8006     observed_overflow_list =
8007       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8008   } while (cur_overflow_list != observed_overflow_list);
8009 }
8010 #undef BUSY
8011 
8012 // Single threaded
8013 // General Note on GrowableArray: pushes may silently fail
8014 // because we are (temporarily) out of C-heap for expanding
8015 // the stack. The problem is quite ubiquitous and affects
8016 // a lot of code in the JVM. The prudent thing for GrowableArray
8017 // to do (for now) is to exit with an error. However, that may
8018 // be too draconian in some cases because the caller may be
8019 // able to recover without much harm. For such cases, we
8020 // should probably introduce a "soft_push" method which returns
8021 // an indication of success or failure with the assumption that
8022 // the caller may be able to recover from a failure; code in
8023 // the VM can then be changed, incrementally, to deal with such
8024 // failures where possible, thus, incrementally hardening the VM
8025 // in such low resource situations.
8026 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8027   _preserved_oop_stack.push(p);
8028   _preserved_mark_stack.push(m);
8029   assert(m == p->mark(), "Mark word changed");
8030   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8031          "bijection");
8032 }
8033 
8034 // Single threaded
8035 void CMSCollector::preserve_mark_if_necessary(oop p) {
8036   markOop m = p->mark();
8037   if (m->must_be_preserved(p)) {
8038     preserve_mark_work(p, m);
8039   }
8040 }
8041 
8042 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8043   markOop m = p->mark();
8044   if (m->must_be_preserved(p)) {
8045     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8046     // Even though we read the mark word without holding
8047     // the lock, we are assured that it will not change
8048     // because we "own" this oop, so no other thread can
8049     // be trying to push it on the overflow list; see
8050     // the assertion in preserve_mark_work() that checks
8051     // that m == p->mark().
8052     preserve_mark_work(p, m);
8053   }
8054 }
8055 
8056 // We should be able to do this multi-threaded,
8057 // a chunk of stack being a task (this is
8058 // correct because each oop only ever appears
8059 // once in the overflow list. However, it's
8060 // not very easy to completely overlap this with
8061 // other operations, so will generally not be done
8062 // until all work's been completed. Because we
8063 // expect the preserved oop stack (set) to be small,
8064 // it's probably fine to do this single-threaded.
8065 // We can explore cleverer concurrent/overlapped/parallel
8066 // processing of preserved marks if we feel the
8067 // need for this in the future. Stack overflow should
8068 // be so rare in practice and, when it happens, its
8069 // effect on performance so great that this will
8070 // likely just be in the noise anyway.
8071 void CMSCollector::restore_preserved_marks_if_any() {
8072   assert(SafepointSynchronize::is_at_safepoint(),
8073          "world should be stopped");
8074   assert(Thread::current()->is_ConcurrentGC_thread() ||
8075          Thread::current()->is_VM_thread(),
8076          "should be single-threaded");
8077   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8078          "bijection");
8079 
8080   while (!_preserved_oop_stack.is_empty()) {
8081     oop p = _preserved_oop_stack.pop();
8082     assert(p->is_oop(), "Should be an oop");
8083     assert(_span.contains(p), "oop should be in _span");
8084     assert(p->mark() == markOopDesc::prototype(),
8085            "Set when taken from overflow list");
8086     markOop m = _preserved_mark_stack.pop();
8087     p->set_mark(m);
8088   }
8089   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8090          "stacks were cleared above");
8091 }
8092 
8093 #ifndef PRODUCT
8094 bool CMSCollector::no_preserved_marks() const {
8095   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8096 }
8097 #endif
8098 
8099 // Transfer some number of overflown objects to usual marking
8100 // stack. Return true if some objects were transferred.
8101 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8102   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8103                     (size_t)ParGCDesiredObjsFromOverflowList);
8104 
8105   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8106   assert(_collector->overflow_list_is_empty() || res,
8107          "If list is not empty, we should have taken something");
8108   assert(!res || !_mark_stack->isEmpty(),
8109          "If we took something, it should now be on our stack");
8110   return res;
8111 }
8112 
8113 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8114   size_t res = _sp->block_size_no_stall(addr, _collector);
8115   if (_sp->block_is_obj(addr)) {
8116     if (_live_bit_map->isMarked(addr)) {
8117       // It can't have been dead in a previous cycle
8118       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8119     } else {
8120       _dead_bit_map->mark(addr);      // mark the dead object
8121     }
8122   }
8123   // Could be 0, if the block size could not be computed without stalling.
8124   return res;
8125 }
8126 
8127 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8128 
8129   switch (phase) {
8130     case CMSCollector::InitialMarking:
8131       initialize(true  /* fullGC */ ,
8132                  cause /* cause of the GC */,
8133                  true  /* recordGCBeginTime */,
8134                  true  /* recordPreGCUsage */,
8135                  false /* recordPeakUsage */,
8136                  false /* recordPostGCusage */,
8137                  true  /* recordAccumulatedGCTime */,
8138                  false /* recordGCEndTime */,
8139                  false /* countCollection */  );
8140       break;
8141 
8142     case CMSCollector::FinalMarking:
8143       initialize(true  /* fullGC */ ,
8144                  cause /* cause of the GC */,
8145                  false /* recordGCBeginTime */,
8146                  false /* recordPreGCUsage */,
8147                  false /* recordPeakUsage */,
8148                  false /* recordPostGCusage */,
8149                  true  /* recordAccumulatedGCTime */,
8150                  false /* recordGCEndTime */,
8151                  false /* countCollection */  );
8152       break;
8153 
8154     case CMSCollector::Sweeping:
8155       initialize(true  /* fullGC */ ,
8156                  cause /* cause of the GC */,
8157                  false /* recordGCBeginTime */,
8158                  false /* recordPreGCUsage */,
8159                  true  /* recordPeakUsage */,
8160                  true  /* recordPostGCusage */,
8161                  false /* recordAccumulatedGCTime */,
8162                  true  /* recordGCEndTime */,
8163                  true  /* countCollection */  );
8164       break;
8165 
8166     default:
8167       ShouldNotReachHere();
8168   }
8169 }