1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/parallel/gcTaskManager.hpp"
  32 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  33 #include "gc/parallel/parMarkBitMap.inline.hpp"
  34 #include "gc/parallel/pcTasks.hpp"
  35 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  36 #include "gc/parallel/psCompactionManager.inline.hpp"
  37 #include "gc/parallel/psMarkSweep.hpp"
  38 #include "gc/parallel/psMarkSweepDecorator.hpp"
  39 #include "gc/parallel/psOldGen.hpp"
  40 #include "gc/parallel/psParallelCompact.inline.hpp"
  41 #include "gc/parallel/psPromotionManager.inline.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psYoungGen.hpp"
  44 #include "gc/shared/gcCause.hpp"
  45 #include "gc/shared/gcHeapSummary.hpp"
  46 #include "gc/shared/gcId.hpp"
  47 #include "gc/shared/gcLocker.inline.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/isGCActiveMark.hpp"
  52 #include "gc/shared/referencePolicy.hpp"
  53 #include "gc/shared/referenceProcessor.hpp"
  54 #include "gc/shared/spaceDecorator.hpp"
  55 #include "logging/log.hpp"
  56 #include "memory/resourceArea.hpp"
  57 #include "oops/instanceKlass.inline.hpp"
  58 #include "oops/instanceMirrorKlass.inline.hpp"
  59 #include "oops/methodData.hpp"
  60 #include "oops/objArrayKlass.inline.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/fprofiler.hpp"
  64 #include "runtime/safepoint.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "services/management.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 #include <math.h>
  73 
  74 // All sizes are in HeapWords.
  75 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  76 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  77 const size_t ParallelCompactData::RegionSizeBytes =
  78   RegionSize << LogHeapWordSize;
  79 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  80 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  81 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  82 
  83 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  84 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  85 const size_t ParallelCompactData::BlockSizeBytes  =
  86   BlockSize << LogHeapWordSize;
  87 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  88 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  89 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  90 
  91 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
  92 const size_t ParallelCompactData::Log2BlocksPerRegion =
  93   Log2RegionSize - Log2BlockSize;
  94 
  95 const ParallelCompactData::RegionData::region_sz_t
  96 ParallelCompactData::RegionData::dc_shift = 27;
  97 
  98 const ParallelCompactData::RegionData::region_sz_t
  99 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 100 
 101 const ParallelCompactData::RegionData::region_sz_t
 102 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 103 
 104 const ParallelCompactData::RegionData::region_sz_t
 105 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 106 
 107 const ParallelCompactData::RegionData::region_sz_t
 108 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 109 
 110 const ParallelCompactData::RegionData::region_sz_t
 111 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 112 
 113 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 114 
 115 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 116 
 117 double PSParallelCompact::_dwl_mean;
 118 double PSParallelCompact::_dwl_std_dev;
 119 double PSParallelCompact::_dwl_first_term;
 120 double PSParallelCompact::_dwl_adjustment;
 121 #ifdef  ASSERT
 122 bool   PSParallelCompact::_dwl_initialized = false;
 123 #endif  // #ifdef ASSERT
 124 
 125 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 126                        HeapWord* destination)
 127 {
 128   assert(src_region_idx != 0, "invalid src_region_idx");
 129   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 130   assert(destination != NULL, "invalid destination argument");
 131 
 132   _src_region_idx = src_region_idx;
 133   _partial_obj_size = partial_obj_size;
 134   _destination = destination;
 135 
 136   // These fields may not be updated below, so make sure they're clear.
 137   assert(_dest_region_addr == NULL, "should have been cleared");
 138   assert(_first_src_addr == NULL, "should have been cleared");
 139 
 140   // Determine the number of destination regions for the partial object.
 141   HeapWord* const last_word = destination + partial_obj_size - 1;
 142   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 143   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 144   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 145 
 146   if (beg_region_addr == end_region_addr) {
 147     // One destination region.
 148     _destination_count = 1;
 149     if (end_region_addr == destination) {
 150       // The destination falls on a region boundary, thus the first word of the
 151       // partial object will be the first word copied to the destination region.
 152       _dest_region_addr = end_region_addr;
 153       _first_src_addr = sd.region_to_addr(src_region_idx);
 154     }
 155   } else {
 156     // Two destination regions.  When copied, the partial object will cross a
 157     // destination region boundary, so a word somewhere within the partial
 158     // object will be the first word copied to the second destination region.
 159     _destination_count = 2;
 160     _dest_region_addr = end_region_addr;
 161     const size_t ofs = pointer_delta(end_region_addr, destination);
 162     assert(ofs < _partial_obj_size, "sanity");
 163     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 164   }
 165 }
 166 
 167 void SplitInfo::clear()
 168 {
 169   _src_region_idx = 0;
 170   _partial_obj_size = 0;
 171   _destination = NULL;
 172   _destination_count = 0;
 173   _dest_region_addr = NULL;
 174   _first_src_addr = NULL;
 175   assert(!is_valid(), "sanity");
 176 }
 177 
 178 #ifdef  ASSERT
 179 void SplitInfo::verify_clear()
 180 {
 181   assert(_src_region_idx == 0, "not clear");
 182   assert(_partial_obj_size == 0, "not clear");
 183   assert(_destination == NULL, "not clear");
 184   assert(_destination_count == 0, "not clear");
 185   assert(_dest_region_addr == NULL, "not clear");
 186   assert(_first_src_addr == NULL, "not clear");
 187 }
 188 #endif  // #ifdef ASSERT
 189 
 190 
 191 void PSParallelCompact::print_on_error(outputStream* st) {
 192   _mark_bitmap.print_on_error(st);
 193 }
 194 
 195 #ifndef PRODUCT
 196 const char* PSParallelCompact::space_names[] = {
 197   "old ", "eden", "from", "to  "
 198 };
 199 
 200 void PSParallelCompact::print_region_ranges() {
 201   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 202     return;
 203   }
 204   Log(gc, compaction) log;
 205   ResourceMark rm;
 206   LogStream ls(log.trace());
 207   Universe::print_on(&ls);
 208   log.trace("space  bottom     top        end        new_top");
 209   log.trace("------ ---------- ---------- ---------- ----------");
 210 
 211   for (unsigned int id = 0; id < last_space_id; ++id) {
 212     const MutableSpace* space = _space_info[id].space();
 213     log.trace("%u %s "
 214               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 215               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 216               id, space_names[id],
 217               summary_data().addr_to_region_idx(space->bottom()),
 218               summary_data().addr_to_region_idx(space->top()),
 219               summary_data().addr_to_region_idx(space->end()),
 220               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 221   }
 222 }
 223 
 224 void
 225 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 226 {
 227 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 228 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 229 
 230   ParallelCompactData& sd = PSParallelCompact::summary_data();
 231   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 232   log_develop_trace(gc, compaction)(
 233       REGION_IDX_FORMAT " " PTR_FORMAT " "
 234       REGION_IDX_FORMAT " " PTR_FORMAT " "
 235       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 236       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 237       i, p2i(c->data_location()), dci, p2i(c->destination()),
 238       c->partial_obj_size(), c->live_obj_size(),
 239       c->data_size(), c->source_region(), c->destination_count());
 240 
 241 #undef  REGION_IDX_FORMAT
 242 #undef  REGION_DATA_FORMAT
 243 }
 244 
 245 void
 246 print_generic_summary_data(ParallelCompactData& summary_data,
 247                            HeapWord* const beg_addr,
 248                            HeapWord* const end_addr)
 249 {
 250   size_t total_words = 0;
 251   size_t i = summary_data.addr_to_region_idx(beg_addr);
 252   const size_t last = summary_data.addr_to_region_idx(end_addr);
 253   HeapWord* pdest = 0;
 254 
 255   while (i < last) {
 256     ParallelCompactData::RegionData* c = summary_data.region(i);
 257     if (c->data_size() != 0 || c->destination() != pdest) {
 258       print_generic_summary_region(i, c);
 259       total_words += c->data_size();
 260       pdest = c->destination();
 261     }
 262     ++i;
 263   }
 264 
 265   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 266 }
 267 
 268 void
 269 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 270                                               HeapWord* const beg_addr,
 271                                               HeapWord* const end_addr) {
 272   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 273 }
 274 
 275 void
 276 print_generic_summary_data(ParallelCompactData& summary_data,
 277                            SpaceInfo* space_info)
 278 {
 279   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 280     return;
 281   }
 282 
 283   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 284     const MutableSpace* space = space_info[id].space();
 285     print_generic_summary_data(summary_data, space->bottom(),
 286                                MAX2(space->top(), space_info[id].new_top()));
 287   }
 288 }
 289 
 290 void
 291 print_initial_summary_data(ParallelCompactData& summary_data,
 292                            const MutableSpace* space) {
 293   if (space->top() == space->bottom()) {
 294     return;
 295   }
 296 
 297   const size_t region_size = ParallelCompactData::RegionSize;
 298   typedef ParallelCompactData::RegionData RegionData;
 299   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 300   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 301   const RegionData* c = summary_data.region(end_region - 1);
 302   HeapWord* end_addr = c->destination() + c->data_size();
 303   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 304 
 305   // Print (and count) the full regions at the beginning of the space.
 306   size_t full_region_count = 0;
 307   size_t i = summary_data.addr_to_region_idx(space->bottom());
 308   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 309     ParallelCompactData::RegionData* c = summary_data.region(i);
 310     log_develop_trace(gc, compaction)(
 311         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 312         i, p2i(c->destination()),
 313         c->partial_obj_size(), c->live_obj_size(),
 314         c->data_size(), c->source_region(), c->destination_count());
 315     ++full_region_count;
 316     ++i;
 317   }
 318 
 319   size_t live_to_right = live_in_space - full_region_count * region_size;
 320 
 321   double max_reclaimed_ratio = 0.0;
 322   size_t max_reclaimed_ratio_region = 0;
 323   size_t max_dead_to_right = 0;
 324   size_t max_live_to_right = 0;
 325 
 326   // Print the 'reclaimed ratio' for regions while there is something live in
 327   // the region or to the right of it.  The remaining regions are empty (and
 328   // uninteresting), and computing the ratio will result in division by 0.
 329   while (i < end_region && live_to_right > 0) {
 330     c = summary_data.region(i);
 331     HeapWord* const region_addr = summary_data.region_to_addr(i);
 332     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 333     const size_t dead_to_right = used_to_right - live_to_right;
 334     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 335 
 336     if (reclaimed_ratio > max_reclaimed_ratio) {
 337             max_reclaimed_ratio = reclaimed_ratio;
 338             max_reclaimed_ratio_region = i;
 339             max_dead_to_right = dead_to_right;
 340             max_live_to_right = live_to_right;
 341     }
 342 
 343     ParallelCompactData::RegionData* c = summary_data.region(i);
 344     log_develop_trace(gc, compaction)(
 345         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 346         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 347         i, p2i(c->destination()),
 348         c->partial_obj_size(), c->live_obj_size(),
 349         c->data_size(), c->source_region(), c->destination_count(),
 350         reclaimed_ratio, dead_to_right, live_to_right);
 351 
 352 
 353     live_to_right -= c->data_size();
 354     ++i;
 355   }
 356 
 357   // Any remaining regions are empty.  Print one more if there is one.
 358   if (i < end_region) {
 359     ParallelCompactData::RegionData* c = summary_data.region(i);
 360     log_develop_trace(gc, compaction)(
 361         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 362          i, p2i(c->destination()),
 363          c->partial_obj_size(), c->live_obj_size(),
 364          c->data_size(), c->source_region(), c->destination_count());
 365   }
 366 
 367   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 368                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 369 }
 370 
 371 void
 372 print_initial_summary_data(ParallelCompactData& summary_data,
 373                            SpaceInfo* space_info) {
 374   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 375     return;
 376   }
 377 
 378   unsigned int id = PSParallelCompact::old_space_id;
 379   const MutableSpace* space;
 380   do {
 381     space = space_info[id].space();
 382     print_initial_summary_data(summary_data, space);
 383   } while (++id < PSParallelCompact::eden_space_id);
 384 
 385   do {
 386     space = space_info[id].space();
 387     print_generic_summary_data(summary_data, space->bottom(), space->top());
 388   } while (++id < PSParallelCompact::last_space_id);
 389 }
 390 #endif  // #ifndef PRODUCT
 391 
 392 #ifdef  ASSERT
 393 size_t add_obj_count;
 394 size_t add_obj_size;
 395 size_t mark_bitmap_count;
 396 size_t mark_bitmap_size;
 397 #endif  // #ifdef ASSERT
 398 
 399 ParallelCompactData::ParallelCompactData()
 400 {
 401   _region_start = 0;
 402 
 403   _region_vspace = 0;
 404   _reserved_byte_size = 0;
 405   _region_data = 0;
 406   _region_count = 0;
 407 
 408   _block_vspace = 0;
 409   _block_data = 0;
 410   _block_count = 0;
 411 }
 412 
 413 bool ParallelCompactData::initialize(MemRegion covered_region)
 414 {
 415   _region_start = covered_region.start();
 416   const size_t region_size = covered_region.word_size();
 417   DEBUG_ONLY(_region_end = _region_start + region_size;)
 418 
 419   assert(region_align_down(_region_start) == _region_start,
 420          "region start not aligned");
 421   assert((region_size & RegionSizeOffsetMask) == 0,
 422          "region size not a multiple of RegionSize");
 423 
 424   bool result = initialize_region_data(region_size) && initialize_block_data();
 425   return result;
 426 }
 427 
 428 PSVirtualSpace*
 429 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 430 {
 431   const size_t raw_bytes = count * element_size;
 432   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 433   const size_t granularity = os::vm_allocation_granularity();
 434   _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
 435 
 436   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 437     MAX2(page_sz, granularity);
 438   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 439   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 440                        rs.size());
 441 
 442   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 443 
 444   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 445   if (vspace != 0) {
 446     if (vspace->expand_by(_reserved_byte_size)) {
 447       return vspace;
 448     }
 449     delete vspace;
 450     // Release memory reserved in the space.
 451     rs.release();
 452   }
 453 
 454   return 0;
 455 }
 456 
 457 bool ParallelCompactData::initialize_region_data(size_t region_size)
 458 {
 459   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 460   _region_vspace = create_vspace(count, sizeof(RegionData));
 461   if (_region_vspace != 0) {
 462     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 463     _region_count = count;
 464     return true;
 465   }
 466   return false;
 467 }
 468 
 469 bool ParallelCompactData::initialize_block_data()
 470 {
 471   assert(_region_count != 0, "region data must be initialized first");
 472   const size_t count = _region_count << Log2BlocksPerRegion;
 473   _block_vspace = create_vspace(count, sizeof(BlockData));
 474   if (_block_vspace != 0) {
 475     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 476     _block_count = count;
 477     return true;
 478   }
 479   return false;
 480 }
 481 
 482 void ParallelCompactData::clear()
 483 {
 484   memset(_region_data, 0, _region_vspace->committed_size());
 485   memset(_block_data, 0, _block_vspace->committed_size());
 486 }
 487 
 488 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 489   assert(beg_region <= _region_count, "beg_region out of range");
 490   assert(end_region <= _region_count, "end_region out of range");
 491   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 492 
 493   const size_t region_cnt = end_region - beg_region;
 494   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 495 
 496   const size_t beg_block = beg_region * BlocksPerRegion;
 497   const size_t block_cnt = region_cnt * BlocksPerRegion;
 498   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 499 }
 500 
 501 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 502 {
 503   const RegionData* cur_cp = region(region_idx);
 504   const RegionData* const end_cp = region(region_count() - 1);
 505 
 506   HeapWord* result = region_to_addr(region_idx);
 507   if (cur_cp < end_cp) {
 508     do {
 509       result += cur_cp->partial_obj_size();
 510     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 511   }
 512   return result;
 513 }
 514 
 515 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 516 {
 517   const size_t obj_ofs = pointer_delta(addr, _region_start);
 518   const size_t beg_region = obj_ofs >> Log2RegionSize;
 519   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 520 
 521   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 522   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 523 
 524   if (beg_region == end_region) {
 525     // All in one region.
 526     _region_data[beg_region].add_live_obj(len);
 527     return;
 528   }
 529 
 530   // First region.
 531   const size_t beg_ofs = region_offset(addr);
 532   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 533 
 534   Klass* klass = ((oop)addr)->klass();
 535   // Middle regions--completely spanned by this object.
 536   for (size_t region = beg_region + 1; region < end_region; ++region) {
 537     _region_data[region].set_partial_obj_size(RegionSize);
 538     _region_data[region].set_partial_obj_addr(addr);
 539   }
 540 
 541   // Last region.
 542   const size_t end_ofs = region_offset(addr + len - 1);
 543   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 544   _region_data[end_region].set_partial_obj_addr(addr);
 545 }
 546 
 547 void
 548 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 549 {
 550   assert(region_offset(beg) == 0, "not RegionSize aligned");
 551   assert(region_offset(end) == 0, "not RegionSize aligned");
 552 
 553   size_t cur_region = addr_to_region_idx(beg);
 554   const size_t end_region = addr_to_region_idx(end);
 555   HeapWord* addr = beg;
 556   while (cur_region < end_region) {
 557     _region_data[cur_region].set_destination(addr);
 558     _region_data[cur_region].set_destination_count(0);
 559     _region_data[cur_region].set_source_region(cur_region);
 560     _region_data[cur_region].set_data_location(addr);
 561 
 562     // Update live_obj_size so the region appears completely full.
 563     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 564     _region_data[cur_region].set_live_obj_size(live_size);
 565 
 566     ++cur_region;
 567     addr += RegionSize;
 568   }
 569 }
 570 
 571 // Find the point at which a space can be split and, if necessary, record the
 572 // split point.
 573 //
 574 // If the current src region (which overflowed the destination space) doesn't
 575 // have a partial object, the split point is at the beginning of the current src
 576 // region (an "easy" split, no extra bookkeeping required).
 577 //
 578 // If the current src region has a partial object, the split point is in the
 579 // region where that partial object starts (call it the split_region).  If
 580 // split_region has a partial object, then the split point is just after that
 581 // partial object (a "hard" split where we have to record the split data and
 582 // zero the partial_obj_size field).  With a "hard" split, we know that the
 583 // partial_obj ends within split_region because the partial object that caused
 584 // the overflow starts in split_region.  If split_region doesn't have a partial
 585 // obj, then the split is at the beginning of split_region (another "easy"
 586 // split).
 587 HeapWord*
 588 ParallelCompactData::summarize_split_space(size_t src_region,
 589                                            SplitInfo& split_info,
 590                                            HeapWord* destination,
 591                                            HeapWord* target_end,
 592                                            HeapWord** target_next)
 593 {
 594   assert(destination <= target_end, "sanity");
 595   assert(destination + _region_data[src_region].data_size() > target_end,
 596     "region should not fit into target space");
 597   assert(is_region_aligned(target_end), "sanity");
 598 
 599   size_t split_region = src_region;
 600   HeapWord* split_destination = destination;
 601   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 602 
 603   if (destination + partial_obj_size > target_end) {
 604     // The split point is just after the partial object (if any) in the
 605     // src_region that contains the start of the object that overflowed the
 606     // destination space.
 607     //
 608     // Find the start of the "overflow" object and set split_region to the
 609     // region containing it.
 610     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 611     split_region = addr_to_region_idx(overflow_obj);
 612 
 613     // Clear the source_region field of all destination regions whose first word
 614     // came from data after the split point (a non-null source_region field
 615     // implies a region must be filled).
 616     //
 617     // An alternative to the simple loop below:  clear during post_compact(),
 618     // which uses memcpy instead of individual stores, and is easy to
 619     // parallelize.  (The downside is that it clears the entire RegionData
 620     // object as opposed to just one field.)
 621     //
 622     // post_compact() would have to clear the summary data up to the highest
 623     // address that was written during the summary phase, which would be
 624     //
 625     //         max(top, max(new_top, clear_top))
 626     //
 627     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 628     // to target_end.
 629     const RegionData* const sr = region(split_region);
 630     const size_t beg_idx =
 631       addr_to_region_idx(region_align_up(sr->destination() +
 632                                          sr->partial_obj_size()));
 633     const size_t end_idx = addr_to_region_idx(target_end);
 634 
 635     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 636     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 637       _region_data[idx].set_source_region(0);
 638     }
 639 
 640     // Set split_destination and partial_obj_size to reflect the split region.
 641     split_destination = sr->destination();
 642     partial_obj_size = sr->partial_obj_size();
 643   }
 644 
 645   // The split is recorded only if a partial object extends onto the region.
 646   if (partial_obj_size != 0) {
 647     _region_data[split_region].set_partial_obj_size(0);
 648     split_info.record(split_region, partial_obj_size, split_destination);
 649   }
 650 
 651   // Setup the continuation addresses.
 652   *target_next = split_destination + partial_obj_size;
 653   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 654 
 655   if (log_develop_is_enabled(Trace, gc, compaction)) {
 656     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 657     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 658                                       split_type, p2i(source_next), split_region, partial_obj_size);
 659     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 660                                       split_type, p2i(split_destination),
 661                                       addr_to_region_idx(split_destination),
 662                                       p2i(*target_next));
 663 
 664     if (partial_obj_size != 0) {
 665       HeapWord* const po_beg = split_info.destination();
 666       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 667       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 668                                         split_type,
 669                                         p2i(po_beg), addr_to_region_idx(po_beg),
 670                                         p2i(po_end), addr_to_region_idx(po_end));
 671     }
 672   }
 673 
 674   return source_next;
 675 }
 676 
 677 bool ParallelCompactData::summarize(SplitInfo& split_info,
 678                                     HeapWord* source_beg, HeapWord* source_end,
 679                                     HeapWord** source_next,
 680                                     HeapWord* target_beg, HeapWord* target_end,
 681                                     HeapWord** target_next)
 682 {
 683   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 684   log_develop_trace(gc, compaction)(
 685       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 686       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 687       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 688       p2i(target_beg), p2i(target_end), p2i(*target_next));
 689 
 690   size_t cur_region = addr_to_region_idx(source_beg);
 691   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 692 
 693   HeapWord *dest_addr = target_beg;
 694   while (cur_region < end_region) {
 695     // The destination must be set even if the region has no data.
 696     _region_data[cur_region].set_destination(dest_addr);
 697 
 698     size_t words = _region_data[cur_region].data_size();
 699     if (words > 0) {
 700       // If cur_region does not fit entirely into the target space, find a point
 701       // at which the source space can be 'split' so that part is copied to the
 702       // target space and the rest is copied elsewhere.
 703       if (dest_addr + words > target_end) {
 704         assert(source_next != NULL, "source_next is NULL when splitting");
 705         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 706                                              target_end, target_next);
 707         return false;
 708       }
 709 
 710       // Compute the destination_count for cur_region, and if necessary, update
 711       // source_region for a destination region.  The source_region field is
 712       // updated if cur_region is the first (left-most) region to be copied to a
 713       // destination region.
 714       //
 715       // The destination_count calculation is a bit subtle.  A region that has
 716       // data that compacts into itself does not count itself as a destination.
 717       // This maintains the invariant that a zero count means the region is
 718       // available and can be claimed and then filled.
 719       uint destination_count = 0;
 720       if (split_info.is_split(cur_region)) {
 721         // The current region has been split:  the partial object will be copied
 722         // to one destination space and the remaining data will be copied to
 723         // another destination space.  Adjust the initial destination_count and,
 724         // if necessary, set the source_region field if the partial object will
 725         // cross a destination region boundary.
 726         destination_count = split_info.destination_count();
 727         if (destination_count == 2) {
 728           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 729           _region_data[dest_idx].set_source_region(cur_region);
 730         }
 731       }
 732 
 733       HeapWord* const last_addr = dest_addr + words - 1;
 734       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 735       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 736 
 737       // Initially assume that the destination regions will be the same and
 738       // adjust the value below if necessary.  Under this assumption, if
 739       // cur_region == dest_region_2, then cur_region will be compacted
 740       // completely into itself.
 741       destination_count += cur_region == dest_region_2 ? 0 : 1;
 742       if (dest_region_1 != dest_region_2) {
 743         // Destination regions differ; adjust destination_count.
 744         destination_count += 1;
 745         // Data from cur_region will be copied to the start of dest_region_2.
 746         _region_data[dest_region_2].set_source_region(cur_region);
 747       } else if (region_offset(dest_addr) == 0) {
 748         // Data from cur_region will be copied to the start of the destination
 749         // region.
 750         _region_data[dest_region_1].set_source_region(cur_region);
 751       }
 752 
 753       _region_data[cur_region].set_destination_count(destination_count);
 754       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 755       dest_addr += words;
 756     }
 757 
 758     ++cur_region;
 759   }
 760 
 761   *target_next = dest_addr;
 762   return true;
 763 }
 764 
 765 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 766   assert(addr != NULL, "Should detect NULL oop earlier");
 767   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 768   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 769 
 770   // Region covering the object.
 771   RegionData* const region_ptr = addr_to_region_ptr(addr);
 772   HeapWord* result = region_ptr->destination();
 773 
 774   // If the entire Region is live, the new location is region->destination + the
 775   // offset of the object within in the Region.
 776 
 777   // Run some performance tests to determine if this special case pays off.  It
 778   // is worth it for pointers into the dense prefix.  If the optimization to
 779   // avoid pointer updates in regions that only point to the dense prefix is
 780   // ever implemented, this should be revisited.
 781   if (region_ptr->data_size() == RegionSize) {
 782     result += region_offset(addr);
 783     return result;
 784   }
 785 
 786   // Otherwise, the new location is region->destination + block offset + the
 787   // number of live words in the Block that are (a) to the left of addr and (b)
 788   // due to objects that start in the Block.
 789 
 790   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 791   // threads may fill the block table for a region (harmless, since it is
 792   // idempotent).
 793   if (!region_ptr->blocks_filled()) {
 794     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 795     region_ptr->set_blocks_filled();
 796   }
 797 
 798   HeapWord* const search_start = block_align_down(addr);
 799   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 800 
 801   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 802   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 803   result += block_offset + live;
 804   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 805   return result;
 806 }
 807 
 808 #ifdef ASSERT
 809 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 810 {
 811   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 812   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 813   for (const size_t* p = beg; p < end; ++p) {
 814     assert(*p == 0, "not zero");
 815   }
 816 }
 817 
 818 void ParallelCompactData::verify_clear()
 819 {
 820   verify_clear(_region_vspace);
 821   verify_clear(_block_vspace);
 822 }
 823 #endif  // #ifdef ASSERT
 824 
 825 STWGCTimer          PSParallelCompact::_gc_timer;
 826 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 827 elapsedTimer        PSParallelCompact::_accumulated_time;
 828 unsigned int        PSParallelCompact::_total_invocations = 0;
 829 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 830 jlong               PSParallelCompact::_time_of_last_gc = 0;
 831 CollectorCounters*  PSParallelCompact::_counters = NULL;
 832 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 833 ParallelCompactData PSParallelCompact::_summary_data;
 834 
 835 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 836 
 837 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 838 
 839 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
 840   PSParallelCompact::AdjustPointerClosure closure(_cm);
 841   klass->oops_do(&closure);
 842 }
 843 
 844 void PSParallelCompact::post_initialize() {
 845   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 846   MemRegion mr = heap->reserved_region();
 847   _ref_processor =
 848     new ReferenceProcessor(mr,            // span
 849                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 850                            ParallelGCThreads, // mt processing degree
 851                            true,              // mt discovery
 852                            ParallelGCThreads, // mt discovery degree
 853                            true,              // atomic_discovery
 854                            &_is_alive_closure); // non-header is alive closure
 855   _counters = new CollectorCounters("PSParallelCompact", 1);
 856 
 857   // Initialize static fields in ParCompactionManager.
 858   ParCompactionManager::initialize(mark_bitmap());
 859 }
 860 
 861 bool PSParallelCompact::initialize() {
 862   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 863   MemRegion mr = heap->reserved_region();
 864 
 865   // Was the old gen get allocated successfully?
 866   if (!heap->old_gen()->is_allocated()) {
 867     return false;
 868   }
 869 
 870   initialize_space_info();
 871   initialize_dead_wood_limiter();
 872 
 873   if (!_mark_bitmap.initialize(mr)) {
 874     vm_shutdown_during_initialization(
 875       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 876       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 877       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 878     return false;
 879   }
 880 
 881   if (!_summary_data.initialize(mr)) {
 882     vm_shutdown_during_initialization(
 883       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 884       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 885       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 886     return false;
 887   }
 888 
 889   return true;
 890 }
 891 
 892 void PSParallelCompact::initialize_space_info()
 893 {
 894   memset(&_space_info, 0, sizeof(_space_info));
 895 
 896   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 897   PSYoungGen* young_gen = heap->young_gen();
 898 
 899   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 900   _space_info[eden_space_id].set_space(young_gen->eden_space());
 901   _space_info[from_space_id].set_space(young_gen->from_space());
 902   _space_info[to_space_id].set_space(young_gen->to_space());
 903 
 904   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 905 }
 906 
 907 void PSParallelCompact::initialize_dead_wood_limiter()
 908 {
 909   const size_t max = 100;
 910   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 911   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 912   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 913   DEBUG_ONLY(_dwl_initialized = true;)
 914   _dwl_adjustment = normal_distribution(1.0);
 915 }
 916 
 917 void
 918 PSParallelCompact::clear_data_covering_space(SpaceId id)
 919 {
 920   // At this point, top is the value before GC, new_top() is the value that will
 921   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 922   // should be marked above top.  The summary data is cleared to the larger of
 923   // top & new_top.
 924   MutableSpace* const space = _space_info[id].space();
 925   HeapWord* const bot = space->bottom();
 926   HeapWord* const top = space->top();
 927   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 928 
 929   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 930   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 931   _mark_bitmap.clear_range(beg_bit, end_bit);
 932 
 933   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 934   const size_t end_region =
 935     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 936   _summary_data.clear_range(beg_region, end_region);
 937 
 938   // Clear the data used to 'split' regions.
 939   SplitInfo& split_info = _space_info[id].split_info();
 940   if (split_info.is_valid()) {
 941     split_info.clear();
 942   }
 943   DEBUG_ONLY(split_info.verify_clear();)
 944 }
 945 
 946 void PSParallelCompact::pre_compact()
 947 {
 948   // Update the from & to space pointers in space_info, since they are swapped
 949   // at each young gen gc.  Do the update unconditionally (even though a
 950   // promotion failure does not swap spaces) because an unknown number of young
 951   // collections will have swapped the spaces an unknown number of times.
 952   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 953   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 954   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 955   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 956 
 957   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 958   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 959 
 960   // Increment the invocation count
 961   heap->increment_total_collections(true);
 962 
 963   // We need to track unique mark sweep invocations as well.
 964   _total_invocations++;
 965 
 966   heap->print_heap_before_gc();
 967   heap->trace_heap_before_gc(&_gc_tracer);
 968 
 969   // Fill in TLABs
 970   heap->accumulate_statistics_all_tlabs();
 971   heap->ensure_parsability(true);  // retire TLABs
 972 
 973   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 974     HandleMark hm;  // Discard invalid handles created during verification
 975     Universe::verify("Before GC");
 976   }
 977 
 978   // Verify object start arrays
 979   if (VerifyObjectStartArray &&
 980       VerifyBeforeGC) {
 981     heap->old_gen()->verify_object_start_array();
 982   }
 983 
 984   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 985   DEBUG_ONLY(summary_data().verify_clear();)
 986 
 987   // Have worker threads release resources the next time they run a task.
 988   gc_task_manager()->release_all_resources();
 989 
 990   ParCompactionManager::reset_all_bitmap_query_caches();
 991 }
 992 
 993 void PSParallelCompact::post_compact()
 994 {
 995   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
 996 
 997   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
 998     // Clear the marking bitmap, summary data and split info.
 999     clear_data_covering_space(SpaceId(id));
1000     // Update top().  Must be done after clearing the bitmap and summary data.
1001     _space_info[id].publish_new_top();
1002   }
1003 
1004   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1005   MutableSpace* const from_space = _space_info[from_space_id].space();
1006   MutableSpace* const to_space   = _space_info[to_space_id].space();
1007 
1008   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1009   bool eden_empty = eden_space->is_empty();
1010   if (!eden_empty) {
1011     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1012                                             heap->young_gen(), heap->old_gen());
1013   }
1014 
1015   // Update heap occupancy information which is used as input to the soft ref
1016   // clearing policy at the next gc.
1017   Universe::update_heap_info_at_gc();
1018 
1019   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1020     to_space->is_empty();
1021 
1022   ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1023   MemRegion old_mr = heap->old_gen()->reserved();
1024   if (young_gen_empty) {
1025     modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1026   } else {
1027     modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1028   }
1029 
1030   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1031   ClassLoaderDataGraph::purge();
1032   MetaspaceAux::verify_metrics();
1033 
1034   CodeCache::gc_epilogue();
1035   JvmtiExport::gc_epilogue();
1036 
1037 #if defined(COMPILER2) || INCLUDE_JVMCI
1038   DerivedPointerTable::update_pointers();
1039 #endif
1040 
1041   ref_processor()->enqueue_discovered_references(NULL);
1042 
1043   if (ZapUnusedHeapArea) {
1044     heap->gen_mangle_unused_area();
1045   }
1046 
1047   // Update time of last GC
1048   reset_millis_since_last_gc();
1049 }
1050 
1051 HeapWord*
1052 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1053                                                     bool maximum_compaction)
1054 {
1055   const size_t region_size = ParallelCompactData::RegionSize;
1056   const ParallelCompactData& sd = summary_data();
1057 
1058   const MutableSpace* const space = _space_info[id].space();
1059   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1060   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1061   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1062 
1063   // Skip full regions at the beginning of the space--they are necessarily part
1064   // of the dense prefix.
1065   size_t full_count = 0;
1066   const RegionData* cp;
1067   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1068     ++full_count;
1069   }
1070 
1071   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1072   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1073   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1074   if (maximum_compaction || cp == end_cp || interval_ended) {
1075     _maximum_compaction_gc_num = total_invocations();
1076     return sd.region_to_addr(cp);
1077   }
1078 
1079   HeapWord* const new_top = _space_info[id].new_top();
1080   const size_t space_live = pointer_delta(new_top, space->bottom());
1081   const size_t space_used = space->used_in_words();
1082   const size_t space_capacity = space->capacity_in_words();
1083 
1084   const double cur_density = double(space_live) / space_capacity;
1085   const double deadwood_density =
1086     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1087   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1088 
1089   if (TraceParallelOldGCDensePrefix) {
1090     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1091                   cur_density, deadwood_density, deadwood_goal);
1092     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1093                   "space_cap=" SIZE_FORMAT,
1094                   space_live, space_used,
1095                   space_capacity);
1096   }
1097 
1098   // XXX - Use binary search?
1099   HeapWord* dense_prefix = sd.region_to_addr(cp);
1100   const RegionData* full_cp = cp;
1101   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1102   while (cp < end_cp) {
1103     HeapWord* region_destination = cp->destination();
1104     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1105     if (TraceParallelOldGCDensePrefix && Verbose) {
1106       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1107                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1108                     sd.region(cp), p2i(region_destination),
1109                     p2i(dense_prefix), cur_deadwood);
1110     }
1111 
1112     if (cur_deadwood >= deadwood_goal) {
1113       // Found the region that has the correct amount of deadwood to the left.
1114       // This typically occurs after crossing a fairly sparse set of regions, so
1115       // iterate backwards over those sparse regions, looking for the region
1116       // that has the lowest density of live objects 'to the right.'
1117       size_t space_to_left = sd.region(cp) * region_size;
1118       size_t live_to_left = space_to_left - cur_deadwood;
1119       size_t space_to_right = space_capacity - space_to_left;
1120       size_t live_to_right = space_live - live_to_left;
1121       double density_to_right = double(live_to_right) / space_to_right;
1122       while (cp > full_cp) {
1123         --cp;
1124         const size_t prev_region_live_to_right = live_to_right -
1125           cp->data_size();
1126         const size_t prev_region_space_to_right = space_to_right + region_size;
1127         double prev_region_density_to_right =
1128           double(prev_region_live_to_right) / prev_region_space_to_right;
1129         if (density_to_right <= prev_region_density_to_right) {
1130           return dense_prefix;
1131         }
1132         if (TraceParallelOldGCDensePrefix && Verbose) {
1133           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1134                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1135                         prev_region_density_to_right);
1136         }
1137         dense_prefix -= region_size;
1138         live_to_right = prev_region_live_to_right;
1139         space_to_right = prev_region_space_to_right;
1140         density_to_right = prev_region_density_to_right;
1141       }
1142       return dense_prefix;
1143     }
1144 
1145     dense_prefix += region_size;
1146     ++cp;
1147   }
1148 
1149   return dense_prefix;
1150 }
1151 
1152 #ifndef PRODUCT
1153 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1154                                                  const SpaceId id,
1155                                                  const bool maximum_compaction,
1156                                                  HeapWord* const addr)
1157 {
1158   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1159   RegionData* const cp = summary_data().region(region_idx);
1160   const MutableSpace* const space = _space_info[id].space();
1161   HeapWord* const new_top = _space_info[id].new_top();
1162 
1163   const size_t space_live = pointer_delta(new_top, space->bottom());
1164   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1165   const size_t space_cap = space->capacity_in_words();
1166   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1167   const size_t live_to_right = new_top - cp->destination();
1168   const size_t dead_to_right = space->top() - addr - live_to_right;
1169 
1170   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1171                 "spl=" SIZE_FORMAT " "
1172                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1173                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1174                 " ratio=%10.8f",
1175                 algorithm, p2i(addr), region_idx,
1176                 space_live,
1177                 dead_to_left, dead_to_left_pct,
1178                 dead_to_right, live_to_right,
1179                 double(dead_to_right) / live_to_right);
1180 }
1181 #endif  // #ifndef PRODUCT
1182 
1183 // Return a fraction indicating how much of the generation can be treated as
1184 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1185 // based on the density of live objects in the generation to determine a limit,
1186 // which is then adjusted so the return value is min_percent when the density is
1187 // 1.
1188 //
1189 // The following table shows some return values for a different values of the
1190 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1191 // min_percent is 1.
1192 //
1193 //                          fraction allowed as dead wood
1194 //         -----------------------------------------------------------------
1195 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1196 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1197 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1198 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1199 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1200 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1201 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1202 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1203 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1204 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1205 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1206 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1207 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1208 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1209 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1210 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1211 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1212 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1213 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1214 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1215 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1216 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1217 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1218 
1219 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1220 {
1221   assert(_dwl_initialized, "uninitialized");
1222 
1223   // The raw limit is the value of the normal distribution at x = density.
1224   const double raw_limit = normal_distribution(density);
1225 
1226   // Adjust the raw limit so it becomes the minimum when the density is 1.
1227   //
1228   // First subtract the adjustment value (which is simply the precomputed value
1229   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1230   // Then add the minimum value, so the minimum is returned when the density is
1231   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1232   const double min = double(min_percent) / 100.0;
1233   const double limit = raw_limit - _dwl_adjustment + min;
1234   return MAX2(limit, 0.0);
1235 }
1236 
1237 ParallelCompactData::RegionData*
1238 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1239                                            const RegionData* end)
1240 {
1241   const size_t region_size = ParallelCompactData::RegionSize;
1242   ParallelCompactData& sd = summary_data();
1243   size_t left = sd.region(beg);
1244   size_t right = end > beg ? sd.region(end) - 1 : left;
1245 
1246   // Binary search.
1247   while (left < right) {
1248     // Equivalent to (left + right) / 2, but does not overflow.
1249     const size_t middle = left + (right - left) / 2;
1250     RegionData* const middle_ptr = sd.region(middle);
1251     HeapWord* const dest = middle_ptr->destination();
1252     HeapWord* const addr = sd.region_to_addr(middle);
1253     assert(dest != NULL, "sanity");
1254     assert(dest <= addr, "must move left");
1255 
1256     if (middle > left && dest < addr) {
1257       right = middle - 1;
1258     } else if (middle < right && middle_ptr->data_size() == region_size) {
1259       left = middle + 1;
1260     } else {
1261       return middle_ptr;
1262     }
1263   }
1264   return sd.region(left);
1265 }
1266 
1267 ParallelCompactData::RegionData*
1268 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1269                                           const RegionData* end,
1270                                           size_t dead_words)
1271 {
1272   ParallelCompactData& sd = summary_data();
1273   size_t left = sd.region(beg);
1274   size_t right = end > beg ? sd.region(end) - 1 : left;
1275 
1276   // Binary search.
1277   while (left < right) {
1278     // Equivalent to (left + right) / 2, but does not overflow.
1279     const size_t middle = left + (right - left) / 2;
1280     RegionData* const middle_ptr = sd.region(middle);
1281     HeapWord* const dest = middle_ptr->destination();
1282     HeapWord* const addr = sd.region_to_addr(middle);
1283     assert(dest != NULL, "sanity");
1284     assert(dest <= addr, "must move left");
1285 
1286     const size_t dead_to_left = pointer_delta(addr, dest);
1287     if (middle > left && dead_to_left > dead_words) {
1288       right = middle - 1;
1289     } else if (middle < right && dead_to_left < dead_words) {
1290       left = middle + 1;
1291     } else {
1292       return middle_ptr;
1293     }
1294   }
1295   return sd.region(left);
1296 }
1297 
1298 // The result is valid during the summary phase, after the initial summarization
1299 // of each space into itself, and before final summarization.
1300 inline double
1301 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1302                                    HeapWord* const bottom,
1303                                    HeapWord* const top,
1304                                    HeapWord* const new_top)
1305 {
1306   ParallelCompactData& sd = summary_data();
1307 
1308   assert(cp != NULL, "sanity");
1309   assert(bottom != NULL, "sanity");
1310   assert(top != NULL, "sanity");
1311   assert(new_top != NULL, "sanity");
1312   assert(top >= new_top, "summary data problem?");
1313   assert(new_top > bottom, "space is empty; should not be here");
1314   assert(new_top >= cp->destination(), "sanity");
1315   assert(top >= sd.region_to_addr(cp), "sanity");
1316 
1317   HeapWord* const destination = cp->destination();
1318   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1319   const size_t compacted_region_live = pointer_delta(new_top, destination);
1320   const size_t compacted_region_used = pointer_delta(top,
1321                                                      sd.region_to_addr(cp));
1322   const size_t reclaimable = compacted_region_used - compacted_region_live;
1323 
1324   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1325   return double(reclaimable) / divisor;
1326 }
1327 
1328 // Return the address of the end of the dense prefix, a.k.a. the start of the
1329 // compacted region.  The address is always on a region boundary.
1330 //
1331 // Completely full regions at the left are skipped, since no compaction can
1332 // occur in those regions.  Then the maximum amount of dead wood to allow is
1333 // computed, based on the density (amount live / capacity) of the generation;
1334 // the region with approximately that amount of dead space to the left is
1335 // identified as the limit region.  Regions between the last completely full
1336 // region and the limit region are scanned and the one that has the best
1337 // (maximum) reclaimed_ratio() is selected.
1338 HeapWord*
1339 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1340                                         bool maximum_compaction)
1341 {
1342   const size_t region_size = ParallelCompactData::RegionSize;
1343   const ParallelCompactData& sd = summary_data();
1344 
1345   const MutableSpace* const space = _space_info[id].space();
1346   HeapWord* const top = space->top();
1347   HeapWord* const top_aligned_up = sd.region_align_up(top);
1348   HeapWord* const new_top = _space_info[id].new_top();
1349   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1350   HeapWord* const bottom = space->bottom();
1351   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1352   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1353   const RegionData* const new_top_cp =
1354     sd.addr_to_region_ptr(new_top_aligned_up);
1355 
1356   // Skip full regions at the beginning of the space--they are necessarily part
1357   // of the dense prefix.
1358   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1359   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1360          space->is_empty(), "no dead space allowed to the left");
1361   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1362          "region must have dead space");
1363 
1364   // The gc number is saved whenever a maximum compaction is done, and used to
1365   // determine when the maximum compaction interval has expired.  This avoids
1366   // successive max compactions for different reasons.
1367   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1368   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1369   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1370     total_invocations() == HeapFirstMaximumCompactionCount;
1371   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1372     _maximum_compaction_gc_num = total_invocations();
1373     return sd.region_to_addr(full_cp);
1374   }
1375 
1376   const size_t space_live = pointer_delta(new_top, bottom);
1377   const size_t space_used = space->used_in_words();
1378   const size_t space_capacity = space->capacity_in_words();
1379 
1380   const double density = double(space_live) / double(space_capacity);
1381   const size_t min_percent_free = MarkSweepDeadRatio;
1382   const double limiter = dead_wood_limiter(density, min_percent_free);
1383   const size_t dead_wood_max = space_used - space_live;
1384   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1385                                       dead_wood_max);
1386 
1387   if (TraceParallelOldGCDensePrefix) {
1388     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1389                   "space_cap=" SIZE_FORMAT,
1390                   space_live, space_used,
1391                   space_capacity);
1392     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1393                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1394                   density, min_percent_free, limiter,
1395                   dead_wood_max, dead_wood_limit);
1396   }
1397 
1398   // Locate the region with the desired amount of dead space to the left.
1399   const RegionData* const limit_cp =
1400     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1401 
1402   // Scan from the first region with dead space to the limit region and find the
1403   // one with the best (largest) reclaimed ratio.
1404   double best_ratio = 0.0;
1405   const RegionData* best_cp = full_cp;
1406   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1407     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1408     if (tmp_ratio > best_ratio) {
1409       best_cp = cp;
1410       best_ratio = tmp_ratio;
1411     }
1412   }
1413 
1414   return sd.region_to_addr(best_cp);
1415 }
1416 
1417 void PSParallelCompact::summarize_spaces_quick()
1418 {
1419   for (unsigned int i = 0; i < last_space_id; ++i) {
1420     const MutableSpace* space = _space_info[i].space();
1421     HeapWord** nta = _space_info[i].new_top_addr();
1422     bool result = _summary_data.summarize(_space_info[i].split_info(),
1423                                           space->bottom(), space->top(), NULL,
1424                                           space->bottom(), space->end(), nta);
1425     assert(result, "space must fit into itself");
1426     _space_info[i].set_dense_prefix(space->bottom());
1427   }
1428 }
1429 
1430 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1431 {
1432   HeapWord* const dense_prefix_end = dense_prefix(id);
1433   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1434   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1435   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1436     // Only enough dead space is filled so that any remaining dead space to the
1437     // left is larger than the minimum filler object.  (The remainder is filled
1438     // during the copy/update phase.)
1439     //
1440     // The size of the dead space to the right of the boundary is not a
1441     // concern, since compaction will be able to use whatever space is
1442     // available.
1443     //
1444     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1445     // surrounds the space to be filled with an object.
1446     //
1447     // In the 32-bit VM, each bit represents two 32-bit words:
1448     //                              +---+
1449     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1450     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1451     //                              +---+
1452     //
1453     // In the 64-bit VM, each bit represents one 64-bit word:
1454     //                              +------------+
1455     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1456     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1457     //                              +------------+
1458     //                          +-------+
1459     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1460     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1461     //                          +-------+
1462     //                      +-----------+
1463     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1464     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1465     //                      +-----------+
1466     //                          +-------+
1467     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1468     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1469     //                          +-------+
1470 
1471     // Initially assume case a, c or e will apply.
1472     size_t obj_len = CollectedHeap::min_fill_size();
1473     HeapWord* obj_beg = dense_prefix_end - obj_len;
1474 
1475 #ifdef  _LP64
1476     if (MinObjAlignment > 1) { // object alignment > heap word size
1477       // Cases a, c or e.
1478     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1479       // Case b above.
1480       obj_beg = dense_prefix_end - 1;
1481     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1482                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1483       // Case d above.
1484       obj_beg = dense_prefix_end - 3;
1485       obj_len = 3;
1486     }
1487 #endif  // #ifdef _LP64
1488 
1489     CollectedHeap::fill_with_object(obj_beg, obj_len);
1490     _mark_bitmap.mark_obj(obj_beg, obj_len);
1491     _summary_data.add_obj(obj_beg, obj_len);
1492     assert(start_array(id) != NULL, "sanity");
1493     start_array(id)->allocate_block(obj_beg);
1494   }
1495 }
1496 
1497 void
1498 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1499 {
1500   assert(id < last_space_id, "id out of range");
1501   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1502          "should have been reset in summarize_spaces_quick()");
1503 
1504   const MutableSpace* space = _space_info[id].space();
1505   if (_space_info[id].new_top() != space->bottom()) {
1506     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1507     _space_info[id].set_dense_prefix(dense_prefix_end);
1508 
1509 #ifndef PRODUCT
1510     if (TraceParallelOldGCDensePrefix) {
1511       print_dense_prefix_stats("ratio", id, maximum_compaction,
1512                                dense_prefix_end);
1513       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1514       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1515     }
1516 #endif  // #ifndef PRODUCT
1517 
1518     // Recompute the summary data, taking into account the dense prefix.  If
1519     // every last byte will be reclaimed, then the existing summary data which
1520     // compacts everything can be left in place.
1521     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1522       // If dead space crosses the dense prefix boundary, it is (at least
1523       // partially) filled with a dummy object, marked live and added to the
1524       // summary data.  This simplifies the copy/update phase and must be done
1525       // before the final locations of objects are determined, to prevent
1526       // leaving a fragment of dead space that is too small to fill.
1527       fill_dense_prefix_end(id);
1528 
1529       // Compute the destination of each Region, and thus each object.
1530       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1531       _summary_data.summarize(_space_info[id].split_info(),
1532                               dense_prefix_end, space->top(), NULL,
1533                               dense_prefix_end, space->end(),
1534                               _space_info[id].new_top_addr());
1535     }
1536   }
1537 
1538   if (log_develop_is_enabled(Trace, gc, compaction)) {
1539     const size_t region_size = ParallelCompactData::RegionSize;
1540     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1541     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1542     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1543     HeapWord* const new_top = _space_info[id].new_top();
1544     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1545     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1546     log_develop_trace(gc, compaction)(
1547         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1548         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1549         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1550         id, space->capacity_in_words(), p2i(dense_prefix_end),
1551         dp_region, dp_words / region_size,
1552         cr_words / region_size, p2i(new_top));
1553   }
1554 }
1555 
1556 #ifndef PRODUCT
1557 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1558                                           HeapWord* dst_beg, HeapWord* dst_end,
1559                                           SpaceId src_space_id,
1560                                           HeapWord* src_beg, HeapWord* src_end)
1561 {
1562   log_develop_trace(gc, compaction)(
1563       "Summarizing %d [%s] into %d [%s]:  "
1564       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1565       SIZE_FORMAT "-" SIZE_FORMAT " "
1566       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1567       SIZE_FORMAT "-" SIZE_FORMAT,
1568       src_space_id, space_names[src_space_id],
1569       dst_space_id, space_names[dst_space_id],
1570       p2i(src_beg), p2i(src_end),
1571       _summary_data.addr_to_region_idx(src_beg),
1572       _summary_data.addr_to_region_idx(src_end),
1573       p2i(dst_beg), p2i(dst_end),
1574       _summary_data.addr_to_region_idx(dst_beg),
1575       _summary_data.addr_to_region_idx(dst_end));
1576 }
1577 #endif  // #ifndef PRODUCT
1578 
1579 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1580                                       bool maximum_compaction)
1581 {
1582   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1583 
1584 #ifdef  ASSERT
1585   if (TraceParallelOldGCMarkingPhase) {
1586     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1587                   "add_obj_bytes=" SIZE_FORMAT,
1588                   add_obj_count, add_obj_size * HeapWordSize);
1589     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1590                   "mark_bitmap_bytes=" SIZE_FORMAT,
1591                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1592   }
1593 #endif  // #ifdef ASSERT
1594 
1595   // Quick summarization of each space into itself, to see how much is live.
1596   summarize_spaces_quick();
1597 
1598   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1599   NOT_PRODUCT(print_region_ranges());
1600   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1601 
1602   // The amount of live data that will end up in old space (assuming it fits).
1603   size_t old_space_total_live = 0;
1604   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1605     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1606                                           _space_info[id].space()->bottom());
1607   }
1608 
1609   MutableSpace* const old_space = _space_info[old_space_id].space();
1610   const size_t old_capacity = old_space->capacity_in_words();
1611   if (old_space_total_live > old_capacity) {
1612     // XXX - should also try to expand
1613     maximum_compaction = true;
1614   }
1615 
1616   // Old generations.
1617   summarize_space(old_space_id, maximum_compaction);
1618 
1619   // Summarize the remaining spaces in the young gen.  The initial target space
1620   // is the old gen.  If a space does not fit entirely into the target, then the
1621   // remainder is compacted into the space itself and that space becomes the new
1622   // target.
1623   SpaceId dst_space_id = old_space_id;
1624   HeapWord* dst_space_end = old_space->end();
1625   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1626   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1627     const MutableSpace* space = _space_info[id].space();
1628     const size_t live = pointer_delta(_space_info[id].new_top(),
1629                                       space->bottom());
1630     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1631 
1632     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1633                                   SpaceId(id), space->bottom(), space->top());)
1634     if (live > 0 && live <= available) {
1635       // All the live data will fit.
1636       bool done = _summary_data.summarize(_space_info[id].split_info(),
1637                                           space->bottom(), space->top(),
1638                                           NULL,
1639                                           *new_top_addr, dst_space_end,
1640                                           new_top_addr);
1641       assert(done, "space must fit into old gen");
1642 
1643       // Reset the new_top value for the space.
1644       _space_info[id].set_new_top(space->bottom());
1645     } else if (live > 0) {
1646       // Attempt to fit part of the source space into the target space.
1647       HeapWord* next_src_addr = NULL;
1648       bool done = _summary_data.summarize(_space_info[id].split_info(),
1649                                           space->bottom(), space->top(),
1650                                           &next_src_addr,
1651                                           *new_top_addr, dst_space_end,
1652                                           new_top_addr);
1653       assert(!done, "space should not fit into old gen");
1654       assert(next_src_addr != NULL, "sanity");
1655 
1656       // The source space becomes the new target, so the remainder is compacted
1657       // within the space itself.
1658       dst_space_id = SpaceId(id);
1659       dst_space_end = space->end();
1660       new_top_addr = _space_info[id].new_top_addr();
1661       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1662                                     space->bottom(), dst_space_end,
1663                                     SpaceId(id), next_src_addr, space->top());)
1664       done = _summary_data.summarize(_space_info[id].split_info(),
1665                                      next_src_addr, space->top(),
1666                                      NULL,
1667                                      space->bottom(), dst_space_end,
1668                                      new_top_addr);
1669       assert(done, "space must fit when compacted into itself");
1670       assert(*new_top_addr <= space->top(), "usage should not grow");
1671     }
1672   }
1673 
1674   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1675   NOT_PRODUCT(print_region_ranges());
1676   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1677 }
1678 
1679 // This method should contain all heap-specific policy for invoking a full
1680 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1681 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1682 // before full gc, or any other specialized behavior, it needs to be added here.
1683 //
1684 // Note that this method should only be called from the vm_thread while at a
1685 // safepoint.
1686 //
1687 // Note that the all_soft_refs_clear flag in the collector policy
1688 // may be true because this method can be called without intervening
1689 // activity.  For example when the heap space is tight and full measure
1690 // are being taken to free space.
1691 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1692   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1693   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1694          "should be in vm thread");
1695 
1696   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1697   GCCause::Cause gc_cause = heap->gc_cause();
1698   assert(!heap->is_gc_active(), "not reentrant");
1699 
1700   PSAdaptiveSizePolicy* policy = heap->size_policy();
1701   IsGCActiveMark mark;
1702 
1703   if (ScavengeBeforeFullGC) {
1704     PSScavenge::invoke_no_policy();
1705   }
1706 
1707   const bool clear_all_soft_refs =
1708     heap->collector_policy()->should_clear_all_soft_refs();
1709 
1710   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1711                                       maximum_heap_compaction);
1712 }
1713 
1714 // This method contains no policy. You should probably
1715 // be calling invoke() instead.
1716 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1717   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1718   assert(ref_processor() != NULL, "Sanity");
1719 
1720   if (GCLocker::check_active_before_gc()) {
1721     return false;
1722   }
1723 
1724   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1725 
1726   GCIdMark gc_id_mark;
1727   _gc_timer.register_gc_start();
1728   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1729 
1730   TimeStamp marking_start;
1731   TimeStamp compaction_start;
1732   TimeStamp collection_exit;
1733 
1734   GCCause::Cause gc_cause = heap->gc_cause();
1735   PSYoungGen* young_gen = heap->young_gen();
1736   PSOldGen* old_gen = heap->old_gen();
1737   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1738 
1739   // The scope of casr should end after code that can change
1740   // CollectorPolicy::_should_clear_all_soft_refs.
1741   ClearedAllSoftRefs casr(maximum_heap_compaction,
1742                           heap->collector_policy());
1743 
1744   if (ZapUnusedHeapArea) {
1745     // Save information needed to minimize mangling
1746     heap->record_gen_tops_before_GC();
1747   }
1748 
1749   // Make sure data structures are sane, make the heap parsable, and do other
1750   // miscellaneous bookkeeping.
1751   pre_compact();
1752 
1753   PreGCValues pre_gc_values(heap);
1754 
1755   // Get the compaction manager reserved for the VM thread.
1756   ParCompactionManager* const vmthread_cm =
1757     ParCompactionManager::manager_array(gc_task_manager()->workers());
1758 
1759   {
1760     ResourceMark rm;
1761     HandleMark hm;
1762 
1763     // Set the number of GC threads to be used in this collection
1764     gc_task_manager()->set_active_gang();
1765     gc_task_manager()->task_idle_workers();
1766 
1767     GCTraceCPUTime tcpu;
1768     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1769 
1770     heap->pre_full_gc_dump(&_gc_timer);
1771 
1772     TraceCollectorStats tcs(counters());
1773     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
1774 
1775     if (TraceOldGenTime) accumulated_time()->start();
1776 
1777     // Let the size policy know we're starting
1778     size_policy->major_collection_begin();
1779 
1780     CodeCache::gc_prologue();
1781 
1782 #if defined(COMPILER2) || INCLUDE_JVMCI
1783     DerivedPointerTable::clear();
1784 #endif
1785 
1786     ref_processor()->enable_discovery();
1787     ref_processor()->setup_policy(maximum_heap_compaction);
1788 
1789     bool marked_for_unloading = false;
1790 
1791     marking_start.update();
1792     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1793 
1794     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1795       && GCCause::is_user_requested_gc(gc_cause);
1796     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1797 
1798 #if defined(COMPILER2) || INCLUDE_JVMCI
1799     assert(DerivedPointerTable::is_active(), "Sanity");
1800     DerivedPointerTable::set_active(false);
1801 #endif
1802 
1803     // adjust_roots() updates Universe::_intArrayKlassObj which is
1804     // needed by the compaction for filling holes in the dense prefix.
1805     adjust_roots(vmthread_cm);
1806 
1807     compaction_start.update();
1808     compact();
1809 
1810     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1811     // done before resizing.
1812     post_compact();
1813 
1814     // Let the size policy know we're done
1815     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1816 
1817     if (UseAdaptiveSizePolicy) {
1818       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1819       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1820                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1821 
1822       // Don't check if the size_policy is ready here.  Let
1823       // the size_policy check that internally.
1824       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1825           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1826         // Swap the survivor spaces if from_space is empty. The
1827         // resize_young_gen() called below is normally used after
1828         // a successful young GC and swapping of survivor spaces;
1829         // otherwise, it will fail to resize the young gen with
1830         // the current implementation.
1831         if (young_gen->from_space()->is_empty()) {
1832           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1833           young_gen->swap_spaces();
1834         }
1835 
1836         // Calculate optimal free space amounts
1837         assert(young_gen->max_size() >
1838           young_gen->from_space()->capacity_in_bytes() +
1839           young_gen->to_space()->capacity_in_bytes(),
1840           "Sizes of space in young gen are out-of-bounds");
1841 
1842         size_t young_live = young_gen->used_in_bytes();
1843         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1844         size_t old_live = old_gen->used_in_bytes();
1845         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1846         size_t max_old_gen_size = old_gen->max_gen_size();
1847         size_t max_eden_size = young_gen->max_size() -
1848           young_gen->from_space()->capacity_in_bytes() -
1849           young_gen->to_space()->capacity_in_bytes();
1850 
1851         // Used for diagnostics
1852         size_policy->clear_generation_free_space_flags();
1853 
1854         size_policy->compute_generations_free_space(young_live,
1855                                                     eden_live,
1856                                                     old_live,
1857                                                     cur_eden,
1858                                                     max_old_gen_size,
1859                                                     max_eden_size,
1860                                                     true /* full gc*/);
1861 
1862         size_policy->check_gc_overhead_limit(young_live,
1863                                              eden_live,
1864                                              max_old_gen_size,
1865                                              max_eden_size,
1866                                              true /* full gc*/,
1867                                              gc_cause,
1868                                              heap->collector_policy());
1869 
1870         size_policy->decay_supplemental_growth(true /* full gc*/);
1871 
1872         heap->resize_old_gen(
1873           size_policy->calculated_old_free_size_in_bytes());
1874 
1875         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1876                                size_policy->calculated_survivor_size_in_bytes());
1877       }
1878 
1879       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1880     }
1881 
1882     if (UsePerfData) {
1883       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1884       counters->update_counters();
1885       counters->update_old_capacity(old_gen->capacity_in_bytes());
1886       counters->update_young_capacity(young_gen->capacity_in_bytes());
1887     }
1888 
1889     heap->resize_all_tlabs();
1890 
1891     // Resize the metaspace capacity after a collection
1892     MetaspaceGC::compute_new_size();
1893 
1894     if (TraceOldGenTime) {
1895       accumulated_time()->stop();
1896     }
1897 
1898     young_gen->print_used_change(pre_gc_values.young_gen_used());
1899     old_gen->print_used_change(pre_gc_values.old_gen_used());
1900     MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
1901 
1902     // Track memory usage and detect low memory
1903     MemoryService::track_memory_usage();
1904     heap->update_counters();
1905     gc_task_manager()->release_idle_workers();
1906 
1907     heap->post_full_gc_dump(&_gc_timer);
1908   }
1909 
1910 #ifdef ASSERT
1911   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1912     ParCompactionManager* const cm =
1913       ParCompactionManager::manager_array(int(i));
1914     assert(cm->marking_stack()->is_empty(),       "should be empty");
1915     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1916   }
1917 #endif // ASSERT
1918 
1919   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1920     HandleMark hm;  // Discard invalid handles created during verification
1921     Universe::verify("After GC");
1922   }
1923 
1924   // Re-verify object start arrays
1925   if (VerifyObjectStartArray &&
1926       VerifyAfterGC) {
1927     old_gen->verify_object_start_array();
1928   }
1929 
1930   if (ZapUnusedHeapArea) {
1931     old_gen->object_space()->check_mangled_unused_area_complete();
1932   }
1933 
1934   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1935 
1936   collection_exit.update();
1937 
1938   heap->print_heap_after_gc();
1939   heap->trace_heap_after_gc(&_gc_tracer);
1940 
1941   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1942                          marking_start.ticks(), compaction_start.ticks(),
1943                          collection_exit.ticks());
1944   gc_task_manager()->print_task_time_stamps();
1945 
1946 #ifdef TRACESPINNING
1947   ParallelTaskTerminator::print_termination_counts();
1948 #endif
1949 
1950   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1951 
1952   _gc_timer.register_gc_end();
1953 
1954   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1955   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1956 
1957   return true;
1958 }
1959 
1960 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1961                                              PSYoungGen* young_gen,
1962                                              PSOldGen* old_gen) {
1963   MutableSpace* const eden_space = young_gen->eden_space();
1964   assert(!eden_space->is_empty(), "eden must be non-empty");
1965   assert(young_gen->virtual_space()->alignment() ==
1966          old_gen->virtual_space()->alignment(), "alignments do not match");
1967 
1968   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
1969     return false;
1970   }
1971 
1972   // Both generations must be completely committed.
1973   if (young_gen->virtual_space()->uncommitted_size() != 0) {
1974     return false;
1975   }
1976   if (old_gen->virtual_space()->uncommitted_size() != 0) {
1977     return false;
1978   }
1979 
1980   // Figure out how much to take from eden.  Include the average amount promoted
1981   // in the total; otherwise the next young gen GC will simply bail out to a
1982   // full GC.
1983   const size_t alignment = old_gen->virtual_space()->alignment();
1984   const size_t eden_used = eden_space->used_in_bytes();
1985   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
1986   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
1987   const size_t eden_capacity = eden_space->capacity_in_bytes();
1988 
1989   if (absorb_size >= eden_capacity) {
1990     return false; // Must leave some space in eden.
1991   }
1992 
1993   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
1994   if (new_young_size < young_gen->min_gen_size()) {
1995     return false; // Respect young gen minimum size.
1996   }
1997 
1998   log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
1999                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2000                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2001                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2002                         absorb_size / K,
2003                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2004                         young_gen->from_space()->used_in_bytes() / K,
2005                         young_gen->to_space()->used_in_bytes() / K,
2006                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2007 
2008   // Fill the unused part of the old gen.
2009   MutableSpace* const old_space = old_gen->object_space();
2010   HeapWord* const unused_start = old_space->top();
2011   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2012 
2013   if (unused_words > 0) {
2014     if (unused_words < CollectedHeap::min_fill_size()) {
2015       return false;  // If the old gen cannot be filled, must give up.
2016     }
2017     CollectedHeap::fill_with_objects(unused_start, unused_words);
2018   }
2019 
2020   // Take the live data from eden and set both top and end in the old gen to
2021   // eden top.  (Need to set end because reset_after_change() mangles the region
2022   // from end to virtual_space->high() in debug builds).
2023   HeapWord* const new_top = eden_space->top();
2024   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2025                                         absorb_size);
2026   young_gen->reset_after_change();
2027   old_space->set_top(new_top);
2028   old_space->set_end(new_top);
2029   old_gen->reset_after_change();
2030 
2031   // Update the object start array for the filler object and the data from eden.
2032   ObjectStartArray* const start_array = old_gen->start_array();
2033   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2034     start_array->allocate_block(p);
2035   }
2036 
2037   // Could update the promoted average here, but it is not typically updated at
2038   // full GCs and the value to use is unclear.  Something like
2039   //
2040   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2041 
2042   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2043   return true;
2044 }
2045 
2046 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2047   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2048     "shouldn't return NULL");
2049   return ParallelScavengeHeap::gc_task_manager();
2050 }
2051 
2052 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2053                                       bool maximum_heap_compaction,
2054                                       ParallelOldTracer *gc_tracer) {
2055   // Recursively traverse all live objects and mark them
2056   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2057 
2058   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2059   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2060   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2061   TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2062   ParallelTaskTerminator terminator(active_gc_threads, qset);
2063 
2064   ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2065   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2066 
2067   // Need new claim bits before marking starts.
2068   ClassLoaderDataGraph::clear_claimed_marks();
2069 
2070   {
2071     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2072 
2073     ParallelScavengeHeap::ParStrongRootsScope psrs;
2074 
2075     GCTaskQueue* q = GCTaskQueue::create();
2076 
2077     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2078     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2079     // We scan the thread roots in parallel
2080     Threads::create_thread_roots_marking_tasks(q);
2081     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2082     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2083     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2084     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2085     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2086     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2087     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2088 
2089     if (active_gc_threads > 1) {
2090       for (uint j = 0; j < active_gc_threads; j++) {
2091         q->enqueue(new StealMarkingTask(&terminator));
2092       }
2093     }
2094 
2095     gc_task_manager()->execute_and_wait(q);
2096   }
2097 
2098   // Process reference objects found during marking
2099   {
2100     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2101 
2102     ReferenceProcessorStats stats;
2103     if (ref_processor()->processing_is_mt()) {
2104       RefProcTaskExecutor task_executor;
2105       stats = ref_processor()->process_discovered_references(
2106         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2107         &task_executor, &_gc_timer);
2108     } else {
2109       stats = ref_processor()->process_discovered_references(
2110         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2111         &_gc_timer);
2112     }
2113 
2114     gc_tracer->report_gc_reference_stats(stats);
2115   }
2116 
2117   // This is the point where the entire marking should have completed.
2118   assert(cm->marking_stacks_empty(), "Marking should have completed");
2119 
2120   {
2121     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2122 
2123     // Follow system dictionary roots and unload classes.
2124     bool purged_class = SystemDictionary::do_unloading(is_alive_closure(), &_gc_timer);
2125 
2126     // Unload nmethods.
2127     CodeCache::do_unloading(is_alive_closure(), purged_class);
2128 
2129     // Prune dead klasses from subklass/sibling/implementor lists.
2130     Klass::clean_weak_klass_links(is_alive_closure());
2131   }
2132 
2133   {
2134     GCTraceTime(Debug, gc, phases) t("Scrub String Table", &_gc_timer);
2135     // Delete entries for dead interned strings.
2136     StringTable::unlink(is_alive_closure());
2137   }
2138 
2139   {
2140     GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", &_gc_timer);
2141     // Clean up unreferenced symbols in symbol table.
2142     SymbolTable::unlink();
2143   }
2144 
2145   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2146 }
2147 
2148 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2149   // Adjust the pointers to reflect the new locations
2150   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2151 
2152   // Need new claim bits when tracing through and adjusting pointers.
2153   ClassLoaderDataGraph::clear_claimed_marks();
2154 
2155   PSParallelCompact::AdjustPointerClosure oop_closure(cm);
2156   PSParallelCompact::AdjustKlassClosure klass_closure(cm);
2157 
2158   // General strong roots.
2159   Universe::oops_do(&oop_closure);
2160   JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2161   Threads::oops_do(&oop_closure, NULL);
2162   ObjectSynchronizer::oops_do(&oop_closure);
2163   FlatProfiler::oops_do(&oop_closure);
2164   Management::oops_do(&oop_closure);
2165   JvmtiExport::oops_do(&oop_closure);
2166   SystemDictionary::oops_do(&oop_closure);
2167   ClassLoaderDataGraph::oops_do(&oop_closure, &klass_closure, true);
2168 
2169   // Now adjust pointers in remaining weak roots.  (All of which should
2170   // have been cleared if they pointed to non-surviving objects.)
2171   // Global (weak) JNI handles
2172   JNIHandles::weak_oops_do(&oop_closure);
2173 
2174   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2175   CodeCache::blobs_do(&adjust_from_blobs);
2176   AOTLoader::oops_do(&oop_closure);
2177   StringTable::oops_do(&oop_closure);
2178   ref_processor()->weak_oops_do(&oop_closure);
2179   // Roots were visited so references into the young gen in roots
2180   // may have been scanned.  Process them also.
2181   // Should the reference processor have a span that excludes
2182   // young gen objects?
2183   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2184 }
2185 
2186 // Helper class to print 8 region numbers per line and then print the total at the end.
2187 class FillableRegionLogger : public StackObj {
2188 private:
2189   Log(gc, compaction) log;
2190   static const int LineLength = 8;
2191   size_t _regions[LineLength];
2192   int _next_index;
2193   bool _enabled;
2194   size_t _total_regions;
2195 public:
2196   FillableRegionLogger() : _next_index(0), _total_regions(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)) { }
2197   ~FillableRegionLogger() {
2198     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2199   }
2200 
2201   void print_line() {
2202     if (!_enabled || _next_index == 0) {
2203       return;
2204     }
2205     FormatBuffer<> line("Fillable: ");
2206     for (int i = 0; i < _next_index; i++) {
2207       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2208     }
2209     log.trace("%s", line.buffer());
2210     _next_index = 0;
2211   }
2212 
2213   void handle(size_t region) {
2214     if (!_enabled) {
2215       return;
2216     }
2217     _regions[_next_index++] = region;
2218     if (_next_index == LineLength) {
2219       print_line();
2220     }
2221     _total_regions++;
2222   }
2223 };
2224 
2225 void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q,
2226                                                       uint parallel_gc_threads)
2227 {
2228   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2229 
2230   // Find the threads that are active
2231   unsigned int which = 0;
2232 
2233   // Find all regions that are available (can be filled immediately) and
2234   // distribute them to the thread stacks.  The iteration is done in reverse
2235   // order (high to low) so the regions will be removed in ascending order.
2236 
2237   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2238 
2239   which = 0;
2240   // id + 1 is used to test termination so unsigned  can
2241   // be used with an old_space_id == 0.
2242   FillableRegionLogger region_logger;
2243   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2244     SpaceInfo* const space_info = _space_info + id;
2245     MutableSpace* const space = space_info->space();
2246     HeapWord* const new_top = space_info->new_top();
2247 
2248     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2249     const size_t end_region =
2250       sd.addr_to_region_idx(sd.region_align_up(new_top));
2251 
2252     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2253       if (sd.region(cur)->claim_unsafe()) {
2254         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2255         cm->region_stack()->push(cur);
2256         region_logger.handle(cur);
2257         // Assign regions to tasks in round-robin fashion.
2258         if (++which == parallel_gc_threads) {
2259           which = 0;
2260         }
2261       }
2262     }
2263     region_logger.print_line();
2264   }
2265 }
2266 
2267 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2268 
2269 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2270                                                     uint parallel_gc_threads) {
2271   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2272 
2273   ParallelCompactData& sd = PSParallelCompact::summary_data();
2274 
2275   // Iterate over all the spaces adding tasks for updating
2276   // regions in the dense prefix.  Assume that 1 gc thread
2277   // will work on opening the gaps and the remaining gc threads
2278   // will work on the dense prefix.
2279   unsigned int space_id;
2280   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2281     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2282     const MutableSpace* const space = _space_info[space_id].space();
2283 
2284     if (dense_prefix_end == space->bottom()) {
2285       // There is no dense prefix for this space.
2286       continue;
2287     }
2288 
2289     // The dense prefix is before this region.
2290     size_t region_index_end_dense_prefix =
2291         sd.addr_to_region_idx(dense_prefix_end);
2292     RegionData* const dense_prefix_cp =
2293       sd.region(region_index_end_dense_prefix);
2294     assert(dense_prefix_end == space->end() ||
2295            dense_prefix_cp->available() ||
2296            dense_prefix_cp->claimed(),
2297            "The region after the dense prefix should always be ready to fill");
2298 
2299     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2300 
2301     // Is there dense prefix work?
2302     size_t total_dense_prefix_regions =
2303       region_index_end_dense_prefix - region_index_start;
2304     // How many regions of the dense prefix should be given to
2305     // each thread?
2306     if (total_dense_prefix_regions > 0) {
2307       uint tasks_for_dense_prefix = 1;
2308       if (total_dense_prefix_regions <=
2309           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2310         // Don't over partition.  This assumes that
2311         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2312         // so there are not many regions to process.
2313         tasks_for_dense_prefix = parallel_gc_threads;
2314       } else {
2315         // Over partition
2316         tasks_for_dense_prefix = parallel_gc_threads *
2317           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2318       }
2319       size_t regions_per_thread = total_dense_prefix_regions /
2320         tasks_for_dense_prefix;
2321       // Give each thread at least 1 region.
2322       if (regions_per_thread == 0) {
2323         regions_per_thread = 1;
2324       }
2325 
2326       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2327         if (region_index_start >= region_index_end_dense_prefix) {
2328           break;
2329         }
2330         // region_index_end is not processed
2331         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2332                                        region_index_end_dense_prefix);
2333         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2334                                              region_index_start,
2335                                              region_index_end));
2336         region_index_start = region_index_end;
2337       }
2338     }
2339     // This gets any part of the dense prefix that did not
2340     // fit evenly.
2341     if (region_index_start < region_index_end_dense_prefix) {
2342       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2343                                            region_index_start,
2344                                            region_index_end_dense_prefix));
2345     }
2346   }
2347 }
2348 
2349 void PSParallelCompact::enqueue_region_stealing_tasks(
2350                                      GCTaskQueue* q,
2351                                      ParallelTaskTerminator* terminator_ptr,
2352                                      uint parallel_gc_threads) {
2353   GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2354 
2355   // Once a thread has drained it's stack, it should try to steal regions from
2356   // other threads.
2357   for (uint j = 0; j < parallel_gc_threads; j++) {
2358     q->enqueue(new CompactionWithStealingTask(terminator_ptr));
2359   }
2360 }
2361 
2362 #ifdef ASSERT
2363 // Write a histogram of the number of times the block table was filled for a
2364 // region.
2365 void PSParallelCompact::write_block_fill_histogram()
2366 {
2367   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2368     return;
2369   }
2370 
2371   Log(gc, compaction) log;
2372   ResourceMark rm;
2373   LogStream ls(log.trace());
2374   outputStream* out = &ls;
2375 
2376   typedef ParallelCompactData::RegionData rd_t;
2377   ParallelCompactData& sd = summary_data();
2378 
2379   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2380     MutableSpace* const spc = _space_info[id].space();
2381     if (spc->bottom() != spc->top()) {
2382       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2383       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2384       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2385 
2386       size_t histo[5] = { 0, 0, 0, 0, 0 };
2387       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2388       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2389 
2390       for (const rd_t* cur = beg; cur < end; ++cur) {
2391         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2392       }
2393       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2394       for (size_t i = 0; i < histo_len; ++i) {
2395         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2396                    histo[i], 100.0 * histo[i] / region_cnt);
2397       }
2398       out->cr();
2399     }
2400   }
2401 }
2402 #endif // #ifdef ASSERT
2403 
2404 void PSParallelCompact::compact() {
2405   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2406 
2407   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2408   PSOldGen* old_gen = heap->old_gen();
2409   old_gen->start_array()->reset();
2410   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2411   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2412   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2413   ParallelTaskTerminator terminator(active_gc_threads, qset);
2414 
2415   GCTaskQueue* q = GCTaskQueue::create();
2416   prepare_region_draining_tasks(q, active_gc_threads);
2417   enqueue_dense_prefix_tasks(q, active_gc_threads);
2418   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2419 
2420   {
2421     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2422 
2423     gc_task_manager()->execute_and_wait(q);
2424 
2425 #ifdef  ASSERT
2426     // Verify that all regions have been processed before the deferred updates.
2427     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2428       verify_complete(SpaceId(id));
2429     }
2430 #endif
2431   }
2432 
2433   {
2434     // Update the deferred objects, if any.  Any compaction manager can be used.
2435     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2436     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2437     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2438       update_deferred_objects(cm, SpaceId(id));
2439     }
2440   }
2441 
2442   DEBUG_ONLY(write_block_fill_histogram());
2443 }
2444 
2445 #ifdef  ASSERT
2446 void PSParallelCompact::verify_complete(SpaceId space_id) {
2447   // All Regions between space bottom() to new_top() should be marked as filled
2448   // and all Regions between new_top() and top() should be available (i.e.,
2449   // should have been emptied).
2450   ParallelCompactData& sd = summary_data();
2451   SpaceInfo si = _space_info[space_id];
2452   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2453   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2454   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2455   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2456   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2457 
2458   bool issued_a_warning = false;
2459 
2460   size_t cur_region;
2461   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2462     const RegionData* const c = sd.region(cur_region);
2463     if (!c->completed()) {
2464       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2465                       cur_region, c->destination_count());
2466       issued_a_warning = true;
2467     }
2468   }
2469 
2470   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2471     const RegionData* const c = sd.region(cur_region);
2472     if (!c->available()) {
2473       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2474                       cur_region, c->destination_count());
2475       issued_a_warning = true;
2476     }
2477   }
2478 
2479   if (issued_a_warning) {
2480     print_region_ranges();
2481   }
2482 }
2483 #endif  // #ifdef ASSERT
2484 
2485 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2486   _start_array->allocate_block(addr);
2487   compaction_manager()->update_contents(oop(addr));
2488 }
2489 
2490 // Update interior oops in the ranges of regions [beg_region, end_region).
2491 void
2492 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2493                                                        SpaceId space_id,
2494                                                        size_t beg_region,
2495                                                        size_t end_region) {
2496   ParallelCompactData& sd = summary_data();
2497   ParMarkBitMap* const mbm = mark_bitmap();
2498 
2499   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2500   HeapWord* const end_addr = sd.region_to_addr(end_region);
2501   assert(beg_region <= end_region, "bad region range");
2502   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2503 
2504 #ifdef  ASSERT
2505   // Claim the regions to avoid triggering an assert when they are marked as
2506   // filled.
2507   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2508     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2509   }
2510 #endif  // #ifdef ASSERT
2511 
2512   if (beg_addr != space(space_id)->bottom()) {
2513     // Find the first live object or block of dead space that *starts* in this
2514     // range of regions.  If a partial object crosses onto the region, skip it;
2515     // it will be marked for 'deferred update' when the object head is
2516     // processed.  If dead space crosses onto the region, it is also skipped; it
2517     // will be filled when the prior region is processed.  If neither of those
2518     // apply, the first word in the region is the start of a live object or dead
2519     // space.
2520     assert(beg_addr > space(space_id)->bottom(), "sanity");
2521     const RegionData* const cp = sd.region(beg_region);
2522     if (cp->partial_obj_size() != 0) {
2523       beg_addr = sd.partial_obj_end(beg_region);
2524     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2525       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2526     }
2527   }
2528 
2529   if (beg_addr < end_addr) {
2530     // A live object or block of dead space starts in this range of Regions.
2531      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2532 
2533     // Create closures and iterate.
2534     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2535     FillClosure fill_closure(cm, space_id);
2536     ParMarkBitMap::IterationStatus status;
2537     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2538                           dense_prefix_end);
2539     if (status == ParMarkBitMap::incomplete) {
2540       update_closure.do_addr(update_closure.source());
2541     }
2542   }
2543 
2544   // Mark the regions as filled.
2545   RegionData* const beg_cp = sd.region(beg_region);
2546   RegionData* const end_cp = sd.region(end_region);
2547   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2548     cp->set_completed();
2549   }
2550 }
2551 
2552 // Return the SpaceId for the space containing addr.  If addr is not in the
2553 // heap, last_space_id is returned.  In debug mode it expects the address to be
2554 // in the heap and asserts such.
2555 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2556   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2557 
2558   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2559     if (_space_info[id].space()->contains(addr)) {
2560       return SpaceId(id);
2561     }
2562   }
2563 
2564   assert(false, "no space contains the addr");
2565   return last_space_id;
2566 }
2567 
2568 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2569                                                 SpaceId id) {
2570   assert(id < last_space_id, "bad space id");
2571 
2572   ParallelCompactData& sd = summary_data();
2573   const SpaceInfo* const space_info = _space_info + id;
2574   ObjectStartArray* const start_array = space_info->start_array();
2575 
2576   const MutableSpace* const space = space_info->space();
2577   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2578   HeapWord* const beg_addr = space_info->dense_prefix();
2579   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2580 
2581   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2582   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2583   const RegionData* cur_region;
2584   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2585     HeapWord* const addr = cur_region->deferred_obj_addr();
2586     if (addr != NULL) {
2587       if (start_array != NULL) {
2588         start_array->allocate_block(addr);
2589       }
2590       cm->update_contents(oop(addr));
2591       assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2592     }
2593   }
2594 }
2595 
2596 // Skip over count live words starting from beg, and return the address of the
2597 // next live word.  Unless marked, the word corresponding to beg is assumed to
2598 // be dead.  Callers must either ensure beg does not correspond to the middle of
2599 // an object, or account for those live words in some other way.  Callers must
2600 // also ensure that there are enough live words in the range [beg, end) to skip.
2601 HeapWord*
2602 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2603 {
2604   assert(count > 0, "sanity");
2605 
2606   ParMarkBitMap* m = mark_bitmap();
2607   idx_t bits_to_skip = m->words_to_bits(count);
2608   idx_t cur_beg = m->addr_to_bit(beg);
2609   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2610 
2611   do {
2612     cur_beg = m->find_obj_beg(cur_beg, search_end);
2613     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2614     const size_t obj_bits = cur_end - cur_beg + 1;
2615     if (obj_bits > bits_to_skip) {
2616       return m->bit_to_addr(cur_beg + bits_to_skip);
2617     }
2618     bits_to_skip -= obj_bits;
2619     cur_beg = cur_end + 1;
2620   } while (bits_to_skip > 0);
2621 
2622   // Skipping the desired number of words landed just past the end of an object.
2623   // Find the start of the next object.
2624   cur_beg = m->find_obj_beg(cur_beg, search_end);
2625   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2626   return m->bit_to_addr(cur_beg);
2627 }
2628 
2629 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2630                                             SpaceId src_space_id,
2631                                             size_t src_region_idx)
2632 {
2633   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2634 
2635   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2636   if (split_info.dest_region_addr() == dest_addr) {
2637     // The partial object ending at the split point contains the first word to
2638     // be copied to dest_addr.
2639     return split_info.first_src_addr();
2640   }
2641 
2642   const ParallelCompactData& sd = summary_data();
2643   ParMarkBitMap* const bitmap = mark_bitmap();
2644   const size_t RegionSize = ParallelCompactData::RegionSize;
2645 
2646   assert(sd.is_region_aligned(dest_addr), "not aligned");
2647   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2648   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2649   HeapWord* const src_region_destination = src_region_ptr->destination();
2650 
2651   assert(dest_addr >= src_region_destination, "wrong src region");
2652   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2653 
2654   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2655   HeapWord* const src_region_end = src_region_beg + RegionSize;
2656 
2657   HeapWord* addr = src_region_beg;
2658   if (dest_addr == src_region_destination) {
2659     // Return the first live word in the source region.
2660     if (partial_obj_size == 0) {
2661       addr = bitmap->find_obj_beg(addr, src_region_end);
2662       assert(addr < src_region_end, "no objects start in src region");
2663     }
2664     return addr;
2665   }
2666 
2667   // Must skip some live data.
2668   size_t words_to_skip = dest_addr - src_region_destination;
2669   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2670 
2671   if (partial_obj_size >= words_to_skip) {
2672     // All the live words to skip are part of the partial object.
2673     addr += words_to_skip;
2674     if (partial_obj_size == words_to_skip) {
2675       // Find the first live word past the partial object.
2676       addr = bitmap->find_obj_beg(addr, src_region_end);
2677       assert(addr < src_region_end, "wrong src region");
2678     }
2679     return addr;
2680   }
2681 
2682   // Skip over the partial object (if any).
2683   if (partial_obj_size != 0) {
2684     words_to_skip -= partial_obj_size;
2685     addr += partial_obj_size;
2686   }
2687 
2688   // Skip over live words due to objects that start in the region.
2689   addr = skip_live_words(addr, src_region_end, words_to_skip);
2690   assert(addr < src_region_end, "wrong src region");
2691   return addr;
2692 }
2693 
2694 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2695                                                      SpaceId src_space_id,
2696                                                      size_t beg_region,
2697                                                      HeapWord* end_addr)
2698 {
2699   ParallelCompactData& sd = summary_data();
2700 
2701 #ifdef ASSERT
2702   MutableSpace* const src_space = _space_info[src_space_id].space();
2703   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2704   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2705          "src_space_id does not match beg_addr");
2706   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2707          "src_space_id does not match end_addr");
2708 #endif // #ifdef ASSERT
2709 
2710   RegionData* const beg = sd.region(beg_region);
2711   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2712 
2713   // Regions up to new_top() are enqueued if they become available.
2714   HeapWord* const new_top = _space_info[src_space_id].new_top();
2715   RegionData* const enqueue_end =
2716     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2717 
2718   for (RegionData* cur = beg; cur < end; ++cur) {
2719     assert(cur->data_size() > 0, "region must have live data");
2720     cur->decrement_destination_count();
2721     if (cur < enqueue_end && cur->available() && cur->claim()) {
2722       cm->push_region(sd.region(cur));
2723     }
2724   }
2725 }
2726 
2727 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2728                                           SpaceId& src_space_id,
2729                                           HeapWord*& src_space_top,
2730                                           HeapWord* end_addr)
2731 {
2732   typedef ParallelCompactData::RegionData RegionData;
2733 
2734   ParallelCompactData& sd = PSParallelCompact::summary_data();
2735   const size_t region_size = ParallelCompactData::RegionSize;
2736 
2737   size_t src_region_idx = 0;
2738 
2739   // Skip empty regions (if any) up to the top of the space.
2740   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2741   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2742   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2743   const RegionData* const top_region_ptr =
2744     sd.addr_to_region_ptr(top_aligned_up);
2745   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2746     ++src_region_ptr;
2747   }
2748 
2749   if (src_region_ptr < top_region_ptr) {
2750     // The next source region is in the current space.  Update src_region_idx
2751     // and the source address to match src_region_ptr.
2752     src_region_idx = sd.region(src_region_ptr);
2753     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2754     if (src_region_addr > closure.source()) {
2755       closure.set_source(src_region_addr);
2756     }
2757     return src_region_idx;
2758   }
2759 
2760   // Switch to a new source space and find the first non-empty region.
2761   unsigned int space_id = src_space_id + 1;
2762   assert(space_id < last_space_id, "not enough spaces");
2763 
2764   HeapWord* const destination = closure.destination();
2765 
2766   do {
2767     MutableSpace* space = _space_info[space_id].space();
2768     HeapWord* const bottom = space->bottom();
2769     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2770 
2771     // Iterate over the spaces that do not compact into themselves.
2772     if (bottom_cp->destination() != bottom) {
2773       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2774       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2775 
2776       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2777         if (src_cp->live_obj_size() > 0) {
2778           // Found it.
2779           assert(src_cp->destination() == destination,
2780                  "first live obj in the space must match the destination");
2781           assert(src_cp->partial_obj_size() == 0,
2782                  "a space cannot begin with a partial obj");
2783 
2784           src_space_id = SpaceId(space_id);
2785           src_space_top = space->top();
2786           const size_t src_region_idx = sd.region(src_cp);
2787           closure.set_source(sd.region_to_addr(src_region_idx));
2788           return src_region_idx;
2789         } else {
2790           assert(src_cp->data_size() == 0, "sanity");
2791         }
2792       }
2793     }
2794   } while (++space_id < last_space_id);
2795 
2796   assert(false, "no source region was found");
2797   return 0;
2798 }
2799 
2800 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2801 {
2802   typedef ParMarkBitMap::IterationStatus IterationStatus;
2803   const size_t RegionSize = ParallelCompactData::RegionSize;
2804   ParMarkBitMap* const bitmap = mark_bitmap();
2805   ParallelCompactData& sd = summary_data();
2806   RegionData* const region_ptr = sd.region(region_idx);
2807 
2808   // Get the items needed to construct the closure.
2809   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2810   SpaceId dest_space_id = space_id(dest_addr);
2811   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2812   HeapWord* new_top = _space_info[dest_space_id].new_top();
2813   assert(dest_addr < new_top, "sanity");
2814   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2815 
2816   // Get the source region and related info.
2817   size_t src_region_idx = region_ptr->source_region();
2818   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2819   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2820 
2821   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2822   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2823 
2824   // Adjust src_region_idx to prepare for decrementing destination counts (the
2825   // destination count is not decremented when a region is copied to itself).
2826   if (src_region_idx == region_idx) {
2827     src_region_idx += 1;
2828   }
2829 
2830   if (bitmap->is_unmarked(closure.source())) {
2831     // The first source word is in the middle of an object; copy the remainder
2832     // of the object or as much as will fit.  The fact that pointer updates were
2833     // deferred will be noted when the object header is processed.
2834     HeapWord* const old_src_addr = closure.source();
2835     closure.copy_partial_obj();
2836     if (closure.is_full()) {
2837       decrement_destination_counts(cm, src_space_id, src_region_idx,
2838                                    closure.source());
2839       region_ptr->set_deferred_obj_addr(NULL);
2840       region_ptr->set_completed();
2841       return;
2842     }
2843 
2844     HeapWord* const end_addr = sd.region_align_down(closure.source());
2845     if (sd.region_align_down(old_src_addr) != end_addr) {
2846       // The partial object was copied from more than one source region.
2847       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2848 
2849       // Move to the next source region, possibly switching spaces as well.  All
2850       // args except end_addr may be modified.
2851       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2852                                        end_addr);
2853     }
2854   }
2855 
2856   do {
2857     HeapWord* const cur_addr = closure.source();
2858     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2859                                     src_space_top);
2860     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2861 
2862     if (status == ParMarkBitMap::incomplete) {
2863       // The last obj that starts in the source region does not end in the
2864       // region.
2865       assert(closure.source() < end_addr, "sanity");
2866       HeapWord* const obj_beg = closure.source();
2867       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2868                                        src_space_top);
2869       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2870       if (obj_end < range_end) {
2871         // The end was found; the entire object will fit.
2872         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2873         assert(status != ParMarkBitMap::would_overflow, "sanity");
2874       } else {
2875         // The end was not found; the object will not fit.
2876         assert(range_end < src_space_top, "obj cannot cross space boundary");
2877         status = ParMarkBitMap::would_overflow;
2878       }
2879     }
2880 
2881     if (status == ParMarkBitMap::would_overflow) {
2882       // The last object did not fit.  Note that interior oop updates were
2883       // deferred, then copy enough of the object to fill the region.
2884       region_ptr->set_deferred_obj_addr(closure.destination());
2885       status = closure.copy_until_full(); // copies from closure.source()
2886 
2887       decrement_destination_counts(cm, src_space_id, src_region_idx,
2888                                    closure.source());
2889       region_ptr->set_completed();
2890       return;
2891     }
2892 
2893     if (status == ParMarkBitMap::full) {
2894       decrement_destination_counts(cm, src_space_id, src_region_idx,
2895                                    closure.source());
2896       region_ptr->set_deferred_obj_addr(NULL);
2897       region_ptr->set_completed();
2898       return;
2899     }
2900 
2901     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2902 
2903     // Move to the next source region, possibly switching spaces as well.  All
2904     // args except end_addr may be modified.
2905     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2906                                      end_addr);
2907   } while (true);
2908 }
2909 
2910 void PSParallelCompact::fill_blocks(size_t region_idx)
2911 {
2912   // Fill in the block table elements for the specified region.  Each block
2913   // table element holds the number of live words in the region that are to the
2914   // left of the first object that starts in the block.  Thus only blocks in
2915   // which an object starts need to be filled.
2916   //
2917   // The algorithm scans the section of the bitmap that corresponds to the
2918   // region, keeping a running total of the live words.  When an object start is
2919   // found, if it's the first to start in the block that contains it, the
2920   // current total is written to the block table element.
2921   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2922   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2923   const size_t RegionSize = ParallelCompactData::RegionSize;
2924 
2925   ParallelCompactData& sd = summary_data();
2926   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2927   if (partial_obj_size >= RegionSize) {
2928     return; // No objects start in this region.
2929   }
2930 
2931   // Ensure the first loop iteration decides that the block has changed.
2932   size_t cur_block = sd.block_count();
2933 
2934   const ParMarkBitMap* const bitmap = mark_bitmap();
2935 
2936   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2937   assert((size_t)1 << Log2BitsPerBlock ==
2938          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2939 
2940   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2941   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2942   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2943   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2944   while (beg_bit < range_end) {
2945     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2946     if (new_block != cur_block) {
2947       cur_block = new_block;
2948       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2949     }
2950 
2951     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2952     if (end_bit < range_end - 1) {
2953       live_bits += end_bit - beg_bit + 1;
2954       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2955     } else {
2956       return;
2957     }
2958   }
2959 }
2960 
2961 void
2962 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
2963   const MutableSpace* sp = space(space_id);
2964   if (sp->is_empty()) {
2965     return;
2966   }
2967 
2968   ParallelCompactData& sd = PSParallelCompact::summary_data();
2969   ParMarkBitMap* const bitmap = mark_bitmap();
2970   HeapWord* const dp_addr = dense_prefix(space_id);
2971   HeapWord* beg_addr = sp->bottom();
2972   HeapWord* end_addr = sp->top();
2973 
2974   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
2975 
2976   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
2977   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
2978   if (beg_region < dp_region) {
2979     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
2980   }
2981 
2982   // The destination of the first live object that starts in the region is one
2983   // past the end of the partial object entering the region (if any).
2984   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
2985   HeapWord* const new_top = _space_info[space_id].new_top();
2986   assert(new_top >= dest_addr, "bad new_top value");
2987   const size_t words = pointer_delta(new_top, dest_addr);
2988 
2989   if (words > 0) {
2990     ObjectStartArray* start_array = _space_info[space_id].start_array();
2991     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2992 
2993     ParMarkBitMap::IterationStatus status;
2994     status = bitmap->iterate(&closure, dest_addr, end_addr);
2995     assert(status == ParMarkBitMap::full, "iteration not complete");
2996     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
2997            "live objects skipped because closure is full");
2998   }
2999 }
3000 
3001 jlong PSParallelCompact::millis_since_last_gc() {
3002   // We need a monotonically non-decreasing time in ms but
3003   // os::javaTimeMillis() does not guarantee monotonicity.
3004   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3005   jlong ret_val = now - _time_of_last_gc;
3006   // XXX See note in genCollectedHeap::millis_since_last_gc().
3007   if (ret_val < 0) {
3008     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3009     return 0;
3010   }
3011   return ret_val;
3012 }
3013 
3014 void PSParallelCompact::reset_millis_since_last_gc() {
3015   // We need a monotonically non-decreasing time in ms but
3016   // os::javaTimeMillis() does not guarantee monotonicity.
3017   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3018 }
3019 
3020 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3021 {
3022   if (source() != destination()) {
3023     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3024     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3025   }
3026   update_state(words_remaining());
3027   assert(is_full(), "sanity");
3028   return ParMarkBitMap::full;
3029 }
3030 
3031 void MoveAndUpdateClosure::copy_partial_obj()
3032 {
3033   size_t words = words_remaining();
3034 
3035   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3036   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3037   if (end_addr < range_end) {
3038     words = bitmap()->obj_size(source(), end_addr);
3039   }
3040 
3041   // This test is necessary; if omitted, the pointer updates to a partial object
3042   // that crosses the dense prefix boundary could be overwritten.
3043   if (source() != destination()) {
3044     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3045     Copy::aligned_conjoint_words(source(), destination(), words);
3046   }
3047   update_state(words);
3048 }
3049 
3050 void InstanceKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3051   PSParallelCompact::AdjustPointerClosure closure(cm);
3052   oop_oop_iterate_oop_maps<true>(obj, &closure);
3053 }
3054 
3055 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3056   InstanceKlass::oop_pc_update_pointers(obj, cm);
3057 
3058   PSParallelCompact::AdjustPointerClosure closure(cm);
3059   oop_oop_iterate_statics<true>(obj, &closure);
3060 }
3061 
3062 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3063   InstanceKlass::oop_pc_update_pointers(obj, cm);
3064 }
3065 
3066 #ifdef ASSERT
3067 template <class T> static void trace_reference_gc(const char *s, oop obj,
3068                                                   T* referent_addr,
3069                                                   T* next_addr,
3070                                                   T* discovered_addr) {
3071   log_develop_trace(gc, ref)("%s obj " PTR_FORMAT, s, p2i(obj));
3072   log_develop_trace(gc, ref)("     referent_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3073                              p2i(referent_addr), referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3074   log_develop_trace(gc, ref)("     next_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3075                              p2i(next_addr), next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3076   log_develop_trace(gc, ref)("     discovered_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3077                              p2i(discovered_addr), discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3078 }
3079 #endif
3080 
3081 template <class T>
3082 static void oop_pc_update_pointers_specialized(oop obj, ParCompactionManager* cm) {
3083   T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3084   PSParallelCompact::adjust_pointer(referent_addr, cm);
3085   T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3086   PSParallelCompact::adjust_pointer(next_addr, cm);
3087   T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3088   PSParallelCompact::adjust_pointer(discovered_addr, cm);
3089   debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3090                                 referent_addr, next_addr, discovered_addr);)
3091 }
3092 
3093 void InstanceRefKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3094   InstanceKlass::oop_pc_update_pointers(obj, cm);
3095 
3096   if (UseCompressedOops) {
3097     oop_pc_update_pointers_specialized<narrowOop>(obj, cm);
3098   } else {
3099     oop_pc_update_pointers_specialized<oop>(obj, cm);
3100   }
3101 }
3102 
3103 void ObjArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3104   assert(obj->is_objArray(), "obj must be obj array");
3105   PSParallelCompact::AdjustPointerClosure closure(cm);
3106   oop_oop_iterate_elements<true>(objArrayOop(obj), &closure);
3107 }
3108 
3109 void TypeArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3110   assert(obj->is_typeArray(),"must be a type array");
3111 }
3112 
3113 ParMarkBitMapClosure::IterationStatus
3114 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3115   assert(destination() != NULL, "sanity");
3116   assert(bitmap()->obj_size(addr) == words, "bad size");
3117 
3118   _source = addr;
3119   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3120          destination(), "wrong destination");
3121 
3122   if (words > words_remaining()) {
3123     return ParMarkBitMap::would_overflow;
3124   }
3125 
3126   // The start_array must be updated even if the object is not moving.
3127   if (_start_array != NULL) {
3128     _start_array->allocate_block(destination());
3129   }
3130 
3131   if (destination() != source()) {
3132     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3133     Copy::aligned_conjoint_words(source(), destination(), words);
3134   }
3135 
3136   oop moved_oop = (oop) destination();
3137   compaction_manager()->update_contents(moved_oop);
3138   assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3139 
3140   update_state(words);
3141   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3142   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3143 }
3144 
3145 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3146                                      ParCompactionManager* cm,
3147                                      PSParallelCompact::SpaceId space_id) :
3148   ParMarkBitMapClosure(mbm, cm),
3149   _space_id(space_id),
3150   _start_array(PSParallelCompact::start_array(space_id))
3151 {
3152 }
3153 
3154 // Updates the references in the object to their new values.
3155 ParMarkBitMapClosure::IterationStatus
3156 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3157   do_addr(addr);
3158   return ParMarkBitMap::incomplete;
3159 }
3160 
3161 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3162   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3163   _start_array(PSParallelCompact::start_array(space_id))
3164 {
3165   assert(space_id == PSParallelCompact::old_space_id,
3166          "cannot use FillClosure in the young gen");
3167 }
3168 
3169 ParMarkBitMapClosure::IterationStatus
3170 FillClosure::do_addr(HeapWord* addr, size_t size) {
3171   CollectedHeap::fill_with_objects(addr, size);
3172   HeapWord* const end = addr + size;
3173   do {
3174     _start_array->allocate_block(addr);
3175     addr += oop(addr)->size();
3176   } while (addr < end);
3177   return ParMarkBitMap::incomplete;
3178 }