1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsOopClosures.inline.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/vmCMSOperations.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/collectorPolicy.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "logging/log.hpp"
  58 #include "logging/logStream.hpp"
  59 #include "memory/allocation.hpp"
  60 #include "memory/iterator.inline.hpp"
  61 #include "memory/padded.hpp"
  62 #include "memory/resourceArea.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/globals_extension.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/java.hpp"
  69 #include "runtime/orderAccess.inline.hpp"
  70 #include "runtime/timer.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "services/memoryService.hpp"
  73 #include "services/runtimeService.hpp"
  74 #include "utilities/align.hpp"
  75 #include "utilities/stack.inline.hpp"
  76 
  77 // statics
  78 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  79 bool CMSCollector::_full_gc_requested = false;
  80 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  81 
  82 //////////////////////////////////////////////////////////////////
  83 // In support of CMS/VM thread synchronization
  84 //////////////////////////////////////////////////////////////////
  85 // We split use of the CGC_lock into 2 "levels".
  86 // The low-level locking is of the usual CGC_lock monitor. We introduce
  87 // a higher level "token" (hereafter "CMS token") built on top of the
  88 // low level monitor (hereafter "CGC lock").
  89 // The token-passing protocol gives priority to the VM thread. The
  90 // CMS-lock doesn't provide any fairness guarantees, but clients
  91 // should ensure that it is only held for very short, bounded
  92 // durations.
  93 //
  94 // When either of the CMS thread or the VM thread is involved in
  95 // collection operations during which it does not want the other
  96 // thread to interfere, it obtains the CMS token.
  97 //
  98 // If either thread tries to get the token while the other has
  99 // it, that thread waits. However, if the VM thread and CMS thread
 100 // both want the token, then the VM thread gets priority while the
 101 // CMS thread waits. This ensures, for instance, that the "concurrent"
 102 // phases of the CMS thread's work do not block out the VM thread
 103 // for long periods of time as the CMS thread continues to hog
 104 // the token. (See bug 4616232).
 105 //
 106 // The baton-passing functions are, however, controlled by the
 107 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 108 // and here the low-level CMS lock, not the high level token,
 109 // ensures mutual exclusion.
 110 //
 111 // Two important conditions that we have to satisfy:
 112 // 1. if a thread does a low-level wait on the CMS lock, then it
 113 //    relinquishes the CMS token if it were holding that token
 114 //    when it acquired the low-level CMS lock.
 115 // 2. any low-level notifications on the low-level lock
 116 //    should only be sent when a thread has relinquished the token.
 117 //
 118 // In the absence of either property, we'd have potential deadlock.
 119 //
 120 // We protect each of the CMS (concurrent and sequential) phases
 121 // with the CMS _token_, not the CMS _lock_.
 122 //
 123 // The only code protected by CMS lock is the token acquisition code
 124 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 125 // baton-passing code.
 126 //
 127 // Unfortunately, i couldn't come up with a good abstraction to factor and
 128 // hide the naked CGC_lock manipulation in the baton-passing code
 129 // further below. That's something we should try to do. Also, the proof
 130 // of correctness of this 2-level locking scheme is far from obvious,
 131 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 132 // that there may be a theoretical possibility of delay/starvation in the
 133 // low-level lock/wait/notify scheme used for the baton-passing because of
 134 // potential interference with the priority scheme embodied in the
 135 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 136 // invocation further below and marked with "XXX 20011219YSR".
 137 // Indeed, as we note elsewhere, this may become yet more slippery
 138 // in the presence of multiple CMS and/or multiple VM threads. XXX
 139 
 140 class CMSTokenSync: public StackObj {
 141  private:
 142   bool _is_cms_thread;
 143  public:
 144   CMSTokenSync(bool is_cms_thread):
 145     _is_cms_thread(is_cms_thread) {
 146     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 147            "Incorrect argument to constructor");
 148     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 149   }
 150 
 151   ~CMSTokenSync() {
 152     assert(_is_cms_thread ?
 153              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 154              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 155           "Incorrect state");
 156     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 157   }
 158 };
 159 
 160 // Convenience class that does a CMSTokenSync, and then acquires
 161 // upto three locks.
 162 class CMSTokenSyncWithLocks: public CMSTokenSync {
 163  private:
 164   // Note: locks are acquired in textual declaration order
 165   // and released in the opposite order
 166   MutexLockerEx _locker1, _locker2, _locker3;
 167  public:
 168   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 169                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 170     CMSTokenSync(is_cms_thread),
 171     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 172     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 173     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 174   { }
 175 };
 176 
 177 
 178 //////////////////////////////////////////////////////////////////
 179 //  Concurrent Mark-Sweep Generation /////////////////////////////
 180 //////////////////////////////////////////////////////////////////
 181 
 182 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 183 
 184 // This struct contains per-thread things necessary to support parallel
 185 // young-gen collection.
 186 class CMSParGCThreadState: public CHeapObj<mtGC> {
 187  public:
 188   CompactibleFreeListSpaceLAB lab;
 189   PromotionInfo promo;
 190 
 191   // Constructor.
 192   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 193     promo.setSpace(cfls);
 194   }
 195 };
 196 
 197 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 198      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 199   CardGeneration(rs, initial_byte_size, ct),
 200   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 201   _did_compact(false)
 202 {
 203   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 204   HeapWord* end    = (HeapWord*) _virtual_space.high();
 205 
 206   _direct_allocated_words = 0;
 207   NOT_PRODUCT(
 208     _numObjectsPromoted = 0;
 209     _numWordsPromoted = 0;
 210     _numObjectsAllocated = 0;
 211     _numWordsAllocated = 0;
 212   )
 213 
 214   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 215   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 216   _cmsSpace->_old_gen = this;
 217 
 218   _gc_stats = new CMSGCStats();
 219 
 220   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 221   // offsets match. The ability to tell free chunks from objects
 222   // depends on this property.
 223   debug_only(
 224     FreeChunk* junk = NULL;
 225     assert(UseCompressedClassPointers ||
 226            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 227            "Offset of FreeChunk::_prev within FreeChunk must match"
 228            "  that of OopDesc::_klass within OopDesc");
 229   )
 230 
 231   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 232   for (uint i = 0; i < ParallelGCThreads; i++) {
 233     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 234   }
 235 
 236   _incremental_collection_failed = false;
 237   // The "dilatation_factor" is the expansion that can occur on
 238   // account of the fact that the minimum object size in the CMS
 239   // generation may be larger than that in, say, a contiguous young
 240   //  generation.
 241   // Ideally, in the calculation below, we'd compute the dilatation
 242   // factor as: MinChunkSize/(promoting_gen's min object size)
 243   // Since we do not have such a general query interface for the
 244   // promoting generation, we'll instead just use the minimum
 245   // object size (which today is a header's worth of space);
 246   // note that all arithmetic is in units of HeapWords.
 247   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 248   assert(_dilatation_factor >= 1.0, "from previous assert");
 249 }
 250 
 251 
 252 // The field "_initiating_occupancy" represents the occupancy percentage
 253 // at which we trigger a new collection cycle.  Unless explicitly specified
 254 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 255 // is calculated by:
 256 //
 257 //   Let "f" be MinHeapFreeRatio in
 258 //
 259 //    _initiating_occupancy = 100-f +
 260 //                           f * (CMSTriggerRatio/100)
 261 //   where CMSTriggerRatio is the argument "tr" below.
 262 //
 263 // That is, if we assume the heap is at its desired maximum occupancy at the
 264 // end of a collection, we let CMSTriggerRatio of the (purported) free
 265 // space be allocated before initiating a new collection cycle.
 266 //
 267 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 268   assert(io <= 100 && tr <= 100, "Check the arguments");
 269   if (io >= 0) {
 270     _initiating_occupancy = (double)io / 100.0;
 271   } else {
 272     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 273                              (double)(tr * MinHeapFreeRatio) / 100.0)
 274                             / 100.0;
 275   }
 276 }
 277 
 278 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 279   assert(collector() != NULL, "no collector");
 280   collector()->ref_processor_init();
 281 }
 282 
 283 void CMSCollector::ref_processor_init() {
 284   if (_ref_processor == NULL) {
 285     // Allocate and initialize a reference processor
 286     _ref_processor =
 287       new ReferenceProcessor(_span,                               // span
 288                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 289                              ParallelGCThreads,                   // mt processing degree
 290                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 291                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 292                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 293                              &_is_alive_closure);                 // closure for liveness info
 294     // Initialize the _ref_processor field of CMSGen
 295     _cmsGen->set_ref_processor(_ref_processor);
 296 
 297   }
 298 }
 299 
 300 AdaptiveSizePolicy* CMSCollector::size_policy() {
 301   GenCollectedHeap* gch = GenCollectedHeap::heap();
 302   return gch->gen_policy()->size_policy();
 303 }
 304 
 305 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 306 
 307   const char* gen_name = "old";
 308   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 309   // Generation Counters - generation 1, 1 subspace
 310   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 311       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 312 
 313   _space_counters = new GSpaceCounters(gen_name, 0,
 314                                        _virtual_space.reserved_size(),
 315                                        this, _gen_counters);
 316 }
 317 
 318 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 319   _cms_gen(cms_gen)
 320 {
 321   assert(alpha <= 100, "bad value");
 322   _saved_alpha = alpha;
 323 
 324   // Initialize the alphas to the bootstrap value of 100.
 325   _gc0_alpha = _cms_alpha = 100;
 326 
 327   _cms_begin_time.update();
 328   _cms_end_time.update();
 329 
 330   _gc0_duration = 0.0;
 331   _gc0_period = 0.0;
 332   _gc0_promoted = 0;
 333 
 334   _cms_duration = 0.0;
 335   _cms_period = 0.0;
 336   _cms_allocated = 0;
 337 
 338   _cms_used_at_gc0_begin = 0;
 339   _cms_used_at_gc0_end = 0;
 340   _allow_duty_cycle_reduction = false;
 341   _valid_bits = 0;
 342 }
 343 
 344 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 345   // TBD: CR 6909490
 346   return 1.0;
 347 }
 348 
 349 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 350 }
 351 
 352 // If promotion failure handling is on use
 353 // the padded average size of the promotion for each
 354 // young generation collection.
 355 double CMSStats::time_until_cms_gen_full() const {
 356   size_t cms_free = _cms_gen->cmsSpace()->free();
 357   GenCollectedHeap* gch = GenCollectedHeap::heap();
 358   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 359                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 360   if (cms_free > expected_promotion) {
 361     // Start a cms collection if there isn't enough space to promote
 362     // for the next young collection.  Use the padded average as
 363     // a safety factor.
 364     cms_free -= expected_promotion;
 365 
 366     // Adjust by the safety factor.
 367     double cms_free_dbl = (double)cms_free;
 368     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 369     // Apply a further correction factor which tries to adjust
 370     // for recent occurance of concurrent mode failures.
 371     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 372     cms_free_dbl = cms_free_dbl * cms_adjustment;
 373 
 374     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 375                   cms_free, expected_promotion);
 376     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 377     // Add 1 in case the consumption rate goes to zero.
 378     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 379   }
 380   return 0.0;
 381 }
 382 
 383 // Compare the duration of the cms collection to the
 384 // time remaining before the cms generation is empty.
 385 // Note that the time from the start of the cms collection
 386 // to the start of the cms sweep (less than the total
 387 // duration of the cms collection) can be used.  This
 388 // has been tried and some applications experienced
 389 // promotion failures early in execution.  This was
 390 // possibly because the averages were not accurate
 391 // enough at the beginning.
 392 double CMSStats::time_until_cms_start() const {
 393   // We add "gc0_period" to the "work" calculation
 394   // below because this query is done (mostly) at the
 395   // end of a scavenge, so we need to conservatively
 396   // account for that much possible delay
 397   // in the query so as to avoid concurrent mode failures
 398   // due to starting the collection just a wee bit too
 399   // late.
 400   double work = cms_duration() + gc0_period();
 401   double deadline = time_until_cms_gen_full();
 402   // If a concurrent mode failure occurred recently, we want to be
 403   // more conservative and halve our expected time_until_cms_gen_full()
 404   if (work > deadline) {
 405     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 406                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 407     return 0.0;
 408   }
 409   return work - deadline;
 410 }
 411 
 412 #ifndef PRODUCT
 413 void CMSStats::print_on(outputStream *st) const {
 414   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 415   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 416                gc0_duration(), gc0_period(), gc0_promoted());
 417   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 418             cms_duration(), cms_period(), cms_allocated());
 419   st->print(",cms_since_beg=%g,cms_since_end=%g",
 420             cms_time_since_begin(), cms_time_since_end());
 421   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 422             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 423 
 424   if (valid()) {
 425     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 426               promotion_rate(), cms_allocation_rate());
 427     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 428               cms_consumption_rate(), time_until_cms_gen_full());
 429   }
 430   st->cr();
 431 }
 432 #endif // #ifndef PRODUCT
 433 
 434 CMSCollector::CollectorState CMSCollector::_collectorState =
 435                              CMSCollector::Idling;
 436 bool CMSCollector::_foregroundGCIsActive = false;
 437 bool CMSCollector::_foregroundGCShouldWait = false;
 438 
 439 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 440                            CardTableRS*                   ct,
 441                            ConcurrentMarkSweepPolicy*     cp):
 442   _cmsGen(cmsGen),
 443   _ct(ct),
 444   _ref_processor(NULL),    // will be set later
 445   _conc_workers(NULL),     // may be set later
 446   _abort_preclean(false),
 447   _start_sampling(false),
 448   _between_prologue_and_epilogue(false),
 449   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 450   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 451                  -1 /* lock-free */, "No_lock" /* dummy */),
 452   _modUnionClosurePar(&_modUnionTable),
 453   // Adjust my span to cover old (cms) gen
 454   _span(cmsGen->reserved()),
 455   // Construct the is_alive_closure with _span & markBitMap
 456   _is_alive_closure(_span, &_markBitMap),
 457   _restart_addr(NULL),
 458   _overflow_list(NULL),
 459   _stats(cmsGen),
 460   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 461                              //verify that this lock should be acquired with safepoint check.
 462                              Monitor::_safepoint_check_sometimes)),
 463   _eden_chunk_array(NULL),     // may be set in ctor body
 464   _eden_chunk_capacity(0),     // -- ditto --
 465   _eden_chunk_index(0),        // -- ditto --
 466   _survivor_plab_array(NULL),  // -- ditto --
 467   _survivor_chunk_array(NULL), // -- ditto --
 468   _survivor_chunk_capacity(0), // -- ditto --
 469   _survivor_chunk_index(0),    // -- ditto --
 470   _ser_pmc_preclean_ovflw(0),
 471   _ser_kac_preclean_ovflw(0),
 472   _ser_pmc_remark_ovflw(0),
 473   _par_pmc_remark_ovflw(0),
 474   _ser_kac_ovflw(0),
 475   _par_kac_ovflw(0),
 476 #ifndef PRODUCT
 477   _num_par_pushes(0),
 478 #endif
 479   _collection_count_start(0),
 480   _verifying(false),
 481   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 482   _completed_initialization(false),
 483   _collector_policy(cp),
 484   _should_unload_classes(CMSClassUnloadingEnabled),
 485   _concurrent_cycles_since_last_unload(0),
 486   _roots_scanning_options(GenCollectedHeap::SO_None),
 487   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 488   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 489   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 490   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 491   _cms_start_registered(false)
 492 {
 493   // Now expand the span and allocate the collection support structures
 494   // (MUT, marking bit map etc.) to cover both generations subject to
 495   // collection.
 496 
 497   // For use by dirty card to oop closures.
 498   _cmsGen->cmsSpace()->set_collector(this);
 499 
 500   // Allocate MUT and marking bit map
 501   {
 502     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 503     if (!_markBitMap.allocate(_span)) {
 504       log_warning(gc)("Failed to allocate CMS Bit Map");
 505       return;
 506     }
 507     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 508   }
 509   {
 510     _modUnionTable.allocate(_span);
 511     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 512   }
 513 
 514   if (!_markStack.allocate(MarkStackSize)) {
 515     log_warning(gc)("Failed to allocate CMS Marking Stack");
 516     return;
 517   }
 518 
 519   // Support for multi-threaded concurrent phases
 520   if (CMSConcurrentMTEnabled) {
 521     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 522       // just for now
 523       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 524     }
 525     if (ConcGCThreads > 1) {
 526       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 527                                  ConcGCThreads, true);
 528       if (_conc_workers == NULL) {
 529         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 530         CMSConcurrentMTEnabled = false;
 531       } else {
 532         _conc_workers->initialize_workers();
 533       }
 534     } else {
 535       CMSConcurrentMTEnabled = false;
 536     }
 537   }
 538   if (!CMSConcurrentMTEnabled) {
 539     ConcGCThreads = 0;
 540   } else {
 541     // Turn off CMSCleanOnEnter optimization temporarily for
 542     // the MT case where it's not fixed yet; see 6178663.
 543     CMSCleanOnEnter = false;
 544   }
 545   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 546          "Inconsistency");
 547   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 548   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 549 
 550   // Parallel task queues; these are shared for the
 551   // concurrent and stop-world phases of CMS, but
 552   // are not shared with parallel scavenge (ParNew).
 553   {
 554     uint i;
 555     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 556 
 557     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 558          || ParallelRefProcEnabled)
 559         && num_queues > 0) {
 560       _task_queues = new OopTaskQueueSet(num_queues);
 561       if (_task_queues == NULL) {
 562         log_warning(gc)("task_queues allocation failure.");
 563         return;
 564       }
 565       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 566       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 567       for (i = 0; i < num_queues; i++) {
 568         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 569         if (q == NULL) {
 570           log_warning(gc)("work_queue allocation failure.");
 571           return;
 572         }
 573         _task_queues->register_queue(i, q);
 574       }
 575       for (i = 0; i < num_queues; i++) {
 576         _task_queues->queue(i)->initialize();
 577         _hash_seed[i] = 17;  // copied from ParNew
 578       }
 579     }
 580   }
 581 
 582   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 583 
 584   // Clip CMSBootstrapOccupancy between 0 and 100.
 585   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 586 
 587   // Now tell CMS generations the identity of their collector
 588   ConcurrentMarkSweepGeneration::set_collector(this);
 589 
 590   // Create & start a CMS thread for this CMS collector
 591   _cmsThread = ConcurrentMarkSweepThread::start(this);
 592   assert(cmsThread() != NULL, "CMS Thread should have been created");
 593   assert(cmsThread()->collector() == this,
 594          "CMS Thread should refer to this gen");
 595   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 596 
 597   // Support for parallelizing young gen rescan
 598   GenCollectedHeap* gch = GenCollectedHeap::heap();
 599   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 600   _young_gen = (ParNewGeneration*)gch->young_gen();
 601   if (gch->supports_inline_contig_alloc()) {
 602     _top_addr = gch->top_addr();
 603     _end_addr = gch->end_addr();
 604     assert(_young_gen != NULL, "no _young_gen");
 605     _eden_chunk_index = 0;
 606     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 607     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 608   }
 609 
 610   // Support for parallelizing survivor space rescan
 611   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 612     const size_t max_plab_samples =
 613       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 614 
 615     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 616     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 617     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 618     _survivor_chunk_capacity = max_plab_samples;
 619     for (uint i = 0; i < ParallelGCThreads; i++) {
 620       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 621       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 622       assert(cur->end() == 0, "Should be 0");
 623       assert(cur->array() == vec, "Should be vec");
 624       assert(cur->capacity() == max_plab_samples, "Error");
 625     }
 626   }
 627 
 628   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 629   _gc_counters = new CollectorCounters("CMS", 1);
 630   _completed_initialization = true;
 631   _inter_sweep_timer.start();  // start of time
 632 }
 633 
 634 const char* ConcurrentMarkSweepGeneration::name() const {
 635   return "concurrent mark-sweep generation";
 636 }
 637 void ConcurrentMarkSweepGeneration::update_counters() {
 638   if (UsePerfData) {
 639     _space_counters->update_all();
 640     _gen_counters->update_all();
 641   }
 642 }
 643 
 644 // this is an optimized version of update_counters(). it takes the
 645 // used value as a parameter rather than computing it.
 646 //
 647 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 648   if (UsePerfData) {
 649     _space_counters->update_used(used);
 650     _space_counters->update_capacity();
 651     _gen_counters->update_all();
 652   }
 653 }
 654 
 655 void ConcurrentMarkSweepGeneration::print() const {
 656   Generation::print();
 657   cmsSpace()->print();
 658 }
 659 
 660 #ifndef PRODUCT
 661 void ConcurrentMarkSweepGeneration::print_statistics() {
 662   cmsSpace()->printFLCensus(0);
 663 }
 664 #endif
 665 
 666 size_t
 667 ConcurrentMarkSweepGeneration::contiguous_available() const {
 668   // dld proposes an improvement in precision here. If the committed
 669   // part of the space ends in a free block we should add that to
 670   // uncommitted size in the calculation below. Will make this
 671   // change later, staying with the approximation below for the
 672   // time being. -- ysr.
 673   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 674 }
 675 
 676 size_t
 677 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 678   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 679 }
 680 
 681 size_t ConcurrentMarkSweepGeneration::max_available() const {
 682   return free() + _virtual_space.uncommitted_size();
 683 }
 684 
 685 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 686   size_t available = max_available();
 687   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 688   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 689   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 690                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 691   return res;
 692 }
 693 
 694 // At a promotion failure dump information on block layout in heap
 695 // (cms old generation).
 696 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 697   Log(gc, promotion) log;
 698   if (log.is_trace()) {
 699     LogStream ls(log.trace());
 700     cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls);
 701   }
 702 }
 703 
 704 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 705   // Clear the promotion information.  These pointers can be adjusted
 706   // along with all the other pointers into the heap but
 707   // compaction is expected to be a rare event with
 708   // a heap using cms so don't do it without seeing the need.
 709   for (uint i = 0; i < ParallelGCThreads; i++) {
 710     _par_gc_thread_states[i]->promo.reset();
 711   }
 712 }
 713 
 714 void ConcurrentMarkSweepGeneration::compute_new_size() {
 715   assert_locked_or_safepoint(Heap_lock);
 716 
 717   // If incremental collection failed, we just want to expand
 718   // to the limit.
 719   if (incremental_collection_failed()) {
 720     clear_incremental_collection_failed();
 721     grow_to_reserved();
 722     return;
 723   }
 724 
 725   // The heap has been compacted but not reset yet.
 726   // Any metric such as free() or used() will be incorrect.
 727 
 728   CardGeneration::compute_new_size();
 729 
 730   // Reset again after a possible resizing
 731   if (did_compact()) {
 732     cmsSpace()->reset_after_compaction();
 733   }
 734 }
 735 
 736 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 737   assert_locked_or_safepoint(Heap_lock);
 738 
 739   // If incremental collection failed, we just want to expand
 740   // to the limit.
 741   if (incremental_collection_failed()) {
 742     clear_incremental_collection_failed();
 743     grow_to_reserved();
 744     return;
 745   }
 746 
 747   double free_percentage = ((double) free()) / capacity();
 748   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 749   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 750 
 751   // compute expansion delta needed for reaching desired free percentage
 752   if (free_percentage < desired_free_percentage) {
 753     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 754     assert(desired_capacity >= capacity(), "invalid expansion size");
 755     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 756     Log(gc) log;
 757     if (log.is_trace()) {
 758       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 759       log.trace("From compute_new_size: ");
 760       log.trace("  Free fraction %f", free_percentage);
 761       log.trace("  Desired free fraction %f", desired_free_percentage);
 762       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 763       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 764       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 765       GenCollectedHeap* gch = GenCollectedHeap::heap();
 766       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 767       size_t young_size = gch->young_gen()->capacity();
 768       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 769       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 770       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 771       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 772     }
 773     // safe if expansion fails
 774     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 775     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 776   } else {
 777     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 778     assert(desired_capacity <= capacity(), "invalid expansion size");
 779     size_t shrink_bytes = capacity() - desired_capacity;
 780     // Don't shrink unless the delta is greater than the minimum shrink we want
 781     if (shrink_bytes >= MinHeapDeltaBytes) {
 782       shrink_free_list_by(shrink_bytes);
 783     }
 784   }
 785 }
 786 
 787 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 788   return cmsSpace()->freelistLock();
 789 }
 790 
 791 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 792   CMSSynchronousYieldRequest yr;
 793   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 794   return have_lock_and_allocate(size, tlab);
 795 }
 796 
 797 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 798                                                                 bool   tlab /* ignored */) {
 799   assert_lock_strong(freelistLock());
 800   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 801   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 802   // Allocate the object live (grey) if the background collector has
 803   // started marking. This is necessary because the marker may
 804   // have passed this address and consequently this object will
 805   // not otherwise be greyed and would be incorrectly swept up.
 806   // Note that if this object contains references, the writing
 807   // of those references will dirty the card containing this object
 808   // allowing the object to be blackened (and its references scanned)
 809   // either during a preclean phase or at the final checkpoint.
 810   if (res != NULL) {
 811     // We may block here with an uninitialized object with
 812     // its mark-bit or P-bits not yet set. Such objects need
 813     // to be safely navigable by block_start().
 814     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 815     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 816     collector()->direct_allocated(res, adjustedSize);
 817     _direct_allocated_words += adjustedSize;
 818     // allocation counters
 819     NOT_PRODUCT(
 820       _numObjectsAllocated++;
 821       _numWordsAllocated += (int)adjustedSize;
 822     )
 823   }
 824   return res;
 825 }
 826 
 827 // In the case of direct allocation by mutators in a generation that
 828 // is being concurrently collected, the object must be allocated
 829 // live (grey) if the background collector has started marking.
 830 // This is necessary because the marker may
 831 // have passed this address and consequently this object will
 832 // not otherwise be greyed and would be incorrectly swept up.
 833 // Note that if this object contains references, the writing
 834 // of those references will dirty the card containing this object
 835 // allowing the object to be blackened (and its references scanned)
 836 // either during a preclean phase or at the final checkpoint.
 837 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 838   assert(_markBitMap.covers(start, size), "Out of bounds");
 839   if (_collectorState >= Marking) {
 840     MutexLockerEx y(_markBitMap.lock(),
 841                     Mutex::_no_safepoint_check_flag);
 842     // [see comments preceding SweepClosure::do_blk() below for details]
 843     //
 844     // Can the P-bits be deleted now?  JJJ
 845     //
 846     // 1. need to mark the object as live so it isn't collected
 847     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 848     // 3. need to mark the end of the object so marking, precleaning or sweeping
 849     //    can skip over uninitialized or unparsable objects. An allocated
 850     //    object is considered uninitialized for our purposes as long as
 851     //    its klass word is NULL.  All old gen objects are parsable
 852     //    as soon as they are initialized.)
 853     _markBitMap.mark(start);          // object is live
 854     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 855     _markBitMap.mark(start + size - 1);
 856                                       // mark end of object
 857   }
 858   // check that oop looks uninitialized
 859   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 860 }
 861 
 862 void CMSCollector::promoted(bool par, HeapWord* start,
 863                             bool is_obj_array, size_t obj_size) {
 864   assert(_markBitMap.covers(start), "Out of bounds");
 865   // See comment in direct_allocated() about when objects should
 866   // be allocated live.
 867   if (_collectorState >= Marking) {
 868     // we already hold the marking bit map lock, taken in
 869     // the prologue
 870     if (par) {
 871       _markBitMap.par_mark(start);
 872     } else {
 873       _markBitMap.mark(start);
 874     }
 875     // We don't need to mark the object as uninitialized (as
 876     // in direct_allocated above) because this is being done with the
 877     // world stopped and the object will be initialized by the
 878     // time the marking, precleaning or sweeping get to look at it.
 879     // But see the code for copying objects into the CMS generation,
 880     // where we need to ensure that concurrent readers of the
 881     // block offset table are able to safely navigate a block that
 882     // is in flux from being free to being allocated (and in
 883     // transition while being copied into) and subsequently
 884     // becoming a bona-fide object when the copy/promotion is complete.
 885     assert(SafepointSynchronize::is_at_safepoint(),
 886            "expect promotion only at safepoints");
 887 
 888     if (_collectorState < Sweeping) {
 889       // Mark the appropriate cards in the modUnionTable, so that
 890       // this object gets scanned before the sweep. If this is
 891       // not done, CMS generation references in the object might
 892       // not get marked.
 893       // For the case of arrays, which are otherwise precisely
 894       // marked, we need to dirty the entire array, not just its head.
 895       if (is_obj_array) {
 896         // The [par_]mark_range() method expects mr.end() below to
 897         // be aligned to the granularity of a bit's representation
 898         // in the heap. In the case of the MUT below, that's a
 899         // card size.
 900         MemRegion mr(start,
 901                      align_up(start + obj_size,
 902                         CardTableModRefBS::card_size /* bytes */));
 903         if (par) {
 904           _modUnionTable.par_mark_range(mr);
 905         } else {
 906           _modUnionTable.mark_range(mr);
 907         }
 908       } else {  // not an obj array; we can just mark the head
 909         if (par) {
 910           _modUnionTable.par_mark(start);
 911         } else {
 912           _modUnionTable.mark(start);
 913         }
 914       }
 915     }
 916   }
 917 }
 918 
 919 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 920   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 921   // allocate, copy and if necessary update promoinfo --
 922   // delegate to underlying space.
 923   assert_lock_strong(freelistLock());
 924 
 925 #ifndef PRODUCT
 926   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 927     return NULL;
 928   }
 929 #endif  // #ifndef PRODUCT
 930 
 931   oop res = _cmsSpace->promote(obj, obj_size);
 932   if (res == NULL) {
 933     // expand and retry
 934     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 935     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 936     // Since this is the old generation, we don't try to promote
 937     // into a more senior generation.
 938     res = _cmsSpace->promote(obj, obj_size);
 939   }
 940   if (res != NULL) {
 941     // See comment in allocate() about when objects should
 942     // be allocated live.
 943     assert(obj->is_oop(), "Will dereference klass pointer below");
 944     collector()->promoted(false,           // Not parallel
 945                           (HeapWord*)res, obj->is_objArray(), obj_size);
 946     // promotion counters
 947     NOT_PRODUCT(
 948       _numObjectsPromoted++;
 949       _numWordsPromoted +=
 950         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 951     )
 952   }
 953   return res;
 954 }
 955 
 956 
 957 // IMPORTANT: Notes on object size recognition in CMS.
 958 // ---------------------------------------------------
 959 // A block of storage in the CMS generation is always in
 960 // one of three states. A free block (FREE), an allocated
 961 // object (OBJECT) whose size() method reports the correct size,
 962 // and an intermediate state (TRANSIENT) in which its size cannot
 963 // be accurately determined.
 964 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 965 // -----------------------------------------------------
 966 // FREE:      klass_word & 1 == 1; mark_word holds block size
 967 //
 968 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 969 //            obj->size() computes correct size
 970 //
 971 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 972 //
 973 // STATE IDENTIFICATION: (64 bit+COOPS)
 974 // ------------------------------------
 975 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 976 //
 977 // OBJECT:    klass_word installed; klass_word != 0;
 978 //            obj->size() computes correct size
 979 //
 980 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 981 //
 982 //
 983 // STATE TRANSITION DIAGRAM
 984 //
 985 //        mut / parnew                     mut  /  parnew
 986 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 987 //  ^                                                                   |
 988 //  |------------------------ DEAD <------------------------------------|
 989 //         sweep                            mut
 990 //
 991 // While a block is in TRANSIENT state its size cannot be determined
 992 // so readers will either need to come back later or stall until
 993 // the size can be determined. Note that for the case of direct
 994 // allocation, P-bits, when available, may be used to determine the
 995 // size of an object that may not yet have been initialized.
 996 
 997 // Things to support parallel young-gen collection.
 998 oop
 999 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1000                                            oop old, markOop m,
1001                                            size_t word_sz) {
1002 #ifndef PRODUCT
1003   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1004     return NULL;
1005   }
1006 #endif  // #ifndef PRODUCT
1007 
1008   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1009   PromotionInfo* promoInfo = &ps->promo;
1010   // if we are tracking promotions, then first ensure space for
1011   // promotion (including spooling space for saving header if necessary).
1012   // then allocate and copy, then track promoted info if needed.
1013   // When tracking (see PromotionInfo::track()), the mark word may
1014   // be displaced and in this case restoration of the mark word
1015   // occurs in the (oop_since_save_marks_)iterate phase.
1016   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1017     // Out of space for allocating spooling buffers;
1018     // try expanding and allocating spooling buffers.
1019     if (!expand_and_ensure_spooling_space(promoInfo)) {
1020       return NULL;
1021     }
1022   }
1023   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1024   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1025   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1026   if (obj_ptr == NULL) {
1027      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1028      if (obj_ptr == NULL) {
1029        return NULL;
1030      }
1031   }
1032   oop obj = oop(obj_ptr);
1033   OrderAccess::storestore();
1034   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1035   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1036   // IMPORTANT: See note on object initialization for CMS above.
1037   // Otherwise, copy the object.  Here we must be careful to insert the
1038   // klass pointer last, since this marks the block as an allocated object.
1039   // Except with compressed oops it's the mark word.
1040   HeapWord* old_ptr = (HeapWord*)old;
1041   // Restore the mark word copied above.
1042   obj->set_mark(m);
1043   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1044   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1045   OrderAccess::storestore();
1046 
1047   if (UseCompressedClassPointers) {
1048     // Copy gap missed by (aligned) header size calculation below
1049     obj->set_klass_gap(old->klass_gap());
1050   }
1051   if (word_sz > (size_t)oopDesc::header_size()) {
1052     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1053                                  obj_ptr + oopDesc::header_size(),
1054                                  word_sz - oopDesc::header_size());
1055   }
1056 
1057   // Now we can track the promoted object, if necessary.  We take care
1058   // to delay the transition from uninitialized to full object
1059   // (i.e., insertion of klass pointer) until after, so that it
1060   // atomically becomes a promoted object.
1061   if (promoInfo->tracking()) {
1062     promoInfo->track((PromotedObject*)obj, old->klass());
1063   }
1064   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1065   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1066   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1067 
1068   // Finally, install the klass pointer (this should be volatile).
1069   OrderAccess::storestore();
1070   obj->set_klass(old->klass());
1071   // We should now be able to calculate the right size for this object
1072   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1073 
1074   collector()->promoted(true,          // parallel
1075                         obj_ptr, old->is_objArray(), word_sz);
1076 
1077   NOT_PRODUCT(
1078     Atomic::inc_ptr(&_numObjectsPromoted);
1079     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1080   )
1081 
1082   return obj;
1083 }
1084 
1085 void
1086 ConcurrentMarkSweepGeneration::
1087 par_promote_alloc_done(int thread_num) {
1088   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1089   ps->lab.retire(thread_num);
1090 }
1091 
1092 void
1093 ConcurrentMarkSweepGeneration::
1094 par_oop_since_save_marks_iterate_done(int thread_num) {
1095   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1096   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1097   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1098 
1099   // Because card-scanning has been completed, subsequent phases
1100   // (e.g., reference processing) will not need to recognize which
1101   // objects have been promoted during this GC. So, we can now disable
1102   // promotion tracking.
1103   ps->promo.stopTrackingPromotions();
1104 }
1105 
1106 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1107                                                    size_t size,
1108                                                    bool   tlab)
1109 {
1110   // We allow a STW collection only if a full
1111   // collection was requested.
1112   return full || should_allocate(size, tlab); // FIX ME !!!
1113   // This and promotion failure handling are connected at the
1114   // hip and should be fixed by untying them.
1115 }
1116 
1117 bool CMSCollector::shouldConcurrentCollect() {
1118   LogTarget(Trace, gc) log;
1119 
1120   if (_full_gc_requested) {
1121     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1122     return true;
1123   }
1124 
1125   FreelistLocker x(this);
1126   // ------------------------------------------------------------------
1127   // Print out lots of information which affects the initiation of
1128   // a collection.
1129   if (log.is_enabled() && stats().valid()) {
1130     log.print("CMSCollector shouldConcurrentCollect: ");
1131 
1132     LogStream out(log);
1133     stats().print_on(&out);
1134 
1135     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1136     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1137     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1138     log.print("promotion_rate=%g", stats().promotion_rate());
1139     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1140     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1141     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1142     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1143     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1144     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1145   }
1146   // ------------------------------------------------------------------
1147 
1148   // If the estimated time to complete a cms collection (cms_duration())
1149   // is less than the estimated time remaining until the cms generation
1150   // is full, start a collection.
1151   if (!UseCMSInitiatingOccupancyOnly) {
1152     if (stats().valid()) {
1153       if (stats().time_until_cms_start() == 0.0) {
1154         return true;
1155       }
1156     } else {
1157       // We want to conservatively collect somewhat early in order
1158       // to try and "bootstrap" our CMS/promotion statistics;
1159       // this branch will not fire after the first successful CMS
1160       // collection because the stats should then be valid.
1161       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1162         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1163                   _cmsGen->occupancy(), _bootstrap_occupancy);
1164         return true;
1165       }
1166     }
1167   }
1168 
1169   // Otherwise, we start a collection cycle if
1170   // old gen want a collection cycle started. Each may use
1171   // an appropriate criterion for making this decision.
1172   // XXX We need to make sure that the gen expansion
1173   // criterion dovetails well with this. XXX NEED TO FIX THIS
1174   if (_cmsGen->should_concurrent_collect()) {
1175     log.print("CMS old gen initiated");
1176     return true;
1177   }
1178 
1179   // We start a collection if we believe an incremental collection may fail;
1180   // this is not likely to be productive in practice because it's probably too
1181   // late anyway.
1182   GenCollectedHeap* gch = GenCollectedHeap::heap();
1183   assert(gch->collector_policy()->is_generation_policy(),
1184          "You may want to check the correctness of the following");
1185   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1186     log.print("CMSCollector: collect because incremental collection will fail ");
1187     return true;
1188   }
1189 
1190   if (MetaspaceGC::should_concurrent_collect()) {
1191     log.print("CMSCollector: collect for metadata allocation ");
1192     return true;
1193   }
1194 
1195   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1196   if (CMSTriggerInterval >= 0) {
1197     if (CMSTriggerInterval == 0) {
1198       // Trigger always
1199       return true;
1200     }
1201 
1202     // Check the CMS time since begin (we do not check the stats validity
1203     // as we want to be able to trigger the first CMS cycle as well)
1204     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1205       if (stats().valid()) {
1206         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1207                   stats().cms_time_since_begin());
1208       } else {
1209         log.print("CMSCollector: collect because of trigger interval (first collection)");
1210       }
1211       return true;
1212     }
1213   }
1214 
1215   return false;
1216 }
1217 
1218 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1219 
1220 // Clear _expansion_cause fields of constituent generations
1221 void CMSCollector::clear_expansion_cause() {
1222   _cmsGen->clear_expansion_cause();
1223 }
1224 
1225 // We should be conservative in starting a collection cycle.  To
1226 // start too eagerly runs the risk of collecting too often in the
1227 // extreme.  To collect too rarely falls back on full collections,
1228 // which works, even if not optimum in terms of concurrent work.
1229 // As a work around for too eagerly collecting, use the flag
1230 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1231 // giving the user an easily understandable way of controlling the
1232 // collections.
1233 // We want to start a new collection cycle if any of the following
1234 // conditions hold:
1235 // . our current occupancy exceeds the configured initiating occupancy
1236 //   for this generation, or
1237 // . we recently needed to expand this space and have not, since that
1238 //   expansion, done a collection of this generation, or
1239 // . the underlying space believes that it may be a good idea to initiate
1240 //   a concurrent collection (this may be based on criteria such as the
1241 //   following: the space uses linear allocation and linear allocation is
1242 //   going to fail, or there is believed to be excessive fragmentation in
1243 //   the generation, etc... or ...
1244 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1245 //   the case of the old generation; see CR 6543076):
1246 //   we may be approaching a point at which allocation requests may fail because
1247 //   we will be out of sufficient free space given allocation rate estimates.]
1248 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1249 
1250   assert_lock_strong(freelistLock());
1251   if (occupancy() > initiating_occupancy()) {
1252     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1253                   short_name(), occupancy(), initiating_occupancy());
1254     return true;
1255   }
1256   if (UseCMSInitiatingOccupancyOnly) {
1257     return false;
1258   }
1259   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1260     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1261     return true;
1262   }
1263   return false;
1264 }
1265 
1266 void ConcurrentMarkSweepGeneration::collect(bool   full,
1267                                             bool   clear_all_soft_refs,
1268                                             size_t size,
1269                                             bool   tlab)
1270 {
1271   collector()->collect(full, clear_all_soft_refs, size, tlab);
1272 }
1273 
1274 void CMSCollector::collect(bool   full,
1275                            bool   clear_all_soft_refs,
1276                            size_t size,
1277                            bool   tlab)
1278 {
1279   // The following "if" branch is present for defensive reasons.
1280   // In the current uses of this interface, it can be replaced with:
1281   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1282   // But I am not placing that assert here to allow future
1283   // generality in invoking this interface.
1284   if (GCLocker::is_active()) {
1285     // A consistency test for GCLocker
1286     assert(GCLocker::needs_gc(), "Should have been set already");
1287     // Skip this foreground collection, instead
1288     // expanding the heap if necessary.
1289     // Need the free list locks for the call to free() in compute_new_size()
1290     compute_new_size();
1291     return;
1292   }
1293   acquire_control_and_collect(full, clear_all_soft_refs);
1294 }
1295 
1296 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1297   GenCollectedHeap* gch = GenCollectedHeap::heap();
1298   unsigned int gc_count = gch->total_full_collections();
1299   if (gc_count == full_gc_count) {
1300     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1301     _full_gc_requested = true;
1302     _full_gc_cause = cause;
1303     CGC_lock->notify();   // nudge CMS thread
1304   } else {
1305     assert(gc_count > full_gc_count, "Error: causal loop");
1306   }
1307 }
1308 
1309 bool CMSCollector::is_external_interruption() {
1310   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1311   return GCCause::is_user_requested_gc(cause) ||
1312          GCCause::is_serviceability_requested_gc(cause);
1313 }
1314 
1315 void CMSCollector::report_concurrent_mode_interruption() {
1316   if (is_external_interruption()) {
1317     log_debug(gc)("Concurrent mode interrupted");
1318   } else {
1319     log_debug(gc)("Concurrent mode failure");
1320     _gc_tracer_cm->report_concurrent_mode_failure();
1321   }
1322 }
1323 
1324 
1325 // The foreground and background collectors need to coordinate in order
1326 // to make sure that they do not mutually interfere with CMS collections.
1327 // When a background collection is active,
1328 // the foreground collector may need to take over (preempt) and
1329 // synchronously complete an ongoing collection. Depending on the
1330 // frequency of the background collections and the heap usage
1331 // of the application, this preemption can be seldom or frequent.
1332 // There are only certain
1333 // points in the background collection that the "collection-baton"
1334 // can be passed to the foreground collector.
1335 //
1336 // The foreground collector will wait for the baton before
1337 // starting any part of the collection.  The foreground collector
1338 // will only wait at one location.
1339 //
1340 // The background collector will yield the baton before starting a new
1341 // phase of the collection (e.g., before initial marking, marking from roots,
1342 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1343 // of the loop which switches the phases. The background collector does some
1344 // of the phases (initial mark, final re-mark) with the world stopped.
1345 // Because of locking involved in stopping the world,
1346 // the foreground collector should not block waiting for the background
1347 // collector when it is doing a stop-the-world phase.  The background
1348 // collector will yield the baton at an additional point just before
1349 // it enters a stop-the-world phase.  Once the world is stopped, the
1350 // background collector checks the phase of the collection.  If the
1351 // phase has not changed, it proceeds with the collection.  If the
1352 // phase has changed, it skips that phase of the collection.  See
1353 // the comments on the use of the Heap_lock in collect_in_background().
1354 //
1355 // Variable used in baton passing.
1356 //   _foregroundGCIsActive - Set to true by the foreground collector when
1357 //      it wants the baton.  The foreground clears it when it has finished
1358 //      the collection.
1359 //   _foregroundGCShouldWait - Set to true by the background collector
1360 //        when it is running.  The foreground collector waits while
1361 //      _foregroundGCShouldWait is true.
1362 //  CGC_lock - monitor used to protect access to the above variables
1363 //      and to notify the foreground and background collectors.
1364 //  _collectorState - current state of the CMS collection.
1365 //
1366 // The foreground collector
1367 //   acquires the CGC_lock
1368 //   sets _foregroundGCIsActive
1369 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1370 //     various locks acquired in preparation for the collection
1371 //     are released so as not to block the background collector
1372 //     that is in the midst of a collection
1373 //   proceeds with the collection
1374 //   clears _foregroundGCIsActive
1375 //   returns
1376 //
1377 // The background collector in a loop iterating on the phases of the
1378 //      collection
1379 //   acquires the CGC_lock
1380 //   sets _foregroundGCShouldWait
1381 //   if _foregroundGCIsActive is set
1382 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1383 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1384 //     and exits the loop.
1385 //   otherwise
1386 //     proceed with that phase of the collection
1387 //     if the phase is a stop-the-world phase,
1388 //       yield the baton once more just before enqueueing
1389 //       the stop-world CMS operation (executed by the VM thread).
1390 //   returns after all phases of the collection are done
1391 //
1392 
1393 void CMSCollector::acquire_control_and_collect(bool full,
1394         bool clear_all_soft_refs) {
1395   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1396   assert(!Thread::current()->is_ConcurrentGC_thread(),
1397          "shouldn't try to acquire control from self!");
1398 
1399   // Start the protocol for acquiring control of the
1400   // collection from the background collector (aka CMS thread).
1401   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1402          "VM thread should have CMS token");
1403   // Remember the possibly interrupted state of an ongoing
1404   // concurrent collection
1405   CollectorState first_state = _collectorState;
1406 
1407   // Signal to a possibly ongoing concurrent collection that
1408   // we want to do a foreground collection.
1409   _foregroundGCIsActive = true;
1410 
1411   // release locks and wait for a notify from the background collector
1412   // releasing the locks in only necessary for phases which
1413   // do yields to improve the granularity of the collection.
1414   assert_lock_strong(bitMapLock());
1415   // We need to lock the Free list lock for the space that we are
1416   // currently collecting.
1417   assert(haveFreelistLocks(), "Must be holding free list locks");
1418   bitMapLock()->unlock();
1419   releaseFreelistLocks();
1420   {
1421     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1422     if (_foregroundGCShouldWait) {
1423       // We are going to be waiting for action for the CMS thread;
1424       // it had better not be gone (for instance at shutdown)!
1425       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1426              "CMS thread must be running");
1427       // Wait here until the background collector gives us the go-ahead
1428       ConcurrentMarkSweepThread::clear_CMS_flag(
1429         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1430       // Get a possibly blocked CMS thread going:
1431       //   Note that we set _foregroundGCIsActive true above,
1432       //   without protection of the CGC_lock.
1433       CGC_lock->notify();
1434       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1435              "Possible deadlock");
1436       while (_foregroundGCShouldWait) {
1437         // wait for notification
1438         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1439         // Possibility of delay/starvation here, since CMS token does
1440         // not know to give priority to VM thread? Actually, i think
1441         // there wouldn't be any delay/starvation, but the proof of
1442         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1443       }
1444       ConcurrentMarkSweepThread::set_CMS_flag(
1445         ConcurrentMarkSweepThread::CMS_vm_has_token);
1446     }
1447   }
1448   // The CMS_token is already held.  Get back the other locks.
1449   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1450          "VM thread should have CMS token");
1451   getFreelistLocks();
1452   bitMapLock()->lock_without_safepoint_check();
1453   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1454                        p2i(Thread::current()), first_state);
1455   log_debug(gc, state)("    gets control with state %d", _collectorState);
1456 
1457   // Inform cms gen if this was due to partial collection failing.
1458   // The CMS gen may use this fact to determine its expansion policy.
1459   GenCollectedHeap* gch = GenCollectedHeap::heap();
1460   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1461     assert(!_cmsGen->incremental_collection_failed(),
1462            "Should have been noticed, reacted to and cleared");
1463     _cmsGen->set_incremental_collection_failed();
1464   }
1465 
1466   if (first_state > Idling) {
1467     report_concurrent_mode_interruption();
1468   }
1469 
1470   set_did_compact(true);
1471 
1472   // If the collection is being acquired from the background
1473   // collector, there may be references on the discovered
1474   // references lists.  Abandon those references, since some
1475   // of them may have become unreachable after concurrent
1476   // discovery; the STW compacting collector will redo discovery
1477   // more precisely, without being subject to floating garbage.
1478   // Leaving otherwise unreachable references in the discovered
1479   // lists would require special handling.
1480   ref_processor()->disable_discovery();
1481   ref_processor()->abandon_partial_discovery();
1482   ref_processor()->verify_no_references_recorded();
1483 
1484   if (first_state > Idling) {
1485     save_heap_summary();
1486   }
1487 
1488   do_compaction_work(clear_all_soft_refs);
1489 
1490   // Has the GC time limit been exceeded?
1491   size_t max_eden_size = _young_gen->max_eden_size();
1492   GCCause::Cause gc_cause = gch->gc_cause();
1493   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1494                                          _young_gen->eden()->used(),
1495                                          _cmsGen->max_capacity(),
1496                                          max_eden_size,
1497                                          full,
1498                                          gc_cause,
1499                                          gch->collector_policy());
1500 
1501   // Reset the expansion cause, now that we just completed
1502   // a collection cycle.
1503   clear_expansion_cause();
1504   _foregroundGCIsActive = false;
1505   return;
1506 }
1507 
1508 // Resize the tenured generation
1509 // after obtaining the free list locks for the
1510 // two generations.
1511 void CMSCollector::compute_new_size() {
1512   assert_locked_or_safepoint(Heap_lock);
1513   FreelistLocker z(this);
1514   MetaspaceGC::compute_new_size();
1515   _cmsGen->compute_new_size_free_list();
1516 }
1517 
1518 // A work method used by the foreground collector to do
1519 // a mark-sweep-compact.
1520 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1521   GenCollectedHeap* gch = GenCollectedHeap::heap();
1522 
1523   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1524   gc_timer->register_gc_start();
1525 
1526   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1527   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1528 
1529   gch->pre_full_gc_dump(gc_timer);
1530 
1531   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1532 
1533   // Temporarily widen the span of the weak reference processing to
1534   // the entire heap.
1535   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1536   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1537   // Temporarily, clear the "is_alive_non_header" field of the
1538   // reference processor.
1539   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1540   // Temporarily make reference _processing_ single threaded (non-MT).
1541   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1542   // Temporarily make refs discovery atomic
1543   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1544   // Temporarily make reference _discovery_ single threaded (non-MT)
1545   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1546 
1547   ref_processor()->set_enqueuing_is_done(false);
1548   ref_processor()->enable_discovery();
1549   ref_processor()->setup_policy(clear_all_soft_refs);
1550   // If an asynchronous collection finishes, the _modUnionTable is
1551   // all clear.  If we are assuming the collection from an asynchronous
1552   // collection, clear the _modUnionTable.
1553   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1554     "_modUnionTable should be clear if the baton was not passed");
1555   _modUnionTable.clear_all();
1556   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1557     "mod union for klasses should be clear if the baton was passed");
1558   _ct->klass_rem_set()->clear_mod_union();
1559 
1560   // We must adjust the allocation statistics being maintained
1561   // in the free list space. We do so by reading and clearing
1562   // the sweep timer and updating the block flux rate estimates below.
1563   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1564   if (_inter_sweep_timer.is_active()) {
1565     _inter_sweep_timer.stop();
1566     // Note that we do not use this sample to update the _inter_sweep_estimate.
1567     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1568                                             _inter_sweep_estimate.padded_average(),
1569                                             _intra_sweep_estimate.padded_average());
1570   }
1571 
1572   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1573   #ifdef ASSERT
1574     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1575     size_t free_size = cms_space->free();
1576     assert(free_size ==
1577            pointer_delta(cms_space->end(), cms_space->compaction_top())
1578            * HeapWordSize,
1579       "All the free space should be compacted into one chunk at top");
1580     assert(cms_space->dictionary()->total_chunk_size(
1581                                       debug_only(cms_space->freelistLock())) == 0 ||
1582            cms_space->totalSizeInIndexedFreeLists() == 0,
1583       "All the free space should be in a single chunk");
1584     size_t num = cms_space->totalCount();
1585     assert((free_size == 0 && num == 0) ||
1586            (free_size > 0  && (num == 1 || num == 2)),
1587          "There should be at most 2 free chunks after compaction");
1588   #endif // ASSERT
1589   _collectorState = Resetting;
1590   assert(_restart_addr == NULL,
1591          "Should have been NULL'd before baton was passed");
1592   reset_stw();
1593   _cmsGen->reset_after_compaction();
1594   _concurrent_cycles_since_last_unload = 0;
1595 
1596   // Clear any data recorded in the PLAB chunk arrays.
1597   if (_survivor_plab_array != NULL) {
1598     reset_survivor_plab_arrays();
1599   }
1600 
1601   // Adjust the per-size allocation stats for the next epoch.
1602   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1603   // Restart the "inter sweep timer" for the next epoch.
1604   _inter_sweep_timer.reset();
1605   _inter_sweep_timer.start();
1606 
1607   // No longer a need to do a concurrent collection for Metaspace.
1608   MetaspaceGC::set_should_concurrent_collect(false);
1609 
1610   gch->post_full_gc_dump(gc_timer);
1611 
1612   gc_timer->register_gc_end();
1613 
1614   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1615 
1616   // For a mark-sweep-compact, compute_new_size() will be called
1617   // in the heap's do_collection() method.
1618 }
1619 
1620 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1621   Log(gc, heap) log;
1622   if (!log.is_trace()) {
1623     return;
1624   }
1625 
1626   ContiguousSpace* eden_space = _young_gen->eden();
1627   ContiguousSpace* from_space = _young_gen->from();
1628   ContiguousSpace* to_space   = _young_gen->to();
1629   // Eden
1630   if (_eden_chunk_array != NULL) {
1631     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1632               p2i(eden_space->bottom()), p2i(eden_space->top()),
1633               p2i(eden_space->end()), eden_space->capacity());
1634     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1635               _eden_chunk_index, _eden_chunk_capacity);
1636     for (size_t i = 0; i < _eden_chunk_index; i++) {
1637       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1638     }
1639   }
1640   // Survivor
1641   if (_survivor_chunk_array != NULL) {
1642     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1643               p2i(from_space->bottom()), p2i(from_space->top()),
1644               p2i(from_space->end()), from_space->capacity());
1645     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1646               _survivor_chunk_index, _survivor_chunk_capacity);
1647     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1648       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1649     }
1650   }
1651 }
1652 
1653 void CMSCollector::getFreelistLocks() const {
1654   // Get locks for all free lists in all generations that this
1655   // collector is responsible for
1656   _cmsGen->freelistLock()->lock_without_safepoint_check();
1657 }
1658 
1659 void CMSCollector::releaseFreelistLocks() const {
1660   // Release locks for all free lists in all generations that this
1661   // collector is responsible for
1662   _cmsGen->freelistLock()->unlock();
1663 }
1664 
1665 bool CMSCollector::haveFreelistLocks() const {
1666   // Check locks for all free lists in all generations that this
1667   // collector is responsible for
1668   assert_lock_strong(_cmsGen->freelistLock());
1669   PRODUCT_ONLY(ShouldNotReachHere());
1670   return true;
1671 }
1672 
1673 // A utility class that is used by the CMS collector to
1674 // temporarily "release" the foreground collector from its
1675 // usual obligation to wait for the background collector to
1676 // complete an ongoing phase before proceeding.
1677 class ReleaseForegroundGC: public StackObj {
1678  private:
1679   CMSCollector* _c;
1680  public:
1681   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1682     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1683     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1684     // allow a potentially blocked foreground collector to proceed
1685     _c->_foregroundGCShouldWait = false;
1686     if (_c->_foregroundGCIsActive) {
1687       CGC_lock->notify();
1688     }
1689     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1690            "Possible deadlock");
1691   }
1692 
1693   ~ReleaseForegroundGC() {
1694     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1695     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1696     _c->_foregroundGCShouldWait = true;
1697   }
1698 };
1699 
1700 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1701   assert(Thread::current()->is_ConcurrentGC_thread(),
1702     "A CMS asynchronous collection is only allowed on a CMS thread.");
1703 
1704   GenCollectedHeap* gch = GenCollectedHeap::heap();
1705   {
1706     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1707     MutexLockerEx hl(Heap_lock, safepoint_check);
1708     FreelistLocker fll(this);
1709     MutexLockerEx x(CGC_lock, safepoint_check);
1710     if (_foregroundGCIsActive) {
1711       // The foreground collector is. Skip this
1712       // background collection.
1713       assert(!_foregroundGCShouldWait, "Should be clear");
1714       return;
1715     } else {
1716       assert(_collectorState == Idling, "Should be idling before start.");
1717       _collectorState = InitialMarking;
1718       register_gc_start(cause);
1719       // Reset the expansion cause, now that we are about to begin
1720       // a new cycle.
1721       clear_expansion_cause();
1722 
1723       // Clear the MetaspaceGC flag since a concurrent collection
1724       // is starting but also clear it after the collection.
1725       MetaspaceGC::set_should_concurrent_collect(false);
1726     }
1727     // Decide if we want to enable class unloading as part of the
1728     // ensuing concurrent GC cycle.
1729     update_should_unload_classes();
1730     _full_gc_requested = false;           // acks all outstanding full gc requests
1731     _full_gc_cause = GCCause::_no_gc;
1732     // Signal that we are about to start a collection
1733     gch->increment_total_full_collections();  // ... starting a collection cycle
1734     _collection_count_start = gch->total_full_collections();
1735   }
1736 
1737   size_t prev_used = _cmsGen->used();
1738 
1739   // The change of the collection state is normally done at this level;
1740   // the exceptions are phases that are executed while the world is
1741   // stopped.  For those phases the change of state is done while the
1742   // world is stopped.  For baton passing purposes this allows the
1743   // background collector to finish the phase and change state atomically.
1744   // The foreground collector cannot wait on a phase that is done
1745   // while the world is stopped because the foreground collector already
1746   // has the world stopped and would deadlock.
1747   while (_collectorState != Idling) {
1748     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1749                          p2i(Thread::current()), _collectorState);
1750     // The foreground collector
1751     //   holds the Heap_lock throughout its collection.
1752     //   holds the CMS token (but not the lock)
1753     //     except while it is waiting for the background collector to yield.
1754     //
1755     // The foreground collector should be blocked (not for long)
1756     //   if the background collector is about to start a phase
1757     //   executed with world stopped.  If the background
1758     //   collector has already started such a phase, the
1759     //   foreground collector is blocked waiting for the
1760     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1761     //   are executed in the VM thread.
1762     //
1763     // The locking order is
1764     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1765     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1766     //   CMS token  (claimed in
1767     //                stop_world_and_do() -->
1768     //                  safepoint_synchronize() -->
1769     //                    CMSThread::synchronize())
1770 
1771     {
1772       // Check if the FG collector wants us to yield.
1773       CMSTokenSync x(true); // is cms thread
1774       if (waitForForegroundGC()) {
1775         // We yielded to a foreground GC, nothing more to be
1776         // done this round.
1777         assert(_foregroundGCShouldWait == false, "We set it to false in "
1778                "waitForForegroundGC()");
1779         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1780                              p2i(Thread::current()), _collectorState);
1781         return;
1782       } else {
1783         // The background collector can run but check to see if the
1784         // foreground collector has done a collection while the
1785         // background collector was waiting to get the CGC_lock
1786         // above.  If yes, break so that _foregroundGCShouldWait
1787         // is cleared before returning.
1788         if (_collectorState == Idling) {
1789           break;
1790         }
1791       }
1792     }
1793 
1794     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1795       "should be waiting");
1796 
1797     switch (_collectorState) {
1798       case InitialMarking:
1799         {
1800           ReleaseForegroundGC x(this);
1801           stats().record_cms_begin();
1802           VM_CMS_Initial_Mark initial_mark_op(this);
1803           VMThread::execute(&initial_mark_op);
1804         }
1805         // The collector state may be any legal state at this point
1806         // since the background collector may have yielded to the
1807         // foreground collector.
1808         break;
1809       case Marking:
1810         // initial marking in checkpointRootsInitialWork has been completed
1811         if (markFromRoots()) { // we were successful
1812           assert(_collectorState == Precleaning, "Collector state should "
1813             "have changed");
1814         } else {
1815           assert(_foregroundGCIsActive, "Internal state inconsistency");
1816         }
1817         break;
1818       case Precleaning:
1819         // marking from roots in markFromRoots has been completed
1820         preclean();
1821         assert(_collectorState == AbortablePreclean ||
1822                _collectorState == FinalMarking,
1823                "Collector state should have changed");
1824         break;
1825       case AbortablePreclean:
1826         abortable_preclean();
1827         assert(_collectorState == FinalMarking, "Collector state should "
1828           "have changed");
1829         break;
1830       case FinalMarking:
1831         {
1832           ReleaseForegroundGC x(this);
1833 
1834           VM_CMS_Final_Remark final_remark_op(this);
1835           VMThread::execute(&final_remark_op);
1836         }
1837         assert(_foregroundGCShouldWait, "block post-condition");
1838         break;
1839       case Sweeping:
1840         // final marking in checkpointRootsFinal has been completed
1841         sweep();
1842         assert(_collectorState == Resizing, "Collector state change "
1843           "to Resizing must be done under the free_list_lock");
1844 
1845       case Resizing: {
1846         // Sweeping has been completed...
1847         // At this point the background collection has completed.
1848         // Don't move the call to compute_new_size() down
1849         // into code that might be executed if the background
1850         // collection was preempted.
1851         {
1852           ReleaseForegroundGC x(this);   // unblock FG collection
1853           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1854           CMSTokenSync        z(true);   // not strictly needed.
1855           if (_collectorState == Resizing) {
1856             compute_new_size();
1857             save_heap_summary();
1858             _collectorState = Resetting;
1859           } else {
1860             assert(_collectorState == Idling, "The state should only change"
1861                    " because the foreground collector has finished the collection");
1862           }
1863         }
1864         break;
1865       }
1866       case Resetting:
1867         // CMS heap resizing has been completed
1868         reset_concurrent();
1869         assert(_collectorState == Idling, "Collector state should "
1870           "have changed");
1871 
1872         MetaspaceGC::set_should_concurrent_collect(false);
1873 
1874         stats().record_cms_end();
1875         // Don't move the concurrent_phases_end() and compute_new_size()
1876         // calls to here because a preempted background collection
1877         // has it's state set to "Resetting".
1878         break;
1879       case Idling:
1880       default:
1881         ShouldNotReachHere();
1882         break;
1883     }
1884     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1885                          p2i(Thread::current()), _collectorState);
1886     assert(_foregroundGCShouldWait, "block post-condition");
1887   }
1888 
1889   // Should this be in gc_epilogue?
1890   collector_policy()->counters()->update_counters();
1891 
1892   {
1893     // Clear _foregroundGCShouldWait and, in the event that the
1894     // foreground collector is waiting, notify it, before
1895     // returning.
1896     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1897     _foregroundGCShouldWait = false;
1898     if (_foregroundGCIsActive) {
1899       CGC_lock->notify();
1900     }
1901     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1902            "Possible deadlock");
1903   }
1904   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1905                        p2i(Thread::current()), _collectorState);
1906   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1907                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1908 }
1909 
1910 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1911   _cms_start_registered = true;
1912   _gc_timer_cm->register_gc_start();
1913   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1914 }
1915 
1916 void CMSCollector::register_gc_end() {
1917   if (_cms_start_registered) {
1918     report_heap_summary(GCWhen::AfterGC);
1919 
1920     _gc_timer_cm->register_gc_end();
1921     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1922     _cms_start_registered = false;
1923   }
1924 }
1925 
1926 void CMSCollector::save_heap_summary() {
1927   GenCollectedHeap* gch = GenCollectedHeap::heap();
1928   _last_heap_summary = gch->create_heap_summary();
1929   _last_metaspace_summary = gch->create_metaspace_summary();
1930 }
1931 
1932 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1933   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1934   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1935 }
1936 
1937 bool CMSCollector::waitForForegroundGC() {
1938   bool res = false;
1939   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1940          "CMS thread should have CMS token");
1941   // Block the foreground collector until the
1942   // background collectors decides whether to
1943   // yield.
1944   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1945   _foregroundGCShouldWait = true;
1946   if (_foregroundGCIsActive) {
1947     // The background collector yields to the
1948     // foreground collector and returns a value
1949     // indicating that it has yielded.  The foreground
1950     // collector can proceed.
1951     res = true;
1952     _foregroundGCShouldWait = false;
1953     ConcurrentMarkSweepThread::clear_CMS_flag(
1954       ConcurrentMarkSweepThread::CMS_cms_has_token);
1955     ConcurrentMarkSweepThread::set_CMS_flag(
1956       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1957     // Get a possibly blocked foreground thread going
1958     CGC_lock->notify();
1959     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1960                          p2i(Thread::current()), _collectorState);
1961     while (_foregroundGCIsActive) {
1962       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1963     }
1964     ConcurrentMarkSweepThread::set_CMS_flag(
1965       ConcurrentMarkSweepThread::CMS_cms_has_token);
1966     ConcurrentMarkSweepThread::clear_CMS_flag(
1967       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1968   }
1969   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1970                        p2i(Thread::current()), _collectorState);
1971   return res;
1972 }
1973 
1974 // Because of the need to lock the free lists and other structures in
1975 // the collector, common to all the generations that the collector is
1976 // collecting, we need the gc_prologues of individual CMS generations
1977 // delegate to their collector. It may have been simpler had the
1978 // current infrastructure allowed one to call a prologue on a
1979 // collector. In the absence of that we have the generation's
1980 // prologue delegate to the collector, which delegates back
1981 // some "local" work to a worker method in the individual generations
1982 // that it's responsible for collecting, while itself doing any
1983 // work common to all generations it's responsible for. A similar
1984 // comment applies to the  gc_epilogue()'s.
1985 // The role of the variable _between_prologue_and_epilogue is to
1986 // enforce the invocation protocol.
1987 void CMSCollector::gc_prologue(bool full) {
1988   // Call gc_prologue_work() for the CMSGen
1989   // we are responsible for.
1990 
1991   // The following locking discipline assumes that we are only called
1992   // when the world is stopped.
1993   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1994 
1995   // The CMSCollector prologue must call the gc_prologues for the
1996   // "generations" that it's responsible
1997   // for.
1998 
1999   assert(   Thread::current()->is_VM_thread()
2000          || (   CMSScavengeBeforeRemark
2001              && Thread::current()->is_ConcurrentGC_thread()),
2002          "Incorrect thread type for prologue execution");
2003 
2004   if (_between_prologue_and_epilogue) {
2005     // We have already been invoked; this is a gc_prologue delegation
2006     // from yet another CMS generation that we are responsible for, just
2007     // ignore it since all relevant work has already been done.
2008     return;
2009   }
2010 
2011   // set a bit saying prologue has been called; cleared in epilogue
2012   _between_prologue_and_epilogue = true;
2013   // Claim locks for common data structures, then call gc_prologue_work()
2014   // for each CMSGen.
2015 
2016   getFreelistLocks();   // gets free list locks on constituent spaces
2017   bitMapLock()->lock_without_safepoint_check();
2018 
2019   // Should call gc_prologue_work() for all cms gens we are responsible for
2020   bool duringMarking =    _collectorState >= Marking
2021                          && _collectorState < Sweeping;
2022 
2023   // The young collections clear the modified oops state, which tells if
2024   // there are any modified oops in the class. The remark phase also needs
2025   // that information. Tell the young collection to save the union of all
2026   // modified klasses.
2027   if (duringMarking) {
2028     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2029   }
2030 
2031   bool registerClosure = duringMarking;
2032 
2033   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2034 
2035   if (!full) {
2036     stats().record_gc0_begin();
2037   }
2038 }
2039 
2040 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2041 
2042   _capacity_at_prologue = capacity();
2043   _used_at_prologue = used();
2044 
2045   // We enable promotion tracking so that card-scanning can recognize
2046   // which objects have been promoted during this GC and skip them.
2047   for (uint i = 0; i < ParallelGCThreads; i++) {
2048     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2049   }
2050 
2051   // Delegate to CMScollector which knows how to coordinate between
2052   // this and any other CMS generations that it is responsible for
2053   // collecting.
2054   collector()->gc_prologue(full);
2055 }
2056 
2057 // This is a "private" interface for use by this generation's CMSCollector.
2058 // Not to be called directly by any other entity (for instance,
2059 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2060 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2061   bool registerClosure, ModUnionClosure* modUnionClosure) {
2062   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2063   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2064     "Should be NULL");
2065   if (registerClosure) {
2066     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2067   }
2068   cmsSpace()->gc_prologue();
2069   // Clear stat counters
2070   NOT_PRODUCT(
2071     assert(_numObjectsPromoted == 0, "check");
2072     assert(_numWordsPromoted   == 0, "check");
2073     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2074                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2075     _numObjectsAllocated = 0;
2076     _numWordsAllocated   = 0;
2077   )
2078 }
2079 
2080 void CMSCollector::gc_epilogue(bool full) {
2081   // The following locking discipline assumes that we are only called
2082   // when the world is stopped.
2083   assert(SafepointSynchronize::is_at_safepoint(),
2084          "world is stopped assumption");
2085 
2086   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2087   // if linear allocation blocks need to be appropriately marked to allow the
2088   // the blocks to be parsable. We also check here whether we need to nudge the
2089   // CMS collector thread to start a new cycle (if it's not already active).
2090   assert(   Thread::current()->is_VM_thread()
2091          || (   CMSScavengeBeforeRemark
2092              && Thread::current()->is_ConcurrentGC_thread()),
2093          "Incorrect thread type for epilogue execution");
2094 
2095   if (!_between_prologue_and_epilogue) {
2096     // We have already been invoked; this is a gc_epilogue delegation
2097     // from yet another CMS generation that we are responsible for, just
2098     // ignore it since all relevant work has already been done.
2099     return;
2100   }
2101   assert(haveFreelistLocks(), "must have freelist locks");
2102   assert_lock_strong(bitMapLock());
2103 
2104   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2105 
2106   _cmsGen->gc_epilogue_work(full);
2107 
2108   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2109     // in case sampling was not already enabled, enable it
2110     _start_sampling = true;
2111   }
2112   // reset _eden_chunk_array so sampling starts afresh
2113   _eden_chunk_index = 0;
2114 
2115   size_t cms_used   = _cmsGen->cmsSpace()->used();
2116 
2117   // update performance counters - this uses a special version of
2118   // update_counters() that allows the utilization to be passed as a
2119   // parameter, avoiding multiple calls to used().
2120   //
2121   _cmsGen->update_counters(cms_used);
2122 
2123   bitMapLock()->unlock();
2124   releaseFreelistLocks();
2125 
2126   if (!CleanChunkPoolAsync) {
2127     Chunk::clean_chunk_pool();
2128   }
2129 
2130   set_did_compact(false);
2131   _between_prologue_and_epilogue = false;  // ready for next cycle
2132 }
2133 
2134 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2135   collector()->gc_epilogue(full);
2136 
2137   // When using ParNew, promotion tracking should have already been
2138   // disabled. However, the prologue (which enables promotion
2139   // tracking) and epilogue are called irrespective of the type of
2140   // GC. So they will also be called before and after Full GCs, during
2141   // which promotion tracking will not be explicitly disabled. So,
2142   // it's safer to also disable it here too (to be symmetric with
2143   // enabling it in the prologue).
2144   for (uint i = 0; i < ParallelGCThreads; i++) {
2145     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2146   }
2147 }
2148 
2149 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2150   assert(!incremental_collection_failed(), "Should have been cleared");
2151   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2152   cmsSpace()->gc_epilogue();
2153     // Print stat counters
2154   NOT_PRODUCT(
2155     assert(_numObjectsAllocated == 0, "check");
2156     assert(_numWordsAllocated == 0, "check");
2157     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2158                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2159     _numObjectsPromoted = 0;
2160     _numWordsPromoted   = 0;
2161   )
2162 
2163   // Call down the chain in contiguous_available needs the freelistLock
2164   // so print this out before releasing the freeListLock.
2165   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2166 }
2167 
2168 #ifndef PRODUCT
2169 bool CMSCollector::have_cms_token() {
2170   Thread* thr = Thread::current();
2171   if (thr->is_VM_thread()) {
2172     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2173   } else if (thr->is_ConcurrentGC_thread()) {
2174     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2175   } else if (thr->is_GC_task_thread()) {
2176     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2177            ParGCRareEvent_lock->owned_by_self();
2178   }
2179   return false;
2180 }
2181 
2182 // Check reachability of the given heap address in CMS generation,
2183 // treating all other generations as roots.
2184 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2185   // We could "guarantee" below, rather than assert, but I'll
2186   // leave these as "asserts" so that an adventurous debugger
2187   // could try this in the product build provided some subset of
2188   // the conditions were met, provided they were interested in the
2189   // results and knew that the computation below wouldn't interfere
2190   // with other concurrent computations mutating the structures
2191   // being read or written.
2192   assert(SafepointSynchronize::is_at_safepoint(),
2193          "Else mutations in object graph will make answer suspect");
2194   assert(have_cms_token(), "Should hold cms token");
2195   assert(haveFreelistLocks(), "must hold free list locks");
2196   assert_lock_strong(bitMapLock());
2197 
2198   // Clear the marking bit map array before starting, but, just
2199   // for kicks, first report if the given address is already marked
2200   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2201                 _markBitMap.isMarked(addr) ? "" : " not");
2202 
2203   if (verify_after_remark()) {
2204     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2205     bool result = verification_mark_bm()->isMarked(addr);
2206     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2207                   result ? "IS" : "is NOT");
2208     return result;
2209   } else {
2210     tty->print_cr("Could not compute result");
2211     return false;
2212   }
2213 }
2214 #endif
2215 
2216 void
2217 CMSCollector::print_on_error(outputStream* st) {
2218   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2219   if (collector != NULL) {
2220     CMSBitMap* bitmap = &collector->_markBitMap;
2221     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2222     bitmap->print_on_error(st, " Bits: ");
2223 
2224     st->cr();
2225 
2226     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2227     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2228     mut_bitmap->print_on_error(st, " Bits: ");
2229   }
2230 }
2231 
2232 ////////////////////////////////////////////////////////
2233 // CMS Verification Support
2234 ////////////////////////////////////////////////////////
2235 // Following the remark phase, the following invariant
2236 // should hold -- each object in the CMS heap which is
2237 // marked in markBitMap() should be marked in the verification_mark_bm().
2238 
2239 class VerifyMarkedClosure: public BitMapClosure {
2240   CMSBitMap* _marks;
2241   bool       _failed;
2242 
2243  public:
2244   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2245 
2246   bool do_bit(size_t offset) {
2247     HeapWord* addr = _marks->offsetToHeapWord(offset);
2248     if (!_marks->isMarked(addr)) {
2249       Log(gc, verify) log;
2250       ResourceMark rm;
2251       // Unconditional write?
2252       LogStream ls(log.error());
2253       oop(addr)->print_on(&ls);
2254       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2255       _failed = true;
2256     }
2257     return true;
2258   }
2259 
2260   bool failed() { return _failed; }
2261 };
2262 
2263 bool CMSCollector::verify_after_remark() {
2264   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2265   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2266   static bool init = false;
2267 
2268   assert(SafepointSynchronize::is_at_safepoint(),
2269          "Else mutations in object graph will make answer suspect");
2270   assert(have_cms_token(),
2271          "Else there may be mutual interference in use of "
2272          " verification data structures");
2273   assert(_collectorState > Marking && _collectorState <= Sweeping,
2274          "Else marking info checked here may be obsolete");
2275   assert(haveFreelistLocks(), "must hold free list locks");
2276   assert_lock_strong(bitMapLock());
2277 
2278 
2279   // Allocate marking bit map if not already allocated
2280   if (!init) { // first time
2281     if (!verification_mark_bm()->allocate(_span)) {
2282       return false;
2283     }
2284     init = true;
2285   }
2286 
2287   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2288 
2289   // Turn off refs discovery -- so we will be tracing through refs.
2290   // This is as intended, because by this time
2291   // GC must already have cleared any refs that need to be cleared,
2292   // and traced those that need to be marked; moreover,
2293   // the marking done here is not going to interfere in any
2294   // way with the marking information used by GC.
2295   NoRefDiscovery no_discovery(ref_processor());
2296 
2297 #if defined(COMPILER2) || INCLUDE_JVMCI
2298   DerivedPointerTableDeactivate dpt_deact;
2299 #endif
2300 
2301   // Clear any marks from a previous round
2302   verification_mark_bm()->clear_all();
2303   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2304   verify_work_stacks_empty();
2305 
2306   GenCollectedHeap* gch = GenCollectedHeap::heap();
2307   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2308   // Update the saved marks which may affect the root scans.
2309   gch->save_marks();
2310 
2311   if (CMSRemarkVerifyVariant == 1) {
2312     // In this first variant of verification, we complete
2313     // all marking, then check if the new marks-vector is
2314     // a subset of the CMS marks-vector.
2315     verify_after_remark_work_1();
2316   } else {
2317     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2318     // In this second variant of verification, we flag an error
2319     // (i.e. an object reachable in the new marks-vector not reachable
2320     // in the CMS marks-vector) immediately, also indicating the
2321     // identify of an object (A) that references the unmarked object (B) --
2322     // presumably, a mutation to A failed to be picked up by preclean/remark?
2323     verify_after_remark_work_2();
2324   }
2325 
2326   return true;
2327 }
2328 
2329 void CMSCollector::verify_after_remark_work_1() {
2330   ResourceMark rm;
2331   HandleMark  hm;
2332   GenCollectedHeap* gch = GenCollectedHeap::heap();
2333 
2334   // Get a clear set of claim bits for the roots processing to work with.
2335   ClassLoaderDataGraph::clear_claimed_marks();
2336 
2337   // Mark from roots one level into CMS
2338   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2339   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2340 
2341   {
2342     StrongRootsScope srs(1);
2343 
2344     gch->cms_process_roots(&srs,
2345                            true,   // young gen as roots
2346                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2347                            should_unload_classes(),
2348                            &notOlder,
2349                            NULL);
2350   }
2351 
2352   // Now mark from the roots
2353   MarkFromRootsClosure markFromRootsClosure(this, _span,
2354     verification_mark_bm(), verification_mark_stack(),
2355     false /* don't yield */, true /* verifying */);
2356   assert(_restart_addr == NULL, "Expected pre-condition");
2357   verification_mark_bm()->iterate(&markFromRootsClosure);
2358   while (_restart_addr != NULL) {
2359     // Deal with stack overflow: by restarting at the indicated
2360     // address.
2361     HeapWord* ra = _restart_addr;
2362     markFromRootsClosure.reset(ra);
2363     _restart_addr = NULL;
2364     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2365   }
2366   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2367   verify_work_stacks_empty();
2368 
2369   // Marking completed -- now verify that each bit marked in
2370   // verification_mark_bm() is also marked in markBitMap(); flag all
2371   // errors by printing corresponding objects.
2372   VerifyMarkedClosure vcl(markBitMap());
2373   verification_mark_bm()->iterate(&vcl);
2374   if (vcl.failed()) {
2375     Log(gc, verify) log;
2376     log.error("Failed marking verification after remark");
2377     ResourceMark rm;
2378     // Unconditional write?
2379     LogStream ls(log.error());
2380     gch->print_on(&ls);
2381     fatal("CMS: failed marking verification after remark");
2382   }
2383 }
2384 
2385 class VerifyKlassOopsKlassClosure : public KlassClosure {
2386   class VerifyKlassOopsClosure : public OopClosure {
2387     CMSBitMap* _bitmap;
2388    public:
2389     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2390     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2391     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2392   } _oop_closure;
2393  public:
2394   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2395   void do_klass(Klass* k) {
2396     k->oops_do(&_oop_closure);
2397   }
2398 };
2399 
2400 void CMSCollector::verify_after_remark_work_2() {
2401   ResourceMark rm;
2402   HandleMark  hm;
2403   GenCollectedHeap* gch = GenCollectedHeap::heap();
2404 
2405   // Get a clear set of claim bits for the roots processing to work with.
2406   ClassLoaderDataGraph::clear_claimed_marks();
2407 
2408   // Mark from roots one level into CMS
2409   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2410                                      markBitMap());
2411   CLDToOopClosure cld_closure(&notOlder, true);
2412 
2413   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2414 
2415   {
2416     StrongRootsScope srs(1);
2417 
2418     gch->cms_process_roots(&srs,
2419                            true,   // young gen as roots
2420                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2421                            should_unload_classes(),
2422                            &notOlder,
2423                            &cld_closure);
2424   }
2425 
2426   // Now mark from the roots
2427   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2428     verification_mark_bm(), markBitMap(), verification_mark_stack());
2429   assert(_restart_addr == NULL, "Expected pre-condition");
2430   verification_mark_bm()->iterate(&markFromRootsClosure);
2431   while (_restart_addr != NULL) {
2432     // Deal with stack overflow: by restarting at the indicated
2433     // address.
2434     HeapWord* ra = _restart_addr;
2435     markFromRootsClosure.reset(ra);
2436     _restart_addr = NULL;
2437     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2438   }
2439   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2440   verify_work_stacks_empty();
2441 
2442   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2443   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2444 
2445   // Marking completed -- now verify that each bit marked in
2446   // verification_mark_bm() is also marked in markBitMap(); flag all
2447   // errors by printing corresponding objects.
2448   VerifyMarkedClosure vcl(markBitMap());
2449   verification_mark_bm()->iterate(&vcl);
2450   assert(!vcl.failed(), "Else verification above should not have succeeded");
2451 }
2452 
2453 void ConcurrentMarkSweepGeneration::save_marks() {
2454   // delegate to CMS space
2455   cmsSpace()->save_marks();
2456 }
2457 
2458 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2459   return cmsSpace()->no_allocs_since_save_marks();
2460 }
2461 
2462 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2463                                                                 \
2464 void ConcurrentMarkSweepGeneration::                            \
2465 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2466   cl->set_generation(this);                                     \
2467   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2468   cl->reset_generation();                                       \
2469   save_marks();                                                 \
2470 }
2471 
2472 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2473 
2474 void
2475 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2476   if (freelistLock()->owned_by_self()) {
2477     Generation::oop_iterate(cl);
2478   } else {
2479     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2480     Generation::oop_iterate(cl);
2481   }
2482 }
2483 
2484 void
2485 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2486   if (freelistLock()->owned_by_self()) {
2487     Generation::object_iterate(cl);
2488   } else {
2489     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2490     Generation::object_iterate(cl);
2491   }
2492 }
2493 
2494 void
2495 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2496   if (freelistLock()->owned_by_self()) {
2497     Generation::safe_object_iterate(cl);
2498   } else {
2499     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2500     Generation::safe_object_iterate(cl);
2501   }
2502 }
2503 
2504 void
2505 ConcurrentMarkSweepGeneration::post_compact() {
2506 }
2507 
2508 void
2509 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2510   // Fix the linear allocation blocks to look like free blocks.
2511 
2512   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2513   // are not called when the heap is verified during universe initialization and
2514   // at vm shutdown.
2515   if (freelistLock()->owned_by_self()) {
2516     cmsSpace()->prepare_for_verify();
2517   } else {
2518     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2519     cmsSpace()->prepare_for_verify();
2520   }
2521 }
2522 
2523 void
2524 ConcurrentMarkSweepGeneration::verify() {
2525   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2526   // are not called when the heap is verified during universe initialization and
2527   // at vm shutdown.
2528   if (freelistLock()->owned_by_self()) {
2529     cmsSpace()->verify();
2530   } else {
2531     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2532     cmsSpace()->verify();
2533   }
2534 }
2535 
2536 void CMSCollector::verify() {
2537   _cmsGen->verify();
2538 }
2539 
2540 #ifndef PRODUCT
2541 bool CMSCollector::overflow_list_is_empty() const {
2542   assert(_num_par_pushes >= 0, "Inconsistency");
2543   if (_overflow_list == NULL) {
2544     assert(_num_par_pushes == 0, "Inconsistency");
2545   }
2546   return _overflow_list == NULL;
2547 }
2548 
2549 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2550 // merely consolidate assertion checks that appear to occur together frequently.
2551 void CMSCollector::verify_work_stacks_empty() const {
2552   assert(_markStack.isEmpty(), "Marking stack should be empty");
2553   assert(overflow_list_is_empty(), "Overflow list should be empty");
2554 }
2555 
2556 void CMSCollector::verify_overflow_empty() const {
2557   assert(overflow_list_is_empty(), "Overflow list should be empty");
2558   assert(no_preserved_marks(), "No preserved marks");
2559 }
2560 #endif // PRODUCT
2561 
2562 // Decide if we want to enable class unloading as part of the
2563 // ensuing concurrent GC cycle. We will collect and
2564 // unload classes if it's the case that:
2565 //  (a) class unloading is enabled at the command line, and
2566 //  (b) old gen is getting really full
2567 // NOTE: Provided there is no change in the state of the heap between
2568 // calls to this method, it should have idempotent results. Moreover,
2569 // its results should be monotonically increasing (i.e. going from 0 to 1,
2570 // but not 1 to 0) between successive calls between which the heap was
2571 // not collected. For the implementation below, it must thus rely on
2572 // the property that concurrent_cycles_since_last_unload()
2573 // will not decrease unless a collection cycle happened and that
2574 // _cmsGen->is_too_full() are
2575 // themselves also monotonic in that sense. See check_monotonicity()
2576 // below.
2577 void CMSCollector::update_should_unload_classes() {
2578   _should_unload_classes = false;
2579   if (CMSClassUnloadingEnabled) {
2580     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2581                               CMSClassUnloadingMaxInterval)
2582                            || _cmsGen->is_too_full();
2583   }
2584 }
2585 
2586 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2587   bool res = should_concurrent_collect();
2588   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2589   return res;
2590 }
2591 
2592 void CMSCollector::setup_cms_unloading_and_verification_state() {
2593   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2594                              || VerifyBeforeExit;
2595   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2596 
2597   // We set the proper root for this CMS cycle here.
2598   if (should_unload_classes()) {   // Should unload classes this cycle
2599     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2600     set_verifying(should_verify);    // Set verification state for this cycle
2601     return;                            // Nothing else needs to be done at this time
2602   }
2603 
2604   // Not unloading classes this cycle
2605   assert(!should_unload_classes(), "Inconsistency!");
2606 
2607   // If we are not unloading classes then add SO_AllCodeCache to root
2608   // scanning options.
2609   add_root_scanning_option(rso);
2610 
2611   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2612     set_verifying(true);
2613   } else if (verifying() && !should_verify) {
2614     // We were verifying, but some verification flags got disabled.
2615     set_verifying(false);
2616     // Exclude symbols, strings and code cache elements from root scanning to
2617     // reduce IM and RM pauses.
2618     remove_root_scanning_option(rso);
2619   }
2620 }
2621 
2622 
2623 #ifndef PRODUCT
2624 HeapWord* CMSCollector::block_start(const void* p) const {
2625   const HeapWord* addr = (HeapWord*)p;
2626   if (_span.contains(p)) {
2627     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2628       return _cmsGen->cmsSpace()->block_start(p);
2629     }
2630   }
2631   return NULL;
2632 }
2633 #endif
2634 
2635 HeapWord*
2636 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2637                                                    bool   tlab,
2638                                                    bool   parallel) {
2639   CMSSynchronousYieldRequest yr;
2640   assert(!tlab, "Can't deal with TLAB allocation");
2641   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2642   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2643   if (GCExpandToAllocateDelayMillis > 0) {
2644     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2645   }
2646   return have_lock_and_allocate(word_size, tlab);
2647 }
2648 
2649 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2650     size_t bytes,
2651     size_t expand_bytes,
2652     CMSExpansionCause::Cause cause)
2653 {
2654 
2655   bool success = expand(bytes, expand_bytes);
2656 
2657   // remember why we expanded; this information is used
2658   // by shouldConcurrentCollect() when making decisions on whether to start
2659   // a new CMS cycle.
2660   if (success) {
2661     set_expansion_cause(cause);
2662     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2663   }
2664 }
2665 
2666 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2667   HeapWord* res = NULL;
2668   MutexLocker x(ParGCRareEvent_lock);
2669   while (true) {
2670     // Expansion by some other thread might make alloc OK now:
2671     res = ps->lab.alloc(word_sz);
2672     if (res != NULL) return res;
2673     // If there's not enough expansion space available, give up.
2674     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2675       return NULL;
2676     }
2677     // Otherwise, we try expansion.
2678     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2679     // Now go around the loop and try alloc again;
2680     // A competing par_promote might beat us to the expansion space,
2681     // so we may go around the loop again if promotion fails again.
2682     if (GCExpandToAllocateDelayMillis > 0) {
2683       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2684     }
2685   }
2686 }
2687 
2688 
2689 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2690   PromotionInfo* promo) {
2691   MutexLocker x(ParGCRareEvent_lock);
2692   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2693   while (true) {
2694     // Expansion by some other thread might make alloc OK now:
2695     if (promo->ensure_spooling_space()) {
2696       assert(promo->has_spooling_space(),
2697              "Post-condition of successful ensure_spooling_space()");
2698       return true;
2699     }
2700     // If there's not enough expansion space available, give up.
2701     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2702       return false;
2703     }
2704     // Otherwise, we try expansion.
2705     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2706     // Now go around the loop and try alloc again;
2707     // A competing allocation might beat us to the expansion space,
2708     // so we may go around the loop again if allocation fails again.
2709     if (GCExpandToAllocateDelayMillis > 0) {
2710       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2711     }
2712   }
2713 }
2714 
2715 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2716   // Only shrink if a compaction was done so that all the free space
2717   // in the generation is in a contiguous block at the end.
2718   if (did_compact()) {
2719     CardGeneration::shrink(bytes);
2720   }
2721 }
2722 
2723 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2724   assert_locked_or_safepoint(Heap_lock);
2725 }
2726 
2727 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2728   assert_locked_or_safepoint(Heap_lock);
2729   assert_lock_strong(freelistLock());
2730   log_trace(gc)("Shrinking of CMS not yet implemented");
2731   return;
2732 }
2733 
2734 
2735 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2736 // phases.
2737 class CMSPhaseAccounting: public StackObj {
2738  public:
2739   CMSPhaseAccounting(CMSCollector *collector,
2740                      const char *title);
2741   ~CMSPhaseAccounting();
2742 
2743  private:
2744   CMSCollector *_collector;
2745   const char *_title;
2746   GCTraceConcTime(Info, gc) _trace_time;
2747 
2748  public:
2749   // Not MT-safe; so do not pass around these StackObj's
2750   // where they may be accessed by other threads.
2751   double wallclock_millis() {
2752     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2753   }
2754 };
2755 
2756 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2757                                        const char *title) :
2758   _collector(collector), _title(title), _trace_time(title) {
2759 
2760   _collector->resetYields();
2761   _collector->resetTimer();
2762   _collector->startTimer();
2763   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2764 }
2765 
2766 CMSPhaseAccounting::~CMSPhaseAccounting() {
2767   _collector->gc_timer_cm()->register_gc_concurrent_end();
2768   _collector->stopTimer();
2769   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2770   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2771 }
2772 
2773 // CMS work
2774 
2775 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2776 class CMSParMarkTask : public AbstractGangTask {
2777  protected:
2778   CMSCollector*     _collector;
2779   uint              _n_workers;
2780   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2781       AbstractGangTask(name),
2782       _collector(collector),
2783       _n_workers(n_workers) {}
2784   // Work method in support of parallel rescan ... of young gen spaces
2785   void do_young_space_rescan(OopsInGenClosure* cl,
2786                              ContiguousSpace* space,
2787                              HeapWord** chunk_array, size_t chunk_top);
2788   void work_on_young_gen_roots(OopsInGenClosure* cl);
2789 };
2790 
2791 // Parallel initial mark task
2792 class CMSParInitialMarkTask: public CMSParMarkTask {
2793   StrongRootsScope* _strong_roots_scope;
2794  public:
2795   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2796       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2797       _strong_roots_scope(strong_roots_scope) {}
2798   void work(uint worker_id);
2799 };
2800 
2801 // Checkpoint the roots into this generation from outside
2802 // this generation. [Note this initial checkpoint need only
2803 // be approximate -- we'll do a catch up phase subsequently.]
2804 void CMSCollector::checkpointRootsInitial() {
2805   assert(_collectorState == InitialMarking, "Wrong collector state");
2806   check_correct_thread_executing();
2807   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2808 
2809   save_heap_summary();
2810   report_heap_summary(GCWhen::BeforeGC);
2811 
2812   ReferenceProcessor* rp = ref_processor();
2813   assert(_restart_addr == NULL, "Control point invariant");
2814   {
2815     // acquire locks for subsequent manipulations
2816     MutexLockerEx x(bitMapLock(),
2817                     Mutex::_no_safepoint_check_flag);
2818     checkpointRootsInitialWork();
2819     // enable ("weak") refs discovery
2820     rp->enable_discovery();
2821     _collectorState = Marking;
2822   }
2823 }
2824 
2825 void CMSCollector::checkpointRootsInitialWork() {
2826   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2827   assert(_collectorState == InitialMarking, "just checking");
2828 
2829   // Already have locks.
2830   assert_lock_strong(bitMapLock());
2831   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2832 
2833   // Setup the verification and class unloading state for this
2834   // CMS collection cycle.
2835   setup_cms_unloading_and_verification_state();
2836 
2837   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2838 
2839   // Reset all the PLAB chunk arrays if necessary.
2840   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2841     reset_survivor_plab_arrays();
2842   }
2843 
2844   ResourceMark rm;
2845   HandleMark  hm;
2846 
2847   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2848   GenCollectedHeap* gch = GenCollectedHeap::heap();
2849 
2850   verify_work_stacks_empty();
2851   verify_overflow_empty();
2852 
2853   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2854   // Update the saved marks which may affect the root scans.
2855   gch->save_marks();
2856 
2857   // weak reference processing has not started yet.
2858   ref_processor()->set_enqueuing_is_done(false);
2859 
2860   // Need to remember all newly created CLDs,
2861   // so that we can guarantee that the remark finds them.
2862   ClassLoaderDataGraph::remember_new_clds(true);
2863 
2864   // Whenever a CLD is found, it will be claimed before proceeding to mark
2865   // the klasses. The claimed marks need to be cleared before marking starts.
2866   ClassLoaderDataGraph::clear_claimed_marks();
2867 
2868   print_eden_and_survivor_chunk_arrays();
2869 
2870   {
2871 #if defined(COMPILER2) || INCLUDE_JVMCI
2872     DerivedPointerTableDeactivate dpt_deact;
2873 #endif
2874     if (CMSParallelInitialMarkEnabled) {
2875       // The parallel version.
2876       WorkGang* workers = gch->workers();
2877       assert(workers != NULL, "Need parallel worker threads.");
2878       uint n_workers = workers->active_workers();
2879 
2880       StrongRootsScope srs(n_workers);
2881 
2882       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2883       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2884       // If the total workers is greater than 1, then multiple workers
2885       // may be used at some time and the initialization has been set
2886       // such that the single threaded path cannot be used.
2887       if (workers->total_workers() > 1) {
2888         workers->run_task(&tsk);
2889       } else {
2890         tsk.work(0);
2891       }
2892     } else {
2893       // The serial version.
2894       CLDToOopClosure cld_closure(&notOlder, true);
2895       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2896 
2897       StrongRootsScope srs(1);
2898 
2899       gch->cms_process_roots(&srs,
2900                              true,   // young gen as roots
2901                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2902                              should_unload_classes(),
2903                              &notOlder,
2904                              &cld_closure);
2905     }
2906   }
2907 
2908   // Clear mod-union table; it will be dirtied in the prologue of
2909   // CMS generation per each young generation collection.
2910 
2911   assert(_modUnionTable.isAllClear(),
2912        "Was cleared in most recent final checkpoint phase"
2913        " or no bits are set in the gc_prologue before the start of the next "
2914        "subsequent marking phase.");
2915 
2916   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2917 
2918   // Save the end of the used_region of the constituent generations
2919   // to be used to limit the extent of sweep in each generation.
2920   save_sweep_limits();
2921   verify_overflow_empty();
2922 }
2923 
2924 bool CMSCollector::markFromRoots() {
2925   // we might be tempted to assert that:
2926   // assert(!SafepointSynchronize::is_at_safepoint(),
2927   //        "inconsistent argument?");
2928   // However that wouldn't be right, because it's possible that
2929   // a safepoint is indeed in progress as a young generation
2930   // stop-the-world GC happens even as we mark in this generation.
2931   assert(_collectorState == Marking, "inconsistent state?");
2932   check_correct_thread_executing();
2933   verify_overflow_empty();
2934 
2935   // Weak ref discovery note: We may be discovering weak
2936   // refs in this generation concurrent (but interleaved) with
2937   // weak ref discovery by the young generation collector.
2938 
2939   CMSTokenSyncWithLocks ts(true, bitMapLock());
2940   GCTraceCPUTime tcpu;
2941   CMSPhaseAccounting pa(this, "Concurrent Mark");
2942   bool res = markFromRootsWork();
2943   if (res) {
2944     _collectorState = Precleaning;
2945   } else { // We failed and a foreground collection wants to take over
2946     assert(_foregroundGCIsActive, "internal state inconsistency");
2947     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2948     log_debug(gc)("bailing out to foreground collection");
2949   }
2950   verify_overflow_empty();
2951   return res;
2952 }
2953 
2954 bool CMSCollector::markFromRootsWork() {
2955   // iterate over marked bits in bit map, doing a full scan and mark
2956   // from these roots using the following algorithm:
2957   // . if oop is to the right of the current scan pointer,
2958   //   mark corresponding bit (we'll process it later)
2959   // . else (oop is to left of current scan pointer)
2960   //   push oop on marking stack
2961   // . drain the marking stack
2962 
2963   // Note that when we do a marking step we need to hold the
2964   // bit map lock -- recall that direct allocation (by mutators)
2965   // and promotion (by the young generation collector) is also
2966   // marking the bit map. [the so-called allocate live policy.]
2967   // Because the implementation of bit map marking is not
2968   // robust wrt simultaneous marking of bits in the same word,
2969   // we need to make sure that there is no such interference
2970   // between concurrent such updates.
2971 
2972   // already have locks
2973   assert_lock_strong(bitMapLock());
2974 
2975   verify_work_stacks_empty();
2976   verify_overflow_empty();
2977   bool result = false;
2978   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2979     result = do_marking_mt();
2980   } else {
2981     result = do_marking_st();
2982   }
2983   return result;
2984 }
2985 
2986 // Forward decl
2987 class CMSConcMarkingTask;
2988 
2989 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2990   CMSCollector*       _collector;
2991   CMSConcMarkingTask* _task;
2992  public:
2993   virtual void yield();
2994 
2995   // "n_threads" is the number of threads to be terminated.
2996   // "queue_set" is a set of work queues of other threads.
2997   // "collector" is the CMS collector associated with this task terminator.
2998   // "yield" indicates whether we need the gang as a whole to yield.
2999   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3000     ParallelTaskTerminator(n_threads, queue_set),
3001     _collector(collector) { }
3002 
3003   void set_task(CMSConcMarkingTask* task) {
3004     _task = task;
3005   }
3006 };
3007 
3008 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3009   CMSConcMarkingTask* _task;
3010  public:
3011   bool should_exit_termination();
3012   void set_task(CMSConcMarkingTask* task) {
3013     _task = task;
3014   }
3015 };
3016 
3017 // MT Concurrent Marking Task
3018 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3019   CMSCollector*             _collector;
3020   uint                      _n_workers;      // requested/desired # workers
3021   bool                      _result;
3022   CompactibleFreeListSpace* _cms_space;
3023   char                      _pad_front[64];   // padding to ...
3024   HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
3025   char                      _pad_back[64];
3026   HeapWord*                 _restart_addr;
3027 
3028   //  Exposed here for yielding support
3029   Mutex* const _bit_map_lock;
3030 
3031   // The per thread work queues, available here for stealing
3032   OopTaskQueueSet*  _task_queues;
3033 
3034   // Termination (and yielding) support
3035   CMSConcMarkingTerminator _term;
3036   CMSConcMarkingTerminatorTerminator _term_term;
3037 
3038  public:
3039   CMSConcMarkingTask(CMSCollector* collector,
3040                  CompactibleFreeListSpace* cms_space,
3041                  YieldingFlexibleWorkGang* workers,
3042                  OopTaskQueueSet* task_queues):
3043     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3044     _collector(collector),
3045     _cms_space(cms_space),
3046     _n_workers(0), _result(true),
3047     _task_queues(task_queues),
3048     _term(_n_workers, task_queues, _collector),
3049     _bit_map_lock(collector->bitMapLock())
3050   {
3051     _requested_size = _n_workers;
3052     _term.set_task(this);
3053     _term_term.set_task(this);
3054     _restart_addr = _global_finger = _cms_space->bottom();
3055   }
3056 
3057 
3058   OopTaskQueueSet* task_queues()  { return _task_queues; }
3059 
3060   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3061 
3062   HeapWord* volatile* global_finger_addr() { return &_global_finger; }
3063 
3064   CMSConcMarkingTerminator* terminator() { return &_term; }
3065 
3066   virtual void set_for_termination(uint active_workers) {
3067     terminator()->reset_for_reuse(active_workers);
3068   }
3069 
3070   void work(uint worker_id);
3071   bool should_yield() {
3072     return    ConcurrentMarkSweepThread::should_yield()
3073            && !_collector->foregroundGCIsActive();
3074   }
3075 
3076   virtual void coordinator_yield();  // stuff done by coordinator
3077   bool result() { return _result; }
3078 
3079   void reset(HeapWord* ra) {
3080     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3081     _restart_addr = _global_finger = ra;
3082     _term.reset_for_reuse();
3083   }
3084 
3085   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3086                                            OopTaskQueue* work_q);
3087 
3088  private:
3089   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3090   void do_work_steal(int i);
3091   void bump_global_finger(HeapWord* f);
3092 };
3093 
3094 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3095   assert(_task != NULL, "Error");
3096   return _task->yielding();
3097   // Note that we do not need the disjunct || _task->should_yield() above
3098   // because we want terminating threads to yield only if the task
3099   // is already in the midst of yielding, which happens only after at least one
3100   // thread has yielded.
3101 }
3102 
3103 void CMSConcMarkingTerminator::yield() {
3104   if (_task->should_yield()) {
3105     _task->yield();
3106   } else {
3107     ParallelTaskTerminator::yield();
3108   }
3109 }
3110 
3111 ////////////////////////////////////////////////////////////////
3112 // Concurrent Marking Algorithm Sketch
3113 ////////////////////////////////////////////////////////////////
3114 // Until all tasks exhausted (both spaces):
3115 // -- claim next available chunk
3116 // -- bump global finger via CAS
3117 // -- find first object that starts in this chunk
3118 //    and start scanning bitmap from that position
3119 // -- scan marked objects for oops
3120 // -- CAS-mark target, and if successful:
3121 //    . if target oop is above global finger (volatile read)
3122 //      nothing to do
3123 //    . if target oop is in chunk and above local finger
3124 //        then nothing to do
3125 //    . else push on work-queue
3126 // -- Deal with possible overflow issues:
3127 //    . local work-queue overflow causes stuff to be pushed on
3128 //      global (common) overflow queue
3129 //    . always first empty local work queue
3130 //    . then get a batch of oops from global work queue if any
3131 //    . then do work stealing
3132 // -- When all tasks claimed (both spaces)
3133 //    and local work queue empty,
3134 //    then in a loop do:
3135 //    . check global overflow stack; steal a batch of oops and trace
3136 //    . try to steal from other threads oif GOS is empty
3137 //    . if neither is available, offer termination
3138 // -- Terminate and return result
3139 //
3140 void CMSConcMarkingTask::work(uint worker_id) {
3141   elapsedTimer _timer;
3142   ResourceMark rm;
3143   HandleMark hm;
3144 
3145   DEBUG_ONLY(_collector->verify_overflow_empty();)
3146 
3147   // Before we begin work, our work queue should be empty
3148   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3149   // Scan the bitmap covering _cms_space, tracing through grey objects.
3150   _timer.start();
3151   do_scan_and_mark(worker_id, _cms_space);
3152   _timer.stop();
3153   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3154 
3155   // ... do work stealing
3156   _timer.reset();
3157   _timer.start();
3158   do_work_steal(worker_id);
3159   _timer.stop();
3160   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3161   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3162   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3163   // Note that under the current task protocol, the
3164   // following assertion is true even of the spaces
3165   // expanded since the completion of the concurrent
3166   // marking. XXX This will likely change under a strict
3167   // ABORT semantics.
3168   // After perm removal the comparison was changed to
3169   // greater than or equal to from strictly greater than.
3170   // Before perm removal the highest address sweep would
3171   // have been at the end of perm gen but now is at the
3172   // end of the tenured gen.
3173   assert(_global_finger >=  _cms_space->end(),
3174          "All tasks have been completed");
3175   DEBUG_ONLY(_collector->verify_overflow_empty();)
3176 }
3177 
3178 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3179   HeapWord* read = _global_finger;
3180   HeapWord* cur  = read;
3181   while (f > read) {
3182     cur = read;
3183     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3184     if (cur == read) {
3185       // our cas succeeded
3186       assert(_global_finger >= f, "protocol consistency");
3187       break;
3188     }
3189   }
3190 }
3191 
3192 // This is really inefficient, and should be redone by
3193 // using (not yet available) block-read and -write interfaces to the
3194 // stack and the work_queue. XXX FIX ME !!!
3195 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3196                                                       OopTaskQueue* work_q) {
3197   // Fast lock-free check
3198   if (ovflw_stk->length() == 0) {
3199     return false;
3200   }
3201   assert(work_q->size() == 0, "Shouldn't steal");
3202   MutexLockerEx ml(ovflw_stk->par_lock(),
3203                    Mutex::_no_safepoint_check_flag);
3204   // Grab up to 1/4 the size of the work queue
3205   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3206                     (size_t)ParGCDesiredObjsFromOverflowList);
3207   num = MIN2(num, ovflw_stk->length());
3208   for (int i = (int) num; i > 0; i--) {
3209     oop cur = ovflw_stk->pop();
3210     assert(cur != NULL, "Counted wrong?");
3211     work_q->push(cur);
3212   }
3213   return num > 0;
3214 }
3215 
3216 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3217   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3218   int n_tasks = pst->n_tasks();
3219   // We allow that there may be no tasks to do here because
3220   // we are restarting after a stack overflow.
3221   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3222   uint nth_task = 0;
3223 
3224   HeapWord* aligned_start = sp->bottom();
3225   if (sp->used_region().contains(_restart_addr)) {
3226     // Align down to a card boundary for the start of 0th task
3227     // for this space.
3228     aligned_start = align_down(_restart_addr, CardTableModRefBS::card_size);
3229   }
3230 
3231   size_t chunk_size = sp->marking_task_size();
3232   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3233     // Having claimed the nth task in this space,
3234     // compute the chunk that it corresponds to:
3235     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3236                                aligned_start + (nth_task+1)*chunk_size);
3237     // Try and bump the global finger via a CAS;
3238     // note that we need to do the global finger bump
3239     // _before_ taking the intersection below, because
3240     // the task corresponding to that region will be
3241     // deemed done even if the used_region() expands
3242     // because of allocation -- as it almost certainly will
3243     // during start-up while the threads yield in the
3244     // closure below.
3245     HeapWord* finger = span.end();
3246     bump_global_finger(finger);   // atomically
3247     // There are null tasks here corresponding to chunks
3248     // beyond the "top" address of the space.
3249     span = span.intersection(sp->used_region());
3250     if (!span.is_empty()) {  // Non-null task
3251       HeapWord* prev_obj;
3252       assert(!span.contains(_restart_addr) || nth_task == 0,
3253              "Inconsistency");
3254       if (nth_task == 0) {
3255         // For the 0th task, we'll not need to compute a block_start.
3256         if (span.contains(_restart_addr)) {
3257           // In the case of a restart because of stack overflow,
3258           // we might additionally skip a chunk prefix.
3259           prev_obj = _restart_addr;
3260         } else {
3261           prev_obj = span.start();
3262         }
3263       } else {
3264         // We want to skip the first object because
3265         // the protocol is to scan any object in its entirety
3266         // that _starts_ in this span; a fortiori, any
3267         // object starting in an earlier span is scanned
3268         // as part of an earlier claimed task.
3269         // Below we use the "careful" version of block_start
3270         // so we do not try to navigate uninitialized objects.
3271         prev_obj = sp->block_start_careful(span.start());
3272         // Below we use a variant of block_size that uses the
3273         // Printezis bits to avoid waiting for allocated
3274         // objects to become initialized/parsable.
3275         while (prev_obj < span.start()) {
3276           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3277           if (sz > 0) {
3278             prev_obj += sz;
3279           } else {
3280             // In this case we may end up doing a bit of redundant
3281             // scanning, but that appears unavoidable, short of
3282             // locking the free list locks; see bug 6324141.
3283             break;
3284           }
3285         }
3286       }
3287       if (prev_obj < span.end()) {
3288         MemRegion my_span = MemRegion(prev_obj, span.end());
3289         // Do the marking work within a non-empty span --
3290         // the last argument to the constructor indicates whether the
3291         // iteration should be incremental with periodic yields.
3292         ParMarkFromRootsClosure cl(this, _collector, my_span,
3293                                    &_collector->_markBitMap,
3294                                    work_queue(i),
3295                                    &_collector->_markStack);
3296         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3297       } // else nothing to do for this task
3298     }   // else nothing to do for this task
3299   }
3300   // We'd be tempted to assert here that since there are no
3301   // more tasks left to claim in this space, the global_finger
3302   // must exceed space->top() and a fortiori space->end(). However,
3303   // that would not quite be correct because the bumping of
3304   // global_finger occurs strictly after the claiming of a task,
3305   // so by the time we reach here the global finger may not yet
3306   // have been bumped up by the thread that claimed the last
3307   // task.
3308   pst->all_tasks_completed();
3309 }
3310 
3311 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3312  private:
3313   CMSCollector* _collector;
3314   CMSConcMarkingTask* _task;
3315   MemRegion     _span;
3316   CMSBitMap*    _bit_map;
3317   CMSMarkStack* _overflow_stack;
3318   OopTaskQueue* _work_queue;
3319  protected:
3320   DO_OOP_WORK_DEFN
3321  public:
3322   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3323                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3324     MetadataAwareOopClosure(collector->ref_processor()),
3325     _collector(collector),
3326     _task(task),
3327     _span(collector->_span),
3328     _work_queue(work_queue),
3329     _bit_map(bit_map),
3330     _overflow_stack(overflow_stack)
3331   { }
3332   virtual void do_oop(oop* p);
3333   virtual void do_oop(narrowOop* p);
3334 
3335   void trim_queue(size_t max);
3336   void handle_stack_overflow(HeapWord* lost);
3337   void do_yield_check() {
3338     if (_task->should_yield()) {
3339       _task->yield();
3340     }
3341   }
3342 };
3343 
3344 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3345 
3346 // Grey object scanning during work stealing phase --
3347 // the salient assumption here is that any references
3348 // that are in these stolen objects being scanned must
3349 // already have been initialized (else they would not have
3350 // been published), so we do not need to check for
3351 // uninitialized objects before pushing here.
3352 void ParConcMarkingClosure::do_oop(oop obj) {
3353   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3354   HeapWord* addr = (HeapWord*)obj;
3355   // Check if oop points into the CMS generation
3356   // and is not marked
3357   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3358     // a white object ...
3359     // If we manage to "claim" the object, by being the
3360     // first thread to mark it, then we push it on our
3361     // marking stack
3362     if (_bit_map->par_mark(addr)) {     // ... now grey
3363       // push on work queue (grey set)
3364       bool simulate_overflow = false;
3365       NOT_PRODUCT(
3366         if (CMSMarkStackOverflowALot &&
3367             _collector->simulate_overflow()) {
3368           // simulate a stack overflow
3369           simulate_overflow = true;
3370         }
3371       )
3372       if (simulate_overflow ||
3373           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3374         // stack overflow
3375         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3376         // We cannot assert that the overflow stack is full because
3377         // it may have been emptied since.
3378         assert(simulate_overflow ||
3379                _work_queue->size() == _work_queue->max_elems(),
3380               "Else push should have succeeded");
3381         handle_stack_overflow(addr);
3382       }
3383     } // Else, some other thread got there first
3384     do_yield_check();
3385   }
3386 }
3387 
3388 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3389 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3390 
3391 void ParConcMarkingClosure::trim_queue(size_t max) {
3392   while (_work_queue->size() > max) {
3393     oop new_oop;
3394     if (_work_queue->pop_local(new_oop)) {
3395       assert(new_oop->is_oop(), "Should be an oop");
3396       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3397       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3398       new_oop->oop_iterate(this);  // do_oop() above
3399       do_yield_check();
3400     }
3401   }
3402 }
3403 
3404 // Upon stack overflow, we discard (part of) the stack,
3405 // remembering the least address amongst those discarded
3406 // in CMSCollector's _restart_address.
3407 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3408   // We need to do this under a mutex to prevent other
3409   // workers from interfering with the work done below.
3410   MutexLockerEx ml(_overflow_stack->par_lock(),
3411                    Mutex::_no_safepoint_check_flag);
3412   // Remember the least grey address discarded
3413   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3414   _collector->lower_restart_addr(ra);
3415   _overflow_stack->reset();  // discard stack contents
3416   _overflow_stack->expand(); // expand the stack if possible
3417 }
3418 
3419 
3420 void CMSConcMarkingTask::do_work_steal(int i) {
3421   OopTaskQueue* work_q = work_queue(i);
3422   oop obj_to_scan;
3423   CMSBitMap* bm = &(_collector->_markBitMap);
3424   CMSMarkStack* ovflw = &(_collector->_markStack);
3425   int* seed = _collector->hash_seed(i);
3426   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3427   while (true) {
3428     cl.trim_queue(0);
3429     assert(work_q->size() == 0, "Should have been emptied above");
3430     if (get_work_from_overflow_stack(ovflw, work_q)) {
3431       // Can't assert below because the work obtained from the
3432       // overflow stack may already have been stolen from us.
3433       // assert(work_q->size() > 0, "Work from overflow stack");
3434       continue;
3435     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3436       assert(obj_to_scan->is_oop(), "Should be an oop");
3437       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3438       obj_to_scan->oop_iterate(&cl);
3439     } else if (terminator()->offer_termination(&_term_term)) {
3440       assert(work_q->size() == 0, "Impossible!");
3441       break;
3442     } else if (yielding() || should_yield()) {
3443       yield();
3444     }
3445   }
3446 }
3447 
3448 // This is run by the CMS (coordinator) thread.
3449 void CMSConcMarkingTask::coordinator_yield() {
3450   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3451          "CMS thread should hold CMS token");
3452   // First give up the locks, then yield, then re-lock
3453   // We should probably use a constructor/destructor idiom to
3454   // do this unlock/lock or modify the MutexUnlocker class to
3455   // serve our purpose. XXX
3456   assert_lock_strong(_bit_map_lock);
3457   _bit_map_lock->unlock();
3458   ConcurrentMarkSweepThread::desynchronize(true);
3459   _collector->stopTimer();
3460   _collector->incrementYields();
3461 
3462   // It is possible for whichever thread initiated the yield request
3463   // not to get a chance to wake up and take the bitmap lock between
3464   // this thread releasing it and reacquiring it. So, while the
3465   // should_yield() flag is on, let's sleep for a bit to give the
3466   // other thread a chance to wake up. The limit imposed on the number
3467   // of iterations is defensive, to avoid any unforseen circumstances
3468   // putting us into an infinite loop. Since it's always been this
3469   // (coordinator_yield()) method that was observed to cause the
3470   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3471   // which is by default non-zero. For the other seven methods that
3472   // also perform the yield operation, as are using a different
3473   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3474   // can enable the sleeping for those methods too, if necessary.
3475   // See 6442774.
3476   //
3477   // We really need to reconsider the synchronization between the GC
3478   // thread and the yield-requesting threads in the future and we
3479   // should really use wait/notify, which is the recommended
3480   // way of doing this type of interaction. Additionally, we should
3481   // consolidate the eight methods that do the yield operation and they
3482   // are almost identical into one for better maintainability and
3483   // readability. See 6445193.
3484   //
3485   // Tony 2006.06.29
3486   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3487                    ConcurrentMarkSweepThread::should_yield() &&
3488                    !CMSCollector::foregroundGCIsActive(); ++i) {
3489     os::sleep(Thread::current(), 1, false);
3490   }
3491 
3492   ConcurrentMarkSweepThread::synchronize(true);
3493   _bit_map_lock->lock_without_safepoint_check();
3494   _collector->startTimer();
3495 }
3496 
3497 bool CMSCollector::do_marking_mt() {
3498   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3499   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3500                                                                   conc_workers()->active_workers(),
3501                                                                   Threads::number_of_non_daemon_threads());
3502   num_workers = conc_workers()->update_active_workers(num_workers);
3503   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3504 
3505   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3506 
3507   CMSConcMarkingTask tsk(this,
3508                          cms_space,
3509                          conc_workers(),
3510                          task_queues());
3511 
3512   // Since the actual number of workers we get may be different
3513   // from the number we requested above, do we need to do anything different
3514   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3515   // class?? XXX
3516   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3517 
3518   // Refs discovery is already non-atomic.
3519   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3520   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3521   conc_workers()->start_task(&tsk);
3522   while (tsk.yielded()) {
3523     tsk.coordinator_yield();
3524     conc_workers()->continue_task(&tsk);
3525   }
3526   // If the task was aborted, _restart_addr will be non-NULL
3527   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3528   while (_restart_addr != NULL) {
3529     // XXX For now we do not make use of ABORTED state and have not
3530     // yet implemented the right abort semantics (even in the original
3531     // single-threaded CMS case). That needs some more investigation
3532     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3533     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3534     // If _restart_addr is non-NULL, a marking stack overflow
3535     // occurred; we need to do a fresh marking iteration from the
3536     // indicated restart address.
3537     if (_foregroundGCIsActive) {
3538       // We may be running into repeated stack overflows, having
3539       // reached the limit of the stack size, while making very
3540       // slow forward progress. It may be best to bail out and
3541       // let the foreground collector do its job.
3542       // Clear _restart_addr, so that foreground GC
3543       // works from scratch. This avoids the headache of
3544       // a "rescan" which would otherwise be needed because
3545       // of the dirty mod union table & card table.
3546       _restart_addr = NULL;
3547       return false;
3548     }
3549     // Adjust the task to restart from _restart_addr
3550     tsk.reset(_restart_addr);
3551     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3552                   _restart_addr);
3553     _restart_addr = NULL;
3554     // Get the workers going again
3555     conc_workers()->start_task(&tsk);
3556     while (tsk.yielded()) {
3557       tsk.coordinator_yield();
3558       conc_workers()->continue_task(&tsk);
3559     }
3560   }
3561   assert(tsk.completed(), "Inconsistency");
3562   assert(tsk.result() == true, "Inconsistency");
3563   return true;
3564 }
3565 
3566 bool CMSCollector::do_marking_st() {
3567   ResourceMark rm;
3568   HandleMark   hm;
3569 
3570   // Temporarily make refs discovery single threaded (non-MT)
3571   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3572   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3573     &_markStack, CMSYield);
3574   // the last argument to iterate indicates whether the iteration
3575   // should be incremental with periodic yields.
3576   _markBitMap.iterate(&markFromRootsClosure);
3577   // If _restart_addr is non-NULL, a marking stack overflow
3578   // occurred; we need to do a fresh iteration from the
3579   // indicated restart address.
3580   while (_restart_addr != NULL) {
3581     if (_foregroundGCIsActive) {
3582       // We may be running into repeated stack overflows, having
3583       // reached the limit of the stack size, while making very
3584       // slow forward progress. It may be best to bail out and
3585       // let the foreground collector do its job.
3586       // Clear _restart_addr, so that foreground GC
3587       // works from scratch. This avoids the headache of
3588       // a "rescan" which would otherwise be needed because
3589       // of the dirty mod union table & card table.
3590       _restart_addr = NULL;
3591       return false;  // indicating failure to complete marking
3592     }
3593     // Deal with stack overflow:
3594     // we restart marking from _restart_addr
3595     HeapWord* ra = _restart_addr;
3596     markFromRootsClosure.reset(ra);
3597     _restart_addr = NULL;
3598     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3599   }
3600   return true;
3601 }
3602 
3603 void CMSCollector::preclean() {
3604   check_correct_thread_executing();
3605   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3606   verify_work_stacks_empty();
3607   verify_overflow_empty();
3608   _abort_preclean = false;
3609   if (CMSPrecleaningEnabled) {
3610     if (!CMSEdenChunksRecordAlways) {
3611       _eden_chunk_index = 0;
3612     }
3613     size_t used = get_eden_used();
3614     size_t capacity = get_eden_capacity();
3615     // Don't start sampling unless we will get sufficiently
3616     // many samples.
3617     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3618                 * CMSScheduleRemarkEdenPenetration)) {
3619       _start_sampling = true;
3620     } else {
3621       _start_sampling = false;
3622     }
3623     GCTraceCPUTime tcpu;
3624     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3625     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3626   }
3627   CMSTokenSync x(true); // is cms thread
3628   if (CMSPrecleaningEnabled) {
3629     sample_eden();
3630     _collectorState = AbortablePreclean;
3631   } else {
3632     _collectorState = FinalMarking;
3633   }
3634   verify_work_stacks_empty();
3635   verify_overflow_empty();
3636 }
3637 
3638 // Try and schedule the remark such that young gen
3639 // occupancy is CMSScheduleRemarkEdenPenetration %.
3640 void CMSCollector::abortable_preclean() {
3641   check_correct_thread_executing();
3642   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3643   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3644 
3645   // If Eden's current occupancy is below this threshold,
3646   // immediately schedule the remark; else preclean
3647   // past the next scavenge in an effort to
3648   // schedule the pause as described above. By choosing
3649   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3650   // we will never do an actual abortable preclean cycle.
3651   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3652     GCTraceCPUTime tcpu;
3653     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3654     // We need more smarts in the abortable preclean
3655     // loop below to deal with cases where allocation
3656     // in young gen is very very slow, and our precleaning
3657     // is running a losing race against a horde of
3658     // mutators intent on flooding us with CMS updates
3659     // (dirty cards).
3660     // One, admittedly dumb, strategy is to give up
3661     // after a certain number of abortable precleaning loops
3662     // or after a certain maximum time. We want to make
3663     // this smarter in the next iteration.
3664     // XXX FIX ME!!! YSR
3665     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3666     while (!(should_abort_preclean() ||
3667              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3668       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3669       cumworkdone += workdone;
3670       loops++;
3671       // Voluntarily terminate abortable preclean phase if we have
3672       // been at it for too long.
3673       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3674           loops >= CMSMaxAbortablePrecleanLoops) {
3675         log_debug(gc)(" CMS: abort preclean due to loops ");
3676         break;
3677       }
3678       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3679         log_debug(gc)(" CMS: abort preclean due to time ");
3680         break;
3681       }
3682       // If we are doing little work each iteration, we should
3683       // take a short break.
3684       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3685         // Sleep for some time, waiting for work to accumulate
3686         stopTimer();
3687         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3688         startTimer();
3689         waited++;
3690       }
3691     }
3692     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3693                                loops, waited, cumworkdone);
3694   }
3695   CMSTokenSync x(true); // is cms thread
3696   if (_collectorState != Idling) {
3697     assert(_collectorState == AbortablePreclean,
3698            "Spontaneous state transition?");
3699     _collectorState = FinalMarking;
3700   } // Else, a foreground collection completed this CMS cycle.
3701   return;
3702 }
3703 
3704 // Respond to an Eden sampling opportunity
3705 void CMSCollector::sample_eden() {
3706   // Make sure a young gc cannot sneak in between our
3707   // reading and recording of a sample.
3708   assert(Thread::current()->is_ConcurrentGC_thread(),
3709          "Only the cms thread may collect Eden samples");
3710   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3711          "Should collect samples while holding CMS token");
3712   if (!_start_sampling) {
3713     return;
3714   }
3715   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3716   // is populated by the young generation.
3717   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3718     if (_eden_chunk_index < _eden_chunk_capacity) {
3719       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3720       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3721              "Unexpected state of Eden");
3722       // We'd like to check that what we just sampled is an oop-start address;
3723       // however, we cannot do that here since the object may not yet have been
3724       // initialized. So we'll instead do the check when we _use_ this sample
3725       // later.
3726       if (_eden_chunk_index == 0 ||
3727           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3728                          _eden_chunk_array[_eden_chunk_index-1])
3729            >= CMSSamplingGrain)) {
3730         _eden_chunk_index++;  // commit sample
3731       }
3732     }
3733   }
3734   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3735     size_t used = get_eden_used();
3736     size_t capacity = get_eden_capacity();
3737     assert(used <= capacity, "Unexpected state of Eden");
3738     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3739       _abort_preclean = true;
3740     }
3741   }
3742 }
3743 
3744 
3745 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3746   assert(_collectorState == Precleaning ||
3747          _collectorState == AbortablePreclean, "incorrect state");
3748   ResourceMark rm;
3749   HandleMark   hm;
3750 
3751   // Precleaning is currently not MT but the reference processor
3752   // may be set for MT.  Disable it temporarily here.
3753   ReferenceProcessor* rp = ref_processor();
3754   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3755 
3756   // Do one pass of scrubbing the discovered reference lists
3757   // to remove any reference objects with strongly-reachable
3758   // referents.
3759   if (clean_refs) {
3760     CMSPrecleanRefsYieldClosure yield_cl(this);
3761     assert(rp->span().equals(_span), "Spans should be equal");
3762     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3763                                    &_markStack, true /* preclean */);
3764     CMSDrainMarkingStackClosure complete_trace(this,
3765                                    _span, &_markBitMap, &_markStack,
3766                                    &keep_alive, true /* preclean */);
3767 
3768     // We don't want this step to interfere with a young
3769     // collection because we don't want to take CPU
3770     // or memory bandwidth away from the young GC threads
3771     // (which may be as many as there are CPUs).
3772     // Note that we don't need to protect ourselves from
3773     // interference with mutators because they can't
3774     // manipulate the discovered reference lists nor affect
3775     // the computed reachability of the referents, the
3776     // only properties manipulated by the precleaning
3777     // of these reference lists.
3778     stopTimer();
3779     CMSTokenSyncWithLocks x(true /* is cms thread */,
3780                             bitMapLock());
3781     startTimer();
3782     sample_eden();
3783 
3784     // The following will yield to allow foreground
3785     // collection to proceed promptly. XXX YSR:
3786     // The code in this method may need further
3787     // tweaking for better performance and some restructuring
3788     // for cleaner interfaces.
3789     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3790     rp->preclean_discovered_references(
3791           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3792           gc_timer);
3793   }
3794 
3795   if (clean_survivor) {  // preclean the active survivor space(s)
3796     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3797                              &_markBitMap, &_modUnionTable,
3798                              &_markStack, true /* precleaning phase */);
3799     stopTimer();
3800     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3801                              bitMapLock());
3802     startTimer();
3803     unsigned int before_count =
3804       GenCollectedHeap::heap()->total_collections();
3805     SurvivorSpacePrecleanClosure
3806       sss_cl(this, _span, &_markBitMap, &_markStack,
3807              &pam_cl, before_count, CMSYield);
3808     _young_gen->from()->object_iterate_careful(&sss_cl);
3809     _young_gen->to()->object_iterate_careful(&sss_cl);
3810   }
3811   MarkRefsIntoAndScanClosure
3812     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3813              &_markStack, this, CMSYield,
3814              true /* precleaning phase */);
3815   // CAUTION: The following closure has persistent state that may need to
3816   // be reset upon a decrease in the sequence of addresses it
3817   // processes.
3818   ScanMarkedObjectsAgainCarefullyClosure
3819     smoac_cl(this, _span,
3820       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3821 
3822   // Preclean dirty cards in ModUnionTable and CardTable using
3823   // appropriate convergence criterion;
3824   // repeat CMSPrecleanIter times unless we find that
3825   // we are losing.
3826   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3827   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3828          "Bad convergence multiplier");
3829   assert(CMSPrecleanThreshold >= 100,
3830          "Unreasonably low CMSPrecleanThreshold");
3831 
3832   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3833   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3834        numIter < CMSPrecleanIter;
3835        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3836     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3837     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3838     // Either there are very few dirty cards, so re-mark
3839     // pause will be small anyway, or our pre-cleaning isn't
3840     // that much faster than the rate at which cards are being
3841     // dirtied, so we might as well stop and re-mark since
3842     // precleaning won't improve our re-mark time by much.
3843     if (curNumCards <= CMSPrecleanThreshold ||
3844         (numIter > 0 &&
3845          (curNumCards * CMSPrecleanDenominator >
3846          lastNumCards * CMSPrecleanNumerator))) {
3847       numIter++;
3848       cumNumCards += curNumCards;
3849       break;
3850     }
3851   }
3852 
3853   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3854 
3855   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3856   cumNumCards += curNumCards;
3857   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3858                              curNumCards, cumNumCards, numIter);
3859   return cumNumCards;   // as a measure of useful work done
3860 }
3861 
3862 // PRECLEANING NOTES:
3863 // Precleaning involves:
3864 // . reading the bits of the modUnionTable and clearing the set bits.
3865 // . For the cards corresponding to the set bits, we scan the
3866 //   objects on those cards. This means we need the free_list_lock
3867 //   so that we can safely iterate over the CMS space when scanning
3868 //   for oops.
3869 // . When we scan the objects, we'll be both reading and setting
3870 //   marks in the marking bit map, so we'll need the marking bit map.
3871 // . For protecting _collector_state transitions, we take the CGC_lock.
3872 //   Note that any races in the reading of of card table entries by the
3873 //   CMS thread on the one hand and the clearing of those entries by the
3874 //   VM thread or the setting of those entries by the mutator threads on the
3875 //   other are quite benign. However, for efficiency it makes sense to keep
3876 //   the VM thread from racing with the CMS thread while the latter is
3877 //   dirty card info to the modUnionTable. We therefore also use the
3878 //   CGC_lock to protect the reading of the card table and the mod union
3879 //   table by the CM thread.
3880 // . We run concurrently with mutator updates, so scanning
3881 //   needs to be done carefully  -- we should not try to scan
3882 //   potentially uninitialized objects.
3883 //
3884 // Locking strategy: While holding the CGC_lock, we scan over and
3885 // reset a maximal dirty range of the mod union / card tables, then lock
3886 // the free_list_lock and bitmap lock to do a full marking, then
3887 // release these locks; and repeat the cycle. This allows for a
3888 // certain amount of fairness in the sharing of these locks between
3889 // the CMS collector on the one hand, and the VM thread and the
3890 // mutators on the other.
3891 
3892 // NOTE: preclean_mod_union_table() and preclean_card_table()
3893 // further below are largely identical; if you need to modify
3894 // one of these methods, please check the other method too.
3895 
3896 size_t CMSCollector::preclean_mod_union_table(
3897   ConcurrentMarkSweepGeneration* old_gen,
3898   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3899   verify_work_stacks_empty();
3900   verify_overflow_empty();
3901 
3902   // strategy: starting with the first card, accumulate contiguous
3903   // ranges of dirty cards; clear these cards, then scan the region
3904   // covered by these cards.
3905 
3906   // Since all of the MUT is committed ahead, we can just use
3907   // that, in case the generations expand while we are precleaning.
3908   // It might also be fine to just use the committed part of the
3909   // generation, but we might potentially miss cards when the
3910   // generation is rapidly expanding while we are in the midst
3911   // of precleaning.
3912   HeapWord* startAddr = old_gen->reserved().start();
3913   HeapWord* endAddr   = old_gen->reserved().end();
3914 
3915   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3916 
3917   size_t numDirtyCards, cumNumDirtyCards;
3918   HeapWord *nextAddr, *lastAddr;
3919   for (cumNumDirtyCards = numDirtyCards = 0,
3920        nextAddr = lastAddr = startAddr;
3921        nextAddr < endAddr;
3922        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3923 
3924     ResourceMark rm;
3925     HandleMark   hm;
3926 
3927     MemRegion dirtyRegion;
3928     {
3929       stopTimer();
3930       // Potential yield point
3931       CMSTokenSync ts(true);
3932       startTimer();
3933       sample_eden();
3934       // Get dirty region starting at nextOffset (inclusive),
3935       // simultaneously clearing it.
3936       dirtyRegion =
3937         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3938       assert(dirtyRegion.start() >= nextAddr,
3939              "returned region inconsistent?");
3940     }
3941     // Remember where the next search should begin.
3942     // The returned region (if non-empty) is a right open interval,
3943     // so lastOffset is obtained from the right end of that
3944     // interval.
3945     lastAddr = dirtyRegion.end();
3946     // Should do something more transparent and less hacky XXX
3947     numDirtyCards =
3948       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3949 
3950     // We'll scan the cards in the dirty region (with periodic
3951     // yields for foreground GC as needed).
3952     if (!dirtyRegion.is_empty()) {
3953       assert(numDirtyCards > 0, "consistency check");
3954       HeapWord* stop_point = NULL;
3955       stopTimer();
3956       // Potential yield point
3957       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3958                                bitMapLock());
3959       startTimer();
3960       {
3961         verify_work_stacks_empty();
3962         verify_overflow_empty();
3963         sample_eden();
3964         stop_point =
3965           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3966       }
3967       if (stop_point != NULL) {
3968         // The careful iteration stopped early either because it found an
3969         // uninitialized object, or because we were in the midst of an
3970         // "abortable preclean", which should now be aborted. Redirty
3971         // the bits corresponding to the partially-scanned or unscanned
3972         // cards. We'll either restart at the next block boundary or
3973         // abort the preclean.
3974         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3975                "Should only be AbortablePreclean.");
3976         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3977         if (should_abort_preclean()) {
3978           break; // out of preclean loop
3979         } else {
3980           // Compute the next address at which preclean should pick up;
3981           // might need bitMapLock in order to read P-bits.
3982           lastAddr = next_card_start_after_block(stop_point);
3983         }
3984       }
3985     } else {
3986       assert(lastAddr == endAddr, "consistency check");
3987       assert(numDirtyCards == 0, "consistency check");
3988       break;
3989     }
3990   }
3991   verify_work_stacks_empty();
3992   verify_overflow_empty();
3993   return cumNumDirtyCards;
3994 }
3995 
3996 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3997 // below are largely identical; if you need to modify
3998 // one of these methods, please check the other method too.
3999 
4000 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4001   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4002   // strategy: it's similar to precleamModUnionTable above, in that
4003   // we accumulate contiguous ranges of dirty cards, mark these cards
4004   // precleaned, then scan the region covered by these cards.
4005   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4006   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4007 
4008   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4009 
4010   size_t numDirtyCards, cumNumDirtyCards;
4011   HeapWord *lastAddr, *nextAddr;
4012 
4013   for (cumNumDirtyCards = numDirtyCards = 0,
4014        nextAddr = lastAddr = startAddr;
4015        nextAddr < endAddr;
4016        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4017 
4018     ResourceMark rm;
4019     HandleMark   hm;
4020 
4021     MemRegion dirtyRegion;
4022     {
4023       // See comments in "Precleaning notes" above on why we
4024       // do this locking. XXX Could the locking overheads be
4025       // too high when dirty cards are sparse? [I don't think so.]
4026       stopTimer();
4027       CMSTokenSync x(true); // is cms thread
4028       startTimer();
4029       sample_eden();
4030       // Get and clear dirty region from card table
4031       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4032                                     MemRegion(nextAddr, endAddr),
4033                                     true,
4034                                     CardTableModRefBS::precleaned_card_val());
4035 
4036       assert(dirtyRegion.start() >= nextAddr,
4037              "returned region inconsistent?");
4038     }
4039     lastAddr = dirtyRegion.end();
4040     numDirtyCards =
4041       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4042 
4043     if (!dirtyRegion.is_empty()) {
4044       stopTimer();
4045       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4046       startTimer();
4047       sample_eden();
4048       verify_work_stacks_empty();
4049       verify_overflow_empty();
4050       HeapWord* stop_point =
4051         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4052       if (stop_point != NULL) {
4053         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4054                "Should only be AbortablePreclean.");
4055         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4056         if (should_abort_preclean()) {
4057           break; // out of preclean loop
4058         } else {
4059           // Compute the next address at which preclean should pick up.
4060           lastAddr = next_card_start_after_block(stop_point);
4061         }
4062       }
4063     } else {
4064       break;
4065     }
4066   }
4067   verify_work_stacks_empty();
4068   verify_overflow_empty();
4069   return cumNumDirtyCards;
4070 }
4071 
4072 class PrecleanKlassClosure : public KlassClosure {
4073   KlassToOopClosure _cm_klass_closure;
4074  public:
4075   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4076   void do_klass(Klass* k) {
4077     if (k->has_accumulated_modified_oops()) {
4078       k->clear_accumulated_modified_oops();
4079 
4080       _cm_klass_closure.do_klass(k);
4081     }
4082   }
4083 };
4084 
4085 // The freelist lock is needed to prevent asserts, is it really needed?
4086 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4087 
4088   cl->set_freelistLock(freelistLock);
4089 
4090   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4091 
4092   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4093   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4094   PrecleanKlassClosure preclean_klass_closure(cl);
4095   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4096 
4097   verify_work_stacks_empty();
4098   verify_overflow_empty();
4099 }
4100 
4101 void CMSCollector::checkpointRootsFinal() {
4102   assert(_collectorState == FinalMarking, "incorrect state transition?");
4103   check_correct_thread_executing();
4104   // world is stopped at this checkpoint
4105   assert(SafepointSynchronize::is_at_safepoint(),
4106          "world should be stopped");
4107   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4108 
4109   verify_work_stacks_empty();
4110   verify_overflow_empty();
4111 
4112   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4113                 _young_gen->used() / K, _young_gen->capacity() / K);
4114   {
4115     if (CMSScavengeBeforeRemark) {
4116       GenCollectedHeap* gch = GenCollectedHeap::heap();
4117       // Temporarily set flag to false, GCH->do_collection will
4118       // expect it to be false and set to true
4119       FlagSetting fl(gch->_is_gc_active, false);
4120 
4121       gch->do_collection(true,                      // full (i.e. force, see below)
4122                          false,                     // !clear_all_soft_refs
4123                          0,                         // size
4124                          false,                     // is_tlab
4125                          GenCollectedHeap::YoungGen // type
4126         );
4127     }
4128     FreelistLocker x(this);
4129     MutexLockerEx y(bitMapLock(),
4130                     Mutex::_no_safepoint_check_flag);
4131     checkpointRootsFinalWork();
4132   }
4133   verify_work_stacks_empty();
4134   verify_overflow_empty();
4135 }
4136 
4137 void CMSCollector::checkpointRootsFinalWork() {
4138   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4139 
4140   assert(haveFreelistLocks(), "must have free list locks");
4141   assert_lock_strong(bitMapLock());
4142 
4143   ResourceMark rm;
4144   HandleMark   hm;
4145 
4146   GenCollectedHeap* gch = GenCollectedHeap::heap();
4147 
4148   if (should_unload_classes()) {
4149     CodeCache::gc_prologue();
4150   }
4151   assert(haveFreelistLocks(), "must have free list locks");
4152   assert_lock_strong(bitMapLock());
4153 
4154   // We might assume that we need not fill TLAB's when
4155   // CMSScavengeBeforeRemark is set, because we may have just done
4156   // a scavenge which would have filled all TLAB's -- and besides
4157   // Eden would be empty. This however may not always be the case --
4158   // for instance although we asked for a scavenge, it may not have
4159   // happened because of a JNI critical section. We probably need
4160   // a policy for deciding whether we can in that case wait until
4161   // the critical section releases and then do the remark following
4162   // the scavenge, and skip it here. In the absence of that policy,
4163   // or of an indication of whether the scavenge did indeed occur,
4164   // we cannot rely on TLAB's having been filled and must do
4165   // so here just in case a scavenge did not happen.
4166   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4167   // Update the saved marks which may affect the root scans.
4168   gch->save_marks();
4169 
4170   print_eden_and_survivor_chunk_arrays();
4171 
4172   {
4173 #if defined(COMPILER2) || INCLUDE_JVMCI
4174     DerivedPointerTableDeactivate dpt_deact;
4175 #endif
4176 
4177     // Note on the role of the mod union table:
4178     // Since the marker in "markFromRoots" marks concurrently with
4179     // mutators, it is possible for some reachable objects not to have been
4180     // scanned. For instance, an only reference to an object A was
4181     // placed in object B after the marker scanned B. Unless B is rescanned,
4182     // A would be collected. Such updates to references in marked objects
4183     // are detected via the mod union table which is the set of all cards
4184     // dirtied since the first checkpoint in this GC cycle and prior to
4185     // the most recent young generation GC, minus those cleaned up by the
4186     // concurrent precleaning.
4187     if (CMSParallelRemarkEnabled) {
4188       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4189       do_remark_parallel();
4190     } else {
4191       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4192       do_remark_non_parallel();
4193     }
4194   }
4195   verify_work_stacks_empty();
4196   verify_overflow_empty();
4197 
4198   {
4199     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4200     refProcessingWork();
4201   }
4202   verify_work_stacks_empty();
4203   verify_overflow_empty();
4204 
4205   if (should_unload_classes()) {
4206     CodeCache::gc_epilogue();
4207   }
4208   JvmtiExport::gc_epilogue();
4209 
4210   // If we encountered any (marking stack / work queue) overflow
4211   // events during the current CMS cycle, take appropriate
4212   // remedial measures, where possible, so as to try and avoid
4213   // recurrence of that condition.
4214   assert(_markStack.isEmpty(), "No grey objects");
4215   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4216                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4217   if (ser_ovflw > 0) {
4218     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4219                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4220     _markStack.expand();
4221     _ser_pmc_remark_ovflw = 0;
4222     _ser_pmc_preclean_ovflw = 0;
4223     _ser_kac_preclean_ovflw = 0;
4224     _ser_kac_ovflw = 0;
4225   }
4226   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4227      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4228                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4229      _par_pmc_remark_ovflw = 0;
4230     _par_kac_ovflw = 0;
4231   }
4232    if (_markStack._hit_limit > 0) {
4233      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4234                           _markStack._hit_limit);
4235    }
4236    if (_markStack._failed_double > 0) {
4237      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4238                           _markStack._failed_double, _markStack.capacity());
4239    }
4240   _markStack._hit_limit = 0;
4241   _markStack._failed_double = 0;
4242 
4243   if ((VerifyAfterGC || VerifyDuringGC) &&
4244       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4245     verify_after_remark();
4246   }
4247 
4248   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4249 
4250   // Change under the freelistLocks.
4251   _collectorState = Sweeping;
4252   // Call isAllClear() under bitMapLock
4253   assert(_modUnionTable.isAllClear(),
4254       "Should be clear by end of the final marking");
4255   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4256       "Should be clear by end of the final marking");
4257 }
4258 
4259 void CMSParInitialMarkTask::work(uint worker_id) {
4260   elapsedTimer _timer;
4261   ResourceMark rm;
4262   HandleMark   hm;
4263 
4264   // ---------- scan from roots --------------
4265   _timer.start();
4266   GenCollectedHeap* gch = GenCollectedHeap::heap();
4267   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4268 
4269   // ---------- young gen roots --------------
4270   {
4271     work_on_young_gen_roots(&par_mri_cl);
4272     _timer.stop();
4273     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4274   }
4275 
4276   // ---------- remaining roots --------------
4277   _timer.reset();
4278   _timer.start();
4279 
4280   CLDToOopClosure cld_closure(&par_mri_cl, true);
4281 
4282   gch->cms_process_roots(_strong_roots_scope,
4283                          false,     // yg was scanned above
4284                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4285                          _collector->should_unload_classes(),
4286                          &par_mri_cl,
4287                          &cld_closure);
4288   assert(_collector->should_unload_classes()
4289          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4290          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4291   _timer.stop();
4292   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4293 }
4294 
4295 // Parallel remark task
4296 class CMSParRemarkTask: public CMSParMarkTask {
4297   CompactibleFreeListSpace* _cms_space;
4298 
4299   // The per-thread work queues, available here for stealing.
4300   OopTaskQueueSet*       _task_queues;
4301   ParallelTaskTerminator _term;
4302   StrongRootsScope*      _strong_roots_scope;
4303 
4304  public:
4305   // A value of 0 passed to n_workers will cause the number of
4306   // workers to be taken from the active workers in the work gang.
4307   CMSParRemarkTask(CMSCollector* collector,
4308                    CompactibleFreeListSpace* cms_space,
4309                    uint n_workers, WorkGang* workers,
4310                    OopTaskQueueSet* task_queues,
4311                    StrongRootsScope* strong_roots_scope):
4312     CMSParMarkTask("Rescan roots and grey objects in parallel",
4313                    collector, n_workers),
4314     _cms_space(cms_space),
4315     _task_queues(task_queues),
4316     _term(n_workers, task_queues),
4317     _strong_roots_scope(strong_roots_scope) { }
4318 
4319   OopTaskQueueSet* task_queues() { return _task_queues; }
4320 
4321   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4322 
4323   ParallelTaskTerminator* terminator() { return &_term; }
4324   uint n_workers() { return _n_workers; }
4325 
4326   void work(uint worker_id);
4327 
4328  private:
4329   // ... of  dirty cards in old space
4330   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4331                                   ParMarkRefsIntoAndScanClosure* cl);
4332 
4333   // ... work stealing for the above
4334   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4335 };
4336 
4337 class RemarkKlassClosure : public KlassClosure {
4338   KlassToOopClosure _cm_klass_closure;
4339  public:
4340   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4341   void do_klass(Klass* k) {
4342     // Check if we have modified any oops in the Klass during the concurrent marking.
4343     if (k->has_accumulated_modified_oops()) {
4344       k->clear_accumulated_modified_oops();
4345 
4346       // We could have transfered the current modified marks to the accumulated marks,
4347       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4348     } else if (k->has_modified_oops()) {
4349       // Don't clear anything, this info is needed by the next young collection.
4350     } else {
4351       // No modified oops in the Klass.
4352       return;
4353     }
4354 
4355     // The klass has modified fields, need to scan the klass.
4356     _cm_klass_closure.do_klass(k);
4357   }
4358 };
4359 
4360 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4361   ParNewGeneration* young_gen = _collector->_young_gen;
4362   ContiguousSpace* eden_space = young_gen->eden();
4363   ContiguousSpace* from_space = young_gen->from();
4364   ContiguousSpace* to_space   = young_gen->to();
4365 
4366   HeapWord** eca = _collector->_eden_chunk_array;
4367   size_t     ect = _collector->_eden_chunk_index;
4368   HeapWord** sca = _collector->_survivor_chunk_array;
4369   size_t     sct = _collector->_survivor_chunk_index;
4370 
4371   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4372   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4373 
4374   do_young_space_rescan(cl, to_space, NULL, 0);
4375   do_young_space_rescan(cl, from_space, sca, sct);
4376   do_young_space_rescan(cl, eden_space, eca, ect);
4377 }
4378 
4379 // work_queue(i) is passed to the closure
4380 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4381 // also is passed to do_dirty_card_rescan_tasks() and to
4382 // do_work_steal() to select the i-th task_queue.
4383 
4384 void CMSParRemarkTask::work(uint worker_id) {
4385   elapsedTimer _timer;
4386   ResourceMark rm;
4387   HandleMark   hm;
4388 
4389   // ---------- rescan from roots --------------
4390   _timer.start();
4391   GenCollectedHeap* gch = GenCollectedHeap::heap();
4392   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4393     _collector->_span, _collector->ref_processor(),
4394     &(_collector->_markBitMap),
4395     work_queue(worker_id));
4396 
4397   // Rescan young gen roots first since these are likely
4398   // coarsely partitioned and may, on that account, constitute
4399   // the critical path; thus, it's best to start off that
4400   // work first.
4401   // ---------- young gen roots --------------
4402   {
4403     work_on_young_gen_roots(&par_mrias_cl);
4404     _timer.stop();
4405     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4406   }
4407 
4408   // ---------- remaining roots --------------
4409   _timer.reset();
4410   _timer.start();
4411   gch->cms_process_roots(_strong_roots_scope,
4412                          false,     // yg was scanned above
4413                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4414                          _collector->should_unload_classes(),
4415                          &par_mrias_cl,
4416                          NULL);     // The dirty klasses will be handled below
4417 
4418   assert(_collector->should_unload_classes()
4419          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4420          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4421   _timer.stop();
4422   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4423 
4424   // ---------- unhandled CLD scanning ----------
4425   if (worker_id == 0) { // Single threaded at the moment.
4426     _timer.reset();
4427     _timer.start();
4428 
4429     // Scan all new class loader data objects and new dependencies that were
4430     // introduced during concurrent marking.
4431     ResourceMark rm;
4432     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4433     for (int i = 0; i < array->length(); i++) {
4434       par_mrias_cl.do_cld_nv(array->at(i));
4435     }
4436 
4437     // We don't need to keep track of new CLDs anymore.
4438     ClassLoaderDataGraph::remember_new_clds(false);
4439 
4440     _timer.stop();
4441     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4442   }
4443 
4444   // ---------- dirty klass scanning ----------
4445   if (worker_id == 0) { // Single threaded at the moment.
4446     _timer.reset();
4447     _timer.start();
4448 
4449     // Scan all classes that was dirtied during the concurrent marking phase.
4450     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4451     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4452 
4453     _timer.stop();
4454     log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4455   }
4456 
4457   // We might have added oops to ClassLoaderData::_handles during the
4458   // concurrent marking phase. These oops point to newly allocated objects
4459   // that are guaranteed to be kept alive. Either by the direct allocation
4460   // code, or when the young collector processes the roots. Hence,
4461   // we don't have to revisit the _handles block during the remark phase.
4462 
4463   // ---------- rescan dirty cards ------------
4464   _timer.reset();
4465   _timer.start();
4466 
4467   // Do the rescan tasks for each of the two spaces
4468   // (cms_space) in turn.
4469   // "worker_id" is passed to select the task_queue for "worker_id"
4470   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4471   _timer.stop();
4472   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4473 
4474   // ---------- steal work from other threads ...
4475   // ---------- ... and drain overflow list.
4476   _timer.reset();
4477   _timer.start();
4478   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4479   _timer.stop();
4480   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4481 }
4482 
4483 void
4484 CMSParMarkTask::do_young_space_rescan(
4485   OopsInGenClosure* cl, ContiguousSpace* space,
4486   HeapWord** chunk_array, size_t chunk_top) {
4487   // Until all tasks completed:
4488   // . claim an unclaimed task
4489   // . compute region boundaries corresponding to task claimed
4490   //   using chunk_array
4491   // . par_oop_iterate(cl) over that region
4492 
4493   ResourceMark rm;
4494   HandleMark   hm;
4495 
4496   SequentialSubTasksDone* pst = space->par_seq_tasks();
4497 
4498   uint nth_task = 0;
4499   uint n_tasks  = pst->n_tasks();
4500 
4501   if (n_tasks > 0) {
4502     assert(pst->valid(), "Uninitialized use?");
4503     HeapWord *start, *end;
4504     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4505       // We claimed task # nth_task; compute its boundaries.
4506       if (chunk_top == 0) {  // no samples were taken
4507         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4508         start = space->bottom();
4509         end   = space->top();
4510       } else if (nth_task == 0) {
4511         start = space->bottom();
4512         end   = chunk_array[nth_task];
4513       } else if (nth_task < (uint)chunk_top) {
4514         assert(nth_task >= 1, "Control point invariant");
4515         start = chunk_array[nth_task - 1];
4516         end   = chunk_array[nth_task];
4517       } else {
4518         assert(nth_task == (uint)chunk_top, "Control point invariant");
4519         start = chunk_array[chunk_top - 1];
4520         end   = space->top();
4521       }
4522       MemRegion mr(start, end);
4523       // Verify that mr is in space
4524       assert(mr.is_empty() || space->used_region().contains(mr),
4525              "Should be in space");
4526       // Verify that "start" is an object boundary
4527       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4528              "Should be an oop");
4529       space->par_oop_iterate(mr, cl);
4530     }
4531     pst->all_tasks_completed();
4532   }
4533 }
4534 
4535 void
4536 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4537   CompactibleFreeListSpace* sp, int i,
4538   ParMarkRefsIntoAndScanClosure* cl) {
4539   // Until all tasks completed:
4540   // . claim an unclaimed task
4541   // . compute region boundaries corresponding to task claimed
4542   // . transfer dirty bits ct->mut for that region
4543   // . apply rescanclosure to dirty mut bits for that region
4544 
4545   ResourceMark rm;
4546   HandleMark   hm;
4547 
4548   OopTaskQueue* work_q = work_queue(i);
4549   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4550   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4551   // CAUTION: This closure has state that persists across calls to
4552   // the work method dirty_range_iterate_clear() in that it has
4553   // embedded in it a (subtype of) UpwardsObjectClosure. The
4554   // use of that state in the embedded UpwardsObjectClosure instance
4555   // assumes that the cards are always iterated (even if in parallel
4556   // by several threads) in monotonically increasing order per each
4557   // thread. This is true of the implementation below which picks
4558   // card ranges (chunks) in monotonically increasing order globally
4559   // and, a-fortiori, in monotonically increasing order per thread
4560   // (the latter order being a subsequence of the former).
4561   // If the work code below is ever reorganized into a more chaotic
4562   // work-partitioning form than the current "sequential tasks"
4563   // paradigm, the use of that persistent state will have to be
4564   // revisited and modified appropriately. See also related
4565   // bug 4756801 work on which should examine this code to make
4566   // sure that the changes there do not run counter to the
4567   // assumptions made here and necessary for correctness and
4568   // efficiency. Note also that this code might yield inefficient
4569   // behavior in the case of very large objects that span one or
4570   // more work chunks. Such objects would potentially be scanned
4571   // several times redundantly. Work on 4756801 should try and
4572   // address that performance anomaly if at all possible. XXX
4573   MemRegion  full_span  = _collector->_span;
4574   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4575   MarkFromDirtyCardsClosure
4576     greyRescanClosure(_collector, full_span, // entire span of interest
4577                       sp, bm, work_q, cl);
4578 
4579   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4580   assert(pst->valid(), "Uninitialized use?");
4581   uint nth_task = 0;
4582   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4583   MemRegion span = sp->used_region();
4584   HeapWord* start_addr = span.start();
4585   HeapWord* end_addr = align_up(span.end(), alignment);
4586   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4587   assert(is_aligned(start_addr, alignment), "Check alignment");
4588   assert(is_aligned(chunk_size, alignment), "Check alignment");
4589 
4590   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4591     // Having claimed the nth_task, compute corresponding mem-region,
4592     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4593     // The alignment restriction ensures that we do not need any
4594     // synchronization with other gang-workers while setting or
4595     // clearing bits in thus chunk of the MUT.
4596     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4597                                     start_addr + (nth_task+1)*chunk_size);
4598     // The last chunk's end might be way beyond end of the
4599     // used region. In that case pull back appropriately.
4600     if (this_span.end() > end_addr) {
4601       this_span.set_end(end_addr);
4602       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4603     }
4604     // Iterate over the dirty cards covering this chunk, marking them
4605     // precleaned, and setting the corresponding bits in the mod union
4606     // table. Since we have been careful to partition at Card and MUT-word
4607     // boundaries no synchronization is needed between parallel threads.
4608     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4609                                                  &modUnionClosure);
4610 
4611     // Having transferred these marks into the modUnionTable,
4612     // rescan the marked objects on the dirty cards in the modUnionTable.
4613     // Even if this is at a synchronous collection, the initial marking
4614     // may have been done during an asynchronous collection so there
4615     // may be dirty bits in the mod-union table.
4616     _collector->_modUnionTable.dirty_range_iterate_clear(
4617                   this_span, &greyRescanClosure);
4618     _collector->_modUnionTable.verifyNoOneBitsInRange(
4619                                  this_span.start(),
4620                                  this_span.end());
4621   }
4622   pst->all_tasks_completed();  // declare that i am done
4623 }
4624 
4625 // . see if we can share work_queues with ParNew? XXX
4626 void
4627 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4628                                 int* seed) {
4629   OopTaskQueue* work_q = work_queue(i);
4630   NOT_PRODUCT(int num_steals = 0;)
4631   oop obj_to_scan;
4632   CMSBitMap* bm = &(_collector->_markBitMap);
4633 
4634   while (true) {
4635     // Completely finish any left over work from (an) earlier round(s)
4636     cl->trim_queue(0);
4637     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4638                                          (size_t)ParGCDesiredObjsFromOverflowList);
4639     // Now check if there's any work in the overflow list
4640     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4641     // only affects the number of attempts made to get work from the
4642     // overflow list and does not affect the number of workers.  Just
4643     // pass ParallelGCThreads so this behavior is unchanged.
4644     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4645                                                 work_q,
4646                                                 ParallelGCThreads)) {
4647       // found something in global overflow list;
4648       // not yet ready to go stealing work from others.
4649       // We'd like to assert(work_q->size() != 0, ...)
4650       // because we just took work from the overflow list,
4651       // but of course we can't since all of that could have
4652       // been already stolen from us.
4653       // "He giveth and He taketh away."
4654       continue;
4655     }
4656     // Verify that we have no work before we resort to stealing
4657     assert(work_q->size() == 0, "Have work, shouldn't steal");
4658     // Try to steal from other queues that have work
4659     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4660       NOT_PRODUCT(num_steals++;)
4661       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4662       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4663       // Do scanning work
4664       obj_to_scan->oop_iterate(cl);
4665       // Loop around, finish this work, and try to steal some more
4666     } else if (terminator()->offer_termination()) {
4667         break;  // nirvana from the infinite cycle
4668     }
4669   }
4670   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4671   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4672          "Else our work is not yet done");
4673 }
4674 
4675 // Record object boundaries in _eden_chunk_array by sampling the eden
4676 // top in the slow-path eden object allocation code path and record
4677 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4678 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4679 // sampling in sample_eden() that activates during the part of the
4680 // preclean phase.
4681 void CMSCollector::sample_eden_chunk() {
4682   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4683     if (_eden_chunk_lock->try_lock()) {
4684       // Record a sample. This is the critical section. The contents
4685       // of the _eden_chunk_array have to be non-decreasing in the
4686       // address order.
4687       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4688       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4689              "Unexpected state of Eden");
4690       if (_eden_chunk_index == 0 ||
4691           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4692            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4693                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4694         _eden_chunk_index++;  // commit sample
4695       }
4696       _eden_chunk_lock->unlock();
4697     }
4698   }
4699 }
4700 
4701 // Return a thread-local PLAB recording array, as appropriate.
4702 void* CMSCollector::get_data_recorder(int thr_num) {
4703   if (_survivor_plab_array != NULL &&
4704       (CMSPLABRecordAlways ||
4705        (_collectorState > Marking && _collectorState < FinalMarking))) {
4706     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4707     ChunkArray* ca = &_survivor_plab_array[thr_num];
4708     ca->reset();   // clear it so that fresh data is recorded
4709     return (void*) ca;
4710   } else {
4711     return NULL;
4712   }
4713 }
4714 
4715 // Reset all the thread-local PLAB recording arrays
4716 void CMSCollector::reset_survivor_plab_arrays() {
4717   for (uint i = 0; i < ParallelGCThreads; i++) {
4718     _survivor_plab_array[i].reset();
4719   }
4720 }
4721 
4722 // Merge the per-thread plab arrays into the global survivor chunk
4723 // array which will provide the partitioning of the survivor space
4724 // for CMS initial scan and rescan.
4725 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4726                                               int no_of_gc_threads) {
4727   assert(_survivor_plab_array  != NULL, "Error");
4728   assert(_survivor_chunk_array != NULL, "Error");
4729   assert(_collectorState == FinalMarking ||
4730          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4731   for (int j = 0; j < no_of_gc_threads; j++) {
4732     _cursor[j] = 0;
4733   }
4734   HeapWord* top = surv->top();
4735   size_t i;
4736   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4737     HeapWord* min_val = top;          // Higher than any PLAB address
4738     uint      min_tid = 0;            // position of min_val this round
4739     for (int j = 0; j < no_of_gc_threads; j++) {
4740       ChunkArray* cur_sca = &_survivor_plab_array[j];
4741       if (_cursor[j] == cur_sca->end()) {
4742         continue;
4743       }
4744       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4745       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4746       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4747       if (cur_val < min_val) {
4748         min_tid = j;
4749         min_val = cur_val;
4750       } else {
4751         assert(cur_val < top, "All recorded addresses should be less");
4752       }
4753     }
4754     // At this point min_val and min_tid are respectively
4755     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4756     // and the thread (j) that witnesses that address.
4757     // We record this address in the _survivor_chunk_array[i]
4758     // and increment _cursor[min_tid] prior to the next round i.
4759     if (min_val == top) {
4760       break;
4761     }
4762     _survivor_chunk_array[i] = min_val;
4763     _cursor[min_tid]++;
4764   }
4765   // We are all done; record the size of the _survivor_chunk_array
4766   _survivor_chunk_index = i; // exclusive: [0, i)
4767   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4768   // Verify that we used up all the recorded entries
4769   #ifdef ASSERT
4770     size_t total = 0;
4771     for (int j = 0; j < no_of_gc_threads; j++) {
4772       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4773       total += _cursor[j];
4774     }
4775     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4776     // Check that the merged array is in sorted order
4777     if (total > 0) {
4778       for (size_t i = 0; i < total - 1; i++) {
4779         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4780                                      i, p2i(_survivor_chunk_array[i]));
4781         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4782                "Not sorted");
4783       }
4784     }
4785   #endif // ASSERT
4786 }
4787 
4788 // Set up the space's par_seq_tasks structure for work claiming
4789 // for parallel initial scan and rescan of young gen.
4790 // See ParRescanTask where this is currently used.
4791 void
4792 CMSCollector::
4793 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4794   assert(n_threads > 0, "Unexpected n_threads argument");
4795 
4796   // Eden space
4797   if (!_young_gen->eden()->is_empty()) {
4798     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4799     assert(!pst->valid(), "Clobbering existing data?");
4800     // Each valid entry in [0, _eden_chunk_index) represents a task.
4801     size_t n_tasks = _eden_chunk_index + 1;
4802     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4803     // Sets the condition for completion of the subtask (how many threads
4804     // need to finish in order to be done).
4805     pst->set_n_threads(n_threads);
4806     pst->set_n_tasks((int)n_tasks);
4807   }
4808 
4809   // Merge the survivor plab arrays into _survivor_chunk_array
4810   if (_survivor_plab_array != NULL) {
4811     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4812   } else {
4813     assert(_survivor_chunk_index == 0, "Error");
4814   }
4815 
4816   // To space
4817   {
4818     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4819     assert(!pst->valid(), "Clobbering existing data?");
4820     // Sets the condition for completion of the subtask (how many threads
4821     // need to finish in order to be done).
4822     pst->set_n_threads(n_threads);
4823     pst->set_n_tasks(1);
4824     assert(pst->valid(), "Error");
4825   }
4826 
4827   // From space
4828   {
4829     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4830     assert(!pst->valid(), "Clobbering existing data?");
4831     size_t n_tasks = _survivor_chunk_index + 1;
4832     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4833     // Sets the condition for completion of the subtask (how many threads
4834     // need to finish in order to be done).
4835     pst->set_n_threads(n_threads);
4836     pst->set_n_tasks((int)n_tasks);
4837     assert(pst->valid(), "Error");
4838   }
4839 }
4840 
4841 // Parallel version of remark
4842 void CMSCollector::do_remark_parallel() {
4843   GenCollectedHeap* gch = GenCollectedHeap::heap();
4844   WorkGang* workers = gch->workers();
4845   assert(workers != NULL, "Need parallel worker threads.");
4846   // Choose to use the number of GC workers most recently set
4847   // into "active_workers".
4848   uint n_workers = workers->active_workers();
4849 
4850   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4851 
4852   StrongRootsScope srs(n_workers);
4853 
4854   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4855 
4856   // We won't be iterating over the cards in the card table updating
4857   // the younger_gen cards, so we shouldn't call the following else
4858   // the verification code as well as subsequent younger_refs_iterate
4859   // code would get confused. XXX
4860   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4861 
4862   // The young gen rescan work will not be done as part of
4863   // process_roots (which currently doesn't know how to
4864   // parallelize such a scan), but rather will be broken up into
4865   // a set of parallel tasks (via the sampling that the [abortable]
4866   // preclean phase did of eden, plus the [two] tasks of
4867   // scanning the [two] survivor spaces. Further fine-grain
4868   // parallelization of the scanning of the survivor spaces
4869   // themselves, and of precleaning of the young gen itself
4870   // is deferred to the future.
4871   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4872 
4873   // The dirty card rescan work is broken up into a "sequence"
4874   // of parallel tasks (per constituent space) that are dynamically
4875   // claimed by the parallel threads.
4876   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4877 
4878   // It turns out that even when we're using 1 thread, doing the work in a
4879   // separate thread causes wide variance in run times.  We can't help this
4880   // in the multi-threaded case, but we special-case n=1 here to get
4881   // repeatable measurements of the 1-thread overhead of the parallel code.
4882   if (n_workers > 1) {
4883     // Make refs discovery MT-safe, if it isn't already: it may not
4884     // necessarily be so, since it's possible that we are doing
4885     // ST marking.
4886     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4887     workers->run_task(&tsk);
4888   } else {
4889     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4890     tsk.work(0);
4891   }
4892 
4893   // restore, single-threaded for now, any preserved marks
4894   // as a result of work_q overflow
4895   restore_preserved_marks_if_any();
4896 }
4897 
4898 // Non-parallel version of remark
4899 void CMSCollector::do_remark_non_parallel() {
4900   ResourceMark rm;
4901   HandleMark   hm;
4902   GenCollectedHeap* gch = GenCollectedHeap::heap();
4903   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4904 
4905   MarkRefsIntoAndScanClosure
4906     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4907              &_markStack, this,
4908              false /* should_yield */, false /* not precleaning */);
4909   MarkFromDirtyCardsClosure
4910     markFromDirtyCardsClosure(this, _span,
4911                               NULL,  // space is set further below
4912                               &_markBitMap, &_markStack, &mrias_cl);
4913   {
4914     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4915     // Iterate over the dirty cards, setting the corresponding bits in the
4916     // mod union table.
4917     {
4918       ModUnionClosure modUnionClosure(&_modUnionTable);
4919       _ct->ct_bs()->dirty_card_iterate(
4920                       _cmsGen->used_region(),
4921                       &modUnionClosure);
4922     }
4923     // Having transferred these marks into the modUnionTable, we just need
4924     // to rescan the marked objects on the dirty cards in the modUnionTable.
4925     // The initial marking may have been done during an asynchronous
4926     // collection so there may be dirty bits in the mod-union table.
4927     const int alignment =
4928       CardTableModRefBS::card_size * BitsPerWord;
4929     {
4930       // ... First handle dirty cards in CMS gen
4931       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4932       MemRegion ur = _cmsGen->used_region();
4933       HeapWord* lb = ur.start();
4934       HeapWord* ub = align_up(ur.end(), alignment);
4935       MemRegion cms_span(lb, ub);
4936       _modUnionTable.dirty_range_iterate_clear(cms_span,
4937                                                &markFromDirtyCardsClosure);
4938       verify_work_stacks_empty();
4939       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4940     }
4941   }
4942   if (VerifyDuringGC &&
4943       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4944     HandleMark hm;  // Discard invalid handles created during verification
4945     Universe::verify();
4946   }
4947   {
4948     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4949 
4950     verify_work_stacks_empty();
4951 
4952     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4953     StrongRootsScope srs(1);
4954 
4955     gch->cms_process_roots(&srs,
4956                            true,  // young gen as roots
4957                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4958                            should_unload_classes(),
4959                            &mrias_cl,
4960                            NULL); // The dirty klasses will be handled below
4961 
4962     assert(should_unload_classes()
4963            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4964            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4965   }
4966 
4967   {
4968     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4969 
4970     verify_work_stacks_empty();
4971 
4972     // Scan all class loader data objects that might have been introduced
4973     // during concurrent marking.
4974     ResourceMark rm;
4975     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4976     for (int i = 0; i < array->length(); i++) {
4977       mrias_cl.do_cld_nv(array->at(i));
4978     }
4979 
4980     // We don't need to keep track of new CLDs anymore.
4981     ClassLoaderDataGraph::remember_new_clds(false);
4982 
4983     verify_work_stacks_empty();
4984   }
4985 
4986   {
4987     GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
4988 
4989     verify_work_stacks_empty();
4990 
4991     RemarkKlassClosure remark_klass_closure(&mrias_cl);
4992     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4993 
4994     verify_work_stacks_empty();
4995   }
4996 
4997   // We might have added oops to ClassLoaderData::_handles during the
4998   // concurrent marking phase. These oops point to newly allocated objects
4999   // that are guaranteed to be kept alive. Either by the direct allocation
5000   // code, or when the young collector processes the roots. Hence,
5001   // we don't have to revisit the _handles block during the remark phase.
5002 
5003   verify_work_stacks_empty();
5004   // Restore evacuated mark words, if any, used for overflow list links
5005   restore_preserved_marks_if_any();
5006 
5007   verify_overflow_empty();
5008 }
5009 
5010 ////////////////////////////////////////////////////////
5011 // Parallel Reference Processing Task Proxy Class
5012 ////////////////////////////////////////////////////////
5013 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5014   OopTaskQueueSet*       _queues;
5015   ParallelTaskTerminator _terminator;
5016  public:
5017   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5018     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5019   ParallelTaskTerminator* terminator() { return &_terminator; }
5020   OopTaskQueueSet* queues() { return _queues; }
5021 };
5022 
5023 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5024   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5025   CMSCollector*          _collector;
5026   CMSBitMap*             _mark_bit_map;
5027   const MemRegion        _span;
5028   ProcessTask&           _task;
5029 
5030 public:
5031   CMSRefProcTaskProxy(ProcessTask&     task,
5032                       CMSCollector*    collector,
5033                       const MemRegion& span,
5034                       CMSBitMap*       mark_bit_map,
5035                       AbstractWorkGang* workers,
5036                       OopTaskQueueSet* task_queues):
5037     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5038       task_queues,
5039       workers->active_workers()),
5040     _task(task),
5041     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5042   {
5043     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5044            "Inconsistency in _span");
5045   }
5046 
5047   OopTaskQueueSet* task_queues() { return queues(); }
5048 
5049   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5050 
5051   void do_work_steal(int i,
5052                      CMSParDrainMarkingStackClosure* drain,
5053                      CMSParKeepAliveClosure* keep_alive,
5054                      int* seed);
5055 
5056   virtual void work(uint worker_id);
5057 };
5058 
5059 void CMSRefProcTaskProxy::work(uint worker_id) {
5060   ResourceMark rm;
5061   HandleMark hm;
5062   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5063   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5064                                         _mark_bit_map,
5065                                         work_queue(worker_id));
5066   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5067                                                  _mark_bit_map,
5068                                                  work_queue(worker_id));
5069   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5070   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5071   if (_task.marks_oops_alive()) {
5072     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5073                   _collector->hash_seed(worker_id));
5074   }
5075   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5076   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5077 }
5078 
5079 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5080   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5081   EnqueueTask& _task;
5082 
5083 public:
5084   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5085     : AbstractGangTask("Enqueue reference objects in parallel"),
5086       _task(task)
5087   { }
5088 
5089   virtual void work(uint worker_id)
5090   {
5091     _task.work(worker_id);
5092   }
5093 };
5094 
5095 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5096   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5097    _span(span),
5098    _bit_map(bit_map),
5099    _work_queue(work_queue),
5100    _mark_and_push(collector, span, bit_map, work_queue),
5101    _low_water_mark(MIN2((work_queue->max_elems()/4),
5102                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5103 { }
5104 
5105 // . see if we can share work_queues with ParNew? XXX
5106 void CMSRefProcTaskProxy::do_work_steal(int i,
5107   CMSParDrainMarkingStackClosure* drain,
5108   CMSParKeepAliveClosure* keep_alive,
5109   int* seed) {
5110   OopTaskQueue* work_q = work_queue(i);
5111   NOT_PRODUCT(int num_steals = 0;)
5112   oop obj_to_scan;
5113 
5114   while (true) {
5115     // Completely finish any left over work from (an) earlier round(s)
5116     drain->trim_queue(0);
5117     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5118                                          (size_t)ParGCDesiredObjsFromOverflowList);
5119     // Now check if there's any work in the overflow list
5120     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5121     // only affects the number of attempts made to get work from the
5122     // overflow list and does not affect the number of workers.  Just
5123     // pass ParallelGCThreads so this behavior is unchanged.
5124     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5125                                                 work_q,
5126                                                 ParallelGCThreads)) {
5127       // Found something in global overflow list;
5128       // not yet ready to go stealing work from others.
5129       // We'd like to assert(work_q->size() != 0, ...)
5130       // because we just took work from the overflow list,
5131       // but of course we can't, since all of that might have
5132       // been already stolen from us.
5133       continue;
5134     }
5135     // Verify that we have no work before we resort to stealing
5136     assert(work_q->size() == 0, "Have work, shouldn't steal");
5137     // Try to steal from other queues that have work
5138     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5139       NOT_PRODUCT(num_steals++;)
5140       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5141       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5142       // Do scanning work
5143       obj_to_scan->oop_iterate(keep_alive);
5144       // Loop around, finish this work, and try to steal some more
5145     } else if (terminator()->offer_termination()) {
5146       break;  // nirvana from the infinite cycle
5147     }
5148   }
5149   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5150 }
5151 
5152 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5153 {
5154   GenCollectedHeap* gch = GenCollectedHeap::heap();
5155   WorkGang* workers = gch->workers();
5156   assert(workers != NULL, "Need parallel worker threads.");
5157   CMSRefProcTaskProxy rp_task(task, &_collector,
5158                               _collector.ref_processor()->span(),
5159                               _collector.markBitMap(),
5160                               workers, _collector.task_queues());
5161   workers->run_task(&rp_task);
5162 }
5163 
5164 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5165 {
5166 
5167   GenCollectedHeap* gch = GenCollectedHeap::heap();
5168   WorkGang* workers = gch->workers();
5169   assert(workers != NULL, "Need parallel worker threads.");
5170   CMSRefEnqueueTaskProxy enq_task(task);
5171   workers->run_task(&enq_task);
5172 }
5173 
5174 void CMSCollector::refProcessingWork() {
5175   ResourceMark rm;
5176   HandleMark   hm;
5177 
5178   ReferenceProcessor* rp = ref_processor();
5179   assert(rp->span().equals(_span), "Spans should be equal");
5180   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5181   // Process weak references.
5182   rp->setup_policy(false);
5183   verify_work_stacks_empty();
5184 
5185   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5186                                           &_markStack, false /* !preclean */);
5187   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5188                                 _span, &_markBitMap, &_markStack,
5189                                 &cmsKeepAliveClosure, false /* !preclean */);
5190   {
5191     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5192 
5193     ReferenceProcessorStats stats;
5194     if (rp->processing_is_mt()) {
5195       // Set the degree of MT here.  If the discovery is done MT, there
5196       // may have been a different number of threads doing the discovery
5197       // and a different number of discovered lists may have Ref objects.
5198       // That is OK as long as the Reference lists are balanced (see
5199       // balance_all_queues() and balance_queues()).
5200       GenCollectedHeap* gch = GenCollectedHeap::heap();
5201       uint active_workers = ParallelGCThreads;
5202       WorkGang* workers = gch->workers();
5203       if (workers != NULL) {
5204         active_workers = workers->active_workers();
5205         // The expectation is that active_workers will have already
5206         // been set to a reasonable value.  If it has not been set,
5207         // investigate.
5208         assert(active_workers > 0, "Should have been set during scavenge");
5209       }
5210       rp->set_active_mt_degree(active_workers);
5211       CMSRefProcTaskExecutor task_executor(*this);
5212       stats = rp->process_discovered_references(&_is_alive_closure,
5213                                         &cmsKeepAliveClosure,
5214                                         &cmsDrainMarkingStackClosure,
5215                                         &task_executor,
5216                                         _gc_timer_cm);
5217     } else {
5218       stats = rp->process_discovered_references(&_is_alive_closure,
5219                                         &cmsKeepAliveClosure,
5220                                         &cmsDrainMarkingStackClosure,
5221                                         NULL,
5222                                         _gc_timer_cm);
5223     }
5224     _gc_tracer_cm->report_gc_reference_stats(stats);
5225 
5226   }
5227 
5228   // This is the point where the entire marking should have completed.
5229   verify_work_stacks_empty();
5230 
5231   if (should_unload_classes()) {
5232     {
5233       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5234 
5235       // Unload classes and purge the SystemDictionary.
5236       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure, _gc_timer_cm);
5237 
5238       // Unload nmethods.
5239       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5240 
5241       // Prune dead klasses from subklass/sibling/implementor lists.
5242       Klass::clean_weak_klass_links(&_is_alive_closure);
5243     }
5244 
5245     {
5246       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5247       // Clean up unreferenced symbols in symbol table.
5248       SymbolTable::unlink();
5249     }
5250 
5251     {
5252       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5253       // Delete entries for dead interned strings.
5254       StringTable::unlink(&_is_alive_closure);
5255     }
5256   }
5257 
5258   // Restore any preserved marks as a result of mark stack or
5259   // work queue overflow
5260   restore_preserved_marks_if_any();  // done single-threaded for now
5261 
5262   rp->set_enqueuing_is_done(true);
5263   if (rp->processing_is_mt()) {
5264     rp->balance_all_queues();
5265     CMSRefProcTaskExecutor task_executor(*this);
5266     rp->enqueue_discovered_references(&task_executor);
5267   } else {
5268     rp->enqueue_discovered_references(NULL);
5269   }
5270   rp->verify_no_references_recorded();
5271   assert(!rp->discovery_enabled(), "should have been disabled");
5272 }
5273 
5274 #ifndef PRODUCT
5275 void CMSCollector::check_correct_thread_executing() {
5276   Thread* t = Thread::current();
5277   // Only the VM thread or the CMS thread should be here.
5278   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5279          "Unexpected thread type");
5280   // If this is the vm thread, the foreground process
5281   // should not be waiting.  Note that _foregroundGCIsActive is
5282   // true while the foreground collector is waiting.
5283   if (_foregroundGCShouldWait) {
5284     // We cannot be the VM thread
5285     assert(t->is_ConcurrentGC_thread(),
5286            "Should be CMS thread");
5287   } else {
5288     // We can be the CMS thread only if we are in a stop-world
5289     // phase of CMS collection.
5290     if (t->is_ConcurrentGC_thread()) {
5291       assert(_collectorState == InitialMarking ||
5292              _collectorState == FinalMarking,
5293              "Should be a stop-world phase");
5294       // The CMS thread should be holding the CMS_token.
5295       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5296              "Potential interference with concurrently "
5297              "executing VM thread");
5298     }
5299   }
5300 }
5301 #endif
5302 
5303 void CMSCollector::sweep() {
5304   assert(_collectorState == Sweeping, "just checking");
5305   check_correct_thread_executing();
5306   verify_work_stacks_empty();
5307   verify_overflow_empty();
5308   increment_sweep_count();
5309   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5310 
5311   _inter_sweep_timer.stop();
5312   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5313 
5314   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5315   _intra_sweep_timer.reset();
5316   _intra_sweep_timer.start();
5317   {
5318     GCTraceCPUTime tcpu;
5319     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5320     // First sweep the old gen
5321     {
5322       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5323                                bitMapLock());
5324       sweepWork(_cmsGen);
5325     }
5326 
5327     // Update Universe::_heap_*_at_gc figures.
5328     // We need all the free list locks to make the abstract state
5329     // transition from Sweeping to Resetting. See detailed note
5330     // further below.
5331     {
5332       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5333       // Update heap occupancy information which is used as
5334       // input to soft ref clearing policy at the next gc.
5335       Universe::update_heap_info_at_gc();
5336       _collectorState = Resizing;
5337     }
5338   }
5339   verify_work_stacks_empty();
5340   verify_overflow_empty();
5341 
5342   if (should_unload_classes()) {
5343     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5344     // requires that the virtual spaces are stable and not deleted.
5345     ClassLoaderDataGraph::set_should_purge(true);
5346   }
5347 
5348   _intra_sweep_timer.stop();
5349   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5350 
5351   _inter_sweep_timer.reset();
5352   _inter_sweep_timer.start();
5353 
5354   // We need to use a monotonically non-decreasing time in ms
5355   // or we will see time-warp warnings and os::javaTimeMillis()
5356   // does not guarantee monotonicity.
5357   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5358   update_time_of_last_gc(now);
5359 
5360   // NOTE on abstract state transitions:
5361   // Mutators allocate-live and/or mark the mod-union table dirty
5362   // based on the state of the collection.  The former is done in
5363   // the interval [Marking, Sweeping] and the latter in the interval
5364   // [Marking, Sweeping).  Thus the transitions into the Marking state
5365   // and out of the Sweeping state must be synchronously visible
5366   // globally to the mutators.
5367   // The transition into the Marking state happens with the world
5368   // stopped so the mutators will globally see it.  Sweeping is
5369   // done asynchronously by the background collector so the transition
5370   // from the Sweeping state to the Resizing state must be done
5371   // under the freelistLock (as is the check for whether to
5372   // allocate-live and whether to dirty the mod-union table).
5373   assert(_collectorState == Resizing, "Change of collector state to"
5374     " Resizing must be done under the freelistLocks (plural)");
5375 
5376   // Now that sweeping has been completed, we clear
5377   // the incremental_collection_failed flag,
5378   // thus inviting a younger gen collection to promote into
5379   // this generation. If such a promotion may still fail,
5380   // the flag will be set again when a young collection is
5381   // attempted.
5382   GenCollectedHeap* gch = GenCollectedHeap::heap();
5383   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5384   gch->update_full_collections_completed(_collection_count_start);
5385 }
5386 
5387 // FIX ME!!! Looks like this belongs in CFLSpace, with
5388 // CMSGen merely delegating to it.
5389 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5390   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5391   HeapWord*  minAddr        = _cmsSpace->bottom();
5392   HeapWord*  largestAddr    =
5393     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5394   if (largestAddr == NULL) {
5395     // The dictionary appears to be empty.  In this case
5396     // try to coalesce at the end of the heap.
5397     largestAddr = _cmsSpace->end();
5398   }
5399   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5400   size_t nearLargestOffset =
5401     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5402   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5403                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5404   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5405 }
5406 
5407 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5408   return addr >= _cmsSpace->nearLargestChunk();
5409 }
5410 
5411 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5412   return _cmsSpace->find_chunk_at_end();
5413 }
5414 
5415 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5416                                                     bool full) {
5417   // If the young generation has been collected, gather any statistics
5418   // that are of interest at this point.
5419   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5420   if (!full && current_is_young) {
5421     // Gather statistics on the young generation collection.
5422     collector()->stats().record_gc0_end(used());
5423   }
5424 }
5425 
5426 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5427   // We iterate over the space(s) underlying this generation,
5428   // checking the mark bit map to see if the bits corresponding
5429   // to specific blocks are marked or not. Blocks that are
5430   // marked are live and are not swept up. All remaining blocks
5431   // are swept up, with coalescing on-the-fly as we sweep up
5432   // contiguous free and/or garbage blocks:
5433   // We need to ensure that the sweeper synchronizes with allocators
5434   // and stop-the-world collectors. In particular, the following
5435   // locks are used:
5436   // . CMS token: if this is held, a stop the world collection cannot occur
5437   // . freelistLock: if this is held no allocation can occur from this
5438   //                 generation by another thread
5439   // . bitMapLock: if this is held, no other thread can access or update
5440   //
5441 
5442   // Note that we need to hold the freelistLock if we use
5443   // block iterate below; else the iterator might go awry if
5444   // a mutator (or promotion) causes block contents to change
5445   // (for instance if the allocator divvies up a block).
5446   // If we hold the free list lock, for all practical purposes
5447   // young generation GC's can't occur (they'll usually need to
5448   // promote), so we might as well prevent all young generation
5449   // GC's while we do a sweeping step. For the same reason, we might
5450   // as well take the bit map lock for the entire duration
5451 
5452   // check that we hold the requisite locks
5453   assert(have_cms_token(), "Should hold cms token");
5454   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5455   assert_lock_strong(old_gen->freelistLock());
5456   assert_lock_strong(bitMapLock());
5457 
5458   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5459   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5460   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5461                                           _inter_sweep_estimate.padded_average(),
5462                                           _intra_sweep_estimate.padded_average());
5463   old_gen->setNearLargestChunk();
5464 
5465   {
5466     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5467     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5468     // We need to free-up/coalesce garbage/blocks from a
5469     // co-terminal free run. This is done in the SweepClosure
5470     // destructor; so, do not remove this scope, else the
5471     // end-of-sweep-census below will be off by a little bit.
5472   }
5473   old_gen->cmsSpace()->sweep_completed();
5474   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5475   if (should_unload_classes()) {                // unloaded classes this cycle,
5476     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5477   } else {                                      // did not unload classes,
5478     _concurrent_cycles_since_last_unload++;     // ... increment count
5479   }
5480 }
5481 
5482 // Reset CMS data structures (for now just the marking bit map)
5483 // preparatory for the next cycle.
5484 void CMSCollector::reset_concurrent() {
5485   CMSTokenSyncWithLocks ts(true, bitMapLock());
5486 
5487   // If the state is not "Resetting", the foreground  thread
5488   // has done a collection and the resetting.
5489   if (_collectorState != Resetting) {
5490     assert(_collectorState == Idling, "The state should only change"
5491       " because the foreground collector has finished the collection");
5492     return;
5493   }
5494 
5495   {
5496     // Clear the mark bitmap (no grey objects to start with)
5497     // for the next cycle.
5498     GCTraceCPUTime tcpu;
5499     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5500 
5501     HeapWord* curAddr = _markBitMap.startWord();
5502     while (curAddr < _markBitMap.endWord()) {
5503       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5504       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5505       _markBitMap.clear_large_range(chunk);
5506       if (ConcurrentMarkSweepThread::should_yield() &&
5507           !foregroundGCIsActive() &&
5508           CMSYield) {
5509         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5510                "CMS thread should hold CMS token");
5511         assert_lock_strong(bitMapLock());
5512         bitMapLock()->unlock();
5513         ConcurrentMarkSweepThread::desynchronize(true);
5514         stopTimer();
5515         incrementYields();
5516 
5517         // See the comment in coordinator_yield()
5518         for (unsigned i = 0; i < CMSYieldSleepCount &&
5519                          ConcurrentMarkSweepThread::should_yield() &&
5520                          !CMSCollector::foregroundGCIsActive(); ++i) {
5521           os::sleep(Thread::current(), 1, false);
5522         }
5523 
5524         ConcurrentMarkSweepThread::synchronize(true);
5525         bitMapLock()->lock_without_safepoint_check();
5526         startTimer();
5527       }
5528       curAddr = chunk.end();
5529     }
5530     // A successful mostly concurrent collection has been done.
5531     // Because only the full (i.e., concurrent mode failure) collections
5532     // are being measured for gc overhead limits, clean the "near" flag
5533     // and count.
5534     size_policy()->reset_gc_overhead_limit_count();
5535     _collectorState = Idling;
5536   }
5537 
5538   register_gc_end();
5539 }
5540 
5541 // Same as above but for STW paths
5542 void CMSCollector::reset_stw() {
5543   // already have the lock
5544   assert(_collectorState == Resetting, "just checking");
5545   assert_lock_strong(bitMapLock());
5546   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5547   _markBitMap.clear_all();
5548   _collectorState = Idling;
5549   register_gc_end();
5550 }
5551 
5552 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5553   GCTraceCPUTime tcpu;
5554   TraceCollectorStats tcs(counters());
5555 
5556   switch (op) {
5557     case CMS_op_checkpointRootsInitial: {
5558       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5559       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5560       checkpointRootsInitial();
5561       break;
5562     }
5563     case CMS_op_checkpointRootsFinal: {
5564       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5565       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5566       checkpointRootsFinal();
5567       break;
5568     }
5569     default:
5570       fatal("No such CMS_op");
5571   }
5572 }
5573 
5574 #ifndef PRODUCT
5575 size_t const CMSCollector::skip_header_HeapWords() {
5576   return FreeChunk::header_size();
5577 }
5578 
5579 // Try and collect here conditions that should hold when
5580 // CMS thread is exiting. The idea is that the foreground GC
5581 // thread should not be blocked if it wants to terminate
5582 // the CMS thread and yet continue to run the VM for a while
5583 // after that.
5584 void CMSCollector::verify_ok_to_terminate() const {
5585   assert(Thread::current()->is_ConcurrentGC_thread(),
5586          "should be called by CMS thread");
5587   assert(!_foregroundGCShouldWait, "should be false");
5588   // We could check here that all the various low-level locks
5589   // are not held by the CMS thread, but that is overkill; see
5590   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5591   // is checked.
5592 }
5593 #endif
5594 
5595 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5596    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5597           "missing Printezis mark?");
5598   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5599   size_t size = pointer_delta(nextOneAddr + 1, addr);
5600   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5601          "alignment problem");
5602   assert(size >= 3, "Necessary for Printezis marks to work");
5603   return size;
5604 }
5605 
5606 // A variant of the above (block_size_using_printezis_bits()) except
5607 // that we return 0 if the P-bits are not yet set.
5608 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5609   if (_markBitMap.isMarked(addr + 1)) {
5610     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5611     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5612     size_t size = pointer_delta(nextOneAddr + 1, addr);
5613     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5614            "alignment problem");
5615     assert(size >= 3, "Necessary for Printezis marks to work");
5616     return size;
5617   }
5618   return 0;
5619 }
5620 
5621 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5622   size_t sz = 0;
5623   oop p = (oop)addr;
5624   if (p->klass_or_null_acquire() != NULL) {
5625     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5626   } else {
5627     sz = block_size_using_printezis_bits(addr);
5628   }
5629   assert(sz > 0, "size must be nonzero");
5630   HeapWord* next_block = addr + sz;
5631   HeapWord* next_card  = align_up(next_block, CardTableModRefBS::card_size);
5632   assert(align_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5633          align_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5634          "must be different cards");
5635   return next_card;
5636 }
5637 
5638 
5639 // CMS Bit Map Wrapper /////////////////////////////////////////
5640 
5641 // Construct a CMS bit map infrastructure, but don't create the
5642 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5643 // further below.
5644 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5645   _bm(),
5646   _shifter(shifter),
5647   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5648                                     Monitor::_safepoint_check_sometimes) : NULL)
5649 {
5650   _bmStartWord = 0;
5651   _bmWordSize  = 0;
5652 }
5653 
5654 bool CMSBitMap::allocate(MemRegion mr) {
5655   _bmStartWord = mr.start();
5656   _bmWordSize  = mr.word_size();
5657   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5658                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5659   if (!brs.is_reserved()) {
5660     log_warning(gc)("CMS bit map allocation failure");
5661     return false;
5662   }
5663   // For now we'll just commit all of the bit map up front.
5664   // Later on we'll try to be more parsimonious with swap.
5665   if (!_virtual_space.initialize(brs, brs.size())) {
5666     log_warning(gc)("CMS bit map backing store failure");
5667     return false;
5668   }
5669   assert(_virtual_space.committed_size() == brs.size(),
5670          "didn't reserve backing store for all of CMS bit map?");
5671   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5672          _bmWordSize, "inconsistency in bit map sizing");
5673   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5674 
5675   // bm.clear(); // can we rely on getting zero'd memory? verify below
5676   assert(isAllClear(),
5677          "Expected zero'd memory from ReservedSpace constructor");
5678   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5679          "consistency check");
5680   return true;
5681 }
5682 
5683 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5684   HeapWord *next_addr, *end_addr, *last_addr;
5685   assert_locked();
5686   assert(covers(mr), "out-of-range error");
5687   // XXX assert that start and end are appropriately aligned
5688   for (next_addr = mr.start(), end_addr = mr.end();
5689        next_addr < end_addr; next_addr = last_addr) {
5690     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5691     last_addr = dirty_region.end();
5692     if (!dirty_region.is_empty()) {
5693       cl->do_MemRegion(dirty_region);
5694     } else {
5695       assert(last_addr == end_addr, "program logic");
5696       return;
5697     }
5698   }
5699 }
5700 
5701 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5702   _bm.print_on_error(st, prefix);
5703 }
5704 
5705 #ifndef PRODUCT
5706 void CMSBitMap::assert_locked() const {
5707   CMSLockVerifier::assert_locked(lock());
5708 }
5709 
5710 bool CMSBitMap::covers(MemRegion mr) const {
5711   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5712   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5713          "size inconsistency");
5714   return (mr.start() >= _bmStartWord) &&
5715          (mr.end()   <= endWord());
5716 }
5717 
5718 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5719     return (start >= _bmStartWord && (start + size) <= endWord());
5720 }
5721 
5722 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5723   // verify that there are no 1 bits in the interval [left, right)
5724   FalseBitMapClosure falseBitMapClosure;
5725   iterate(&falseBitMapClosure, left, right);
5726 }
5727 
5728 void CMSBitMap::region_invariant(MemRegion mr)
5729 {
5730   assert_locked();
5731   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5732   assert(!mr.is_empty(), "unexpected empty region");
5733   assert(covers(mr), "mr should be covered by bit map");
5734   // convert address range into offset range
5735   size_t start_ofs = heapWordToOffset(mr.start());
5736   // Make sure that end() is appropriately aligned
5737   assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))),
5738          "Misaligned mr.end()");
5739   size_t end_ofs   = heapWordToOffset(mr.end());
5740   assert(end_ofs > start_ofs, "Should mark at least one bit");
5741 }
5742 
5743 #endif
5744 
5745 bool CMSMarkStack::allocate(size_t size) {
5746   // allocate a stack of the requisite depth
5747   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5748                    size * sizeof(oop)));
5749   if (!rs.is_reserved()) {
5750     log_warning(gc)("CMSMarkStack allocation failure");
5751     return false;
5752   }
5753   if (!_virtual_space.initialize(rs, rs.size())) {
5754     log_warning(gc)("CMSMarkStack backing store failure");
5755     return false;
5756   }
5757   assert(_virtual_space.committed_size() == rs.size(),
5758          "didn't reserve backing store for all of CMS stack?");
5759   _base = (oop*)(_virtual_space.low());
5760   _index = 0;
5761   _capacity = size;
5762   NOT_PRODUCT(_max_depth = 0);
5763   return true;
5764 }
5765 
5766 // XXX FIX ME !!! In the MT case we come in here holding a
5767 // leaf lock. For printing we need to take a further lock
5768 // which has lower rank. We need to recalibrate the two
5769 // lock-ranks involved in order to be able to print the
5770 // messages below. (Or defer the printing to the caller.
5771 // For now we take the expedient path of just disabling the
5772 // messages for the problematic case.)
5773 void CMSMarkStack::expand() {
5774   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5775   if (_capacity == MarkStackSizeMax) {
5776     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5777       // We print a warning message only once per CMS cycle.
5778       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5779     }
5780     return;
5781   }
5782   // Double capacity if possible
5783   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5784   // Do not give up existing stack until we have managed to
5785   // get the double capacity that we desired.
5786   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5787                    new_capacity * sizeof(oop)));
5788   if (rs.is_reserved()) {
5789     // Release the backing store associated with old stack
5790     _virtual_space.release();
5791     // Reinitialize virtual space for new stack
5792     if (!_virtual_space.initialize(rs, rs.size())) {
5793       fatal("Not enough swap for expanded marking stack");
5794     }
5795     _base = (oop*)(_virtual_space.low());
5796     _index = 0;
5797     _capacity = new_capacity;
5798   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5799     // Failed to double capacity, continue;
5800     // we print a detail message only once per CMS cycle.
5801     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5802                         _capacity / K, new_capacity / K);
5803   }
5804 }
5805 
5806 
5807 // Closures
5808 // XXX: there seems to be a lot of code  duplication here;
5809 // should refactor and consolidate common code.
5810 
5811 // This closure is used to mark refs into the CMS generation in
5812 // the CMS bit map. Called at the first checkpoint. This closure
5813 // assumes that we do not need to re-mark dirty cards; if the CMS
5814 // generation on which this is used is not an oldest
5815 // generation then this will lose younger_gen cards!
5816 
5817 MarkRefsIntoClosure::MarkRefsIntoClosure(
5818   MemRegion span, CMSBitMap* bitMap):
5819     _span(span),
5820     _bitMap(bitMap)
5821 {
5822   assert(ref_processor() == NULL, "deliberately left NULL");
5823   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5824 }
5825 
5826 void MarkRefsIntoClosure::do_oop(oop obj) {
5827   // if p points into _span, then mark corresponding bit in _markBitMap
5828   assert(obj->is_oop(), "expected an oop");
5829   HeapWord* addr = (HeapWord*)obj;
5830   if (_span.contains(addr)) {
5831     // this should be made more efficient
5832     _bitMap->mark(addr);
5833   }
5834 }
5835 
5836 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5837 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5838 
5839 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5840   MemRegion span, CMSBitMap* bitMap):
5841     _span(span),
5842     _bitMap(bitMap)
5843 {
5844   assert(ref_processor() == NULL, "deliberately left NULL");
5845   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5846 }
5847 
5848 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5849   // if p points into _span, then mark corresponding bit in _markBitMap
5850   assert(obj->is_oop(), "expected an oop");
5851   HeapWord* addr = (HeapWord*)obj;
5852   if (_span.contains(addr)) {
5853     // this should be made more efficient
5854     _bitMap->par_mark(addr);
5855   }
5856 }
5857 
5858 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5859 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5860 
5861 // A variant of the above, used for CMS marking verification.
5862 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5863   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5864     _span(span),
5865     _verification_bm(verification_bm),
5866     _cms_bm(cms_bm)
5867 {
5868   assert(ref_processor() == NULL, "deliberately left NULL");
5869   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5870 }
5871 
5872 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5873   // if p points into _span, then mark corresponding bit in _markBitMap
5874   assert(obj->is_oop(), "expected an oop");
5875   HeapWord* addr = (HeapWord*)obj;
5876   if (_span.contains(addr)) {
5877     _verification_bm->mark(addr);
5878     if (!_cms_bm->isMarked(addr)) {
5879       Log(gc, verify) log;
5880       ResourceMark rm;
5881       // Unconditional write?
5882       LogStream ls(log.error());
5883       oop(addr)->print_on(&ls);
5884       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5885       fatal("... aborting");
5886     }
5887   }
5888 }
5889 
5890 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5891 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5892 
5893 //////////////////////////////////////////////////
5894 // MarkRefsIntoAndScanClosure
5895 //////////////////////////////////////////////////
5896 
5897 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5898                                                        ReferenceProcessor* rp,
5899                                                        CMSBitMap* bit_map,
5900                                                        CMSBitMap* mod_union_table,
5901                                                        CMSMarkStack*  mark_stack,
5902                                                        CMSCollector* collector,
5903                                                        bool should_yield,
5904                                                        bool concurrent_precleaning):
5905   _collector(collector),
5906   _span(span),
5907   _bit_map(bit_map),
5908   _mark_stack(mark_stack),
5909   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5910                       mark_stack, concurrent_precleaning),
5911   _yield(should_yield),
5912   _concurrent_precleaning(concurrent_precleaning),
5913   _freelistLock(NULL)
5914 {
5915   // FIXME: Should initialize in base class constructor.
5916   assert(rp != NULL, "ref_processor shouldn't be NULL");
5917   set_ref_processor_internal(rp);
5918 }
5919 
5920 // This closure is used to mark refs into the CMS generation at the
5921 // second (final) checkpoint, and to scan and transitively follow
5922 // the unmarked oops. It is also used during the concurrent precleaning
5923 // phase while scanning objects on dirty cards in the CMS generation.
5924 // The marks are made in the marking bit map and the marking stack is
5925 // used for keeping the (newly) grey objects during the scan.
5926 // The parallel version (Par_...) appears further below.
5927 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5928   if (obj != NULL) {
5929     assert(obj->is_oop(), "expected an oop");
5930     HeapWord* addr = (HeapWord*)obj;
5931     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5932     assert(_collector->overflow_list_is_empty(),
5933            "overflow list should be empty");
5934     if (_span.contains(addr) &&
5935         !_bit_map->isMarked(addr)) {
5936       // mark bit map (object is now grey)
5937       _bit_map->mark(addr);
5938       // push on marking stack (stack should be empty), and drain the
5939       // stack by applying this closure to the oops in the oops popped
5940       // from the stack (i.e. blacken the grey objects)
5941       bool res = _mark_stack->push(obj);
5942       assert(res, "Should have space to push on empty stack");
5943       do {
5944         oop new_oop = _mark_stack->pop();
5945         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5946         assert(_bit_map->isMarked((HeapWord*)new_oop),
5947                "only grey objects on this stack");
5948         // iterate over the oops in this oop, marking and pushing
5949         // the ones in CMS heap (i.e. in _span).
5950         new_oop->oop_iterate(&_pushAndMarkClosure);
5951         // check if it's time to yield
5952         do_yield_check();
5953       } while (!_mark_stack->isEmpty() ||
5954                (!_concurrent_precleaning && take_from_overflow_list()));
5955         // if marking stack is empty, and we are not doing this
5956         // during precleaning, then check the overflow list
5957     }
5958     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5959     assert(_collector->overflow_list_is_empty(),
5960            "overflow list was drained above");
5961 
5962     assert(_collector->no_preserved_marks(),
5963            "All preserved marks should have been restored above");
5964   }
5965 }
5966 
5967 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5968 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5969 
5970 void MarkRefsIntoAndScanClosure::do_yield_work() {
5971   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5972          "CMS thread should hold CMS token");
5973   assert_lock_strong(_freelistLock);
5974   assert_lock_strong(_bit_map->lock());
5975   // relinquish the free_list_lock and bitMaplock()
5976   _bit_map->lock()->unlock();
5977   _freelistLock->unlock();
5978   ConcurrentMarkSweepThread::desynchronize(true);
5979   _collector->stopTimer();
5980   _collector->incrementYields();
5981 
5982   // See the comment in coordinator_yield()
5983   for (unsigned i = 0;
5984        i < CMSYieldSleepCount &&
5985        ConcurrentMarkSweepThread::should_yield() &&
5986        !CMSCollector::foregroundGCIsActive();
5987        ++i) {
5988     os::sleep(Thread::current(), 1, false);
5989   }
5990 
5991   ConcurrentMarkSweepThread::synchronize(true);
5992   _freelistLock->lock_without_safepoint_check();
5993   _bit_map->lock()->lock_without_safepoint_check();
5994   _collector->startTimer();
5995 }
5996 
5997 ///////////////////////////////////////////////////////////
5998 // ParMarkRefsIntoAndScanClosure: a parallel version of
5999 //                                MarkRefsIntoAndScanClosure
6000 ///////////////////////////////////////////////////////////
6001 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6002   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6003   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6004   _span(span),
6005   _bit_map(bit_map),
6006   _work_queue(work_queue),
6007   _low_water_mark(MIN2((work_queue->max_elems()/4),
6008                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6009   _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6010 {
6011   // FIXME: Should initialize in base class constructor.
6012   assert(rp != NULL, "ref_processor shouldn't be NULL");
6013   set_ref_processor_internal(rp);
6014 }
6015 
6016 // This closure is used to mark refs into the CMS generation at the
6017 // second (final) checkpoint, and to scan and transitively follow
6018 // the unmarked oops. The marks are made in the marking bit map and
6019 // the work_queue is used for keeping the (newly) grey objects during
6020 // the scan phase whence they are also available for stealing by parallel
6021 // threads. Since the marking bit map is shared, updates are
6022 // synchronized (via CAS).
6023 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6024   if (obj != NULL) {
6025     // Ignore mark word because this could be an already marked oop
6026     // that may be chained at the end of the overflow list.
6027     assert(obj->is_oop(true), "expected an oop");
6028     HeapWord* addr = (HeapWord*)obj;
6029     if (_span.contains(addr) &&
6030         !_bit_map->isMarked(addr)) {
6031       // mark bit map (object will become grey):
6032       // It is possible for several threads to be
6033       // trying to "claim" this object concurrently;
6034       // the unique thread that succeeds in marking the
6035       // object first will do the subsequent push on
6036       // to the work queue (or overflow list).
6037       if (_bit_map->par_mark(addr)) {
6038         // push on work_queue (which may not be empty), and trim the
6039         // queue to an appropriate length by applying this closure to
6040         // the oops in the oops popped from the stack (i.e. blacken the
6041         // grey objects)
6042         bool res = _work_queue->push(obj);
6043         assert(res, "Low water mark should be less than capacity?");
6044         trim_queue(_low_water_mark);
6045       } // Else, another thread claimed the object
6046     }
6047   }
6048 }
6049 
6050 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6051 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6052 
6053 // This closure is used to rescan the marked objects on the dirty cards
6054 // in the mod union table and the card table proper.
6055 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6056   oop p, MemRegion mr) {
6057 
6058   size_t size = 0;
6059   HeapWord* addr = (HeapWord*)p;
6060   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6061   assert(_span.contains(addr), "we are scanning the CMS generation");
6062   // check if it's time to yield
6063   if (do_yield_check()) {
6064     // We yielded for some foreground stop-world work,
6065     // and we have been asked to abort this ongoing preclean cycle.
6066     return 0;
6067   }
6068   if (_bitMap->isMarked(addr)) {
6069     // it's marked; is it potentially uninitialized?
6070     if (p->klass_or_null_acquire() != NULL) {
6071         // an initialized object; ignore mark word in verification below
6072         // since we are running concurrent with mutators
6073         assert(p->is_oop(true), "should be an oop");
6074         if (p->is_objArray()) {
6075           // objArrays are precisely marked; restrict scanning
6076           // to dirty cards only.
6077           size = CompactibleFreeListSpace::adjustObjectSize(
6078                    p->oop_iterate_size(_scanningClosure, mr));
6079         } else {
6080           // A non-array may have been imprecisely marked; we need
6081           // to scan object in its entirety.
6082           size = CompactibleFreeListSpace::adjustObjectSize(
6083                    p->oop_iterate_size(_scanningClosure));
6084         }
6085       #ifdef ASSERT
6086         size_t direct_size =
6087           CompactibleFreeListSpace::adjustObjectSize(p->size());
6088         assert(size == direct_size, "Inconsistency in size");
6089         assert(size >= 3, "Necessary for Printezis marks to work");
6090         HeapWord* start_pbit = addr + 1;
6091         HeapWord* end_pbit = addr + size - 1;
6092         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6093                "inconsistent Printezis mark");
6094         // Verify inner mark bits (between Printezis bits) are clear,
6095         // but don't repeat if there are multiple dirty regions for
6096         // the same object, to avoid potential O(N^2) performance.
6097         if (addr != _last_scanned_object) {
6098           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6099           _last_scanned_object = addr;
6100         }
6101       #endif // ASSERT
6102     } else {
6103       // An uninitialized object.
6104       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6105       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6106       size = pointer_delta(nextOneAddr + 1, addr);
6107       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6108              "alignment problem");
6109       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6110       // will dirty the card when the klass pointer is installed in the
6111       // object (signaling the completion of initialization).
6112     }
6113   } else {
6114     // Either a not yet marked object or an uninitialized object
6115     if (p->klass_or_null_acquire() == NULL) {
6116       // An uninitialized object, skip to the next card, since
6117       // we may not be able to read its P-bits yet.
6118       assert(size == 0, "Initial value");
6119     } else {
6120       // An object not (yet) reached by marking: we merely need to
6121       // compute its size so as to go look at the next block.
6122       assert(p->is_oop(true), "should be an oop");
6123       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6124     }
6125   }
6126   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6127   return size;
6128 }
6129 
6130 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6131   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6132          "CMS thread should hold CMS token");
6133   assert_lock_strong(_freelistLock);
6134   assert_lock_strong(_bitMap->lock());
6135   // relinquish the free_list_lock and bitMaplock()
6136   _bitMap->lock()->unlock();
6137   _freelistLock->unlock();
6138   ConcurrentMarkSweepThread::desynchronize(true);
6139   _collector->stopTimer();
6140   _collector->incrementYields();
6141 
6142   // See the comment in coordinator_yield()
6143   for (unsigned i = 0; i < CMSYieldSleepCount &&
6144                    ConcurrentMarkSweepThread::should_yield() &&
6145                    !CMSCollector::foregroundGCIsActive(); ++i) {
6146     os::sleep(Thread::current(), 1, false);
6147   }
6148 
6149   ConcurrentMarkSweepThread::synchronize(true);
6150   _freelistLock->lock_without_safepoint_check();
6151   _bitMap->lock()->lock_without_safepoint_check();
6152   _collector->startTimer();
6153 }
6154 
6155 
6156 //////////////////////////////////////////////////////////////////
6157 // SurvivorSpacePrecleanClosure
6158 //////////////////////////////////////////////////////////////////
6159 // This (single-threaded) closure is used to preclean the oops in
6160 // the survivor spaces.
6161 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6162 
6163   HeapWord* addr = (HeapWord*)p;
6164   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6165   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6166   assert(p->klass_or_null() != NULL, "object should be initialized");
6167   // an initialized object; ignore mark word in verification below
6168   // since we are running concurrent with mutators
6169   assert(p->is_oop(true), "should be an oop");
6170   // Note that we do not yield while we iterate over
6171   // the interior oops of p, pushing the relevant ones
6172   // on our marking stack.
6173   size_t size = p->oop_iterate_size(_scanning_closure);
6174   do_yield_check();
6175   // Observe that below, we do not abandon the preclean
6176   // phase as soon as we should; rather we empty the
6177   // marking stack before returning. This is to satisfy
6178   // some existing assertions. In general, it may be a
6179   // good idea to abort immediately and complete the marking
6180   // from the grey objects at a later time.
6181   while (!_mark_stack->isEmpty()) {
6182     oop new_oop = _mark_stack->pop();
6183     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6184     assert(_bit_map->isMarked((HeapWord*)new_oop),
6185            "only grey objects on this stack");
6186     // iterate over the oops in this oop, marking and pushing
6187     // the ones in CMS heap (i.e. in _span).
6188     new_oop->oop_iterate(_scanning_closure);
6189     // check if it's time to yield
6190     do_yield_check();
6191   }
6192   unsigned int after_count =
6193     GenCollectedHeap::heap()->total_collections();
6194   bool abort = (_before_count != after_count) ||
6195                _collector->should_abort_preclean();
6196   return abort ? 0 : size;
6197 }
6198 
6199 void SurvivorSpacePrecleanClosure::do_yield_work() {
6200   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6201          "CMS thread should hold CMS token");
6202   assert_lock_strong(_bit_map->lock());
6203   // Relinquish the bit map lock
6204   _bit_map->lock()->unlock();
6205   ConcurrentMarkSweepThread::desynchronize(true);
6206   _collector->stopTimer();
6207   _collector->incrementYields();
6208 
6209   // See the comment in coordinator_yield()
6210   for (unsigned i = 0; i < CMSYieldSleepCount &&
6211                        ConcurrentMarkSweepThread::should_yield() &&
6212                        !CMSCollector::foregroundGCIsActive(); ++i) {
6213     os::sleep(Thread::current(), 1, false);
6214   }
6215 
6216   ConcurrentMarkSweepThread::synchronize(true);
6217   _bit_map->lock()->lock_without_safepoint_check();
6218   _collector->startTimer();
6219 }
6220 
6221 // This closure is used to rescan the marked objects on the dirty cards
6222 // in the mod union table and the card table proper. In the parallel
6223 // case, although the bitMap is shared, we do a single read so the
6224 // isMarked() query is "safe".
6225 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6226   // Ignore mark word because we are running concurrent with mutators
6227   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6228   HeapWord* addr = (HeapWord*)p;
6229   assert(_span.contains(addr), "we are scanning the CMS generation");
6230   bool is_obj_array = false;
6231   #ifdef ASSERT
6232     if (!_parallel) {
6233       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6234       assert(_collector->overflow_list_is_empty(),
6235              "overflow list should be empty");
6236 
6237     }
6238   #endif // ASSERT
6239   if (_bit_map->isMarked(addr)) {
6240     // Obj arrays are precisely marked, non-arrays are not;
6241     // so we scan objArrays precisely and non-arrays in their
6242     // entirety.
6243     if (p->is_objArray()) {
6244       is_obj_array = true;
6245       if (_parallel) {
6246         p->oop_iterate(_par_scan_closure, mr);
6247       } else {
6248         p->oop_iterate(_scan_closure, mr);
6249       }
6250     } else {
6251       if (_parallel) {
6252         p->oop_iterate(_par_scan_closure);
6253       } else {
6254         p->oop_iterate(_scan_closure);
6255       }
6256     }
6257   }
6258   #ifdef ASSERT
6259     if (!_parallel) {
6260       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6261       assert(_collector->overflow_list_is_empty(),
6262              "overflow list should be empty");
6263 
6264     }
6265   #endif // ASSERT
6266   return is_obj_array;
6267 }
6268 
6269 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6270                         MemRegion span,
6271                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6272                         bool should_yield, bool verifying):
6273   _collector(collector),
6274   _span(span),
6275   _bitMap(bitMap),
6276   _mut(&collector->_modUnionTable),
6277   _markStack(markStack),
6278   _yield(should_yield),
6279   _skipBits(0)
6280 {
6281   assert(_markStack->isEmpty(), "stack should be empty");
6282   _finger = _bitMap->startWord();
6283   _threshold = _finger;
6284   assert(_collector->_restart_addr == NULL, "Sanity check");
6285   assert(_span.contains(_finger), "Out of bounds _finger?");
6286   DEBUG_ONLY(_verifying = verifying;)
6287 }
6288 
6289 void MarkFromRootsClosure::reset(HeapWord* addr) {
6290   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6291   assert(_span.contains(addr), "Out of bounds _finger?");
6292   _finger = addr;
6293   _threshold = align_up(_finger, CardTableModRefBS::card_size);
6294 }
6295 
6296 // Should revisit to see if this should be restructured for
6297 // greater efficiency.
6298 bool MarkFromRootsClosure::do_bit(size_t offset) {
6299   if (_skipBits > 0) {
6300     _skipBits--;
6301     return true;
6302   }
6303   // convert offset into a HeapWord*
6304   HeapWord* addr = _bitMap->startWord() + offset;
6305   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6306          "address out of range");
6307   assert(_bitMap->isMarked(addr), "tautology");
6308   if (_bitMap->isMarked(addr+1)) {
6309     // this is an allocated but not yet initialized object
6310     assert(_skipBits == 0, "tautology");
6311     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6312     oop p = oop(addr);
6313     if (p->klass_or_null_acquire() == NULL) {
6314       DEBUG_ONLY(if (!_verifying) {)
6315         // We re-dirty the cards on which this object lies and increase
6316         // the _threshold so that we'll come back to scan this object
6317         // during the preclean or remark phase. (CMSCleanOnEnter)
6318         if (CMSCleanOnEnter) {
6319           size_t sz = _collector->block_size_using_printezis_bits(addr);
6320           HeapWord* end_card_addr = align_up(addr + sz, CardTableModRefBS::card_size);
6321           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6322           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6323           // Bump _threshold to end_card_addr; note that
6324           // _threshold cannot possibly exceed end_card_addr, anyhow.
6325           // This prevents future clearing of the card as the scan proceeds
6326           // to the right.
6327           assert(_threshold <= end_card_addr,
6328                  "Because we are just scanning into this object");
6329           if (_threshold < end_card_addr) {
6330             _threshold = end_card_addr;
6331           }
6332           if (p->klass_or_null_acquire() != NULL) {
6333             // Redirty the range of cards...
6334             _mut->mark_range(redirty_range);
6335           } // ...else the setting of klass will dirty the card anyway.
6336         }
6337       DEBUG_ONLY(})
6338       return true;
6339     }
6340   }
6341   scanOopsInOop(addr);
6342   return true;
6343 }
6344 
6345 // We take a break if we've been at this for a while,
6346 // so as to avoid monopolizing the locks involved.
6347 void MarkFromRootsClosure::do_yield_work() {
6348   // First give up the locks, then yield, then re-lock
6349   // We should probably use a constructor/destructor idiom to
6350   // do this unlock/lock or modify the MutexUnlocker class to
6351   // serve our purpose. XXX
6352   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6353          "CMS thread should hold CMS token");
6354   assert_lock_strong(_bitMap->lock());
6355   _bitMap->lock()->unlock();
6356   ConcurrentMarkSweepThread::desynchronize(true);
6357   _collector->stopTimer();
6358   _collector->incrementYields();
6359 
6360   // See the comment in coordinator_yield()
6361   for (unsigned i = 0; i < CMSYieldSleepCount &&
6362                        ConcurrentMarkSweepThread::should_yield() &&
6363                        !CMSCollector::foregroundGCIsActive(); ++i) {
6364     os::sleep(Thread::current(), 1, false);
6365   }
6366 
6367   ConcurrentMarkSweepThread::synchronize(true);
6368   _bitMap->lock()->lock_without_safepoint_check();
6369   _collector->startTimer();
6370 }
6371 
6372 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6373   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6374   assert(_markStack->isEmpty(),
6375          "should drain stack to limit stack usage");
6376   // convert ptr to an oop preparatory to scanning
6377   oop obj = oop(ptr);
6378   // Ignore mark word in verification below, since we
6379   // may be running concurrent with mutators.
6380   assert(obj->is_oop(true), "should be an oop");
6381   assert(_finger <= ptr, "_finger runneth ahead");
6382   // advance the finger to right end of this object
6383   _finger = ptr + obj->size();
6384   assert(_finger > ptr, "we just incremented it above");
6385   // On large heaps, it may take us some time to get through
6386   // the marking phase. During
6387   // this time it's possible that a lot of mutations have
6388   // accumulated in the card table and the mod union table --
6389   // these mutation records are redundant until we have
6390   // actually traced into the corresponding card.
6391   // Here, we check whether advancing the finger would make
6392   // us cross into a new card, and if so clear corresponding
6393   // cards in the MUT (preclean them in the card-table in the
6394   // future).
6395 
6396   DEBUG_ONLY(if (!_verifying) {)
6397     // The clean-on-enter optimization is disabled by default,
6398     // until we fix 6178663.
6399     if (CMSCleanOnEnter && (_finger > _threshold)) {
6400       // [_threshold, _finger) represents the interval
6401       // of cards to be cleared  in MUT (or precleaned in card table).
6402       // The set of cards to be cleared is all those that overlap
6403       // with the interval [_threshold, _finger); note that
6404       // _threshold is always kept card-aligned but _finger isn't
6405       // always card-aligned.
6406       HeapWord* old_threshold = _threshold;
6407       assert(is_aligned(old_threshold, CardTableModRefBS::card_size),
6408              "_threshold should always be card-aligned");
6409       _threshold = align_up(_finger, CardTableModRefBS::card_size);
6410       MemRegion mr(old_threshold, _threshold);
6411       assert(!mr.is_empty(), "Control point invariant");
6412       assert(_span.contains(mr), "Should clear within span");
6413       _mut->clear_range(mr);
6414     }
6415   DEBUG_ONLY(})
6416   // Note: the finger doesn't advance while we drain
6417   // the stack below.
6418   PushOrMarkClosure pushOrMarkClosure(_collector,
6419                                       _span, _bitMap, _markStack,
6420                                       _finger, this);
6421   bool res = _markStack->push(obj);
6422   assert(res, "Empty non-zero size stack should have space for single push");
6423   while (!_markStack->isEmpty()) {
6424     oop new_oop = _markStack->pop();
6425     // Skip verifying header mark word below because we are
6426     // running concurrent with mutators.
6427     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6428     // now scan this oop's oops
6429     new_oop->oop_iterate(&pushOrMarkClosure);
6430     do_yield_check();
6431   }
6432   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6433 }
6434 
6435 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6436                        CMSCollector* collector, MemRegion span,
6437                        CMSBitMap* bit_map,
6438                        OopTaskQueue* work_queue,
6439                        CMSMarkStack*  overflow_stack):
6440   _collector(collector),
6441   _whole_span(collector->_span),
6442   _span(span),
6443   _bit_map(bit_map),
6444   _mut(&collector->_modUnionTable),
6445   _work_queue(work_queue),
6446   _overflow_stack(overflow_stack),
6447   _skip_bits(0),
6448   _task(task)
6449 {
6450   assert(_work_queue->size() == 0, "work_queue should be empty");
6451   _finger = span.start();
6452   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6453   assert(_span.contains(_finger), "Out of bounds _finger?");
6454 }
6455 
6456 // Should revisit to see if this should be restructured for
6457 // greater efficiency.
6458 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6459   if (_skip_bits > 0) {
6460     _skip_bits--;
6461     return true;
6462   }
6463   // convert offset into a HeapWord*
6464   HeapWord* addr = _bit_map->startWord() + offset;
6465   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6466          "address out of range");
6467   assert(_bit_map->isMarked(addr), "tautology");
6468   if (_bit_map->isMarked(addr+1)) {
6469     // this is an allocated object that might not yet be initialized
6470     assert(_skip_bits == 0, "tautology");
6471     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6472     oop p = oop(addr);
6473     if (p->klass_or_null_acquire() == NULL) {
6474       // in the case of Clean-on-Enter optimization, redirty card
6475       // and avoid clearing card by increasing  the threshold.
6476       return true;
6477     }
6478   }
6479   scan_oops_in_oop(addr);
6480   return true;
6481 }
6482 
6483 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6484   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6485   // Should we assert that our work queue is empty or
6486   // below some drain limit?
6487   assert(_work_queue->size() == 0,
6488          "should drain stack to limit stack usage");
6489   // convert ptr to an oop preparatory to scanning
6490   oop obj = oop(ptr);
6491   // Ignore mark word in verification below, since we
6492   // may be running concurrent with mutators.
6493   assert(obj->is_oop(true), "should be an oop");
6494   assert(_finger <= ptr, "_finger runneth ahead");
6495   // advance the finger to right end of this object
6496   _finger = ptr + obj->size();
6497   assert(_finger > ptr, "we just incremented it above");
6498   // On large heaps, it may take us some time to get through
6499   // the marking phase. During
6500   // this time it's possible that a lot of mutations have
6501   // accumulated in the card table and the mod union table --
6502   // these mutation records are redundant until we have
6503   // actually traced into the corresponding card.
6504   // Here, we check whether advancing the finger would make
6505   // us cross into a new card, and if so clear corresponding
6506   // cards in the MUT (preclean them in the card-table in the
6507   // future).
6508 
6509   // The clean-on-enter optimization is disabled by default,
6510   // until we fix 6178663.
6511   if (CMSCleanOnEnter && (_finger > _threshold)) {
6512     // [_threshold, _finger) represents the interval
6513     // of cards to be cleared  in MUT (or precleaned in card table).
6514     // The set of cards to be cleared is all those that overlap
6515     // with the interval [_threshold, _finger); note that
6516     // _threshold is always kept card-aligned but _finger isn't
6517     // always card-aligned.
6518     HeapWord* old_threshold = _threshold;
6519     assert(is_aligned(old_threshold, CardTableModRefBS::card_size),
6520            "_threshold should always be card-aligned");
6521     _threshold = align_up(_finger, CardTableModRefBS::card_size);
6522     MemRegion mr(old_threshold, _threshold);
6523     assert(!mr.is_empty(), "Control point invariant");
6524     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6525     _mut->clear_range(mr);
6526   }
6527 
6528   // Note: the local finger doesn't advance while we drain
6529   // the stack below, but the global finger sure can and will.
6530   HeapWord* volatile* gfa = _task->global_finger_addr();
6531   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6532                                          _span, _bit_map,
6533                                          _work_queue,
6534                                          _overflow_stack,
6535                                          _finger,
6536                                          gfa, this);
6537   bool res = _work_queue->push(obj);   // overflow could occur here
6538   assert(res, "Will hold once we use workqueues");
6539   while (true) {
6540     oop new_oop;
6541     if (!_work_queue->pop_local(new_oop)) {
6542       // We emptied our work_queue; check if there's stuff that can
6543       // be gotten from the overflow stack.
6544       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6545             _overflow_stack, _work_queue)) {
6546         do_yield_check();
6547         continue;
6548       } else {  // done
6549         break;
6550       }
6551     }
6552     // Skip verifying header mark word below because we are
6553     // running concurrent with mutators.
6554     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6555     // now scan this oop's oops
6556     new_oop->oop_iterate(&pushOrMarkClosure);
6557     do_yield_check();
6558   }
6559   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6560 }
6561 
6562 // Yield in response to a request from VM Thread or
6563 // from mutators.
6564 void ParMarkFromRootsClosure::do_yield_work() {
6565   assert(_task != NULL, "sanity");
6566   _task->yield();
6567 }
6568 
6569 // A variant of the above used for verifying CMS marking work.
6570 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6571                         MemRegion span,
6572                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6573                         CMSMarkStack*  mark_stack):
6574   _collector(collector),
6575   _span(span),
6576   _verification_bm(verification_bm),
6577   _cms_bm(cms_bm),
6578   _mark_stack(mark_stack),
6579   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6580                       mark_stack)
6581 {
6582   assert(_mark_stack->isEmpty(), "stack should be empty");
6583   _finger = _verification_bm->startWord();
6584   assert(_collector->_restart_addr == NULL, "Sanity check");
6585   assert(_span.contains(_finger), "Out of bounds _finger?");
6586 }
6587 
6588 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6589   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6590   assert(_span.contains(addr), "Out of bounds _finger?");
6591   _finger = addr;
6592 }
6593 
6594 // Should revisit to see if this should be restructured for
6595 // greater efficiency.
6596 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6597   // convert offset into a HeapWord*
6598   HeapWord* addr = _verification_bm->startWord() + offset;
6599   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6600          "address out of range");
6601   assert(_verification_bm->isMarked(addr), "tautology");
6602   assert(_cms_bm->isMarked(addr), "tautology");
6603 
6604   assert(_mark_stack->isEmpty(),
6605          "should drain stack to limit stack usage");
6606   // convert addr to an oop preparatory to scanning
6607   oop obj = oop(addr);
6608   assert(obj->is_oop(), "should be an oop");
6609   assert(_finger <= addr, "_finger runneth ahead");
6610   // advance the finger to right end of this object
6611   _finger = addr + obj->size();
6612   assert(_finger > addr, "we just incremented it above");
6613   // Note: the finger doesn't advance while we drain
6614   // the stack below.
6615   bool res = _mark_stack->push(obj);
6616   assert(res, "Empty non-zero size stack should have space for single push");
6617   while (!_mark_stack->isEmpty()) {
6618     oop new_oop = _mark_stack->pop();
6619     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6620     // now scan this oop's oops
6621     new_oop->oop_iterate(&_pam_verify_closure);
6622   }
6623   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6624   return true;
6625 }
6626 
6627 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6628   CMSCollector* collector, MemRegion span,
6629   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6630   CMSMarkStack*  mark_stack):
6631   MetadataAwareOopClosure(collector->ref_processor()),
6632   _collector(collector),
6633   _span(span),
6634   _verification_bm(verification_bm),
6635   _cms_bm(cms_bm),
6636   _mark_stack(mark_stack)
6637 { }
6638 
6639 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6640 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6641 
6642 // Upon stack overflow, we discard (part of) the stack,
6643 // remembering the least address amongst those discarded
6644 // in CMSCollector's _restart_address.
6645 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6646   // Remember the least grey address discarded
6647   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6648   _collector->lower_restart_addr(ra);
6649   _mark_stack->reset();  // discard stack contents
6650   _mark_stack->expand(); // expand the stack if possible
6651 }
6652 
6653 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6654   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6655   HeapWord* addr = (HeapWord*)obj;
6656   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6657     // Oop lies in _span and isn't yet grey or black
6658     _verification_bm->mark(addr);            // now grey
6659     if (!_cms_bm->isMarked(addr)) {
6660       Log(gc, verify) log;
6661       ResourceMark rm;
6662       // Unconditional write?
6663       LogStream ls(log.error());
6664       oop(addr)->print_on(&ls);
6665       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6666       fatal("... aborting");
6667     }
6668 
6669     if (!_mark_stack->push(obj)) { // stack overflow
6670       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6671       assert(_mark_stack->isFull(), "Else push should have succeeded");
6672       handle_stack_overflow(addr);
6673     }
6674     // anything including and to the right of _finger
6675     // will be scanned as we iterate over the remainder of the
6676     // bit map
6677   }
6678 }
6679 
6680 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6681                      MemRegion span,
6682                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6683                      HeapWord* finger, MarkFromRootsClosure* parent) :
6684   MetadataAwareOopClosure(collector->ref_processor()),
6685   _collector(collector),
6686   _span(span),
6687   _bitMap(bitMap),
6688   _markStack(markStack),
6689   _finger(finger),
6690   _parent(parent)
6691 { }
6692 
6693 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6694                                            MemRegion span,
6695                                            CMSBitMap* bit_map,
6696                                            OopTaskQueue* work_queue,
6697                                            CMSMarkStack*  overflow_stack,
6698                                            HeapWord* finger,
6699                                            HeapWord* volatile* global_finger_addr,
6700                                            ParMarkFromRootsClosure* parent) :
6701   MetadataAwareOopClosure(collector->ref_processor()),
6702   _collector(collector),
6703   _whole_span(collector->_span),
6704   _span(span),
6705   _bit_map(bit_map),
6706   _work_queue(work_queue),
6707   _overflow_stack(overflow_stack),
6708   _finger(finger),
6709   _global_finger_addr(global_finger_addr),
6710   _parent(parent)
6711 { }
6712 
6713 // Assumes thread-safe access by callers, who are
6714 // responsible for mutual exclusion.
6715 void CMSCollector::lower_restart_addr(HeapWord* low) {
6716   assert(_span.contains(low), "Out of bounds addr");
6717   if (_restart_addr == NULL) {
6718     _restart_addr = low;
6719   } else {
6720     _restart_addr = MIN2(_restart_addr, low);
6721   }
6722 }
6723 
6724 // Upon stack overflow, we discard (part of) the stack,
6725 // remembering the least address amongst those discarded
6726 // in CMSCollector's _restart_address.
6727 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6728   // Remember the least grey address discarded
6729   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6730   _collector->lower_restart_addr(ra);
6731   _markStack->reset();  // discard stack contents
6732   _markStack->expand(); // expand the stack if possible
6733 }
6734 
6735 // Upon stack overflow, we discard (part of) the stack,
6736 // remembering the least address amongst those discarded
6737 // in CMSCollector's _restart_address.
6738 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6739   // We need to do this under a mutex to prevent other
6740   // workers from interfering with the work done below.
6741   MutexLockerEx ml(_overflow_stack->par_lock(),
6742                    Mutex::_no_safepoint_check_flag);
6743   // Remember the least grey address discarded
6744   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6745   _collector->lower_restart_addr(ra);
6746   _overflow_stack->reset();  // discard stack contents
6747   _overflow_stack->expand(); // expand the stack if possible
6748 }
6749 
6750 void PushOrMarkClosure::do_oop(oop obj) {
6751   // Ignore mark word because we are running concurrent with mutators.
6752   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6753   HeapWord* addr = (HeapWord*)obj;
6754   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6755     // Oop lies in _span and isn't yet grey or black
6756     _bitMap->mark(addr);            // now grey
6757     if (addr < _finger) {
6758       // the bit map iteration has already either passed, or
6759       // sampled, this bit in the bit map; we'll need to
6760       // use the marking stack to scan this oop's oops.
6761       bool simulate_overflow = false;
6762       NOT_PRODUCT(
6763         if (CMSMarkStackOverflowALot &&
6764             _collector->simulate_overflow()) {
6765           // simulate a stack overflow
6766           simulate_overflow = true;
6767         }
6768       )
6769       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6770         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6771         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6772         handle_stack_overflow(addr);
6773       }
6774     }
6775     // anything including and to the right of _finger
6776     // will be scanned as we iterate over the remainder of the
6777     // bit map
6778     do_yield_check();
6779   }
6780 }
6781 
6782 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6783 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6784 
6785 void ParPushOrMarkClosure::do_oop(oop obj) {
6786   // Ignore mark word because we are running concurrent with mutators.
6787   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6788   HeapWord* addr = (HeapWord*)obj;
6789   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6790     // Oop lies in _span and isn't yet grey or black
6791     // We read the global_finger (volatile read) strictly after marking oop
6792     bool res = _bit_map->par_mark(addr);    // now grey
6793     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6794     // Should we push this marked oop on our stack?
6795     // -- if someone else marked it, nothing to do
6796     // -- if target oop is above global finger nothing to do
6797     // -- if target oop is in chunk and above local finger
6798     //      then nothing to do
6799     // -- else push on work queue
6800     if (   !res       // someone else marked it, they will deal with it
6801         || (addr >= *gfa)  // will be scanned in a later task
6802         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6803       return;
6804     }
6805     // the bit map iteration has already either passed, or
6806     // sampled, this bit in the bit map; we'll need to
6807     // use the marking stack to scan this oop's oops.
6808     bool simulate_overflow = false;
6809     NOT_PRODUCT(
6810       if (CMSMarkStackOverflowALot &&
6811           _collector->simulate_overflow()) {
6812         // simulate a stack overflow
6813         simulate_overflow = true;
6814       }
6815     )
6816     if (simulate_overflow ||
6817         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6818       // stack overflow
6819       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6820       // We cannot assert that the overflow stack is full because
6821       // it may have been emptied since.
6822       assert(simulate_overflow ||
6823              _work_queue->size() == _work_queue->max_elems(),
6824             "Else push should have succeeded");
6825       handle_stack_overflow(addr);
6826     }
6827     do_yield_check();
6828   }
6829 }
6830 
6831 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6832 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6833 
6834 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6835                                        MemRegion span,
6836                                        ReferenceProcessor* rp,
6837                                        CMSBitMap* bit_map,
6838                                        CMSBitMap* mod_union_table,
6839                                        CMSMarkStack*  mark_stack,
6840                                        bool           concurrent_precleaning):
6841   MetadataAwareOopClosure(rp),
6842   _collector(collector),
6843   _span(span),
6844   _bit_map(bit_map),
6845   _mod_union_table(mod_union_table),
6846   _mark_stack(mark_stack),
6847   _concurrent_precleaning(concurrent_precleaning)
6848 {
6849   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6850 }
6851 
6852 // Grey object rescan during pre-cleaning and second checkpoint phases --
6853 // the non-parallel version (the parallel version appears further below.)
6854 void PushAndMarkClosure::do_oop(oop obj) {
6855   // Ignore mark word verification. If during concurrent precleaning,
6856   // the object monitor may be locked. If during the checkpoint
6857   // phases, the object may already have been reached by a  different
6858   // path and may be at the end of the global overflow list (so
6859   // the mark word may be NULL).
6860   assert(obj->is_oop_or_null(true /* ignore mark word */),
6861          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6862   HeapWord* addr = (HeapWord*)obj;
6863   // Check if oop points into the CMS generation
6864   // and is not marked
6865   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6866     // a white object ...
6867     _bit_map->mark(addr);         // ... now grey
6868     // push on the marking stack (grey set)
6869     bool simulate_overflow = false;
6870     NOT_PRODUCT(
6871       if (CMSMarkStackOverflowALot &&
6872           _collector->simulate_overflow()) {
6873         // simulate a stack overflow
6874         simulate_overflow = true;
6875       }
6876     )
6877     if (simulate_overflow || !_mark_stack->push(obj)) {
6878       if (_concurrent_precleaning) {
6879          // During precleaning we can just dirty the appropriate card(s)
6880          // in the mod union table, thus ensuring that the object remains
6881          // in the grey set  and continue. In the case of object arrays
6882          // we need to dirty all of the cards that the object spans,
6883          // since the rescan of object arrays will be limited to the
6884          // dirty cards.
6885          // Note that no one can be interfering with us in this action
6886          // of dirtying the mod union table, so no locking or atomics
6887          // are required.
6888          if (obj->is_objArray()) {
6889            size_t sz = obj->size();
6890            HeapWord* end_card_addr = align_up(addr + sz, CardTableModRefBS::card_size);
6891            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6892            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6893            _mod_union_table->mark_range(redirty_range);
6894          } else {
6895            _mod_union_table->mark(addr);
6896          }
6897          _collector->_ser_pmc_preclean_ovflw++;
6898       } else {
6899          // During the remark phase, we need to remember this oop
6900          // in the overflow list.
6901          _collector->push_on_overflow_list(obj);
6902          _collector->_ser_pmc_remark_ovflw++;
6903       }
6904     }
6905   }
6906 }
6907 
6908 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6909                                              MemRegion span,
6910                                              ReferenceProcessor* rp,
6911                                              CMSBitMap* bit_map,
6912                                              OopTaskQueue* work_queue):
6913   MetadataAwareOopClosure(rp),
6914   _collector(collector),
6915   _span(span),
6916   _bit_map(bit_map),
6917   _work_queue(work_queue)
6918 {
6919   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6920 }
6921 
6922 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6923 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6924 
6925 // Grey object rescan during second checkpoint phase --
6926 // the parallel version.
6927 void ParPushAndMarkClosure::do_oop(oop obj) {
6928   // In the assert below, we ignore the mark word because
6929   // this oop may point to an already visited object that is
6930   // on the overflow stack (in which case the mark word has
6931   // been hijacked for chaining into the overflow stack --
6932   // if this is the last object in the overflow stack then
6933   // its mark word will be NULL). Because this object may
6934   // have been subsequently popped off the global overflow
6935   // stack, and the mark word possibly restored to the prototypical
6936   // value, by the time we get to examined this failing assert in
6937   // the debugger, is_oop_or_null(false) may subsequently start
6938   // to hold.
6939   assert(obj->is_oop_or_null(true),
6940          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6941   HeapWord* addr = (HeapWord*)obj;
6942   // Check if oop points into the CMS generation
6943   // and is not marked
6944   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6945     // a white object ...
6946     // If we manage to "claim" the object, by being the
6947     // first thread to mark it, then we push it on our
6948     // marking stack
6949     if (_bit_map->par_mark(addr)) {     // ... now grey
6950       // push on work queue (grey set)
6951       bool simulate_overflow = false;
6952       NOT_PRODUCT(
6953         if (CMSMarkStackOverflowALot &&
6954             _collector->par_simulate_overflow()) {
6955           // simulate a stack overflow
6956           simulate_overflow = true;
6957         }
6958       )
6959       if (simulate_overflow || !_work_queue->push(obj)) {
6960         _collector->par_push_on_overflow_list(obj);
6961         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6962       }
6963     } // Else, some other thread got there first
6964   }
6965 }
6966 
6967 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6968 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6969 
6970 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6971   Mutex* bml = _collector->bitMapLock();
6972   assert_lock_strong(bml);
6973   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6974          "CMS thread should hold CMS token");
6975 
6976   bml->unlock();
6977   ConcurrentMarkSweepThread::desynchronize(true);
6978 
6979   _collector->stopTimer();
6980   _collector->incrementYields();
6981 
6982   // See the comment in coordinator_yield()
6983   for (unsigned i = 0; i < CMSYieldSleepCount &&
6984                        ConcurrentMarkSweepThread::should_yield() &&
6985                        !CMSCollector::foregroundGCIsActive(); ++i) {
6986     os::sleep(Thread::current(), 1, false);
6987   }
6988 
6989   ConcurrentMarkSweepThread::synchronize(true);
6990   bml->lock();
6991 
6992   _collector->startTimer();
6993 }
6994 
6995 bool CMSPrecleanRefsYieldClosure::should_return() {
6996   if (ConcurrentMarkSweepThread::should_yield()) {
6997     do_yield_work();
6998   }
6999   return _collector->foregroundGCIsActive();
7000 }
7001 
7002 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7003   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7004          "mr should be aligned to start at a card boundary");
7005   // We'd like to assert:
7006   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7007   //        "mr should be a range of cards");
7008   // However, that would be too strong in one case -- the last
7009   // partition ends at _unallocated_block which, in general, can be
7010   // an arbitrary boundary, not necessarily card aligned.
7011   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7012   _space->object_iterate_mem(mr, &_scan_cl);
7013 }
7014 
7015 SweepClosure::SweepClosure(CMSCollector* collector,
7016                            ConcurrentMarkSweepGeneration* g,
7017                            CMSBitMap* bitMap, bool should_yield) :
7018   _collector(collector),
7019   _g(g),
7020   _sp(g->cmsSpace()),
7021   _limit(_sp->sweep_limit()),
7022   _freelistLock(_sp->freelistLock()),
7023   _bitMap(bitMap),
7024   _yield(should_yield),
7025   _inFreeRange(false),           // No free range at beginning of sweep
7026   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7027   _lastFreeRangeCoalesced(false),
7028   _freeFinger(g->used_region().start())
7029 {
7030   NOT_PRODUCT(
7031     _numObjectsFreed = 0;
7032     _numWordsFreed   = 0;
7033     _numObjectsLive = 0;
7034     _numWordsLive = 0;
7035     _numObjectsAlreadyFree = 0;
7036     _numWordsAlreadyFree = 0;
7037     _last_fc = NULL;
7038 
7039     _sp->initializeIndexedFreeListArrayReturnedBytes();
7040     _sp->dictionary()->initialize_dict_returned_bytes();
7041   )
7042   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7043          "sweep _limit out of bounds");
7044   log_develop_trace(gc, sweep)("====================");
7045   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7046 }
7047 
7048 void SweepClosure::print_on(outputStream* st) const {
7049   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7050                p2i(_sp->bottom()), p2i(_sp->end()));
7051   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7052   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7053   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7054   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7055                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7056 }
7057 
7058 #ifndef PRODUCT
7059 // Assertion checking only:  no useful work in product mode --
7060 // however, if any of the flags below become product flags,
7061 // you may need to review this code to see if it needs to be
7062 // enabled in product mode.
7063 SweepClosure::~SweepClosure() {
7064   assert_lock_strong(_freelistLock);
7065   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7066          "sweep _limit out of bounds");
7067   if (inFreeRange()) {
7068     Log(gc, sweep) log;
7069     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7070     ResourceMark rm;
7071     // Unconditional write?
7072     LogStream ls(log.error());
7073     print_on(&ls);
7074     ShouldNotReachHere();
7075   }
7076 
7077   if (log_is_enabled(Debug, gc, sweep)) {
7078     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7079                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7080     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7081                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7082     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7083     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7084   }
7085 
7086   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7087     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7088     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7089     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7090     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7091                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7092   }
7093   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7094   log_develop_trace(gc, sweep)("================");
7095 }
7096 #endif  // PRODUCT
7097 
7098 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7099     bool freeRangeInFreeLists) {
7100   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7101                                p2i(freeFinger), freeRangeInFreeLists);
7102   assert(!inFreeRange(), "Trampling existing free range");
7103   set_inFreeRange(true);
7104   set_lastFreeRangeCoalesced(false);
7105 
7106   set_freeFinger(freeFinger);
7107   set_freeRangeInFreeLists(freeRangeInFreeLists);
7108   if (CMSTestInFreeList) {
7109     if (freeRangeInFreeLists) {
7110       FreeChunk* fc = (FreeChunk*) freeFinger;
7111       assert(fc->is_free(), "A chunk on the free list should be free.");
7112       assert(fc->size() > 0, "Free range should have a size");
7113       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7114     }
7115   }
7116 }
7117 
7118 // Note that the sweeper runs concurrently with mutators. Thus,
7119 // it is possible for direct allocation in this generation to happen
7120 // in the middle of the sweep. Note that the sweeper also coalesces
7121 // contiguous free blocks. Thus, unless the sweeper and the allocator
7122 // synchronize appropriately freshly allocated blocks may get swept up.
7123 // This is accomplished by the sweeper locking the free lists while
7124 // it is sweeping. Thus blocks that are determined to be free are
7125 // indeed free. There is however one additional complication:
7126 // blocks that have been allocated since the final checkpoint and
7127 // mark, will not have been marked and so would be treated as
7128 // unreachable and swept up. To prevent this, the allocator marks
7129 // the bit map when allocating during the sweep phase. This leads,
7130 // however, to a further complication -- objects may have been allocated
7131 // but not yet initialized -- in the sense that the header isn't yet
7132 // installed. The sweeper can not then determine the size of the block
7133 // in order to skip over it. To deal with this case, we use a technique
7134 // (due to Printezis) to encode such uninitialized block sizes in the
7135 // bit map. Since the bit map uses a bit per every HeapWord, but the
7136 // CMS generation has a minimum object size of 3 HeapWords, it follows
7137 // that "normal marks" won't be adjacent in the bit map (there will
7138 // always be at least two 0 bits between successive 1 bits). We make use
7139 // of these "unused" bits to represent uninitialized blocks -- the bit
7140 // corresponding to the start of the uninitialized object and the next
7141 // bit are both set. Finally, a 1 bit marks the end of the object that
7142 // started with the two consecutive 1 bits to indicate its potentially
7143 // uninitialized state.
7144 
7145 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7146   FreeChunk* fc = (FreeChunk*)addr;
7147   size_t res;
7148 
7149   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7150   // than "addr == _limit" because although _limit was a block boundary when
7151   // we started the sweep, it may no longer be one because heap expansion
7152   // may have caused us to coalesce the block ending at the address _limit
7153   // with a newly expanded chunk (this happens when _limit was set to the
7154   // previous _end of the space), so we may have stepped past _limit:
7155   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7156   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7157     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7158            "sweep _limit out of bounds");
7159     assert(addr < _sp->end(), "addr out of bounds");
7160     // Flush any free range we might be holding as a single
7161     // coalesced chunk to the appropriate free list.
7162     if (inFreeRange()) {
7163       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7164              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7165       flush_cur_free_chunk(freeFinger(),
7166                            pointer_delta(addr, freeFinger()));
7167       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7168                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7169                                    lastFreeRangeCoalesced() ? 1 : 0);
7170     }
7171 
7172     // help the iterator loop finish
7173     return pointer_delta(_sp->end(), addr);
7174   }
7175 
7176   assert(addr < _limit, "sweep invariant");
7177   // check if we should yield
7178   do_yield_check(addr);
7179   if (fc->is_free()) {
7180     // Chunk that is already free
7181     res = fc->size();
7182     do_already_free_chunk(fc);
7183     debug_only(_sp->verifyFreeLists());
7184     // If we flush the chunk at hand in lookahead_and_flush()
7185     // and it's coalesced with a preceding chunk, then the
7186     // process of "mangling" the payload of the coalesced block
7187     // will cause erasure of the size information from the
7188     // (erstwhile) header of all the coalesced blocks but the
7189     // first, so the first disjunct in the assert will not hold
7190     // in that specific case (in which case the second disjunct
7191     // will hold).
7192     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7193            "Otherwise the size info doesn't change at this step");
7194     NOT_PRODUCT(
7195       _numObjectsAlreadyFree++;
7196       _numWordsAlreadyFree += res;
7197     )
7198     NOT_PRODUCT(_last_fc = fc;)
7199   } else if (!_bitMap->isMarked(addr)) {
7200     // Chunk is fresh garbage
7201     res = do_garbage_chunk(fc);
7202     debug_only(_sp->verifyFreeLists());
7203     NOT_PRODUCT(
7204       _numObjectsFreed++;
7205       _numWordsFreed += res;
7206     )
7207   } else {
7208     // Chunk that is alive.
7209     res = do_live_chunk(fc);
7210     debug_only(_sp->verifyFreeLists());
7211     NOT_PRODUCT(
7212         _numObjectsLive++;
7213         _numWordsLive += res;
7214     )
7215   }
7216   return res;
7217 }
7218 
7219 // For the smart allocation, record following
7220 //  split deaths - a free chunk is removed from its free list because
7221 //      it is being split into two or more chunks.
7222 //  split birth - a free chunk is being added to its free list because
7223 //      a larger free chunk has been split and resulted in this free chunk.
7224 //  coal death - a free chunk is being removed from its free list because
7225 //      it is being coalesced into a large free chunk.
7226 //  coal birth - a free chunk is being added to its free list because
7227 //      it was created when two or more free chunks where coalesced into
7228 //      this free chunk.
7229 //
7230 // These statistics are used to determine the desired number of free
7231 // chunks of a given size.  The desired number is chosen to be relative
7232 // to the end of a CMS sweep.  The desired number at the end of a sweep
7233 // is the
7234 //      count-at-end-of-previous-sweep (an amount that was enough)
7235 //              - count-at-beginning-of-current-sweep  (the excess)
7236 //              + split-births  (gains in this size during interval)
7237 //              - split-deaths  (demands on this size during interval)
7238 // where the interval is from the end of one sweep to the end of the
7239 // next.
7240 //
7241 // When sweeping the sweeper maintains an accumulated chunk which is
7242 // the chunk that is made up of chunks that have been coalesced.  That
7243 // will be termed the left-hand chunk.  A new chunk of garbage that
7244 // is being considered for coalescing will be referred to as the
7245 // right-hand chunk.
7246 //
7247 // When making a decision on whether to coalesce a right-hand chunk with
7248 // the current left-hand chunk, the current count vs. the desired count
7249 // of the left-hand chunk is considered.  Also if the right-hand chunk
7250 // is near the large chunk at the end of the heap (see
7251 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7252 // left-hand chunk is coalesced.
7253 //
7254 // When making a decision about whether to split a chunk, the desired count
7255 // vs. the current count of the candidate to be split is also considered.
7256 // If the candidate is underpopulated (currently fewer chunks than desired)
7257 // a chunk of an overpopulated (currently more chunks than desired) size may
7258 // be chosen.  The "hint" associated with a free list, if non-null, points
7259 // to a free list which may be overpopulated.
7260 //
7261 
7262 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7263   const size_t size = fc->size();
7264   // Chunks that cannot be coalesced are not in the
7265   // free lists.
7266   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7267     assert(_sp->verify_chunk_in_free_list(fc),
7268            "free chunk should be in free lists");
7269   }
7270   // a chunk that is already free, should not have been
7271   // marked in the bit map
7272   HeapWord* const addr = (HeapWord*) fc;
7273   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7274   // Verify that the bit map has no bits marked between
7275   // addr and purported end of this block.
7276   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7277 
7278   // Some chunks cannot be coalesced under any circumstances.
7279   // See the definition of cantCoalesce().
7280   if (!fc->cantCoalesce()) {
7281     // This chunk can potentially be coalesced.
7282     // All the work is done in
7283     do_post_free_or_garbage_chunk(fc, size);
7284     // Note that if the chunk is not coalescable (the else arm
7285     // below), we unconditionally flush, without needing to do
7286     // a "lookahead," as we do below.
7287     if (inFreeRange()) lookahead_and_flush(fc, size);
7288   } else {
7289     // Code path common to both original and adaptive free lists.
7290 
7291     // cant coalesce with previous block; this should be treated
7292     // as the end of a free run if any
7293     if (inFreeRange()) {
7294       // we kicked some butt; time to pick up the garbage
7295       assert(freeFinger() < addr, "freeFinger points too high");
7296       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7297     }
7298     // else, nothing to do, just continue
7299   }
7300 }
7301 
7302 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7303   // This is a chunk of garbage.  It is not in any free list.
7304   // Add it to a free list or let it possibly be coalesced into
7305   // a larger chunk.
7306   HeapWord* const addr = (HeapWord*) fc;
7307   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7308 
7309   // Verify that the bit map has no bits marked between
7310   // addr and purported end of just dead object.
7311   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7312   do_post_free_or_garbage_chunk(fc, size);
7313 
7314   assert(_limit >= addr + size,
7315          "A freshly garbage chunk can't possibly straddle over _limit");
7316   if (inFreeRange()) lookahead_and_flush(fc, size);
7317   return size;
7318 }
7319 
7320 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7321   HeapWord* addr = (HeapWord*) fc;
7322   // The sweeper has just found a live object. Return any accumulated
7323   // left hand chunk to the free lists.
7324   if (inFreeRange()) {
7325     assert(freeFinger() < addr, "freeFinger points too high");
7326     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7327   }
7328 
7329   // This object is live: we'd normally expect this to be
7330   // an oop, and like to assert the following:
7331   // assert(oop(addr)->is_oop(), "live block should be an oop");
7332   // However, as we commented above, this may be an object whose
7333   // header hasn't yet been initialized.
7334   size_t size;
7335   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7336   if (_bitMap->isMarked(addr + 1)) {
7337     // Determine the size from the bit map, rather than trying to
7338     // compute it from the object header.
7339     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7340     size = pointer_delta(nextOneAddr + 1, addr);
7341     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7342            "alignment problem");
7343 
7344 #ifdef ASSERT
7345       if (oop(addr)->klass_or_null_acquire() != NULL) {
7346         // Ignore mark word because we are running concurrent with mutators
7347         assert(oop(addr)->is_oop(true), "live block should be an oop");
7348         assert(size ==
7349                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7350                "P-mark and computed size do not agree");
7351       }
7352 #endif
7353 
7354   } else {
7355     // This should be an initialized object that's alive.
7356     assert(oop(addr)->klass_or_null_acquire() != NULL,
7357            "Should be an initialized object");
7358     // Ignore mark word because we are running concurrent with mutators
7359     assert(oop(addr)->is_oop(true), "live block should be an oop");
7360     // Verify that the bit map has no bits marked between
7361     // addr and purported end of this block.
7362     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7363     assert(size >= 3, "Necessary for Printezis marks to work");
7364     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7365     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7366   }
7367   return size;
7368 }
7369 
7370 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7371                                                  size_t chunkSize) {
7372   // do_post_free_or_garbage_chunk() should only be called in the case
7373   // of the adaptive free list allocator.
7374   const bool fcInFreeLists = fc->is_free();
7375   assert((HeapWord*)fc <= _limit, "sweep invariant");
7376   if (CMSTestInFreeList && fcInFreeLists) {
7377     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7378   }
7379 
7380   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7381 
7382   HeapWord* const fc_addr = (HeapWord*) fc;
7383 
7384   bool coalesce = false;
7385   const size_t left  = pointer_delta(fc_addr, freeFinger());
7386   const size_t right = chunkSize;
7387   switch (FLSCoalescePolicy) {
7388     // numeric value forms a coalition aggressiveness metric
7389     case 0:  { // never coalesce
7390       coalesce = false;
7391       break;
7392     }
7393     case 1: { // coalesce if left & right chunks on overpopulated lists
7394       coalesce = _sp->coalOverPopulated(left) &&
7395                  _sp->coalOverPopulated(right);
7396       break;
7397     }
7398     case 2: { // coalesce if left chunk on overpopulated list (default)
7399       coalesce = _sp->coalOverPopulated(left);
7400       break;
7401     }
7402     case 3: { // coalesce if left OR right chunk on overpopulated list
7403       coalesce = _sp->coalOverPopulated(left) ||
7404                  _sp->coalOverPopulated(right);
7405       break;
7406     }
7407     case 4: { // always coalesce
7408       coalesce = true;
7409       break;
7410     }
7411     default:
7412      ShouldNotReachHere();
7413   }
7414 
7415   // Should the current free range be coalesced?
7416   // If the chunk is in a free range and either we decided to coalesce above
7417   // or the chunk is near the large block at the end of the heap
7418   // (isNearLargestChunk() returns true), then coalesce this chunk.
7419   const bool doCoalesce = inFreeRange()
7420                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7421   if (doCoalesce) {
7422     // Coalesce the current free range on the left with the new
7423     // chunk on the right.  If either is on a free list,
7424     // it must be removed from the list and stashed in the closure.
7425     if (freeRangeInFreeLists()) {
7426       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7427       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7428              "Size of free range is inconsistent with chunk size.");
7429       if (CMSTestInFreeList) {
7430         assert(_sp->verify_chunk_in_free_list(ffc),
7431                "Chunk is not in free lists");
7432       }
7433       _sp->coalDeath(ffc->size());
7434       _sp->removeFreeChunkFromFreeLists(ffc);
7435       set_freeRangeInFreeLists(false);
7436     }
7437     if (fcInFreeLists) {
7438       _sp->coalDeath(chunkSize);
7439       assert(fc->size() == chunkSize,
7440         "The chunk has the wrong size or is not in the free lists");
7441       _sp->removeFreeChunkFromFreeLists(fc);
7442     }
7443     set_lastFreeRangeCoalesced(true);
7444     print_free_block_coalesced(fc);
7445   } else {  // not in a free range and/or should not coalesce
7446     // Return the current free range and start a new one.
7447     if (inFreeRange()) {
7448       // In a free range but cannot coalesce with the right hand chunk.
7449       // Put the current free range into the free lists.
7450       flush_cur_free_chunk(freeFinger(),
7451                            pointer_delta(fc_addr, freeFinger()));
7452     }
7453     // Set up for new free range.  Pass along whether the right hand
7454     // chunk is in the free lists.
7455     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7456   }
7457 }
7458 
7459 // Lookahead flush:
7460 // If we are tracking a free range, and this is the last chunk that
7461 // we'll look at because its end crosses past _limit, we'll preemptively
7462 // flush it along with any free range we may be holding on to. Note that
7463 // this can be the case only for an already free or freshly garbage
7464 // chunk. If this block is an object, it can never straddle
7465 // over _limit. The "straddling" occurs when _limit is set at
7466 // the previous end of the space when this cycle started, and
7467 // a subsequent heap expansion caused the previously co-terminal
7468 // free block to be coalesced with the newly expanded portion,
7469 // thus rendering _limit a non-block-boundary making it dangerous
7470 // for the sweeper to step over and examine.
7471 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7472   assert(inFreeRange(), "Should only be called if currently in a free range.");
7473   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7474   assert(_sp->used_region().contains(eob - 1),
7475          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7476          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7477          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7478          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7479   if (eob >= _limit) {
7480     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7481     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7482                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7483                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7484                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7485     // Return the storage we are tracking back into the free lists.
7486     log_develop_trace(gc, sweep)("Flushing ... ");
7487     assert(freeFinger() < eob, "Error");
7488     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7489   }
7490 }
7491 
7492 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7493   assert(inFreeRange(), "Should only be called if currently in a free range.");
7494   assert(size > 0,
7495     "A zero sized chunk cannot be added to the free lists.");
7496   if (!freeRangeInFreeLists()) {
7497     if (CMSTestInFreeList) {
7498       FreeChunk* fc = (FreeChunk*) chunk;
7499       fc->set_size(size);
7500       assert(!_sp->verify_chunk_in_free_list(fc),
7501              "chunk should not be in free lists yet");
7502     }
7503     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7504     // A new free range is going to be starting.  The current
7505     // free range has not been added to the free lists yet or
7506     // was removed so add it back.
7507     // If the current free range was coalesced, then the death
7508     // of the free range was recorded.  Record a birth now.
7509     if (lastFreeRangeCoalesced()) {
7510       _sp->coalBirth(size);
7511     }
7512     _sp->addChunkAndRepairOffsetTable(chunk, size,
7513             lastFreeRangeCoalesced());
7514   } else {
7515     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7516   }
7517   set_inFreeRange(false);
7518   set_freeRangeInFreeLists(false);
7519 }
7520 
7521 // We take a break if we've been at this for a while,
7522 // so as to avoid monopolizing the locks involved.
7523 void SweepClosure::do_yield_work(HeapWord* addr) {
7524   // Return current free chunk being used for coalescing (if any)
7525   // to the appropriate freelist.  After yielding, the next
7526   // free block encountered will start a coalescing range of
7527   // free blocks.  If the next free block is adjacent to the
7528   // chunk just flushed, they will need to wait for the next
7529   // sweep to be coalesced.
7530   if (inFreeRange()) {
7531     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7532   }
7533 
7534   // First give up the locks, then yield, then re-lock.
7535   // We should probably use a constructor/destructor idiom to
7536   // do this unlock/lock or modify the MutexUnlocker class to
7537   // serve our purpose. XXX
7538   assert_lock_strong(_bitMap->lock());
7539   assert_lock_strong(_freelistLock);
7540   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7541          "CMS thread should hold CMS token");
7542   _bitMap->lock()->unlock();
7543   _freelistLock->unlock();
7544   ConcurrentMarkSweepThread::desynchronize(true);
7545   _collector->stopTimer();
7546   _collector->incrementYields();
7547 
7548   // See the comment in coordinator_yield()
7549   for (unsigned i = 0; i < CMSYieldSleepCount &&
7550                        ConcurrentMarkSweepThread::should_yield() &&
7551                        !CMSCollector::foregroundGCIsActive(); ++i) {
7552     os::sleep(Thread::current(), 1, false);
7553   }
7554 
7555   ConcurrentMarkSweepThread::synchronize(true);
7556   _freelistLock->lock();
7557   _bitMap->lock()->lock_without_safepoint_check();
7558   _collector->startTimer();
7559 }
7560 
7561 #ifndef PRODUCT
7562 // This is actually very useful in a product build if it can
7563 // be called from the debugger.  Compile it into the product
7564 // as needed.
7565 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7566   return debug_cms_space->verify_chunk_in_free_list(fc);
7567 }
7568 #endif
7569 
7570 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7571   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7572                                p2i(fc), fc->size());
7573 }
7574 
7575 // CMSIsAliveClosure
7576 bool CMSIsAliveClosure::do_object_b(oop obj) {
7577   HeapWord* addr = (HeapWord*)obj;
7578   return addr != NULL &&
7579          (!_span.contains(addr) || _bit_map->isMarked(addr));
7580 }
7581 
7582 
7583 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7584                       MemRegion span,
7585                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7586                       bool cpc):
7587   _collector(collector),
7588   _span(span),
7589   _bit_map(bit_map),
7590   _mark_stack(mark_stack),
7591   _concurrent_precleaning(cpc) {
7592   assert(!_span.is_empty(), "Empty span could spell trouble");
7593 }
7594 
7595 
7596 // CMSKeepAliveClosure: the serial version
7597 void CMSKeepAliveClosure::do_oop(oop obj) {
7598   HeapWord* addr = (HeapWord*)obj;
7599   if (_span.contains(addr) &&
7600       !_bit_map->isMarked(addr)) {
7601     _bit_map->mark(addr);
7602     bool simulate_overflow = false;
7603     NOT_PRODUCT(
7604       if (CMSMarkStackOverflowALot &&
7605           _collector->simulate_overflow()) {
7606         // simulate a stack overflow
7607         simulate_overflow = true;
7608       }
7609     )
7610     if (simulate_overflow || !_mark_stack->push(obj)) {
7611       if (_concurrent_precleaning) {
7612         // We dirty the overflown object and let the remark
7613         // phase deal with it.
7614         assert(_collector->overflow_list_is_empty(), "Error");
7615         // In the case of object arrays, we need to dirty all of
7616         // the cards that the object spans. No locking or atomics
7617         // are needed since no one else can be mutating the mod union
7618         // table.
7619         if (obj->is_objArray()) {
7620           size_t sz = obj->size();
7621           HeapWord* end_card_addr = align_up(addr + sz, CardTableModRefBS::card_size);
7622           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7623           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7624           _collector->_modUnionTable.mark_range(redirty_range);
7625         } else {
7626           _collector->_modUnionTable.mark(addr);
7627         }
7628         _collector->_ser_kac_preclean_ovflw++;
7629       } else {
7630         _collector->push_on_overflow_list(obj);
7631         _collector->_ser_kac_ovflw++;
7632       }
7633     }
7634   }
7635 }
7636 
7637 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7638 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7639 
7640 // CMSParKeepAliveClosure: a parallel version of the above.
7641 // The work queues are private to each closure (thread),
7642 // but (may be) available for stealing by other threads.
7643 void CMSParKeepAliveClosure::do_oop(oop obj) {
7644   HeapWord* addr = (HeapWord*)obj;
7645   if (_span.contains(addr) &&
7646       !_bit_map->isMarked(addr)) {
7647     // In general, during recursive tracing, several threads
7648     // may be concurrently getting here; the first one to
7649     // "tag" it, claims it.
7650     if (_bit_map->par_mark(addr)) {
7651       bool res = _work_queue->push(obj);
7652       assert(res, "Low water mark should be much less than capacity");
7653       // Do a recursive trim in the hope that this will keep
7654       // stack usage lower, but leave some oops for potential stealers
7655       trim_queue(_low_water_mark);
7656     } // Else, another thread got there first
7657   }
7658 }
7659 
7660 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7661 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7662 
7663 void CMSParKeepAliveClosure::trim_queue(uint max) {
7664   while (_work_queue->size() > max) {
7665     oop new_oop;
7666     if (_work_queue->pop_local(new_oop)) {
7667       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7668       assert(_bit_map->isMarked((HeapWord*)new_oop),
7669              "no white objects on this stack!");
7670       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7671       // iterate over the oops in this oop, marking and pushing
7672       // the ones in CMS heap (i.e. in _span).
7673       new_oop->oop_iterate(&_mark_and_push);
7674     }
7675   }
7676 }
7677 
7678 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7679                                 CMSCollector* collector,
7680                                 MemRegion span, CMSBitMap* bit_map,
7681                                 OopTaskQueue* work_queue):
7682   _collector(collector),
7683   _span(span),
7684   _bit_map(bit_map),
7685   _work_queue(work_queue) { }
7686 
7687 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7688   HeapWord* addr = (HeapWord*)obj;
7689   if (_span.contains(addr) &&
7690       !_bit_map->isMarked(addr)) {
7691     if (_bit_map->par_mark(addr)) {
7692       bool simulate_overflow = false;
7693       NOT_PRODUCT(
7694         if (CMSMarkStackOverflowALot &&
7695             _collector->par_simulate_overflow()) {
7696           // simulate a stack overflow
7697           simulate_overflow = true;
7698         }
7699       )
7700       if (simulate_overflow || !_work_queue->push(obj)) {
7701         _collector->par_push_on_overflow_list(obj);
7702         _collector->_par_kac_ovflw++;
7703       }
7704     } // Else another thread got there already
7705   }
7706 }
7707 
7708 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7709 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7710 
7711 //////////////////////////////////////////////////////////////////
7712 //  CMSExpansionCause                /////////////////////////////
7713 //////////////////////////////////////////////////////////////////
7714 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7715   switch (cause) {
7716     case _no_expansion:
7717       return "No expansion";
7718     case _satisfy_free_ratio:
7719       return "Free ratio";
7720     case _satisfy_promotion:
7721       return "Satisfy promotion";
7722     case _satisfy_allocation:
7723       return "allocation";
7724     case _allocate_par_lab:
7725       return "Par LAB";
7726     case _allocate_par_spooling_space:
7727       return "Par Spooling Space";
7728     case _adaptive_size_policy:
7729       return "Ergonomics";
7730     default:
7731       return "unknown";
7732   }
7733 }
7734 
7735 void CMSDrainMarkingStackClosure::do_void() {
7736   // the max number to take from overflow list at a time
7737   const size_t num = _mark_stack->capacity()/4;
7738   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7739          "Overflow list should be NULL during concurrent phases");
7740   while (!_mark_stack->isEmpty() ||
7741          // if stack is empty, check the overflow list
7742          _collector->take_from_overflow_list(num, _mark_stack)) {
7743     oop obj = _mark_stack->pop();
7744     HeapWord* addr = (HeapWord*)obj;
7745     assert(_span.contains(addr), "Should be within span");
7746     assert(_bit_map->isMarked(addr), "Should be marked");
7747     assert(obj->is_oop(), "Should be an oop");
7748     obj->oop_iterate(_keep_alive);
7749   }
7750 }
7751 
7752 void CMSParDrainMarkingStackClosure::do_void() {
7753   // drain queue
7754   trim_queue(0);
7755 }
7756 
7757 // Trim our work_queue so its length is below max at return
7758 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7759   while (_work_queue->size() > max) {
7760     oop new_oop;
7761     if (_work_queue->pop_local(new_oop)) {
7762       assert(new_oop->is_oop(), "Expected an oop");
7763       assert(_bit_map->isMarked((HeapWord*)new_oop),
7764              "no white objects on this stack!");
7765       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7766       // iterate over the oops in this oop, marking and pushing
7767       // the ones in CMS heap (i.e. in _span).
7768       new_oop->oop_iterate(&_mark_and_push);
7769     }
7770   }
7771 }
7772 
7773 ////////////////////////////////////////////////////////////////////
7774 // Support for Marking Stack Overflow list handling and related code
7775 ////////////////////////////////////////////////////////////////////
7776 // Much of the following code is similar in shape and spirit to the
7777 // code used in ParNewGC. We should try and share that code
7778 // as much as possible in the future.
7779 
7780 #ifndef PRODUCT
7781 // Debugging support for CMSStackOverflowALot
7782 
7783 // It's OK to call this multi-threaded;  the worst thing
7784 // that can happen is that we'll get a bunch of closely
7785 // spaced simulated overflows, but that's OK, in fact
7786 // probably good as it would exercise the overflow code
7787 // under contention.
7788 bool CMSCollector::simulate_overflow() {
7789   if (_overflow_counter-- <= 0) { // just being defensive
7790     _overflow_counter = CMSMarkStackOverflowInterval;
7791     return true;
7792   } else {
7793     return false;
7794   }
7795 }
7796 
7797 bool CMSCollector::par_simulate_overflow() {
7798   return simulate_overflow();
7799 }
7800 #endif
7801 
7802 // Single-threaded
7803 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7804   assert(stack->isEmpty(), "Expected precondition");
7805   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7806   size_t i = num;
7807   oop  cur = _overflow_list;
7808   const markOop proto = markOopDesc::prototype();
7809   NOT_PRODUCT(ssize_t n = 0;)
7810   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7811     next = oop(cur->mark());
7812     cur->set_mark(proto);   // until proven otherwise
7813     assert(cur->is_oop(), "Should be an oop");
7814     bool res = stack->push(cur);
7815     assert(res, "Bit off more than can chew?");
7816     NOT_PRODUCT(n++;)
7817   }
7818   _overflow_list = cur;
7819 #ifndef PRODUCT
7820   assert(_num_par_pushes >= n, "Too many pops?");
7821   _num_par_pushes -=n;
7822 #endif
7823   return !stack->isEmpty();
7824 }
7825 
7826 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7827 // (MT-safe) Get a prefix of at most "num" from the list.
7828 // The overflow list is chained through the mark word of
7829 // each object in the list. We fetch the entire list,
7830 // break off a prefix of the right size and return the
7831 // remainder. If other threads try to take objects from
7832 // the overflow list at that time, they will wait for
7833 // some time to see if data becomes available. If (and
7834 // only if) another thread places one or more object(s)
7835 // on the global list before we have returned the suffix
7836 // to the global list, we will walk down our local list
7837 // to find its end and append the global list to
7838 // our suffix before returning it. This suffix walk can
7839 // prove to be expensive (quadratic in the amount of traffic)
7840 // when there are many objects in the overflow list and
7841 // there is much producer-consumer contention on the list.
7842 // *NOTE*: The overflow list manipulation code here and
7843 // in ParNewGeneration:: are very similar in shape,
7844 // except that in the ParNew case we use the old (from/eden)
7845 // copy of the object to thread the list via its klass word.
7846 // Because of the common code, if you make any changes in
7847 // the code below, please check the ParNew version to see if
7848 // similar changes might be needed.
7849 // CR 6797058 has been filed to consolidate the common code.
7850 bool CMSCollector::par_take_from_overflow_list(size_t num,
7851                                                OopTaskQueue* work_q,
7852                                                int no_of_gc_threads) {
7853   assert(work_q->size() == 0, "First empty local work queue");
7854   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7855   if (_overflow_list == NULL) {
7856     return false;
7857   }
7858   // Grab the entire list; we'll put back a suffix
7859   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7860   Thread* tid = Thread::current();
7861   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7862   // set to ParallelGCThreads.
7863   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7864   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7865   // If the list is busy, we spin for a short while,
7866   // sleeping between attempts to get the list.
7867   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7868     os::sleep(tid, sleep_time_millis, false);
7869     if (_overflow_list == NULL) {
7870       // Nothing left to take
7871       return false;
7872     } else if (_overflow_list != BUSY) {
7873       // Try and grab the prefix
7874       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7875     }
7876   }
7877   // If the list was found to be empty, or we spun long
7878   // enough, we give up and return empty-handed. If we leave
7879   // the list in the BUSY state below, it must be the case that
7880   // some other thread holds the overflow list and will set it
7881   // to a non-BUSY state in the future.
7882   if (prefix == NULL || prefix == BUSY) {
7883      // Nothing to take or waited long enough
7884      if (prefix == NULL) {
7885        // Write back the NULL in case we overwrote it with BUSY above
7886        // and it is still the same value.
7887        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7888      }
7889      return false;
7890   }
7891   assert(prefix != NULL && prefix != BUSY, "Error");
7892   size_t i = num;
7893   oop cur = prefix;
7894   // Walk down the first "num" objects, unless we reach the end.
7895   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7896   if (cur->mark() == NULL) {
7897     // We have "num" or fewer elements in the list, so there
7898     // is nothing to return to the global list.
7899     // Write back the NULL in lieu of the BUSY we wrote
7900     // above, if it is still the same value.
7901     if (_overflow_list == BUSY) {
7902       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7903     }
7904   } else {
7905     // Chop off the suffix and return it to the global list.
7906     assert(cur->mark() != BUSY, "Error");
7907     oop suffix_head = cur->mark(); // suffix will be put back on global list
7908     cur->set_mark(NULL);           // break off suffix
7909     // It's possible that the list is still in the empty(busy) state
7910     // we left it in a short while ago; in that case we may be
7911     // able to place back the suffix without incurring the cost
7912     // of a walk down the list.
7913     oop observed_overflow_list = _overflow_list;
7914     oop cur_overflow_list = observed_overflow_list;
7915     bool attached = false;
7916     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7917       observed_overflow_list =
7918         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7919       if (cur_overflow_list == observed_overflow_list) {
7920         attached = true;
7921         break;
7922       } else cur_overflow_list = observed_overflow_list;
7923     }
7924     if (!attached) {
7925       // Too bad, someone else sneaked in (at least) an element; we'll need
7926       // to do a splice. Find tail of suffix so we can prepend suffix to global
7927       // list.
7928       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7929       oop suffix_tail = cur;
7930       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7931              "Tautology");
7932       observed_overflow_list = _overflow_list;
7933       do {
7934         cur_overflow_list = observed_overflow_list;
7935         if (cur_overflow_list != BUSY) {
7936           // Do the splice ...
7937           suffix_tail->set_mark(markOop(cur_overflow_list));
7938         } else { // cur_overflow_list == BUSY
7939           suffix_tail->set_mark(NULL);
7940         }
7941         // ... and try to place spliced list back on overflow_list ...
7942         observed_overflow_list =
7943           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7944       } while (cur_overflow_list != observed_overflow_list);
7945       // ... until we have succeeded in doing so.
7946     }
7947   }
7948 
7949   // Push the prefix elements on work_q
7950   assert(prefix != NULL, "control point invariant");
7951   const markOop proto = markOopDesc::prototype();
7952   oop next;
7953   NOT_PRODUCT(ssize_t n = 0;)
7954   for (cur = prefix; cur != NULL; cur = next) {
7955     next = oop(cur->mark());
7956     cur->set_mark(proto);   // until proven otherwise
7957     assert(cur->is_oop(), "Should be an oop");
7958     bool res = work_q->push(cur);
7959     assert(res, "Bit off more than we can chew?");
7960     NOT_PRODUCT(n++;)
7961   }
7962 #ifndef PRODUCT
7963   assert(_num_par_pushes >= n, "Too many pops?");
7964   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7965 #endif
7966   return true;
7967 }
7968 
7969 // Single-threaded
7970 void CMSCollector::push_on_overflow_list(oop p) {
7971   NOT_PRODUCT(_num_par_pushes++;)
7972   assert(p->is_oop(), "Not an oop");
7973   preserve_mark_if_necessary(p);
7974   p->set_mark((markOop)_overflow_list);
7975   _overflow_list = p;
7976 }
7977 
7978 // Multi-threaded; use CAS to prepend to overflow list
7979 void CMSCollector::par_push_on_overflow_list(oop p) {
7980   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7981   assert(p->is_oop(), "Not an oop");
7982   par_preserve_mark_if_necessary(p);
7983   oop observed_overflow_list = _overflow_list;
7984   oop cur_overflow_list;
7985   do {
7986     cur_overflow_list = observed_overflow_list;
7987     if (cur_overflow_list != BUSY) {
7988       p->set_mark(markOop(cur_overflow_list));
7989     } else {
7990       p->set_mark(NULL);
7991     }
7992     observed_overflow_list =
7993       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
7994   } while (cur_overflow_list != observed_overflow_list);
7995 }
7996 #undef BUSY
7997 
7998 // Single threaded
7999 // General Note on GrowableArray: pushes may silently fail
8000 // because we are (temporarily) out of C-heap for expanding
8001 // the stack. The problem is quite ubiquitous and affects
8002 // a lot of code in the JVM. The prudent thing for GrowableArray
8003 // to do (for now) is to exit with an error. However, that may
8004 // be too draconian in some cases because the caller may be
8005 // able to recover without much harm. For such cases, we
8006 // should probably introduce a "soft_push" method which returns
8007 // an indication of success or failure with the assumption that
8008 // the caller may be able to recover from a failure; code in
8009 // the VM can then be changed, incrementally, to deal with such
8010 // failures where possible, thus, incrementally hardening the VM
8011 // in such low resource situations.
8012 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8013   _preserved_oop_stack.push(p);
8014   _preserved_mark_stack.push(m);
8015   assert(m == p->mark(), "Mark word changed");
8016   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8017          "bijection");
8018 }
8019 
8020 // Single threaded
8021 void CMSCollector::preserve_mark_if_necessary(oop p) {
8022   markOop m = p->mark();
8023   if (m->must_be_preserved(p)) {
8024     preserve_mark_work(p, m);
8025   }
8026 }
8027 
8028 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8029   markOop m = p->mark();
8030   if (m->must_be_preserved(p)) {
8031     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8032     // Even though we read the mark word without holding
8033     // the lock, we are assured that it will not change
8034     // because we "own" this oop, so no other thread can
8035     // be trying to push it on the overflow list; see
8036     // the assertion in preserve_mark_work() that checks
8037     // that m == p->mark().
8038     preserve_mark_work(p, m);
8039   }
8040 }
8041 
8042 // We should be able to do this multi-threaded,
8043 // a chunk of stack being a task (this is
8044 // correct because each oop only ever appears
8045 // once in the overflow list. However, it's
8046 // not very easy to completely overlap this with
8047 // other operations, so will generally not be done
8048 // until all work's been completed. Because we
8049 // expect the preserved oop stack (set) to be small,
8050 // it's probably fine to do this single-threaded.
8051 // We can explore cleverer concurrent/overlapped/parallel
8052 // processing of preserved marks if we feel the
8053 // need for this in the future. Stack overflow should
8054 // be so rare in practice and, when it happens, its
8055 // effect on performance so great that this will
8056 // likely just be in the noise anyway.
8057 void CMSCollector::restore_preserved_marks_if_any() {
8058   assert(SafepointSynchronize::is_at_safepoint(),
8059          "world should be stopped");
8060   assert(Thread::current()->is_ConcurrentGC_thread() ||
8061          Thread::current()->is_VM_thread(),
8062          "should be single-threaded");
8063   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8064          "bijection");
8065 
8066   while (!_preserved_oop_stack.is_empty()) {
8067     oop p = _preserved_oop_stack.pop();
8068     assert(p->is_oop(), "Should be an oop");
8069     assert(_span.contains(p), "oop should be in _span");
8070     assert(p->mark() == markOopDesc::prototype(),
8071            "Set when taken from overflow list");
8072     markOop m = _preserved_mark_stack.pop();
8073     p->set_mark(m);
8074   }
8075   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8076          "stacks were cleared above");
8077 }
8078 
8079 #ifndef PRODUCT
8080 bool CMSCollector::no_preserved_marks() const {
8081   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8082 }
8083 #endif
8084 
8085 // Transfer some number of overflown objects to usual marking
8086 // stack. Return true if some objects were transferred.
8087 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8088   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8089                     (size_t)ParGCDesiredObjsFromOverflowList);
8090 
8091   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8092   assert(_collector->overflow_list_is_empty() || res,
8093          "If list is not empty, we should have taken something");
8094   assert(!res || !_mark_stack->isEmpty(),
8095          "If we took something, it should now be on our stack");
8096   return res;
8097 }
8098 
8099 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8100   size_t res = _sp->block_size_no_stall(addr, _collector);
8101   if (_sp->block_is_obj(addr)) {
8102     if (_live_bit_map->isMarked(addr)) {
8103       // It can't have been dead in a previous cycle
8104       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8105     } else {
8106       _dead_bit_map->mark(addr);      // mark the dead object
8107     }
8108   }
8109   // Could be 0, if the block size could not be computed without stalling.
8110   return res;
8111 }
8112 
8113 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8114 
8115   switch (phase) {
8116     case CMSCollector::InitialMarking:
8117       initialize(true  /* fullGC */ ,
8118                  cause /* cause of the GC */,
8119                  true  /* recordGCBeginTime */,
8120                  true  /* recordPreGCUsage */,
8121                  false /* recordPeakUsage */,
8122                  false /* recordPostGCusage */,
8123                  true  /* recordAccumulatedGCTime */,
8124                  false /* recordGCEndTime */,
8125                  false /* countCollection */  );
8126       break;
8127 
8128     case CMSCollector::FinalMarking:
8129       initialize(true  /* fullGC */ ,
8130                  cause /* cause of the GC */,
8131                  false /* recordGCBeginTime */,
8132                  false /* recordPreGCUsage */,
8133                  false /* recordPeakUsage */,
8134                  false /* recordPostGCusage */,
8135                  true  /* recordAccumulatedGCTime */,
8136                  false /* recordGCEndTime */,
8137                  false /* countCollection */  );
8138       break;
8139 
8140     case CMSCollector::Sweeping:
8141       initialize(true  /* fullGC */ ,
8142                  cause /* cause of the GC */,
8143                  false /* recordGCBeginTime */,
8144                  false /* recordPreGCUsage */,
8145                  true  /* recordPeakUsage */,
8146                  true  /* recordPostGCusage */,
8147                  false /* recordAccumulatedGCTime */,
8148                  true  /* recordGCEndTime */,
8149                  true  /* countCollection */  );
8150       break;
8151 
8152     default:
8153       ShouldNotReachHere();
8154   }
8155 }