1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jfr/support/jfrThreadId.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "prims/privilegedStack.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/biasedLocking.hpp"
  68 #include "runtime/fieldDescriptor.inline.hpp"
  69 #include "runtime/flags/jvmFlagConstraintList.hpp"
  70 #include "runtime/flags/jvmFlagRangeList.hpp"
  71 #include "runtime/flags/jvmFlagWriteableList.hpp"
  72 #include "runtime/deoptimization.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/statSampler.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/sweeper.hpp"
  94 #include "runtime/task.hpp"
  95 #include "runtime/thread.inline.hpp"
  96 #include "runtime/threadCritical.hpp"
  97 #include "runtime/threadSMR.inline.hpp"
  98 #include "runtime/threadStatisticalInfo.hpp"
  99 #include "runtime/timer.hpp"
 100 #include "runtime/timerTrace.hpp"
 101 #include "runtime/vframe.inline.hpp"
 102 #include "runtime/vframeArray.hpp"
 103 #include "runtime/vframe_hp.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "runtime/vm_operations.hpp"
 106 #include "runtime/vm_version.hpp"
 107 #include "services/attachListener.hpp"
 108 #include "services/management.hpp"
 109 #include "services/memTracker.hpp"
 110 #include "services/threadService.hpp"
 111 #include "utilities/align.hpp"
 112 #include "utilities/copy.hpp"
 113 #include "utilities/defaultStream.hpp"
 114 #include "utilities/dtrace.hpp"
 115 #include "utilities/events.hpp"
 116 #include "utilities/macros.hpp"
 117 #include "utilities/preserveException.hpp"
 118 #include "utilities/singleWriterSynchronizer.hpp"
 119 #include "utilities/vmError.hpp"
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmciCompiler.hpp"
 122 #include "jvmci/jvmciRuntime.hpp"
 123 #include "logging/logHandle.hpp"
 124 #endif
 125 #ifdef COMPILER1
 126 #include "c1/c1_Compiler.hpp"
 127 #endif
 128 #ifdef COMPILER2
 129 #include "opto/c2compiler.hpp"
 130 #include "opto/idealGraphPrinter.hpp"
 131 #endif
 132 #if INCLUDE_RTM_OPT
 133 #include "runtime/rtmLocking.hpp"
 134 #endif
 135 #if INCLUDE_JFR
 136 #include "jfr/jfr.hpp"
 137 #endif
 138 
 139 // Initialization after module runtime initialization
 140 void universe_post_module_init();  // must happen after call_initPhase2
 141 
 142 #ifdef DTRACE_ENABLED
 143 
 144 // Only bother with this argument setup if dtrace is available
 145 
 146   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 147   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 150     {                                                                      \
 151       ResourceMark rm(this);                                               \
 152       int len = 0;                                                         \
 153       const char* name = (javathread)->get_thread_name();                  \
 154       len = strlen(name);                                                  \
 155       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 156         (char *) name, len,                                                \
 157         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 158         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 159         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 160     }
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164   #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 169 // Current thread is maintained as a thread-local variable
 170 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 171 #endif
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const int alignment = markOopDesc::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                                          AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (aligned_addr != real_malloc_addr) {
 187       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                               p2i(real_malloc_addr),
 189                               p2i(aligned_addr));
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     FreeHeap(((Thread*) p)->_real_malloc_address);
 202   } else {
 203     FreeHeap(p);
 204   }
 205 }
 206 
 207 void JavaThread::smr_delete() {
 208   if (_on_thread_list) {
 209     ThreadsSMRSupport::smr_delete(this);
 210   } else {
 211     delete this;
 212   }
 213 }
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 
 219 Thread::Thread() {
 220   // stack and get_thread
 221   set_stack_base(NULL);
 222   set_stack_size(0);
 223   set_self_raw_id(0);
 224   set_lgrp_id(-1);
 225   DEBUG_ONLY(clear_suspendible_thread();)
 226 
 227   // allocated data structures
 228   set_osthread(NULL);
 229   set_resource_area(new (mtThread)ResourceArea());
 230   DEBUG_ONLY(_current_resource_mark = NULL;)
 231   set_handle_area(new (mtThread) HandleArea(NULL));
 232   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 233   set_active_handles(NULL);
 234   set_free_handle_block(NULL);
 235   set_last_handle_mark(NULL);
 236 
 237   // This initial value ==> never claimed.
 238   _oops_do_parity = 0;
 239   _threads_hazard_ptr = NULL;
 240   _threads_list_ptr = NULL;
 241   _nested_threads_hazard_ptr_cnt = 0;
 242   _rcu_counter = 0;
 243 
 244   // the handle mark links itself to last_handle_mark
 245   new HandleMark(this);
 246 
 247   // plain initialization
 248   debug_only(_owned_locks = NULL;)
 249   debug_only(_allow_allocation_count = 0;)
 250   NOT_PRODUCT(_allow_safepoint_count = 0;)
 251   NOT_PRODUCT(_skip_gcalot = false;)
 252   _jvmti_env_iteration_count = 0;
 253   set_allocated_bytes(0);
 254   _vm_operation_started_count = 0;
 255   _vm_operation_completed_count = 0;
 256   _current_pending_monitor = NULL;
 257   _current_pending_monitor_is_from_java = true;
 258   _current_waiting_monitor = NULL;
 259   _num_nested_signal = 0;
 260   omFreeList = NULL;
 261   omFreeCount = 0;
 262   omFreeProvision = 32;
 263   omInUseList = NULL;
 264   omInUseCount = 0;
 265 
 266 #ifdef ASSERT
 267   _visited_for_critical_count = false;
 268 #endif
 269 
 270   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 271                          Monitor::_safepoint_check_sometimes);
 272   _suspend_flags = 0;
 273 
 274   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 275   _hashStateX = os::random();
 276   _hashStateY = 842502087;
 277   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 278   _hashStateW = 273326509;
 279 
 280   _OnTrap   = 0;
 281   _Stalled  = 0;
 282   _TypeTag  = 0x2BAD;
 283 
 284   // Many of the following fields are effectively final - immutable
 285   // Note that nascent threads can't use the Native Monitor-Mutex
 286   // construct until the _MutexEvent is initialized ...
 287   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 288   // we might instead use a stack of ParkEvents that we could provision on-demand.
 289   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 290   // and ::Release()
 291   _ParkEvent   = ParkEvent::Allocate(this);
 292   _SleepEvent  = ParkEvent::Allocate(this);
 293   _MutexEvent  = ParkEvent::Allocate(this);
 294   _MuxEvent    = ParkEvent::Allocate(this);
 295 
 296 #ifdef CHECK_UNHANDLED_OOPS
 297   if (CheckUnhandledOops) {
 298     _unhandled_oops = new UnhandledOops(this);
 299   }
 300 #endif // CHECK_UNHANDLED_OOPS
 301 #ifdef ASSERT
 302   if (UseBiasedLocking) {
 303     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 304     assert(this == _real_malloc_address ||
 305            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 306            "bug in forced alignment of thread objects");
 307   }
 308 #endif // ASSERT
 309 
 310   // Notify the barrier set that a thread is being created. Note that some
 311   // threads are created before a barrier set is available. The call to
 312   // BarrierSet::on_thread_create() for these threads is therefore deferred
 313   // to BarrierSet::set_barrier_set().
 314   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 315   if (barrier_set != NULL) {
 316     barrier_set->on_thread_create(this);
 317   } else {
 318     DEBUG_ONLY(Threads::inc_threads_before_barrier_set();)
 319   }
 320 }
 321 
 322 void Thread::initialize_thread_current() {
 323 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 324   assert(_thr_current == NULL, "Thread::current already initialized");
 325   _thr_current = this;
 326 #endif
 327   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 328   ThreadLocalStorage::set_thread(this);
 329   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 330 }
 331 
 332 void Thread::clear_thread_current() {
 333   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 334 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 335   _thr_current = NULL;
 336 #endif
 337   ThreadLocalStorage::set_thread(NULL);
 338 }
 339 
 340 void Thread::record_stack_base_and_size() {
 341   // Note: at this point, Thread object is not yet initialized. Do not rely on
 342   // any members being initialized. Do not rely on Thread::current() being set.
 343   // If possible, refrain from doing anything which may crash or assert since
 344   // quite probably those crash dumps will be useless.
 345   set_stack_base(os::current_stack_base());
 346   set_stack_size(os::current_stack_size());
 347 
 348 #ifdef SOLARIS
 349   if (is_primordial_thread()) {
 350     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 351   }
 352 #endif
 353 
 354   // Set stack limits after thread is initialized.
 355   if (is_Java_thread()) {
 356     ((JavaThread*) this)->set_stack_overflow_limit();
 357     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 358   }
 359 }
 360 
 361 #if INCLUDE_NMT
 362 void Thread::register_thread_stack_with_NMT() {
 363   MemTracker::record_thread_stack(stack_end(), stack_size());
 364 }
 365 #endif // INCLUDE_NMT
 366 
 367 void Thread::call_run() {
 368   // At this point, Thread object should be fully initialized and
 369   // Thread::current() should be set.
 370 
 371   register_thread_stack_with_NMT();
 372 
 373   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 374     os::current_thread_id());
 375   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 376     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 377     os::current_thread_id(), p2i(stack_base() - stack_size()),
 378     p2i(stack_base()), stack_size()/1024);
 379   
 380   this->run();
 381 
 382   // Note: at this point the thread object may already have deleted itself.
 383   // So from here on do not refer to this.
 384 
 385   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").",
 386     os::current_thread_id());
 387 }
 388 
 389 Thread::~Thread() {
 390   JFR_ONLY(Jfr::on_thread_destruct(this);)
 391 
 392   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 393   // set might not be available if we encountered errors during bootstrapping.
 394   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 395   if (barrier_set != NULL) {
 396     barrier_set->on_thread_destroy(this);
 397   }
 398 
 399 
 400   // stack_base can be NULL if the thread is never started or exited before
 401   // record_stack_base_and_size called. Although, we would like to ensure
 402   // that all started threads do call record_stack_base_and_size(), there is
 403   // not proper way to enforce that.
 404 #if INCLUDE_NMT
 405   if (_stack_base != NULL) {
 406     MemTracker::release_thread_stack(stack_end(), stack_size());
 407 #ifdef ASSERT
 408     set_stack_base(NULL);
 409 #endif
 410   }
 411 #endif // INCLUDE_NMT
 412 
 413   // deallocate data structures
 414   delete resource_area();
 415   // since the handle marks are using the handle area, we have to deallocated the root
 416   // handle mark before deallocating the thread's handle area,
 417   assert(last_handle_mark() != NULL, "check we have an element");
 418   delete last_handle_mark();
 419   assert(last_handle_mark() == NULL, "check we have reached the end");
 420 
 421   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 422   // We NULL out the fields for good hygiene.
 423   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 424   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 425   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 426   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 427 
 428   delete handle_area();
 429   delete metadata_handles();
 430 
 431   // SR_handler uses this as a termination indicator -
 432   // needs to happen before os::free_thread()
 433   delete _SR_lock;
 434   _SR_lock = NULL;
 435 
 436   // osthread() can be NULL, if creation of thread failed.
 437   if (osthread() != NULL) os::free_thread(osthread());
 438 
 439   // clear Thread::current if thread is deleting itself.
 440   // Needed to ensure JNI correctly detects non-attached threads.
 441   if (this == Thread::current()) {
 442     clear_thread_current();
 443   }
 444 
 445   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 446 }
 447 
 448 #ifdef ASSERT
 449 // A JavaThread is considered "dangling" if it is not the current
 450 // thread, has been added the Threads list, the system is not at a
 451 // safepoint and the Thread is not "protected".
 452 //
 453 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 454   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 455          !((JavaThread *) thread)->on_thread_list() ||
 456          SafepointSynchronize::is_at_safepoint() ||
 457          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 458          "possibility of dangling Thread pointer");
 459 }
 460 #endif
 461 
 462 ThreadPriority Thread::get_priority(const Thread* const thread) {
 463   ThreadPriority priority;
 464   // Can return an error!
 465   (void)os::get_priority(thread, priority);
 466   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 467   return priority;
 468 }
 469 
 470 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 471   debug_only(check_for_dangling_thread_pointer(thread);)
 472   // Can return an error!
 473   (void)os::set_priority(thread, priority);
 474 }
 475 
 476 
 477 void Thread::start(Thread* thread) {
 478   // Start is different from resume in that its safety is guaranteed by context or
 479   // being called from a Java method synchronized on the Thread object.
 480   if (!DisableStartThread) {
 481     if (thread->is_Java_thread()) {
 482       // Initialize the thread state to RUNNABLE before starting this thread.
 483       // Can not set it after the thread started because we do not know the
 484       // exact thread state at that time. It could be in MONITOR_WAIT or
 485       // in SLEEPING or some other state.
 486       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 487                                           java_lang_Thread::RUNNABLE);
 488     }
 489     os::start_thread(thread);
 490   }
 491 }
 492 
 493 // Enqueue a VM_Operation to do the job for us - sometime later
 494 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 495   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 496   VMThread::execute(vm_stop);
 497 }
 498 
 499 
 500 // Check if an external suspend request has completed (or has been
 501 // cancelled). Returns true if the thread is externally suspended and
 502 // false otherwise.
 503 //
 504 // The bits parameter returns information about the code path through
 505 // the routine. Useful for debugging:
 506 //
 507 // set in is_ext_suspend_completed():
 508 // 0x00000001 - routine was entered
 509 // 0x00000010 - routine return false at end
 510 // 0x00000100 - thread exited (return false)
 511 // 0x00000200 - suspend request cancelled (return false)
 512 // 0x00000400 - thread suspended (return true)
 513 // 0x00001000 - thread is in a suspend equivalent state (return true)
 514 // 0x00002000 - thread is native and walkable (return true)
 515 // 0x00004000 - thread is native_trans and walkable (needed retry)
 516 //
 517 // set in wait_for_ext_suspend_completion():
 518 // 0x00010000 - routine was entered
 519 // 0x00020000 - suspend request cancelled before loop (return false)
 520 // 0x00040000 - thread suspended before loop (return true)
 521 // 0x00080000 - suspend request cancelled in loop (return false)
 522 // 0x00100000 - thread suspended in loop (return true)
 523 // 0x00200000 - suspend not completed during retry loop (return false)
 524 
 525 // Helper class for tracing suspend wait debug bits.
 526 //
 527 // 0x00000100 indicates that the target thread exited before it could
 528 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 529 // 0x00080000 each indicate a cancelled suspend request so they don't
 530 // count as wait failures either.
 531 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 532 
 533 class TraceSuspendDebugBits : public StackObj {
 534  private:
 535   JavaThread * jt;
 536   bool         is_wait;
 537   bool         called_by_wait;  // meaningful when !is_wait
 538   uint32_t *   bits;
 539 
 540  public:
 541   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 542                         uint32_t *_bits) {
 543     jt             = _jt;
 544     is_wait        = _is_wait;
 545     called_by_wait = _called_by_wait;
 546     bits           = _bits;
 547   }
 548 
 549   ~TraceSuspendDebugBits() {
 550     if (!is_wait) {
 551 #if 1
 552       // By default, don't trace bits for is_ext_suspend_completed() calls.
 553       // That trace is very chatty.
 554       return;
 555 #else
 556       if (!called_by_wait) {
 557         // If tracing for is_ext_suspend_completed() is enabled, then only
 558         // trace calls to it from wait_for_ext_suspend_completion()
 559         return;
 560       }
 561 #endif
 562     }
 563 
 564     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 565       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 566         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 567         ResourceMark rm;
 568 
 569         tty->print_cr(
 570                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 571                       jt->get_thread_name(), *bits);
 572 
 573         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 574       }
 575     }
 576   }
 577 };
 578 #undef DEBUG_FALSE_BITS
 579 
 580 
 581 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 582                                           uint32_t *bits) {
 583   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 584 
 585   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 586   bool do_trans_retry;           // flag to force the retry
 587 
 588   *bits |= 0x00000001;
 589 
 590   do {
 591     do_trans_retry = false;
 592 
 593     if (is_exiting()) {
 594       // Thread is in the process of exiting. This is always checked
 595       // first to reduce the risk of dereferencing a freed JavaThread.
 596       *bits |= 0x00000100;
 597       return false;
 598     }
 599 
 600     if (!is_external_suspend()) {
 601       // Suspend request is cancelled. This is always checked before
 602       // is_ext_suspended() to reduce the risk of a rogue resume
 603       // confusing the thread that made the suspend request.
 604       *bits |= 0x00000200;
 605       return false;
 606     }
 607 
 608     if (is_ext_suspended()) {
 609       // thread is suspended
 610       *bits |= 0x00000400;
 611       return true;
 612     }
 613 
 614     // Now that we no longer do hard suspends of threads running
 615     // native code, the target thread can be changing thread state
 616     // while we are in this routine:
 617     //
 618     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 619     //
 620     // We save a copy of the thread state as observed at this moment
 621     // and make our decision about suspend completeness based on the
 622     // copy. This closes the race where the thread state is seen as
 623     // _thread_in_native_trans in the if-thread_blocked check, but is
 624     // seen as _thread_blocked in if-thread_in_native_trans check.
 625     JavaThreadState save_state = thread_state();
 626 
 627     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 628       // If the thread's state is _thread_blocked and this blocking
 629       // condition is known to be equivalent to a suspend, then we can
 630       // consider the thread to be externally suspended. This means that
 631       // the code that sets _thread_blocked has been modified to do
 632       // self-suspension if the blocking condition releases. We also
 633       // used to check for CONDVAR_WAIT here, but that is now covered by
 634       // the _thread_blocked with self-suspension check.
 635       //
 636       // Return true since we wouldn't be here unless there was still an
 637       // external suspend request.
 638       *bits |= 0x00001000;
 639       return true;
 640     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 641       // Threads running native code will self-suspend on native==>VM/Java
 642       // transitions. If its stack is walkable (should always be the case
 643       // unless this function is called before the actual java_suspend()
 644       // call), then the wait is done.
 645       *bits |= 0x00002000;
 646       return true;
 647     } else if (!called_by_wait && !did_trans_retry &&
 648                save_state == _thread_in_native_trans &&
 649                frame_anchor()->walkable()) {
 650       // The thread is transitioning from thread_in_native to another
 651       // thread state. check_safepoint_and_suspend_for_native_trans()
 652       // will force the thread to self-suspend. If it hasn't gotten
 653       // there yet we may have caught the thread in-between the native
 654       // code check above and the self-suspend. Lucky us. If we were
 655       // called by wait_for_ext_suspend_completion(), then it
 656       // will be doing the retries so we don't have to.
 657       //
 658       // Since we use the saved thread state in the if-statement above,
 659       // there is a chance that the thread has already transitioned to
 660       // _thread_blocked by the time we get here. In that case, we will
 661       // make a single unnecessary pass through the logic below. This
 662       // doesn't hurt anything since we still do the trans retry.
 663 
 664       *bits |= 0x00004000;
 665 
 666       // Once the thread leaves thread_in_native_trans for another
 667       // thread state, we break out of this retry loop. We shouldn't
 668       // need this flag to prevent us from getting back here, but
 669       // sometimes paranoia is good.
 670       did_trans_retry = true;
 671 
 672       // We wait for the thread to transition to a more usable state.
 673       for (int i = 1; i <= SuspendRetryCount; i++) {
 674         // We used to do an "os::yield_all(i)" call here with the intention
 675         // that yielding would increase on each retry. However, the parameter
 676         // is ignored on Linux which means the yield didn't scale up. Waiting
 677         // on the SR_lock below provides a much more predictable scale up for
 678         // the delay. It also provides a simple/direct point to check for any
 679         // safepoint requests from the VMThread
 680 
 681         // temporarily drops SR_lock while doing wait with safepoint check
 682         // (if we're a JavaThread - the WatcherThread can also call this)
 683         // and increase delay with each retry
 684         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 685 
 686         // check the actual thread state instead of what we saved above
 687         if (thread_state() != _thread_in_native_trans) {
 688           // the thread has transitioned to another thread state so
 689           // try all the checks (except this one) one more time.
 690           do_trans_retry = true;
 691           break;
 692         }
 693       } // end retry loop
 694 
 695 
 696     }
 697   } while (do_trans_retry);
 698 
 699   *bits |= 0x00000010;
 700   return false;
 701 }
 702 
 703 // Wait for an external suspend request to complete (or be cancelled).
 704 // Returns true if the thread is externally suspended and false otherwise.
 705 //
 706 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 707                                                  uint32_t *bits) {
 708   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 709                              false /* !called_by_wait */, bits);
 710 
 711   // local flag copies to minimize SR_lock hold time
 712   bool is_suspended;
 713   bool pending;
 714   uint32_t reset_bits;
 715 
 716   // set a marker so is_ext_suspend_completed() knows we are the caller
 717   *bits |= 0x00010000;
 718 
 719   // We use reset_bits to reinitialize the bits value at the top of
 720   // each retry loop. This allows the caller to make use of any
 721   // unused bits for their own marking purposes.
 722   reset_bits = *bits;
 723 
 724   {
 725     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 726     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 727                                             delay, bits);
 728     pending = is_external_suspend();
 729   }
 730   // must release SR_lock to allow suspension to complete
 731 
 732   if (!pending) {
 733     // A cancelled suspend request is the only false return from
 734     // is_ext_suspend_completed() that keeps us from entering the
 735     // retry loop.
 736     *bits |= 0x00020000;
 737     return false;
 738   }
 739 
 740   if (is_suspended) {
 741     *bits |= 0x00040000;
 742     return true;
 743   }
 744 
 745   for (int i = 1; i <= retries; i++) {
 746     *bits = reset_bits;  // reinit to only track last retry
 747 
 748     // We used to do an "os::yield_all(i)" call here with the intention
 749     // that yielding would increase on each retry. However, the parameter
 750     // is ignored on Linux which means the yield didn't scale up. Waiting
 751     // on the SR_lock below provides a much more predictable scale up for
 752     // the delay. It also provides a simple/direct point to check for any
 753     // safepoint requests from the VMThread
 754 
 755     {
 756       MutexLocker ml(SR_lock());
 757       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 758       // can also call this)  and increase delay with each retry
 759       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 760 
 761       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 762                                               delay, bits);
 763 
 764       // It is possible for the external suspend request to be cancelled
 765       // (by a resume) before the actual suspend operation is completed.
 766       // Refresh our local copy to see if we still need to wait.
 767       pending = is_external_suspend();
 768     }
 769 
 770     if (!pending) {
 771       // A cancelled suspend request is the only false return from
 772       // is_ext_suspend_completed() that keeps us from staying in the
 773       // retry loop.
 774       *bits |= 0x00080000;
 775       return false;
 776     }
 777 
 778     if (is_suspended) {
 779       *bits |= 0x00100000;
 780       return true;
 781     }
 782   } // end retry loop
 783 
 784   // thread did not suspend after all our retries
 785   *bits |= 0x00200000;
 786   return false;
 787 }
 788 
 789 // Called from API entry points which perform stack walking. If the
 790 // associated JavaThread is the current thread, then wait_for_suspend
 791 // is not used. Otherwise, it determines if we should wait for the
 792 // "other" thread to complete external suspension. (NOTE: in future
 793 // releases the suspension mechanism should be reimplemented so this
 794 // is not necessary.)
 795 //
 796 bool
 797 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 798   if (this != JavaThread::current()) {
 799     // "other" threads require special handling.
 800     if (wait_for_suspend) {
 801       // We are allowed to wait for the external suspend to complete
 802       // so give the other thread a chance to get suspended.
 803       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 804                                            SuspendRetryDelay, bits)) {
 805         // Didn't make it so let the caller know.
 806         return false;
 807       }
 808     }
 809     // We aren't allowed to wait for the external suspend to complete
 810     // so if the other thread isn't externally suspended we need to
 811     // let the caller know.
 812     else if (!is_ext_suspend_completed_with_lock(bits)) {
 813       return false;
 814     }
 815   }
 816 
 817   return true;
 818 }
 819 
 820 #ifndef PRODUCT
 821 void JavaThread::record_jump(address target, address instr, const char* file,
 822                              int line) {
 823 
 824   // This should not need to be atomic as the only way for simultaneous
 825   // updates is via interrupts. Even then this should be rare or non-existent
 826   // and we don't care that much anyway.
 827 
 828   int index = _jmp_ring_index;
 829   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 830   _jmp_ring[index]._target = (intptr_t) target;
 831   _jmp_ring[index]._instruction = (intptr_t) instr;
 832   _jmp_ring[index]._file = file;
 833   _jmp_ring[index]._line = line;
 834 }
 835 #endif // PRODUCT
 836 
 837 void Thread::interrupt(Thread* thread) {
 838   debug_only(check_for_dangling_thread_pointer(thread);)
 839   os::interrupt(thread);
 840 }
 841 
 842 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 843   debug_only(check_for_dangling_thread_pointer(thread);)
 844   // Note:  If clear_interrupted==false, this simply fetches and
 845   // returns the value of the field osthread()->interrupted().
 846   return os::is_interrupted(thread, clear_interrupted);
 847 }
 848 
 849 
 850 // GC Support
 851 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 852   int thread_parity = _oops_do_parity;
 853   if (thread_parity != strong_roots_parity) {
 854     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 855     if (res == thread_parity) {
 856       return true;
 857     } else {
 858       guarantee(res == strong_roots_parity, "Or else what?");
 859       return false;
 860     }
 861   }
 862   return false;
 863 }
 864 
 865 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 866   active_handles()->oops_do(f);
 867   // Do oop for ThreadShadow
 868   f->do_oop((oop*)&_pending_exception);
 869   handle_area()->oops_do(f);
 870 
 871   // We scan thread local monitor lists here, and the remaining global
 872   // monitors in ObjectSynchronizer::oops_do().
 873   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 874 }
 875 
 876 void Thread::metadata_handles_do(void f(Metadata*)) {
 877   // Only walk the Handles in Thread.
 878   if (metadata_handles() != NULL) {
 879     for (int i = 0; i< metadata_handles()->length(); i++) {
 880       f(metadata_handles()->at(i));
 881     }
 882   }
 883 }
 884 
 885 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 886   // get_priority assumes osthread initialized
 887   if (osthread() != NULL) {
 888     int os_prio;
 889     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 890       st->print("os_prio=%d ", os_prio);
 891     }
 892 
 893     st->print("cpu=%.2fms ",
 894               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 895               );
 896     st->print("elapsed=%.2fs ",
 897               _statistical_info.getElapsedTime() / 1000.0
 898               );
 899     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 900       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 901       st->print("allocated=" SIZE_FORMAT "%s ",
 902                 byte_size_in_proper_unit(allocated_bytes),
 903                 proper_unit_for_byte_size(allocated_bytes)
 904                 );
 905       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 906     }
 907 
 908     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 909     osthread()->print_on(st);
 910   }
 911   ThreadsSMRSupport::print_info_on(this, st);
 912   st->print(" ");
 913   debug_only(if (WizardMode) print_owned_locks_on(st);)
 914 }
 915 
 916 // Thread::print_on_error() is called by fatal error handler. Don't use
 917 // any lock or allocate memory.
 918 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 919   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 920 
 921   if (is_VM_thread())                 { st->print("VMThread"); }
 922   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 923   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 924   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 925   else                                { st->print("Thread"); }
 926 
 927   if (is_Named_thread()) {
 928     st->print(" \"%s\"", name());
 929   }
 930 
 931   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 932             p2i(stack_end()), p2i(stack_base()));
 933 
 934   if (osthread()) {
 935     st->print(" [id=%d]", osthread()->thread_id());
 936   }
 937 
 938   ThreadsSMRSupport::print_info_on(this, st);
 939 }
 940 
 941 void Thread::print_value_on(outputStream* st) const {
 942   if (is_Named_thread()) {
 943     st->print(" \"%s\" ", name());
 944   }
 945   st->print(INTPTR_FORMAT, p2i(this));   // print address
 946 }
 947 
 948 #ifdef ASSERT
 949 void Thread::print_owned_locks_on(outputStream* st) const {
 950   Monitor *cur = _owned_locks;
 951   if (cur == NULL) {
 952     st->print(" (no locks) ");
 953   } else {
 954     st->print_cr(" Locks owned:");
 955     while (cur) {
 956       cur->print_on(st);
 957       cur = cur->next();
 958     }
 959   }
 960 }
 961 
 962 static int ref_use_count  = 0;
 963 
 964 bool Thread::owns_locks_but_compiled_lock() const {
 965   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 966     if (cur != Compile_lock) return true;
 967   }
 968   return false;
 969 }
 970 
 971 
 972 #endif
 973 
 974 #ifndef PRODUCT
 975 
 976 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
 977 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
 978 // no locks which allow_vm_block's are held
 979 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 980   // Check if current thread is allowed to block at a safepoint
 981   if (!(_allow_safepoint_count == 0)) {
 982     fatal("Possible safepoint reached by thread that does not allow it");
 983   }
 984   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 985     fatal("LEAF method calling lock?");
 986   }
 987 
 988 #ifdef ASSERT
 989   if (potential_vm_operation && is_Java_thread()
 990       && !Universe::is_bootstrapping()) {
 991     // Make sure we do not hold any locks that the VM thread also uses.
 992     // This could potentially lead to deadlocks
 993     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 994       // Threads_lock is special, since the safepoint synchronization will not start before this is
 995       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 996       // since it is used to transfer control between JavaThreads and the VMThread
 997       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 998       if ((cur->allow_vm_block() &&
 999            cur != Threads_lock &&
1000            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1001            cur != VMOperationRequest_lock &&
1002            cur != VMOperationQueue_lock) ||
1003            cur->rank() == Mutex::special) {
1004         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1005       }
1006     }
1007   }
1008 
1009   if (GCALotAtAllSafepoints) {
1010     // We could enter a safepoint here and thus have a gc
1011     InterfaceSupport::check_gc_alot();
1012   }
1013 #endif
1014 }
1015 #endif
1016 
1017 bool Thread::is_in_stack(address adr) const {
1018   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1019   address end = os::current_stack_pointer();
1020   // Allow non Java threads to call this without stack_base
1021   if (_stack_base == NULL) return true;
1022   if (stack_base() >= adr && adr >= end) return true;
1023 
1024   return false;
1025 }
1026 
1027 bool Thread::is_in_usable_stack(address adr) const {
1028   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1029   size_t usable_stack_size = _stack_size - stack_guard_size;
1030 
1031   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1032 }
1033 
1034 
1035 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1036 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1037 // used for compilation in the future. If that change is made, the need for these methods
1038 // should be revisited, and they should be removed if possible.
1039 
1040 bool Thread::is_lock_owned(address adr) const {
1041   return on_local_stack(adr);
1042 }
1043 
1044 bool Thread::set_as_starting_thread() {
1045   // NOTE: this must be called inside the main thread.
1046   return os::create_main_thread((JavaThread*)this);
1047 }
1048 
1049 static void initialize_class(Symbol* class_name, TRAPS) {
1050   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1051   InstanceKlass::cast(klass)->initialize(CHECK);
1052 }
1053 
1054 
1055 // Creates the initial ThreadGroup
1056 static Handle create_initial_thread_group(TRAPS) {
1057   Handle system_instance = JavaCalls::construct_new_instance(
1058                             SystemDictionary::ThreadGroup_klass(),
1059                             vmSymbols::void_method_signature(),
1060                             CHECK_NH);
1061   Universe::set_system_thread_group(system_instance());
1062 
1063   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1064   Handle main_instance = JavaCalls::construct_new_instance(
1065                             SystemDictionary::ThreadGroup_klass(),
1066                             vmSymbols::threadgroup_string_void_signature(),
1067                             system_instance,
1068                             string,
1069                             CHECK_NH);
1070   return main_instance;
1071 }
1072 
1073 // Creates the initial Thread
1074 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1075                                  TRAPS) {
1076   InstanceKlass* ik = SystemDictionary::Thread_klass();
1077   assert(ik->is_initialized(), "must be");
1078   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1079 
1080   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1081   // constructor calls Thread.current(), which must be set here for the
1082   // initial thread.
1083   java_lang_Thread::set_thread(thread_oop(), thread);
1084   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1085   thread->set_threadObj(thread_oop());
1086 
1087   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1088 
1089   JavaValue result(T_VOID);
1090   JavaCalls::call_special(&result, thread_oop,
1091                           ik,
1092                           vmSymbols::object_initializer_name(),
1093                           vmSymbols::threadgroup_string_void_signature(),
1094                           thread_group,
1095                           string,
1096                           CHECK_NULL);
1097   return thread_oop();
1098 }
1099 
1100 char java_runtime_name[128] = "";
1101 char java_runtime_version[128] = "";
1102 
1103 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1104 static const char* get_java_runtime_name(TRAPS) {
1105   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1106                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1107   fieldDescriptor fd;
1108   bool found = k != NULL &&
1109                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1110                                                         vmSymbols::string_signature(), &fd);
1111   if (found) {
1112     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1113     if (name_oop == NULL) {
1114       return NULL;
1115     }
1116     const char* name = java_lang_String::as_utf8_string(name_oop,
1117                                                         java_runtime_name,
1118                                                         sizeof(java_runtime_name));
1119     return name;
1120   } else {
1121     return NULL;
1122   }
1123 }
1124 
1125 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1126 static const char* get_java_runtime_version(TRAPS) {
1127   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1128                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1129   fieldDescriptor fd;
1130   bool found = k != NULL &&
1131                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1132                                                         vmSymbols::string_signature(), &fd);
1133   if (found) {
1134     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1135     if (name_oop == NULL) {
1136       return NULL;
1137     }
1138     const char* name = java_lang_String::as_utf8_string(name_oop,
1139                                                         java_runtime_version,
1140                                                         sizeof(java_runtime_version));
1141     return name;
1142   } else {
1143     return NULL;
1144   }
1145 }
1146 
1147 // General purpose hook into Java code, run once when the VM is initialized.
1148 // The Java library method itself may be changed independently from the VM.
1149 static void call_postVMInitHook(TRAPS) {
1150   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1151   if (klass != NULL) {
1152     JavaValue result(T_VOID);
1153     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1154                            vmSymbols::void_method_signature(),
1155                            CHECK);
1156   }
1157 }
1158 
1159 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1160                                     bool daemon, TRAPS) {
1161   assert(thread_group.not_null(), "thread group should be specified");
1162   assert(threadObj() == NULL, "should only create Java thread object once");
1163 
1164   InstanceKlass* ik = SystemDictionary::Thread_klass();
1165   assert(ik->is_initialized(), "must be");
1166   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1167 
1168   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1169   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1170   // constructor calls Thread.current(), which must be set here.
1171   java_lang_Thread::set_thread(thread_oop(), this);
1172   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1173   set_threadObj(thread_oop());
1174 
1175   JavaValue result(T_VOID);
1176   if (thread_name != NULL) {
1177     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1178     // Thread gets assigned specified name and null target
1179     JavaCalls::call_special(&result,
1180                             thread_oop,
1181                             ik,
1182                             vmSymbols::object_initializer_name(),
1183                             vmSymbols::threadgroup_string_void_signature(),
1184                             thread_group,
1185                             name,
1186                             THREAD);
1187   } else {
1188     // Thread gets assigned name "Thread-nnn" and null target
1189     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1190     JavaCalls::call_special(&result,
1191                             thread_oop,
1192                             ik,
1193                             vmSymbols::object_initializer_name(),
1194                             vmSymbols::threadgroup_runnable_void_signature(),
1195                             thread_group,
1196                             Handle(),
1197                             THREAD);
1198   }
1199 
1200 
1201   if (daemon) {
1202     java_lang_Thread::set_daemon(thread_oop());
1203   }
1204 
1205   if (HAS_PENDING_EXCEPTION) {
1206     return;
1207   }
1208 
1209   Klass* group =  SystemDictionary::ThreadGroup_klass();
1210   Handle threadObj(THREAD, this->threadObj());
1211 
1212   JavaCalls::call_special(&result,
1213                           thread_group,
1214                           group,
1215                           vmSymbols::add_method_name(),
1216                           vmSymbols::thread_void_signature(),
1217                           threadObj,          // Arg 1
1218                           THREAD);
1219 }
1220 
1221 // List of all NonJavaThreads and safe iteration over that list.
1222 
1223 class NonJavaThread::List {
1224 public:
1225   NonJavaThread* volatile _head;
1226   SingleWriterSynchronizer _protect;
1227 
1228   List() : _head(NULL), _protect() {}
1229 };
1230 
1231 NonJavaThread::List NonJavaThread::_the_list;
1232 
1233 NonJavaThread::Iterator::Iterator() :
1234   _protect_enter(_the_list._protect.enter()),
1235   _current(OrderAccess::load_acquire(&_the_list._head))
1236 {}
1237 
1238 NonJavaThread::Iterator::~Iterator() {
1239   _the_list._protect.exit(_protect_enter);
1240 }
1241 
1242 void NonJavaThread::Iterator::step() {
1243   assert(!end(), "precondition");
1244   _current = OrderAccess::load_acquire(&_current->_next);
1245 }
1246 
1247 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1248   // Add this thread to _the_list.
1249   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1250   _next = _the_list._head;
1251   OrderAccess::release_store(&_the_list._head, this);
1252 }
1253 
1254 NonJavaThread::~NonJavaThread() {
1255   // Remove this thread from _the_list.
1256   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1257   NonJavaThread* volatile* p = &_the_list._head;
1258   for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1259     if (t == this) {
1260       *p = this->_next;
1261       // Wait for any in-progress iterators.
1262       _the_list._protect.synchronize();
1263       break;
1264     }
1265   }
1266 }
1267 
1268 // NamedThread --  non-JavaThread subclasses with multiple
1269 // uniquely named instances should derive from this.
1270 NamedThread::NamedThread() :
1271   NonJavaThread(),
1272   _name(NULL),
1273   _processed_thread(NULL),
1274   _gc_id(GCId::undefined())
1275 {}
1276 
1277 NamedThread::~NamedThread() {
1278   if (_name != NULL) {
1279     FREE_C_HEAP_ARRAY(char, _name);
1280     _name = NULL;
1281   }
1282 }
1283 
1284 void NamedThread::set_name(const char* format, ...) {
1285   guarantee(_name == NULL, "Only get to set name once.");
1286   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1287   guarantee(_name != NULL, "alloc failure");
1288   va_list ap;
1289   va_start(ap, format);
1290   jio_vsnprintf(_name, max_name_len, format, ap);
1291   va_end(ap);
1292 }
1293 
1294 void NamedThread::initialize_named_thread() {
1295   set_native_thread_name(name());
1296 }
1297 
1298 void NamedThread::print_on(outputStream* st) const {
1299   st->print("\"%s\" ", name());
1300   Thread::print_on(st);
1301   st->cr();
1302 }
1303 
1304 
1305 // ======= WatcherThread ========
1306 
1307 // The watcher thread exists to simulate timer interrupts.  It should
1308 // be replaced by an abstraction over whatever native support for
1309 // timer interrupts exists on the platform.
1310 
1311 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1312 bool WatcherThread::_startable = false;
1313 volatile bool  WatcherThread::_should_terminate = false;
1314 
1315 WatcherThread::WatcherThread() : NonJavaThread() {
1316   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1317   if (os::create_thread(this, os::watcher_thread)) {
1318     _watcher_thread = this;
1319 
1320     // Set the watcher thread to the highest OS priority which should not be
1321     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1322     // is created. The only normal thread using this priority is the reference
1323     // handler thread, which runs for very short intervals only.
1324     // If the VMThread's priority is not lower than the WatcherThread profiling
1325     // will be inaccurate.
1326     os::set_priority(this, MaxPriority);
1327     if (!DisableStartThread) {
1328       os::start_thread(this);
1329     }
1330   }
1331 }
1332 
1333 int WatcherThread::sleep() const {
1334   // The WatcherThread does not participate in the safepoint protocol
1335   // for the PeriodicTask_lock because it is not a JavaThread.
1336   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1337 
1338   if (_should_terminate) {
1339     // check for termination before we do any housekeeping or wait
1340     return 0;  // we did not sleep.
1341   }
1342 
1343   // remaining will be zero if there are no tasks,
1344   // causing the WatcherThread to sleep until a task is
1345   // enrolled
1346   int remaining = PeriodicTask::time_to_wait();
1347   int time_slept = 0;
1348 
1349   // we expect this to timeout - we only ever get unparked when
1350   // we should terminate or when a new task has been enrolled
1351   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1352 
1353   jlong time_before_loop = os::javaTimeNanos();
1354 
1355   while (true) {
1356     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1357                                             remaining);
1358     jlong now = os::javaTimeNanos();
1359 
1360     if (remaining == 0) {
1361       // if we didn't have any tasks we could have waited for a long time
1362       // consider the time_slept zero and reset time_before_loop
1363       time_slept = 0;
1364       time_before_loop = now;
1365     } else {
1366       // need to recalculate since we might have new tasks in _tasks
1367       time_slept = (int) ((now - time_before_loop) / 1000000);
1368     }
1369 
1370     // Change to task list or spurious wakeup of some kind
1371     if (timedout || _should_terminate) {
1372       break;
1373     }
1374 
1375     remaining = PeriodicTask::time_to_wait();
1376     if (remaining == 0) {
1377       // Last task was just disenrolled so loop around and wait until
1378       // another task gets enrolled
1379       continue;
1380     }
1381 
1382     remaining -= time_slept;
1383     if (remaining <= 0) {
1384       break;
1385     }
1386   }
1387 
1388   return time_slept;
1389 }
1390 
1391 void WatcherThread::run() {
1392   assert(this == watcher_thread(), "just checking");
1393 
1394   this->set_native_thread_name(this->name());
1395   this->set_active_handles(JNIHandleBlock::allocate_block());
1396   while (true) {
1397     assert(watcher_thread() == Thread::current(), "thread consistency check");
1398     assert(watcher_thread() == this, "thread consistency check");
1399 
1400     // Calculate how long it'll be until the next PeriodicTask work
1401     // should be done, and sleep that amount of time.
1402     int time_waited = sleep();
1403 
1404     if (VMError::is_error_reported()) {
1405       // A fatal error has happened, the error handler(VMError::report_and_die)
1406       // should abort JVM after creating an error log file. However in some
1407       // rare cases, the error handler itself might deadlock. Here periodically
1408       // check for error reporting timeouts, and if it happens, just proceed to
1409       // abort the VM.
1410 
1411       // This code is in WatcherThread because WatcherThread wakes up
1412       // periodically so the fatal error handler doesn't need to do anything;
1413       // also because the WatcherThread is less likely to crash than other
1414       // threads.
1415 
1416       for (;;) {
1417         // Note: we use naked sleep in this loop because we want to avoid using
1418         // any kind of VM infrastructure which may be broken at this point.
1419         if (VMError::check_timeout()) {
1420           // We hit error reporting timeout. Error reporting was interrupted and
1421           // will be wrapping things up now (closing files etc). Give it some more
1422           // time, then quit the VM.
1423           os::naked_short_sleep(200);
1424           // Print a message to stderr.
1425           fdStream err(defaultStream::output_fd());
1426           err.print_raw_cr("# [ timer expired, abort... ]");
1427           // skip atexit/vm_exit/vm_abort hooks
1428           os::die();
1429         }
1430 
1431         // Wait a second, then recheck for timeout.
1432         os::naked_short_sleep(999);
1433       }
1434     }
1435 
1436     if (_should_terminate) {
1437       // check for termination before posting the next tick
1438       break;
1439     }
1440 
1441     PeriodicTask::real_time_tick(time_waited);
1442   }
1443 
1444   // Signal that it is terminated
1445   {
1446     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1447     _watcher_thread = NULL;
1448     Terminator_lock->notify();
1449   }
1450 }
1451 
1452 void WatcherThread::start() {
1453   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1454 
1455   if (watcher_thread() == NULL && _startable) {
1456     _should_terminate = false;
1457     // Create the single instance of WatcherThread
1458     new WatcherThread();
1459   }
1460 }
1461 
1462 void WatcherThread::make_startable() {
1463   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1464   _startable = true;
1465 }
1466 
1467 void WatcherThread::stop() {
1468   {
1469     // Follow normal safepoint aware lock enter protocol since the
1470     // WatcherThread is stopped by another JavaThread.
1471     MutexLocker ml(PeriodicTask_lock);
1472     _should_terminate = true;
1473 
1474     WatcherThread* watcher = watcher_thread();
1475     if (watcher != NULL) {
1476       // unpark the WatcherThread so it can see that it should terminate
1477       watcher->unpark();
1478     }
1479   }
1480 
1481   MutexLocker mu(Terminator_lock);
1482 
1483   while (watcher_thread() != NULL) {
1484     // This wait should make safepoint checks, wait without a timeout,
1485     // and wait as a suspend-equivalent condition.
1486     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1487                           Mutex::_as_suspend_equivalent_flag);
1488   }
1489 }
1490 
1491 void WatcherThread::unpark() {
1492   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1493   PeriodicTask_lock->notify();
1494 }
1495 
1496 void WatcherThread::print_on(outputStream* st) const {
1497   st->print("\"%s\" ", name());
1498   Thread::print_on(st);
1499   st->cr();
1500 }
1501 
1502 // ======= JavaThread ========
1503 
1504 #if INCLUDE_JVMCI
1505 
1506 jlong* JavaThread::_jvmci_old_thread_counters;
1507 
1508 bool jvmci_counters_include(JavaThread* thread) {
1509   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1510 }
1511 
1512 void JavaThread::collect_counters(typeArrayOop array) {
1513   if (JVMCICounterSize > 0) {
1514     JavaThreadIteratorWithHandle jtiwh;
1515     for (int i = 0; i < array->length(); i++) {
1516       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1517     }
1518     for (; JavaThread *tp = jtiwh.next(); ) {
1519       if (jvmci_counters_include(tp)) {
1520         for (int i = 0; i < array->length(); i++) {
1521           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1522         }
1523       }
1524     }
1525   }
1526 }
1527 
1528 #endif // INCLUDE_JVMCI
1529 
1530 // A JavaThread is a normal Java thread
1531 
1532 void JavaThread::initialize() {
1533   // Initialize fields
1534 
1535   set_saved_exception_pc(NULL);
1536   set_threadObj(NULL);
1537   _anchor.clear();
1538   set_entry_point(NULL);
1539   set_jni_functions(jni_functions());
1540   set_callee_target(NULL);
1541   set_vm_result(NULL);
1542   set_vm_result_2(NULL);
1543   set_vframe_array_head(NULL);
1544   set_vframe_array_last(NULL);
1545   set_deferred_locals(NULL);
1546   set_deopt_mark(NULL);
1547   set_deopt_compiled_method(NULL);
1548   clear_must_deopt_id();
1549   set_monitor_chunks(NULL);
1550   set_next(NULL);
1551   _on_thread_list = false;
1552   set_thread_state(_thread_new);
1553   _terminated = _not_terminated;
1554   _privileged_stack_top = NULL;
1555   _array_for_gc = NULL;
1556   _suspend_equivalent = false;
1557   _in_deopt_handler = 0;
1558   _doing_unsafe_access = false;
1559   _stack_guard_state = stack_guard_unused;
1560 #if INCLUDE_JVMCI
1561   _pending_monitorenter = false;
1562   _pending_deoptimization = -1;
1563   _pending_failed_speculation = 0;
1564   _pending_transfer_to_interpreter = false;
1565   _adjusting_comp_level = false;
1566   _in_retryable_allocation = false;
1567   _jvmci._alternate_call_target = NULL;
1568   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1569   if (JVMCICounterSize > 0) {
1570     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1571     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1572   } else {
1573     _jvmci_counters = NULL;
1574   }
1575 #endif // INCLUDE_JVMCI
1576   _reserved_stack_activation = NULL;  // stack base not known yet
1577   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1578   _exception_pc  = 0;
1579   _exception_handler_pc = 0;
1580   _is_method_handle_return = 0;
1581   _jvmti_thread_state= NULL;
1582   _should_post_on_exceptions_flag = JNI_FALSE;
1583   _interp_only_mode    = 0;
1584   _special_runtime_exit_condition = _no_async_condition;
1585   _pending_async_exception = NULL;
1586   _thread_stat = NULL;
1587   _thread_stat = new ThreadStatistics();
1588   _blocked_on_compilation = false;
1589   _jni_active_critical = 0;
1590   _pending_jni_exception_check_fn = NULL;
1591   _do_not_unlock_if_synchronized = false;
1592   _cached_monitor_info = NULL;
1593   _parker = Parker::Allocate(this);
1594 
1595 #ifndef PRODUCT
1596   _jmp_ring_index = 0;
1597   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1598     record_jump(NULL, NULL, NULL, 0);
1599   }
1600 #endif // PRODUCT
1601 
1602   // Setup safepoint state info for this thread
1603   ThreadSafepointState::create(this);
1604 
1605   debug_only(_java_call_counter = 0);
1606 
1607   // JVMTI PopFrame support
1608   _popframe_condition = popframe_inactive;
1609   _popframe_preserved_args = NULL;
1610   _popframe_preserved_args_size = 0;
1611   _frames_to_pop_failed_realloc = 0;
1612 
1613   if (SafepointMechanism::uses_thread_local_poll()) {
1614     SafepointMechanism::initialize_header(this);
1615   }
1616 
1617   pd_initialize();
1618 }
1619 
1620 JavaThread::JavaThread(bool is_attaching_via_jni) :
1621                        Thread() {
1622   initialize();
1623   if (is_attaching_via_jni) {
1624     _jni_attach_state = _attaching_via_jni;
1625   } else {
1626     _jni_attach_state = _not_attaching_via_jni;
1627   }
1628   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1629 }
1630 
1631 bool JavaThread::reguard_stack(address cur_sp) {
1632   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1633       && _stack_guard_state != stack_guard_reserved_disabled) {
1634     return true; // Stack already guarded or guard pages not needed.
1635   }
1636 
1637   if (register_stack_overflow()) {
1638     // For those architectures which have separate register and
1639     // memory stacks, we must check the register stack to see if
1640     // it has overflowed.
1641     return false;
1642   }
1643 
1644   // Java code never executes within the yellow zone: the latter is only
1645   // there to provoke an exception during stack banging.  If java code
1646   // is executing there, either StackShadowPages should be larger, or
1647   // some exception code in c1, c2 or the interpreter isn't unwinding
1648   // when it should.
1649   guarantee(cur_sp > stack_reserved_zone_base(),
1650             "not enough space to reguard - increase StackShadowPages");
1651   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1652     enable_stack_yellow_reserved_zone();
1653     if (reserved_stack_activation() != stack_base()) {
1654       set_reserved_stack_activation(stack_base());
1655     }
1656   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1657     set_reserved_stack_activation(stack_base());
1658     enable_stack_reserved_zone();
1659   }
1660   return true;
1661 }
1662 
1663 bool JavaThread::reguard_stack(void) {
1664   return reguard_stack(os::current_stack_pointer());
1665 }
1666 
1667 
1668 void JavaThread::block_if_vm_exited() {
1669   if (_terminated == _vm_exited) {
1670     // _vm_exited is set at safepoint, and Threads_lock is never released
1671     // we will block here forever
1672     Threads_lock->lock_without_safepoint_check();
1673     ShouldNotReachHere();
1674   }
1675 }
1676 
1677 
1678 // Remove this ifdef when C1 is ported to the compiler interface.
1679 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1680 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1681 
1682 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1683                        Thread() {
1684   initialize();
1685   _jni_attach_state = _not_attaching_via_jni;
1686   set_entry_point(entry_point);
1687   // Create the native thread itself.
1688   // %note runtime_23
1689   os::ThreadType thr_type = os::java_thread;
1690   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1691                                                      os::java_thread;
1692   os::create_thread(this, thr_type, stack_sz);
1693   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1694   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1695   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1696   // the exception consists of creating the exception object & initializing it, initialization
1697   // will leave the VM via a JavaCall and then all locks must be unlocked).
1698   //
1699   // The thread is still suspended when we reach here. Thread must be explicit started
1700   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1701   // by calling Threads:add. The reason why this is not done here, is because the thread
1702   // object must be fully initialized (take a look at JVM_Start)
1703 }
1704 
1705 JavaThread::~JavaThread() {
1706 
1707   // JSR166 -- return the parker to the free list
1708   Parker::Release(_parker);
1709   _parker = NULL;
1710 
1711   // Free any remaining  previous UnrollBlock
1712   vframeArray* old_array = vframe_array_last();
1713 
1714   if (old_array != NULL) {
1715     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1716     old_array->set_unroll_block(NULL);
1717     delete old_info;
1718     delete old_array;
1719   }
1720 
1721   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1722   if (deferred != NULL) {
1723     // This can only happen if thread is destroyed before deoptimization occurs.
1724     assert(deferred->length() != 0, "empty array!");
1725     do {
1726       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1727       deferred->remove_at(0);
1728       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1729       delete dlv;
1730     } while (deferred->length() != 0);
1731     delete deferred;
1732   }
1733 
1734   // All Java related clean up happens in exit
1735   ThreadSafepointState::destroy(this);
1736   if (_thread_stat != NULL) delete _thread_stat;
1737 
1738 #if INCLUDE_JVMCI
1739   if (JVMCICounterSize > 0) {
1740     if (jvmci_counters_include(this)) {
1741       for (int i = 0; i < JVMCICounterSize; i++) {
1742         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1743       }
1744     }
1745     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1746   }
1747 #endif // INCLUDE_JVMCI
1748 }
1749 
1750 
1751 // The first routine called by a new Java thread
1752 void JavaThread::run() {
1753   // initialize thread-local alloc buffer related fields
1754   this->initialize_tlab();
1755 
1756   // used to test validity of stack trace backs
1757   this->record_base_of_stack_pointer();
1758 
1759   this->create_stack_guard_pages();
1760 
1761   this->cache_global_variables();
1762 
1763   // Thread is now sufficient initialized to be handled by the safepoint code as being
1764   // in the VM. Change thread state from _thread_new to _thread_in_vm
1765   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1766 
1767   assert(JavaThread::current() == this, "sanity check");
1768   assert(!Thread::current()->owns_locks(), "sanity check");
1769 
1770   DTRACE_THREAD_PROBE(start, this);
1771 
1772   // This operation might block. We call that after all safepoint checks for a new thread has
1773   // been completed.
1774   this->set_active_handles(JNIHandleBlock::allocate_block());
1775 
1776   if (JvmtiExport::should_post_thread_life()) {
1777     JvmtiExport::post_thread_start(this);
1778   }
1779 
1780   EventThreadStart event;
1781   if (event.should_commit()) {
1782     event.set_thread(JFR_THREAD_ID(this));
1783     event.commit();
1784   }
1785 
1786   // We call another function to do the rest so we are sure that the stack addresses used
1787   // from there will be lower than the stack base just computed
1788   thread_main_inner();
1789 
1790   // Note, thread is no longer valid at this point!
1791 }
1792 
1793 
1794 void JavaThread::thread_main_inner() {
1795   assert(JavaThread::current() == this, "sanity check");
1796   assert(this->threadObj() != NULL, "just checking");
1797 
1798   // Execute thread entry point unless this thread has a pending exception
1799   // or has been stopped before starting.
1800   // Note: Due to JVM_StopThread we can have pending exceptions already!
1801   if (!this->has_pending_exception() &&
1802       !java_lang_Thread::is_stillborn(this->threadObj())) {
1803     {
1804       ResourceMark rm(this);
1805       this->set_native_thread_name(this->get_thread_name());
1806     }
1807     HandleMark hm(this);
1808     this->entry_point()(this, this);
1809   }
1810 
1811   DTRACE_THREAD_PROBE(stop, this);
1812 
1813   this->exit(false);
1814   this->smr_delete();
1815 }
1816 
1817 
1818 static void ensure_join(JavaThread* thread) {
1819   // We do not need to grab the Threads_lock, since we are operating on ourself.
1820   Handle threadObj(thread, thread->threadObj());
1821   assert(threadObj.not_null(), "java thread object must exist");
1822   ObjectLocker lock(threadObj, thread);
1823   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1824   thread->clear_pending_exception();
1825   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1826   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1827   // Clear the native thread instance - this makes isAlive return false and allows the join()
1828   // to complete once we've done the notify_all below
1829   java_lang_Thread::set_thread(threadObj(), NULL);
1830   lock.notify_all(thread);
1831   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1832   thread->clear_pending_exception();
1833 }
1834 
1835 
1836 // For any new cleanup additions, please check to see if they need to be applied to
1837 // cleanup_failed_attach_current_thread as well.
1838 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1839   assert(this == JavaThread::current(), "thread consistency check");
1840 
1841   elapsedTimer _timer_exit_phase1;
1842   elapsedTimer _timer_exit_phase2;
1843   elapsedTimer _timer_exit_phase3;
1844   elapsedTimer _timer_exit_phase4;
1845 
1846   if (log_is_enabled(Debug, os, thread, timer)) {
1847     _timer_exit_phase1.start();
1848   }
1849 
1850   HandleMark hm(this);
1851   Handle uncaught_exception(this, this->pending_exception());
1852   this->clear_pending_exception();
1853   Handle threadObj(this, this->threadObj());
1854   assert(threadObj.not_null(), "Java thread object should be created");
1855 
1856   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1857   {
1858     EXCEPTION_MARK;
1859 
1860     CLEAR_PENDING_EXCEPTION;
1861   }
1862   if (!destroy_vm) {
1863     if (uncaught_exception.not_null()) {
1864       EXCEPTION_MARK;
1865       // Call method Thread.dispatchUncaughtException().
1866       Klass* thread_klass = SystemDictionary::Thread_klass();
1867       JavaValue result(T_VOID);
1868       JavaCalls::call_virtual(&result,
1869                               threadObj, thread_klass,
1870                               vmSymbols::dispatchUncaughtException_name(),
1871                               vmSymbols::throwable_void_signature(),
1872                               uncaught_exception,
1873                               THREAD);
1874       if (HAS_PENDING_EXCEPTION) {
1875         ResourceMark rm(this);
1876         jio_fprintf(defaultStream::error_stream(),
1877                     "\nException: %s thrown from the UncaughtExceptionHandler"
1878                     " in thread \"%s\"\n",
1879                     pending_exception()->klass()->external_name(),
1880                     get_thread_name());
1881         CLEAR_PENDING_EXCEPTION;
1882       }
1883     }
1884 
1885     // Called before the java thread exit since we want to read info
1886     // from java_lang_Thread object
1887     EventThreadEnd event;
1888     if (event.should_commit()) {
1889       event.set_thread(JFR_THREAD_ID(this));
1890       event.commit();
1891     }
1892 
1893     // Call after last event on thread
1894     JFR_ONLY(Jfr::on_thread_exit(this);)
1895 
1896     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1897     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1898     // is deprecated anyhow.
1899     if (!is_Compiler_thread()) {
1900       int count = 3;
1901       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1902         EXCEPTION_MARK;
1903         JavaValue result(T_VOID);
1904         Klass* thread_klass = SystemDictionary::Thread_klass();
1905         JavaCalls::call_virtual(&result,
1906                                 threadObj, thread_klass,
1907                                 vmSymbols::exit_method_name(),
1908                                 vmSymbols::void_method_signature(),
1909                                 THREAD);
1910         CLEAR_PENDING_EXCEPTION;
1911       }
1912     }
1913     // notify JVMTI
1914     if (JvmtiExport::should_post_thread_life()) {
1915       JvmtiExport::post_thread_end(this);
1916     }
1917 
1918     // We have notified the agents that we are exiting, before we go on,
1919     // we must check for a pending external suspend request and honor it
1920     // in order to not surprise the thread that made the suspend request.
1921     while (true) {
1922       {
1923         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1924         if (!is_external_suspend()) {
1925           set_terminated(_thread_exiting);
1926           ThreadService::current_thread_exiting(this);
1927           break;
1928         }
1929         // Implied else:
1930         // Things get a little tricky here. We have a pending external
1931         // suspend request, but we are holding the SR_lock so we
1932         // can't just self-suspend. So we temporarily drop the lock
1933         // and then self-suspend.
1934       }
1935 
1936       ThreadBlockInVM tbivm(this);
1937       java_suspend_self();
1938 
1939       // We're done with this suspend request, but we have to loop around
1940       // and check again. Eventually we will get SR_lock without a pending
1941       // external suspend request and will be able to mark ourselves as
1942       // exiting.
1943     }
1944     // no more external suspends are allowed at this point
1945   } else {
1946     // before_exit() has already posted JVMTI THREAD_END events
1947   }
1948 
1949   if (log_is_enabled(Debug, os, thread, timer)) {
1950     _timer_exit_phase1.stop();
1951     _timer_exit_phase2.start();
1952   }
1953   // Notify waiters on thread object. This has to be done after exit() is called
1954   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1955   // group should have the destroyed bit set before waiters are notified).
1956   ensure_join(this);
1957   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1958 
1959   if (log_is_enabled(Debug, os, thread, timer)) {
1960     _timer_exit_phase2.stop();
1961     _timer_exit_phase3.start();
1962   }
1963   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1964   // held by this thread must be released. The spec does not distinguish
1965   // between JNI-acquired and regular Java monitors. We can only see
1966   // regular Java monitors here if monitor enter-exit matching is broken.
1967   //
1968   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1969   // ObjectSynchronizer::release_monitors_owned_by_thread().
1970   if (exit_type == jni_detach) {
1971     // Sanity check even though JNI DetachCurrentThread() would have
1972     // returned JNI_ERR if there was a Java frame. JavaThread exit
1973     // should be done executing Java code by the time we get here.
1974     assert(!this->has_last_Java_frame(),
1975            "should not have a Java frame when detaching or exiting");
1976     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1977     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1978   }
1979 
1980   // These things needs to be done while we are still a Java Thread. Make sure that thread
1981   // is in a consistent state, in case GC happens
1982   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1983 
1984   if (active_handles() != NULL) {
1985     JNIHandleBlock* block = active_handles();
1986     set_active_handles(NULL);
1987     JNIHandleBlock::release_block(block);
1988   }
1989 
1990   if (free_handle_block() != NULL) {
1991     JNIHandleBlock* block = free_handle_block();
1992     set_free_handle_block(NULL);
1993     JNIHandleBlock::release_block(block);
1994   }
1995 
1996   // These have to be removed while this is still a valid thread.
1997   remove_stack_guard_pages();
1998 
1999   if (UseTLAB) {
2000     tlab().retire();
2001   }
2002 
2003   if (JvmtiEnv::environments_might_exist()) {
2004     JvmtiExport::cleanup_thread(this);
2005   }
2006 
2007   // We must flush any deferred card marks and other various GC barrier
2008   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2009   // before removing a thread from the list of active threads.
2010   BarrierSet::barrier_set()->on_thread_detach(this);
2011 
2012   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2013     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2014     os::current_thread_id());
2015 
2016   if (log_is_enabled(Debug, os, thread, timer)) {
2017     _timer_exit_phase3.stop();
2018     _timer_exit_phase4.start();
2019   }
2020   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2021   Threads::remove(this);
2022 
2023   if (log_is_enabled(Debug, os, thread, timer)) {
2024     _timer_exit_phase4.stop();
2025     ResourceMark rm(this);
2026     log_debug(os, thread, timer)("name='%s'"
2027                                  ", exit-phase1=" JLONG_FORMAT
2028                                  ", exit-phase2=" JLONG_FORMAT
2029                                  ", exit-phase3=" JLONG_FORMAT
2030                                  ", exit-phase4=" JLONG_FORMAT,
2031                                  get_thread_name(),
2032                                  _timer_exit_phase1.milliseconds(),
2033                                  _timer_exit_phase2.milliseconds(),
2034                                  _timer_exit_phase3.milliseconds(),
2035                                  _timer_exit_phase4.milliseconds());
2036   }
2037 }
2038 
2039 void JavaThread::cleanup_failed_attach_current_thread() {
2040   if (active_handles() != NULL) {
2041     JNIHandleBlock* block = active_handles();
2042     set_active_handles(NULL);
2043     JNIHandleBlock::release_block(block);
2044   }
2045 
2046   if (free_handle_block() != NULL) {
2047     JNIHandleBlock* block = free_handle_block();
2048     set_free_handle_block(NULL);
2049     JNIHandleBlock::release_block(block);
2050   }
2051 
2052   // These have to be removed while this is still a valid thread.
2053   remove_stack_guard_pages();
2054 
2055   if (UseTLAB) {
2056     tlab().retire();
2057   }
2058 
2059   BarrierSet::barrier_set()->on_thread_detach(this);
2060 
2061   Threads::remove(this);
2062   this->smr_delete();
2063 }
2064 
2065 JavaThread* JavaThread::active() {
2066   Thread* thread = Thread::current();
2067   if (thread->is_Java_thread()) {
2068     return (JavaThread*) thread;
2069   } else {
2070     assert(thread->is_VM_thread(), "this must be a vm thread");
2071     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2072     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2073     assert(ret->is_Java_thread(), "must be a Java thread");
2074     return ret;
2075   }
2076 }
2077 
2078 bool JavaThread::is_lock_owned(address adr) const {
2079   if (Thread::is_lock_owned(adr)) return true;
2080 
2081   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2082     if (chunk->contains(adr)) return true;
2083   }
2084 
2085   return false;
2086 }
2087 
2088 
2089 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2090   chunk->set_next(monitor_chunks());
2091   set_monitor_chunks(chunk);
2092 }
2093 
2094 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2095   guarantee(monitor_chunks() != NULL, "must be non empty");
2096   if (monitor_chunks() == chunk) {
2097     set_monitor_chunks(chunk->next());
2098   } else {
2099     MonitorChunk* prev = monitor_chunks();
2100     while (prev->next() != chunk) prev = prev->next();
2101     prev->set_next(chunk->next());
2102   }
2103 }
2104 
2105 // JVM support.
2106 
2107 // Note: this function shouldn't block if it's called in
2108 // _thread_in_native_trans state (such as from
2109 // check_special_condition_for_native_trans()).
2110 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2111 
2112   if (has_last_Java_frame() && has_async_condition()) {
2113     // If we are at a polling page safepoint (not a poll return)
2114     // then we must defer async exception because live registers
2115     // will be clobbered by the exception path. Poll return is
2116     // ok because the call we a returning from already collides
2117     // with exception handling registers and so there is no issue.
2118     // (The exception handling path kills call result registers but
2119     //  this is ok since the exception kills the result anyway).
2120 
2121     if (is_at_poll_safepoint()) {
2122       // if the code we are returning to has deoptimized we must defer
2123       // the exception otherwise live registers get clobbered on the
2124       // exception path before deoptimization is able to retrieve them.
2125       //
2126       RegisterMap map(this, false);
2127       frame caller_fr = last_frame().sender(&map);
2128       assert(caller_fr.is_compiled_frame(), "what?");
2129       if (caller_fr.is_deoptimized_frame()) {
2130         log_info(exceptions)("deferred async exception at compiled safepoint");
2131         return;
2132       }
2133     }
2134   }
2135 
2136   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2137   if (condition == _no_async_condition) {
2138     // Conditions have changed since has_special_runtime_exit_condition()
2139     // was called:
2140     // - if we were here only because of an external suspend request,
2141     //   then that was taken care of above (or cancelled) so we are done
2142     // - if we were here because of another async request, then it has
2143     //   been cleared between the has_special_runtime_exit_condition()
2144     //   and now so again we are done
2145     return;
2146   }
2147 
2148   // Check for pending async. exception
2149   if (_pending_async_exception != NULL) {
2150     // Only overwrite an already pending exception, if it is not a threadDeath.
2151     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2152 
2153       // We cannot call Exceptions::_throw(...) here because we cannot block
2154       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2155 
2156       LogTarget(Info, exceptions) lt;
2157       if (lt.is_enabled()) {
2158         ResourceMark rm;
2159         LogStream ls(lt);
2160         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2161           if (has_last_Java_frame()) {
2162             frame f = last_frame();
2163            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2164           }
2165         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2166       }
2167       _pending_async_exception = NULL;
2168       clear_has_async_exception();
2169     }
2170   }
2171 
2172   if (check_unsafe_error &&
2173       condition == _async_unsafe_access_error && !has_pending_exception()) {
2174     condition = _no_async_condition;  // done
2175     switch (thread_state()) {
2176     case _thread_in_vm: {
2177       JavaThread* THREAD = this;
2178       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2179     }
2180     case _thread_in_native: {
2181       ThreadInVMfromNative tiv(this);
2182       JavaThread* THREAD = this;
2183       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2184     }
2185     case _thread_in_Java: {
2186       ThreadInVMfromJava tiv(this);
2187       JavaThread* THREAD = this;
2188       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2189     }
2190     default:
2191       ShouldNotReachHere();
2192     }
2193   }
2194 
2195   assert(condition == _no_async_condition || has_pending_exception() ||
2196          (!check_unsafe_error && condition == _async_unsafe_access_error),
2197          "must have handled the async condition, if no exception");
2198 }
2199 
2200 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2201   //
2202   // Check for pending external suspend. Internal suspend requests do
2203   // not use handle_special_runtime_exit_condition().
2204   // If JNIEnv proxies are allowed, don't self-suspend if the target
2205   // thread is not the current thread. In older versions of jdbx, jdbx
2206   // threads could call into the VM with another thread's JNIEnv so we
2207   // can be here operating on behalf of a suspended thread (4432884).
2208   bool do_self_suspend = is_external_suspend_with_lock();
2209   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2210     //
2211     // Because thread is external suspended the safepoint code will count
2212     // thread as at a safepoint. This can be odd because we can be here
2213     // as _thread_in_Java which would normally transition to _thread_blocked
2214     // at a safepoint. We would like to mark the thread as _thread_blocked
2215     // before calling java_suspend_self like all other callers of it but
2216     // we must then observe proper safepoint protocol. (We can't leave
2217     // _thread_blocked with a safepoint in progress). However we can be
2218     // here as _thread_in_native_trans so we can't use a normal transition
2219     // constructor/destructor pair because they assert on that type of
2220     // transition. We could do something like:
2221     //
2222     // JavaThreadState state = thread_state();
2223     // set_thread_state(_thread_in_vm);
2224     // {
2225     //   ThreadBlockInVM tbivm(this);
2226     //   java_suspend_self()
2227     // }
2228     // set_thread_state(_thread_in_vm_trans);
2229     // if (safepoint) block;
2230     // set_thread_state(state);
2231     //
2232     // but that is pretty messy. Instead we just go with the way the
2233     // code has worked before and note that this is the only path to
2234     // java_suspend_self that doesn't put the thread in _thread_blocked
2235     // mode.
2236 
2237     frame_anchor()->make_walkable(this);
2238     java_suspend_self();
2239 
2240     // We might be here for reasons in addition to the self-suspend request
2241     // so check for other async requests.
2242   }
2243 
2244   if (check_asyncs) {
2245     check_and_handle_async_exceptions();
2246   }
2247 
2248   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2249 }
2250 
2251 void JavaThread::send_thread_stop(oop java_throwable)  {
2252   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2253   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2254   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2255 
2256   // Do not throw asynchronous exceptions against the compiler thread
2257   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2258   if (!can_call_java()) return;
2259 
2260   {
2261     // Actually throw the Throwable against the target Thread - however
2262     // only if there is no thread death exception installed already.
2263     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2264       // If the topmost frame is a runtime stub, then we are calling into
2265       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2266       // must deoptimize the caller before continuing, as the compiled  exception handler table
2267       // may not be valid
2268       if (has_last_Java_frame()) {
2269         frame f = last_frame();
2270         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2271           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2272           RegisterMap reg_map(this, UseBiasedLocking);
2273           frame compiled_frame = f.sender(&reg_map);
2274           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2275             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2276           }
2277         }
2278       }
2279 
2280       // Set async. pending exception in thread.
2281       set_pending_async_exception(java_throwable);
2282 
2283       if (log_is_enabled(Info, exceptions)) {
2284          ResourceMark rm;
2285         log_info(exceptions)("Pending Async. exception installed of type: %s",
2286                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2287       }
2288       // for AbortVMOnException flag
2289       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2290     }
2291   }
2292 
2293 
2294   // Interrupt thread so it will wake up from a potential wait()
2295   Thread::interrupt(this);
2296 }
2297 
2298 // External suspension mechanism.
2299 //
2300 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2301 // to any VM_locks and it is at a transition
2302 // Self-suspension will happen on the transition out of the vm.
2303 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2304 //
2305 // Guarantees on return:
2306 //   + Target thread will not execute any new bytecode (that's why we need to
2307 //     force a safepoint)
2308 //   + Target thread will not enter any new monitors
2309 //
2310 void JavaThread::java_suspend() {
2311   ThreadsListHandle tlh;
2312   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2313     return;
2314   }
2315 
2316   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2317     if (!is_external_suspend()) {
2318       // a racing resume has cancelled us; bail out now
2319       return;
2320     }
2321 
2322     // suspend is done
2323     uint32_t debug_bits = 0;
2324     // Warning: is_ext_suspend_completed() may temporarily drop the
2325     // SR_lock to allow the thread to reach a stable thread state if
2326     // it is currently in a transient thread state.
2327     if (is_ext_suspend_completed(false /* !called_by_wait */,
2328                                  SuspendRetryDelay, &debug_bits)) {
2329       return;
2330     }
2331   }
2332 
2333   VM_ThreadSuspend vm_suspend;
2334   VMThread::execute(&vm_suspend);
2335 }
2336 
2337 // Part II of external suspension.
2338 // A JavaThread self suspends when it detects a pending external suspend
2339 // request. This is usually on transitions. It is also done in places
2340 // where continuing to the next transition would surprise the caller,
2341 // e.g., monitor entry.
2342 //
2343 // Returns the number of times that the thread self-suspended.
2344 //
2345 // Note: DO NOT call java_suspend_self() when you just want to block current
2346 //       thread. java_suspend_self() is the second stage of cooperative
2347 //       suspension for external suspend requests and should only be used
2348 //       to complete an external suspend request.
2349 //
2350 int JavaThread::java_suspend_self() {
2351   int ret = 0;
2352 
2353   // we are in the process of exiting so don't suspend
2354   if (is_exiting()) {
2355     clear_external_suspend();
2356     return ret;
2357   }
2358 
2359   assert(_anchor.walkable() ||
2360          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2361          "must have walkable stack");
2362 
2363   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2364 
2365   assert(!this->is_ext_suspended(),
2366          "a thread trying to self-suspend should not already be suspended");
2367 
2368   if (this->is_suspend_equivalent()) {
2369     // If we are self-suspending as a result of the lifting of a
2370     // suspend equivalent condition, then the suspend_equivalent
2371     // flag is not cleared until we set the ext_suspended flag so
2372     // that wait_for_ext_suspend_completion() returns consistent
2373     // results.
2374     this->clear_suspend_equivalent();
2375   }
2376 
2377   // A racing resume may have cancelled us before we grabbed SR_lock
2378   // above. Or another external suspend request could be waiting for us
2379   // by the time we return from SR_lock()->wait(). The thread
2380   // that requested the suspension may already be trying to walk our
2381   // stack and if we return now, we can change the stack out from under
2382   // it. This would be a "bad thing (TM)" and cause the stack walker
2383   // to crash. We stay self-suspended until there are no more pending
2384   // external suspend requests.
2385   while (is_external_suspend()) {
2386     ret++;
2387     this->set_ext_suspended();
2388 
2389     // _ext_suspended flag is cleared by java_resume()
2390     while (is_ext_suspended()) {
2391       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2392     }
2393   }
2394 
2395   return ret;
2396 }
2397 
2398 #ifdef ASSERT
2399 // Verify the JavaThread has not yet been published in the Threads::list, and
2400 // hence doesn't need protection from concurrent access at this stage.
2401 void JavaThread::verify_not_published() {
2402   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2403   // since an unpublished JavaThread doesn't participate in the
2404   // Thread-SMR protocol for keeping a ThreadsList alive.
2405   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2406 }
2407 #endif
2408 
2409 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2410 // progress or when _suspend_flags is non-zero.
2411 // Current thread needs to self-suspend if there is a suspend request and/or
2412 // block if a safepoint is in progress.
2413 // Async exception ISN'T checked.
2414 // Note only the ThreadInVMfromNative transition can call this function
2415 // directly and when thread state is _thread_in_native_trans
2416 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2417   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2418 
2419   JavaThread *curJT = JavaThread::current();
2420   bool do_self_suspend = thread->is_external_suspend();
2421 
2422   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2423 
2424   // If JNIEnv proxies are allowed, don't self-suspend if the target
2425   // thread is not the current thread. In older versions of jdbx, jdbx
2426   // threads could call into the VM with another thread's JNIEnv so we
2427   // can be here operating on behalf of a suspended thread (4432884).
2428   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2429     JavaThreadState state = thread->thread_state();
2430 
2431     // We mark this thread_blocked state as a suspend-equivalent so
2432     // that a caller to is_ext_suspend_completed() won't be confused.
2433     // The suspend-equivalent state is cleared by java_suspend_self().
2434     thread->set_suspend_equivalent();
2435 
2436     // If the safepoint code sees the _thread_in_native_trans state, it will
2437     // wait until the thread changes to other thread state. There is no
2438     // guarantee on how soon we can obtain the SR_lock and complete the
2439     // self-suspend request. It would be a bad idea to let safepoint wait for
2440     // too long. Temporarily change the state to _thread_blocked to
2441     // let the VM thread know that this thread is ready for GC. The problem
2442     // of changing thread state is that safepoint could happen just after
2443     // java_suspend_self() returns after being resumed, and VM thread will
2444     // see the _thread_blocked state. We must check for safepoint
2445     // after restoring the state and make sure we won't leave while a safepoint
2446     // is in progress.
2447     thread->set_thread_state(_thread_blocked);
2448     thread->java_suspend_self();
2449     thread->set_thread_state(state);
2450 
2451     InterfaceSupport::serialize_thread_state_with_handler(thread);
2452   }
2453 
2454   SafepointMechanism::block_if_requested(curJT);
2455 
2456   if (thread->is_deopt_suspend()) {
2457     thread->clear_deopt_suspend();
2458     RegisterMap map(thread, false);
2459     frame f = thread->last_frame();
2460     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2461       f = f.sender(&map);
2462     }
2463     if (f.id() == thread->must_deopt_id()) {
2464       thread->clear_must_deopt_id();
2465       f.deoptimize(thread);
2466     } else {
2467       fatal("missed deoptimization!");
2468     }
2469   }
2470 
2471   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2472 }
2473 
2474 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2475 // progress or when _suspend_flags is non-zero.
2476 // Current thread needs to self-suspend if there is a suspend request and/or
2477 // block if a safepoint is in progress.
2478 // Also check for pending async exception (not including unsafe access error).
2479 // Note only the native==>VM/Java barriers can call this function and when
2480 // thread state is _thread_in_native_trans.
2481 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2482   check_safepoint_and_suspend_for_native_trans(thread);
2483 
2484   if (thread->has_async_exception()) {
2485     // We are in _thread_in_native_trans state, don't handle unsafe
2486     // access error since that may block.
2487     thread->check_and_handle_async_exceptions(false);
2488   }
2489 }
2490 
2491 // This is a variant of the normal
2492 // check_special_condition_for_native_trans with slightly different
2493 // semantics for use by critical native wrappers.  It does all the
2494 // normal checks but also performs the transition back into
2495 // thread_in_Java state.  This is required so that critical natives
2496 // can potentially block and perform a GC if they are the last thread
2497 // exiting the GCLocker.
2498 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2499   check_special_condition_for_native_trans(thread);
2500 
2501   // Finish the transition
2502   thread->set_thread_state(_thread_in_Java);
2503 
2504   if (thread->do_critical_native_unlock()) {
2505     ThreadInVMfromJavaNoAsyncException tiv(thread);
2506     GCLocker::unlock_critical(thread);
2507     thread->clear_critical_native_unlock();
2508   }
2509 }
2510 
2511 // We need to guarantee the Threads_lock here, since resumes are not
2512 // allowed during safepoint synchronization
2513 // Can only resume from an external suspension
2514 void JavaThread::java_resume() {
2515   assert_locked_or_safepoint(Threads_lock);
2516 
2517   // Sanity check: thread is gone, has started exiting or the thread
2518   // was not externally suspended.
2519   ThreadsListHandle tlh;
2520   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2521     return;
2522   }
2523 
2524   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2525 
2526   clear_external_suspend();
2527 
2528   if (is_ext_suspended()) {
2529     clear_ext_suspended();
2530     SR_lock()->notify_all();
2531   }
2532 }
2533 
2534 size_t JavaThread::_stack_red_zone_size = 0;
2535 size_t JavaThread::_stack_yellow_zone_size = 0;
2536 size_t JavaThread::_stack_reserved_zone_size = 0;
2537 size_t JavaThread::_stack_shadow_zone_size = 0;
2538 
2539 void JavaThread::create_stack_guard_pages() {
2540   if (!os::uses_stack_guard_pages() ||
2541       _stack_guard_state != stack_guard_unused ||
2542       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2543       log_info(os, thread)("Stack guard page creation for thread "
2544                            UINTX_FORMAT " disabled", os::current_thread_id());
2545     return;
2546   }
2547   address low_addr = stack_end();
2548   size_t len = stack_guard_zone_size();
2549 
2550   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2551   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2552 
2553   int must_commit = os::must_commit_stack_guard_pages();
2554   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2555 
2556   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2557     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2558     return;
2559   }
2560 
2561   if (os::guard_memory((char *) low_addr, len)) {
2562     _stack_guard_state = stack_guard_enabled;
2563   } else {
2564     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2565       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2566     if (os::uncommit_memory((char *) low_addr, len)) {
2567       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2568     }
2569     return;
2570   }
2571 
2572   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2573     PTR_FORMAT "-" PTR_FORMAT ".",
2574     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2575 }
2576 
2577 void JavaThread::remove_stack_guard_pages() {
2578   assert(Thread::current() == this, "from different thread");
2579   if (_stack_guard_state == stack_guard_unused) return;
2580   address low_addr = stack_end();
2581   size_t len = stack_guard_zone_size();
2582 
2583   if (os::must_commit_stack_guard_pages()) {
2584     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2585       _stack_guard_state = stack_guard_unused;
2586     } else {
2587       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2588         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2589       return;
2590     }
2591   } else {
2592     if (_stack_guard_state == stack_guard_unused) return;
2593     if (os::unguard_memory((char *) low_addr, len)) {
2594       _stack_guard_state = stack_guard_unused;
2595     } else {
2596       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2597         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2598       return;
2599     }
2600   }
2601 
2602   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2603     PTR_FORMAT "-" PTR_FORMAT ".",
2604     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2605 }
2606 
2607 void JavaThread::enable_stack_reserved_zone() {
2608   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2609   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2610 
2611   // The base notation is from the stack's point of view, growing downward.
2612   // We need to adjust it to work correctly with guard_memory()
2613   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2614 
2615   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2616   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2617 
2618   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2619     _stack_guard_state = stack_guard_enabled;
2620   } else {
2621     warning("Attempt to guard stack reserved zone failed.");
2622   }
2623   enable_register_stack_guard();
2624 }
2625 
2626 void JavaThread::disable_stack_reserved_zone() {
2627   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2628   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2629 
2630   // Simply return if called for a thread that does not use guard pages.
2631   if (_stack_guard_state == stack_guard_unused) return;
2632 
2633   // The base notation is from the stack's point of view, growing downward.
2634   // We need to adjust it to work correctly with guard_memory()
2635   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2636 
2637   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2638     _stack_guard_state = stack_guard_reserved_disabled;
2639   } else {
2640     warning("Attempt to unguard stack reserved zone failed.");
2641   }
2642   disable_register_stack_guard();
2643 }
2644 
2645 void JavaThread::enable_stack_yellow_reserved_zone() {
2646   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2647   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2648 
2649   // The base notation is from the stacks point of view, growing downward.
2650   // We need to adjust it to work correctly with guard_memory()
2651   address base = stack_red_zone_base();
2652 
2653   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2654   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2655 
2656   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2657     _stack_guard_state = stack_guard_enabled;
2658   } else {
2659     warning("Attempt to guard stack yellow zone failed.");
2660   }
2661   enable_register_stack_guard();
2662 }
2663 
2664 void JavaThread::disable_stack_yellow_reserved_zone() {
2665   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2666   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2667 
2668   // Simply return if called for a thread that does not use guard pages.
2669   if (_stack_guard_state == stack_guard_unused) return;
2670 
2671   // The base notation is from the stacks point of view, growing downward.
2672   // We need to adjust it to work correctly with guard_memory()
2673   address base = stack_red_zone_base();
2674 
2675   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2676     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2677   } else {
2678     warning("Attempt to unguard stack yellow zone failed.");
2679   }
2680   disable_register_stack_guard();
2681 }
2682 
2683 void JavaThread::enable_stack_red_zone() {
2684   // The base notation is from the stacks point of view, growing downward.
2685   // We need to adjust it to work correctly with guard_memory()
2686   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2687   address base = stack_red_zone_base() - stack_red_zone_size();
2688 
2689   guarantee(base < stack_base(), "Error calculating stack red zone");
2690   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2691 
2692   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2693     warning("Attempt to guard stack red zone failed.");
2694   }
2695 }
2696 
2697 void JavaThread::disable_stack_red_zone() {
2698   // The base notation is from the stacks point of view, growing downward.
2699   // We need to adjust it to work correctly with guard_memory()
2700   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2701   address base = stack_red_zone_base() - stack_red_zone_size();
2702   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2703     warning("Attempt to unguard stack red zone failed.");
2704   }
2705 }
2706 
2707 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2708   // ignore is there is no stack
2709   if (!has_last_Java_frame()) return;
2710   // traverse the stack frames. Starts from top frame.
2711   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2712     frame* fr = fst.current();
2713     f(fr, fst.register_map());
2714   }
2715 }
2716 
2717 
2718 #ifndef PRODUCT
2719 // Deoptimization
2720 // Function for testing deoptimization
2721 void JavaThread::deoptimize() {
2722   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2723   StackFrameStream fst(this, UseBiasedLocking);
2724   bool deopt = false;           // Dump stack only if a deopt actually happens.
2725   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2726   // Iterate over all frames in the thread and deoptimize
2727   for (; !fst.is_done(); fst.next()) {
2728     if (fst.current()->can_be_deoptimized()) {
2729 
2730       if (only_at) {
2731         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2732         // consists of comma or carriage return separated numbers so
2733         // search for the current bci in that string.
2734         address pc = fst.current()->pc();
2735         nmethod* nm =  (nmethod*) fst.current()->cb();
2736         ScopeDesc* sd = nm->scope_desc_at(pc);
2737         char buffer[8];
2738         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2739         size_t len = strlen(buffer);
2740         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2741         while (found != NULL) {
2742           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2743               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2744             // Check that the bci found is bracketed by terminators.
2745             break;
2746           }
2747           found = strstr(found + 1, buffer);
2748         }
2749         if (!found) {
2750           continue;
2751         }
2752       }
2753 
2754       if (DebugDeoptimization && !deopt) {
2755         deopt = true; // One-time only print before deopt
2756         tty->print_cr("[BEFORE Deoptimization]");
2757         trace_frames();
2758         trace_stack();
2759       }
2760       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2761     }
2762   }
2763 
2764   if (DebugDeoptimization && deopt) {
2765     tty->print_cr("[AFTER Deoptimization]");
2766     trace_frames();
2767   }
2768 }
2769 
2770 
2771 // Make zombies
2772 void JavaThread::make_zombies() {
2773   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2774     if (fst.current()->can_be_deoptimized()) {
2775       // it is a Java nmethod
2776       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2777       nm->make_not_entrant();
2778     }
2779   }
2780 }
2781 #endif // PRODUCT
2782 
2783 
2784 void JavaThread::deoptimized_wrt_marked_nmethods() {
2785   if (!has_last_Java_frame()) return;
2786   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2787   StackFrameStream fst(this, UseBiasedLocking);
2788   for (; !fst.is_done(); fst.next()) {
2789     if (fst.current()->should_be_deoptimized()) {
2790       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2791     }
2792   }
2793 }
2794 
2795 
2796 // If the caller is a NamedThread, then remember, in the current scope,
2797 // the given JavaThread in its _processed_thread field.
2798 class RememberProcessedThread: public StackObj {
2799   NamedThread* _cur_thr;
2800  public:
2801   RememberProcessedThread(JavaThread* jthr) {
2802     Thread* thread = Thread::current();
2803     if (thread->is_Named_thread()) {
2804       _cur_thr = (NamedThread *)thread;
2805       _cur_thr->set_processed_thread(jthr);
2806     } else {
2807       _cur_thr = NULL;
2808     }
2809   }
2810 
2811   ~RememberProcessedThread() {
2812     if (_cur_thr) {
2813       _cur_thr->set_processed_thread(NULL);
2814     }
2815   }
2816 };
2817 
2818 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2819   // Verify that the deferred card marks have been flushed.
2820   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2821 
2822   // Traverse the GCHandles
2823   Thread::oops_do(f, cf);
2824 
2825   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2826          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2827 
2828   if (has_last_Java_frame()) {
2829     // Record JavaThread to GC thread
2830     RememberProcessedThread rpt(this);
2831 
2832     // Traverse the privileged stack
2833     if (_privileged_stack_top != NULL) {
2834       _privileged_stack_top->oops_do(f);
2835     }
2836 
2837     // traverse the registered growable array
2838     if (_array_for_gc != NULL) {
2839       for (int index = 0; index < _array_for_gc->length(); index++) {
2840         f->do_oop(_array_for_gc->adr_at(index));
2841       }
2842     }
2843 
2844     // Traverse the monitor chunks
2845     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2846       chunk->oops_do(f);
2847     }
2848 
2849     // Traverse the execution stack
2850     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2851       fst.current()->oops_do(f, cf, fst.register_map());
2852     }
2853   }
2854 
2855   // callee_target is never live across a gc point so NULL it here should
2856   // it still contain a methdOop.
2857 
2858   set_callee_target(NULL);
2859 
2860   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2861   // If we have deferred set_locals there might be oops waiting to be
2862   // written
2863   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2864   if (list != NULL) {
2865     for (int i = 0; i < list->length(); i++) {
2866       list->at(i)->oops_do(f);
2867     }
2868   }
2869 
2870   // Traverse instance variables at the end since the GC may be moving things
2871   // around using this function
2872   f->do_oop((oop*) &_threadObj);
2873   f->do_oop((oop*) &_vm_result);
2874   f->do_oop((oop*) &_exception_oop);
2875   f->do_oop((oop*) &_pending_async_exception);
2876 
2877   if (jvmti_thread_state() != NULL) {
2878     jvmti_thread_state()->oops_do(f);
2879   }
2880 }
2881 
2882 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2883   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2884          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2885 
2886   if (has_last_Java_frame()) {
2887     // Traverse the execution stack
2888     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2889       fst.current()->nmethods_do(cf);
2890     }
2891   }
2892 }
2893 
2894 void JavaThread::metadata_do(void f(Metadata*)) {
2895   if (has_last_Java_frame()) {
2896     // Traverse the execution stack to call f() on the methods in the stack
2897     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2898       fst.current()->metadata_do(f);
2899     }
2900   } else if (is_Compiler_thread()) {
2901     // need to walk ciMetadata in current compile tasks to keep alive.
2902     CompilerThread* ct = (CompilerThread*)this;
2903     if (ct->env() != NULL) {
2904       ct->env()->metadata_do(f);
2905     }
2906     CompileTask* task = ct->task();
2907     if (task != NULL) {
2908       task->metadata_do(f);
2909     }
2910   }
2911 }
2912 
2913 // Printing
2914 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2915   switch (_thread_state) {
2916   case _thread_uninitialized:     return "_thread_uninitialized";
2917   case _thread_new:               return "_thread_new";
2918   case _thread_new_trans:         return "_thread_new_trans";
2919   case _thread_in_native:         return "_thread_in_native";
2920   case _thread_in_native_trans:   return "_thread_in_native_trans";
2921   case _thread_in_vm:             return "_thread_in_vm";
2922   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2923   case _thread_in_Java:           return "_thread_in_Java";
2924   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2925   case _thread_blocked:           return "_thread_blocked";
2926   case _thread_blocked_trans:     return "_thread_blocked_trans";
2927   default:                        return "unknown thread state";
2928   }
2929 }
2930 
2931 #ifndef PRODUCT
2932 void JavaThread::print_thread_state_on(outputStream *st) const {
2933   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2934 };
2935 void JavaThread::print_thread_state() const {
2936   print_thread_state_on(tty);
2937 }
2938 #endif // PRODUCT
2939 
2940 // Called by Threads::print() for VM_PrintThreads operation
2941 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
2942   st->print_raw("\"");
2943   st->print_raw(get_thread_name());
2944   st->print_raw("\" ");
2945   oop thread_oop = threadObj();
2946   if (thread_oop != NULL) {
2947     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2948     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2949     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2950   }
2951   Thread::print_on(st, print_extended_info);
2952   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2953   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2954   if (thread_oop != NULL) {
2955     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2956   }
2957 #ifndef PRODUCT
2958   print_thread_state_on(st);
2959   _safepoint_state->print_on(st);
2960 #endif // PRODUCT
2961   if (is_Compiler_thread()) {
2962     CompileTask *task = ((CompilerThread*)this)->task();
2963     if (task != NULL) {
2964       st->print("   Compiling: ");
2965       task->print(st, NULL, true, false);
2966     } else {
2967       st->print("   No compile task");
2968     }
2969     st->cr();
2970   }
2971 }
2972 
2973 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2974   st->print("%s", get_thread_name_string(buf, buflen));
2975 }
2976 
2977 // Called by fatal error handler. The difference between this and
2978 // JavaThread::print() is that we can't grab lock or allocate memory.
2979 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2980   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2981   oop thread_obj = threadObj();
2982   if (thread_obj != NULL) {
2983     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2984   }
2985   st->print(" [");
2986   st->print("%s", _get_thread_state_name(_thread_state));
2987   if (osthread()) {
2988     st->print(", id=%d", osthread()->thread_id());
2989   }
2990   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2991             p2i(stack_end()), p2i(stack_base()));
2992   st->print("]");
2993 
2994   ThreadsSMRSupport::print_info_on(this, st);
2995   return;
2996 }
2997 
2998 // Verification
2999 
3000 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3001 
3002 void JavaThread::verify() {
3003   // Verify oops in the thread.
3004   oops_do(&VerifyOopClosure::verify_oop, NULL);
3005 
3006   // Verify the stack frames.
3007   frames_do(frame_verify);
3008 }
3009 
3010 // CR 6300358 (sub-CR 2137150)
3011 // Most callers of this method assume that it can't return NULL but a
3012 // thread may not have a name whilst it is in the process of attaching to
3013 // the VM - see CR 6412693, and there are places where a JavaThread can be
3014 // seen prior to having it's threadObj set (eg JNI attaching threads and
3015 // if vm exit occurs during initialization). These cases can all be accounted
3016 // for such that this method never returns NULL.
3017 const char* JavaThread::get_thread_name() const {
3018 #ifdef ASSERT
3019   // early safepoints can hit while current thread does not yet have TLS
3020   if (!SafepointSynchronize::is_at_safepoint()) {
3021     Thread *cur = Thread::current();
3022     if (!(cur->is_Java_thread() && cur == this)) {
3023       // Current JavaThreads are allowed to get their own name without
3024       // the Threads_lock.
3025       assert_locked_or_safepoint(Threads_lock);
3026     }
3027   }
3028 #endif // ASSERT
3029   return get_thread_name_string();
3030 }
3031 
3032 // Returns a non-NULL representation of this thread's name, or a suitable
3033 // descriptive string if there is no set name
3034 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3035   const char* name_str;
3036   oop thread_obj = threadObj();
3037   if (thread_obj != NULL) {
3038     oop name = java_lang_Thread::name(thread_obj);
3039     if (name != NULL) {
3040       if (buf == NULL) {
3041         name_str = java_lang_String::as_utf8_string(name);
3042       } else {
3043         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3044       }
3045     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3046       name_str = "<no-name - thread is attaching>";
3047     } else {
3048       name_str = Thread::name();
3049     }
3050   } else {
3051     name_str = Thread::name();
3052   }
3053   assert(name_str != NULL, "unexpected NULL thread name");
3054   return name_str;
3055 }
3056 
3057 
3058 const char* JavaThread::get_threadgroup_name() const {
3059   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3060   oop thread_obj = threadObj();
3061   if (thread_obj != NULL) {
3062     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3063     if (thread_group != NULL) {
3064       // ThreadGroup.name can be null
3065       return java_lang_ThreadGroup::name(thread_group);
3066     }
3067   }
3068   return NULL;
3069 }
3070 
3071 const char* JavaThread::get_parent_name() const {
3072   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3073   oop thread_obj = threadObj();
3074   if (thread_obj != NULL) {
3075     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3076     if (thread_group != NULL) {
3077       oop parent = java_lang_ThreadGroup::parent(thread_group);
3078       if (parent != NULL) {
3079         // ThreadGroup.name can be null
3080         return java_lang_ThreadGroup::name(parent);
3081       }
3082     }
3083   }
3084   return NULL;
3085 }
3086 
3087 ThreadPriority JavaThread::java_priority() const {
3088   oop thr_oop = threadObj();
3089   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3090   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3091   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3092   return priority;
3093 }
3094 
3095 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3096 
3097   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3098   // Link Java Thread object <-> C++ Thread
3099 
3100   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3101   // and put it into a new Handle.  The Handle "thread_oop" can then
3102   // be used to pass the C++ thread object to other methods.
3103 
3104   // Set the Java level thread object (jthread) field of the
3105   // new thread (a JavaThread *) to C++ thread object using the
3106   // "thread_oop" handle.
3107 
3108   // Set the thread field (a JavaThread *) of the
3109   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3110 
3111   Handle thread_oop(Thread::current(),
3112                     JNIHandles::resolve_non_null(jni_thread));
3113   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3114          "must be initialized");
3115   set_threadObj(thread_oop());
3116   java_lang_Thread::set_thread(thread_oop(), this);
3117 
3118   if (prio == NoPriority) {
3119     prio = java_lang_Thread::priority(thread_oop());
3120     assert(prio != NoPriority, "A valid priority should be present");
3121   }
3122 
3123   // Push the Java priority down to the native thread; needs Threads_lock
3124   Thread::set_priority(this, prio);
3125 
3126   // Add the new thread to the Threads list and set it in motion.
3127   // We must have threads lock in order to call Threads::add.
3128   // It is crucial that we do not block before the thread is
3129   // added to the Threads list for if a GC happens, then the java_thread oop
3130   // will not be visited by GC.
3131   Threads::add(this);
3132 }
3133 
3134 oop JavaThread::current_park_blocker() {
3135   // Support for JSR-166 locks
3136   oop thread_oop = threadObj();
3137   if (thread_oop != NULL &&
3138       JDK_Version::current().supports_thread_park_blocker()) {
3139     return java_lang_Thread::park_blocker(thread_oop);
3140   }
3141   return NULL;
3142 }
3143 
3144 
3145 void JavaThread::print_stack_on(outputStream* st) {
3146   if (!has_last_Java_frame()) return;
3147   ResourceMark rm;
3148   HandleMark   hm;
3149 
3150   RegisterMap reg_map(this);
3151   vframe* start_vf = last_java_vframe(&reg_map);
3152   int count = 0;
3153   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3154     if (f->is_java_frame()) {
3155       javaVFrame* jvf = javaVFrame::cast(f);
3156       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3157 
3158       // Print out lock information
3159       if (JavaMonitorsInStackTrace) {
3160         jvf->print_lock_info_on(st, count);
3161       }
3162     } else {
3163       // Ignore non-Java frames
3164     }
3165 
3166     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3167     count++;
3168     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3169   }
3170 }
3171 
3172 
3173 // JVMTI PopFrame support
3174 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3175   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3176   if (in_bytes(size_in_bytes) != 0) {
3177     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3178     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3179     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3180   }
3181 }
3182 
3183 void* JavaThread::popframe_preserved_args() {
3184   return _popframe_preserved_args;
3185 }
3186 
3187 ByteSize JavaThread::popframe_preserved_args_size() {
3188   return in_ByteSize(_popframe_preserved_args_size);
3189 }
3190 
3191 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3192   int sz = in_bytes(popframe_preserved_args_size());
3193   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3194   return in_WordSize(sz / wordSize);
3195 }
3196 
3197 void JavaThread::popframe_free_preserved_args() {
3198   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3199   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3200   _popframe_preserved_args = NULL;
3201   _popframe_preserved_args_size = 0;
3202 }
3203 
3204 #ifndef PRODUCT
3205 
3206 void JavaThread::trace_frames() {
3207   tty->print_cr("[Describe stack]");
3208   int frame_no = 1;
3209   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3210     tty->print("  %d. ", frame_no++);
3211     fst.current()->print_value_on(tty, this);
3212     tty->cr();
3213   }
3214 }
3215 
3216 class PrintAndVerifyOopClosure: public OopClosure {
3217  protected:
3218   template <class T> inline void do_oop_work(T* p) {
3219     oop obj = RawAccess<>::oop_load(p);
3220     if (obj == NULL) return;
3221     tty->print(INTPTR_FORMAT ": ", p2i(p));
3222     if (oopDesc::is_oop_or_null(obj)) {
3223       if (obj->is_objArray()) {
3224         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3225       } else {
3226         obj->print();
3227       }
3228     } else {
3229       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3230     }
3231     tty->cr();
3232   }
3233  public:
3234   virtual void do_oop(oop* p) { do_oop_work(p); }
3235   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3236 };
3237 
3238 
3239 static void oops_print(frame* f, const RegisterMap *map) {
3240   PrintAndVerifyOopClosure print;
3241   f->print_value();
3242   f->oops_do(&print, NULL, (RegisterMap*)map);
3243 }
3244 
3245 // Print our all the locations that contain oops and whether they are
3246 // valid or not.  This useful when trying to find the oldest frame
3247 // where an oop has gone bad since the frame walk is from youngest to
3248 // oldest.
3249 void JavaThread::trace_oops() {
3250   tty->print_cr("[Trace oops]");
3251   frames_do(oops_print);
3252 }
3253 
3254 
3255 #ifdef ASSERT
3256 // Print or validate the layout of stack frames
3257 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3258   ResourceMark rm;
3259   PRESERVE_EXCEPTION_MARK;
3260   FrameValues values;
3261   int frame_no = 0;
3262   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3263     fst.current()->describe(values, ++frame_no);
3264     if (depth == frame_no) break;
3265   }
3266   if (validate_only) {
3267     values.validate();
3268   } else {
3269     tty->print_cr("[Describe stack layout]");
3270     values.print(this);
3271   }
3272 }
3273 #endif
3274 
3275 void JavaThread::trace_stack_from(vframe* start_vf) {
3276   ResourceMark rm;
3277   int vframe_no = 1;
3278   for (vframe* f = start_vf; f; f = f->sender()) {
3279     if (f->is_java_frame()) {
3280       javaVFrame::cast(f)->print_activation(vframe_no++);
3281     } else {
3282       f->print();
3283     }
3284     if (vframe_no > StackPrintLimit) {
3285       tty->print_cr("...<more frames>...");
3286       return;
3287     }
3288   }
3289 }
3290 
3291 
3292 void JavaThread::trace_stack() {
3293   if (!has_last_Java_frame()) return;
3294   ResourceMark rm;
3295   HandleMark   hm;
3296   RegisterMap reg_map(this);
3297   trace_stack_from(last_java_vframe(&reg_map));
3298 }
3299 
3300 
3301 #endif // PRODUCT
3302 
3303 
3304 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3305   assert(reg_map != NULL, "a map must be given");
3306   frame f = last_frame();
3307   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3308     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3309   }
3310   return NULL;
3311 }
3312 
3313 
3314 Klass* JavaThread::security_get_caller_class(int depth) {
3315   vframeStream vfst(this);
3316   vfst.security_get_caller_frame(depth);
3317   if (!vfst.at_end()) {
3318     return vfst.method()->method_holder();
3319   }
3320   return NULL;
3321 }
3322 
3323 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3324   assert(thread->is_Compiler_thread(), "must be compiler thread");
3325   CompileBroker::compiler_thread_loop();
3326 }
3327 
3328 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3329   NMethodSweeper::sweeper_loop();
3330 }
3331 
3332 // Create a CompilerThread
3333 CompilerThread::CompilerThread(CompileQueue* queue,
3334                                CompilerCounters* counters)
3335                                : JavaThread(&compiler_thread_entry) {
3336   _env   = NULL;
3337   _log   = NULL;
3338   _task  = NULL;
3339   _queue = queue;
3340   _counters = counters;
3341   _buffer_blob = NULL;
3342   _compiler = NULL;
3343 
3344   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3345   resource_area()->bias_to(mtCompiler);
3346 
3347 #ifndef PRODUCT
3348   _ideal_graph_printer = NULL;
3349 #endif
3350 }
3351 
3352 CompilerThread::~CompilerThread() {
3353   // Delete objects which were allocated on heap.
3354   delete _counters;
3355 }
3356 
3357 bool CompilerThread::can_call_java() const {
3358   return _compiler != NULL && _compiler->is_jvmci();
3359 }
3360 
3361 // Create sweeper thread
3362 CodeCacheSweeperThread::CodeCacheSweeperThread()
3363 : JavaThread(&sweeper_thread_entry) {
3364   _scanned_compiled_method = NULL;
3365 }
3366 
3367 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3368   JavaThread::oops_do(f, cf);
3369   if (_scanned_compiled_method != NULL && cf != NULL) {
3370     // Safepoints can occur when the sweeper is scanning an nmethod so
3371     // process it here to make sure it isn't unloaded in the middle of
3372     // a scan.
3373     cf->do_code_blob(_scanned_compiled_method);
3374   }
3375 }
3376 
3377 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3378   JavaThread::nmethods_do(cf);
3379   if (_scanned_compiled_method != NULL && cf != NULL) {
3380     // Safepoints can occur when the sweeper is scanning an nmethod so
3381     // process it here to make sure it isn't unloaded in the middle of
3382     // a scan.
3383     cf->do_code_blob(_scanned_compiled_method);
3384   }
3385 }
3386 
3387 
3388 // ======= Threads ========
3389 
3390 // The Threads class links together all active threads, and provides
3391 // operations over all threads. It is protected by the Threads_lock,
3392 // which is also used in other global contexts like safepointing.
3393 // ThreadsListHandles are used to safely perform operations on one
3394 // or more threads without the risk of the thread exiting during the
3395 // operation.
3396 //
3397 // Note: The Threads_lock is currently more widely used than we
3398 // would like. We are actively migrating Threads_lock uses to other
3399 // mechanisms in order to reduce Threads_lock contention.
3400 
3401 JavaThread* Threads::_thread_list = NULL;
3402 int         Threads::_number_of_threads = 0;
3403 int         Threads::_number_of_non_daemon_threads = 0;
3404 int         Threads::_return_code = 0;
3405 int         Threads::_thread_claim_parity = 0;
3406 size_t      JavaThread::_stack_size_at_create = 0;
3407 
3408 #ifdef ASSERT
3409 bool        Threads::_vm_complete = false;
3410 size_t      Threads::_threads_before_barrier_set = 0;
3411 #endif
3412 
3413 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3414   Prefetch::read((void*)addr, prefetch_interval);
3415   return *addr;
3416 }
3417 
3418 // Possibly the ugliest for loop the world has seen. C++ does not allow
3419 // multiple types in the declaration section of the for loop. In this case
3420 // we are only dealing with pointers and hence can cast them. It looks ugly
3421 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3422 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3423     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3424              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3425              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3426              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3427              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3428          MACRO_current_p != MACRO_end;                                                                                    \
3429          MACRO_current_p++,                                                                                               \
3430              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3431 
3432 // All JavaThreads
3433 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3434 
3435 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3436 void Threads::non_java_threads_do(ThreadClosure* tc) {
3437   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3438   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3439     tc->do_thread(njti.current());
3440   }
3441 }
3442 
3443 // All JavaThreads
3444 void Threads::java_threads_do(ThreadClosure* tc) {
3445   assert_locked_or_safepoint(Threads_lock);
3446   // ALL_JAVA_THREADS iterates through all JavaThreads.
3447   ALL_JAVA_THREADS(p) {
3448     tc->do_thread(p);
3449   }
3450 }
3451 
3452 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3453   assert_locked_or_safepoint(Threads_lock);
3454   java_threads_do(tc);
3455   tc->do_thread(VMThread::vm_thread());
3456 }
3457 
3458 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3459 void Threads::threads_do(ThreadClosure* tc) {
3460   assert_locked_or_safepoint(Threads_lock);
3461   java_threads_do(tc);
3462   non_java_threads_do(tc);
3463 }
3464 
3465 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3466   int cp = Threads::thread_claim_parity();
3467   ALL_JAVA_THREADS(p) {
3468     if (p->claim_oops_do(is_par, cp)) {
3469       tc->do_thread(p);
3470     }
3471   }
3472   VMThread* vmt = VMThread::vm_thread();
3473   if (vmt->claim_oops_do(is_par, cp)) {
3474     tc->do_thread(vmt);
3475   }
3476 }
3477 
3478 // The system initialization in the library has three phases.
3479 //
3480 // Phase 1: java.lang.System class initialization
3481 //     java.lang.System is a primordial class loaded and initialized
3482 //     by the VM early during startup.  java.lang.System.<clinit>
3483 //     only does registerNatives and keeps the rest of the class
3484 //     initialization work later until thread initialization completes.
3485 //
3486 //     System.initPhase1 initializes the system properties, the static
3487 //     fields in, out, and err. Set up java signal handlers, OS-specific
3488 //     system settings, and thread group of the main thread.
3489 static void call_initPhase1(TRAPS) {
3490   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3491   JavaValue result(T_VOID);
3492   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3493                                          vmSymbols::void_method_signature(), CHECK);
3494 }
3495 
3496 // Phase 2. Module system initialization
3497 //     This will initialize the module system.  Only java.base classes
3498 //     can be loaded until phase 2 completes.
3499 //
3500 //     Call System.initPhase2 after the compiler initialization and jsr292
3501 //     classes get initialized because module initialization runs a lot of java
3502 //     code, that for performance reasons, should be compiled.  Also, this will
3503 //     enable the startup code to use lambda and other language features in this
3504 //     phase and onward.
3505 //
3506 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3507 static void call_initPhase2(TRAPS) {
3508   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3509 
3510   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3511 
3512   JavaValue result(T_INT);
3513   JavaCallArguments args;
3514   args.push_int(DisplayVMOutputToStderr);
3515   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3516   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3517                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3518   if (result.get_jint() != JNI_OK) {
3519     vm_exit_during_initialization(); // no message or exception
3520   }
3521 
3522   universe_post_module_init();
3523 }
3524 
3525 // Phase 3. final setup - set security manager, system class loader and TCCL
3526 //
3527 //     This will instantiate and set the security manager, set the system class
3528 //     loader as well as the thread context class loader.  The security manager
3529 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3530 //     other modules or the application's classpath.
3531 static void call_initPhase3(TRAPS) {
3532   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3533   JavaValue result(T_VOID);
3534   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3535                                          vmSymbols::void_method_signature(), CHECK);
3536 }
3537 
3538 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3539   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3540 
3541   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3542     create_vm_init_libraries();
3543   }
3544 
3545   initialize_class(vmSymbols::java_lang_String(), CHECK);
3546 
3547   // Inject CompactStrings value after the static initializers for String ran.
3548   java_lang_String::set_compact_strings(CompactStrings);
3549 
3550   // Initialize java_lang.System (needed before creating the thread)
3551   initialize_class(vmSymbols::java_lang_System(), CHECK);
3552   // The VM creates & returns objects of this class. Make sure it's initialized.
3553   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3554   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3555   Handle thread_group = create_initial_thread_group(CHECK);
3556   Universe::set_main_thread_group(thread_group());
3557   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3558   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3559   main_thread->set_threadObj(thread_object);
3560   // Set thread status to running since main thread has
3561   // been started and running.
3562   java_lang_Thread::set_thread_status(thread_object,
3563                                       java_lang_Thread::RUNNABLE);
3564 
3565   // The VM creates objects of this class.
3566   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3567 
3568   // The VM preresolves methods to these classes. Make sure that they get initialized
3569   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3570   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3571 
3572   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3573   call_initPhase1(CHECK);
3574 
3575   // get the Java runtime name after java.lang.System is initialized
3576   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3577   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3578 
3579   // an instance of OutOfMemory exception has been allocated earlier
3580   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3581   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3582   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3583   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3584   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3585   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3586   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3587   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3588 }
3589 
3590 void Threads::initialize_jsr292_core_classes(TRAPS) {
3591   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3592 
3593   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3594   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3595   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3596   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3597 }
3598 
3599 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3600   extern void JDK_Version_init();
3601 
3602   // Preinitialize version info.
3603   VM_Version::early_initialize();
3604 
3605   // Check version
3606   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3607 
3608   // Initialize library-based TLS
3609   ThreadLocalStorage::init();
3610 
3611   // Initialize the output stream module
3612   ostream_init();
3613 
3614   // Process java launcher properties.
3615   Arguments::process_sun_java_launcher_properties(args);
3616 
3617   // Initialize the os module
3618   os::init();
3619 
3620   // Record VM creation timing statistics
3621   TraceVmCreationTime create_vm_timer;
3622   create_vm_timer.start();
3623 
3624   // Initialize system properties.
3625   Arguments::init_system_properties();
3626 
3627   // So that JDK version can be used as a discriminator when parsing arguments
3628   JDK_Version_init();
3629 
3630   // Update/Initialize System properties after JDK version number is known
3631   Arguments::init_version_specific_system_properties();
3632 
3633   // Make sure to initialize log configuration *before* parsing arguments
3634   LogConfiguration::initialize(create_vm_timer.begin_time());
3635 
3636   // Parse arguments
3637   // Note: this internally calls os::init_container_support()
3638   jint parse_result = Arguments::parse(args);
3639   if (parse_result != JNI_OK) return parse_result;
3640 
3641   os::init_before_ergo();
3642 
3643   jint ergo_result = Arguments::apply_ergo();
3644   if (ergo_result != JNI_OK) return ergo_result;
3645 
3646   // Final check of all ranges after ergonomics which may change values.
3647   if (!JVMFlagRangeList::check_ranges()) {
3648     return JNI_EINVAL;
3649   }
3650 
3651   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3652   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3653   if (!constraint_result) {
3654     return JNI_EINVAL;
3655   }
3656 
3657   JVMFlagWriteableList::mark_startup();
3658 
3659   if (PauseAtStartup) {
3660     os::pause();
3661   }
3662 
3663   HOTSPOT_VM_INIT_BEGIN();
3664 
3665   // Timing (must come after argument parsing)
3666   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3667 
3668 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3669   // Initialize assert poison page mechanism.
3670   if (ShowRegistersOnAssert) {
3671     initialize_assert_poison();
3672   }
3673 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3674 
3675   // Initialize the os module after parsing the args
3676   jint os_init_2_result = os::init_2();
3677   if (os_init_2_result != JNI_OK) return os_init_2_result;
3678 
3679   SafepointMechanism::initialize();
3680 
3681   jint adjust_after_os_result = Arguments::adjust_after_os();
3682   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3683 
3684   // Initialize output stream logging
3685   ostream_init_log();
3686 
3687   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3688   // Must be before create_vm_init_agents()
3689   if (Arguments::init_libraries_at_startup()) {
3690     convert_vm_init_libraries_to_agents();
3691   }
3692 
3693   // Launch -agentlib/-agentpath and converted -Xrun agents
3694   if (Arguments::init_agents_at_startup()) {
3695     create_vm_init_agents();
3696   }
3697 
3698   // Initialize Threads state
3699   _thread_list = NULL;
3700   _number_of_threads = 0;
3701   _number_of_non_daemon_threads = 0;
3702 
3703   // Initialize global data structures and create system classes in heap
3704   vm_init_globals();
3705 
3706 #if INCLUDE_JVMCI
3707   if (JVMCICounterSize > 0) {
3708     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3709     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3710   } else {
3711     JavaThread::_jvmci_old_thread_counters = NULL;
3712   }
3713 #endif // INCLUDE_JVMCI
3714 
3715   // Attach the main thread to this os thread
3716   JavaThread* main_thread = new JavaThread();
3717   main_thread->set_thread_state(_thread_in_vm);
3718   main_thread->initialize_thread_current();
3719   // must do this before set_active_handles
3720   main_thread->record_stack_base_and_size();
3721   main_thread->register_thread_stack_with_NMT();
3722   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3723 
3724   if (!main_thread->set_as_starting_thread()) {
3725     vm_shutdown_during_initialization(
3726                                       "Failed necessary internal allocation. Out of swap space");
3727     main_thread->smr_delete();
3728     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3729     return JNI_ENOMEM;
3730   }
3731 
3732   // Enable guard page *after* os::create_main_thread(), otherwise it would
3733   // crash Linux VM, see notes in os_linux.cpp.
3734   main_thread->create_stack_guard_pages();
3735 
3736   // Initialize Java-Level synchronization subsystem
3737   ObjectMonitor::Initialize();
3738 
3739   // Initialize global modules
3740   jint status = init_globals();
3741   if (status != JNI_OK) {
3742     main_thread->smr_delete();
3743     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3744     return status;
3745   }
3746 
3747   JFR_ONLY(Jfr::on_vm_init();)
3748 
3749   // Should be done after the heap is fully created
3750   main_thread->cache_global_variables();
3751 
3752   HandleMark hm;
3753 
3754   { MutexLocker mu(Threads_lock);
3755     Threads::add(main_thread);
3756   }
3757 
3758   // Any JVMTI raw monitors entered in onload will transition into
3759   // real raw monitor. VM is setup enough here for raw monitor enter.
3760   JvmtiExport::transition_pending_onload_raw_monitors();
3761 
3762   // Create the VMThread
3763   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3764 
3765   VMThread::create();
3766     Thread* vmthread = VMThread::vm_thread();
3767 
3768     if (!os::create_thread(vmthread, os::vm_thread)) {
3769       vm_exit_during_initialization("Cannot create VM thread. "
3770                                     "Out of system resources.");
3771     }
3772 
3773     // Wait for the VM thread to become ready, and VMThread::run to initialize
3774     // Monitors can have spurious returns, must always check another state flag
3775     {
3776       MutexLocker ml(Notify_lock);
3777       os::start_thread(vmthread);
3778       while (vmthread->active_handles() == NULL) {
3779         Notify_lock->wait();
3780       }
3781     }
3782   }
3783 
3784   assert(Universe::is_fully_initialized(), "not initialized");
3785   if (VerifyDuringStartup) {
3786     // Make sure we're starting with a clean slate.
3787     VM_Verify verify_op;
3788     VMThread::execute(&verify_op);
3789   }
3790 
3791   // We need this to update the java.vm.info property in case any flags used
3792   // to initially define it have been changed. This is needed for both CDS and
3793   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3794   // is initially computed. See Abstract_VM_Version::vm_info_string().
3795   // This update must happen before we initialize the java classes, but
3796   // after any initialization logic that might modify the flags.
3797   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3798 
3799   Thread* THREAD = Thread::current();
3800 
3801   // Always call even when there are not JVMTI environments yet, since environments
3802   // may be attached late and JVMTI must track phases of VM execution
3803   JvmtiExport::enter_early_start_phase();
3804 
3805   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3806   JvmtiExport::post_early_vm_start();
3807 
3808   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3809 
3810   quicken_jni_functions();
3811 
3812   // No more stub generation allowed after that point.
3813   StubCodeDesc::freeze();
3814 
3815   // Set flag that basic initialization has completed. Used by exceptions and various
3816   // debug stuff, that does not work until all basic classes have been initialized.
3817   set_init_completed();
3818 
3819   LogConfiguration::post_initialize();
3820   Metaspace::post_initialize();
3821 
3822   HOTSPOT_VM_INIT_END();
3823 
3824   // record VM initialization completion time
3825 #if INCLUDE_MANAGEMENT
3826   Management::record_vm_init_completed();
3827 #endif // INCLUDE_MANAGEMENT
3828 
3829   // Signal Dispatcher needs to be started before VMInit event is posted
3830   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3831 
3832   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3833   if (!DisableAttachMechanism) {
3834     AttachListener::vm_start();
3835     if (StartAttachListener || AttachListener::init_at_startup()) {
3836       AttachListener::init();
3837     }
3838   }
3839 
3840   // Launch -Xrun agents
3841   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3842   // back-end can launch with -Xdebug -Xrunjdwp.
3843   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3844     create_vm_init_libraries();
3845   }
3846 
3847   if (CleanChunkPoolAsync) {
3848     Chunk::start_chunk_pool_cleaner_task();
3849   }
3850 
3851   // initialize compiler(s)
3852 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3853 #if INCLUDE_JVMCI
3854   bool force_JVMCI_intialization = false;
3855   if (EnableJVMCI) {
3856     // Initialize JVMCI eagerly when it is explicitly requested.
3857     // Or when JVMCIPrintProperties is enabled.
3858     // The JVMCI Java initialization code will read this flag and
3859     // do the printing if it's set.
3860     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3861 
3862     if (!force_JVMCI_intialization) {
3863       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3864       // compilations via JVMCI will not actually block until JVMCI is initialized.
3865       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3866     }
3867   }
3868 #endif
3869   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3870   // Postpone completion of compiler initialization to after JVMCI
3871   // is initialized to avoid timeouts of blocking compilations.
3872   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3873     CompileBroker::compilation_init_phase2();
3874   }
3875 #endif
3876 
3877   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3878   // It is done after compilers are initialized, because otherwise compilations of
3879   // signature polymorphic MH intrinsics can be missed
3880   // (see SystemDictionary::find_method_handle_intrinsic).
3881   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3882 
3883   // This will initialize the module system.  Only java.base classes can be
3884   // loaded until phase 2 completes
3885   call_initPhase2(CHECK_JNI_ERR);
3886 
3887   // Always call even when there are not JVMTI environments yet, since environments
3888   // may be attached late and JVMTI must track phases of VM execution
3889   JvmtiExport::enter_start_phase();
3890 
3891   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3892   JvmtiExport::post_vm_start();
3893 
3894   // Final system initialization including security manager and system class loader
3895   call_initPhase3(CHECK_JNI_ERR);
3896 
3897   // cache the system and platform class loaders
3898   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3899 
3900 #if INCLUDE_CDS
3901   if (DumpSharedSpaces) {
3902     // capture the module path info from the ModuleEntryTable
3903     ClassLoader::initialize_module_path(THREAD);
3904   }
3905 #endif
3906 
3907 #if INCLUDE_JVMCI
3908   if (force_JVMCI_intialization) {
3909     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3910     CompileBroker::compilation_init_phase2();
3911   }
3912 #endif
3913 
3914   // Always call even when there are not JVMTI environments yet, since environments
3915   // may be attached late and JVMTI must track phases of VM execution
3916   JvmtiExport::enter_live_phase();
3917 
3918   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3919   JvmtiExport::post_vm_initialized();
3920 
3921   JFR_ONLY(Jfr::on_vm_start();)
3922 
3923 #if INCLUDE_MANAGEMENT
3924   Management::initialize(THREAD);
3925 
3926   if (HAS_PENDING_EXCEPTION) {
3927     // management agent fails to start possibly due to
3928     // configuration problem and is responsible for printing
3929     // stack trace if appropriate. Simply exit VM.
3930     vm_exit(1);
3931   }
3932 #endif // INCLUDE_MANAGEMENT
3933 
3934   if (MemProfiling)                   MemProfiler::engage();
3935   StatSampler::engage();
3936   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3937 
3938   BiasedLocking::init();
3939 
3940 #if INCLUDE_RTM_OPT
3941   RTMLockingCounters::init();
3942 #endif
3943 
3944   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3945     call_postVMInitHook(THREAD);
3946     // The Java side of PostVMInitHook.run must deal with all
3947     // exceptions and provide means of diagnosis.
3948     if (HAS_PENDING_EXCEPTION) {
3949       CLEAR_PENDING_EXCEPTION;
3950     }
3951   }
3952 
3953   {
3954     MutexLocker ml(PeriodicTask_lock);
3955     // Make sure the WatcherThread can be started by WatcherThread::start()
3956     // or by dynamic enrollment.
3957     WatcherThread::make_startable();
3958     // Start up the WatcherThread if there are any periodic tasks
3959     // NOTE:  All PeriodicTasks should be registered by now. If they
3960     //   aren't, late joiners might appear to start slowly (we might
3961     //   take a while to process their first tick).
3962     if (PeriodicTask::num_tasks() > 0) {
3963       WatcherThread::start();
3964     }
3965   }
3966 
3967   create_vm_timer.end();
3968 #ifdef ASSERT
3969   _vm_complete = true;
3970 #endif
3971 
3972   if (DumpSharedSpaces) {
3973     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3974     ShouldNotReachHere();
3975   }
3976 
3977   return JNI_OK;
3978 }
3979 
3980 // type for the Agent_OnLoad and JVM_OnLoad entry points
3981 extern "C" {
3982   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3983 }
3984 // Find a command line agent library and return its entry point for
3985 //         -agentlib:  -agentpath:   -Xrun
3986 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3987 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3988                                     const char *on_load_symbols[],
3989                                     size_t num_symbol_entries) {
3990   OnLoadEntry_t on_load_entry = NULL;
3991   void *library = NULL;
3992 
3993   if (!agent->valid()) {
3994     char buffer[JVM_MAXPATHLEN];
3995     char ebuf[1024] = "";
3996     const char *name = agent->name();
3997     const char *msg = "Could not find agent library ";
3998 
3999     // First check to see if agent is statically linked into executable
4000     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4001       library = agent->os_lib();
4002     } else if (agent->is_absolute_path()) {
4003       library = os::dll_load(name, ebuf, sizeof ebuf);
4004       if (library == NULL) {
4005         const char *sub_msg = " in absolute path, with error: ";
4006         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4007         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4008         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4009         // If we can't find the agent, exit.
4010         vm_exit_during_initialization(buf, NULL);
4011         FREE_C_HEAP_ARRAY(char, buf);
4012       }
4013     } else {
4014       // Try to load the agent from the standard dll directory
4015       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4016                              name)) {
4017         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4018       }
4019       if (library == NULL) { // Try the library path directory.
4020         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4021           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4022         }
4023         if (library == NULL) {
4024           const char *sub_msg = " on the library path, with error: ";
4025           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4026 
4027           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4028                        strlen(ebuf) + strlen(sub_msg2) + 1;
4029           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4030           if (!agent->is_instrument_lib()) {
4031             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4032           } else {
4033             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4034           }
4035           // If we can't find the agent, exit.
4036           vm_exit_during_initialization(buf, NULL);
4037           FREE_C_HEAP_ARRAY(char, buf);
4038         }
4039       }
4040     }
4041     agent->set_os_lib(library);
4042     agent->set_valid();
4043   }
4044 
4045   // Find the OnLoad function.
4046   on_load_entry =
4047     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4048                                                           false,
4049                                                           on_load_symbols,
4050                                                           num_symbol_entries));
4051   return on_load_entry;
4052 }
4053 
4054 // Find the JVM_OnLoad entry point
4055 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4056   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4057   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4058 }
4059 
4060 // Find the Agent_OnLoad entry point
4061 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4062   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4063   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4064 }
4065 
4066 // For backwards compatibility with -Xrun
4067 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4068 // treated like -agentpath:
4069 // Must be called before agent libraries are created
4070 void Threads::convert_vm_init_libraries_to_agents() {
4071   AgentLibrary* agent;
4072   AgentLibrary* next;
4073 
4074   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4075     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4076     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4077 
4078     // If there is an JVM_OnLoad function it will get called later,
4079     // otherwise see if there is an Agent_OnLoad
4080     if (on_load_entry == NULL) {
4081       on_load_entry = lookup_agent_on_load(agent);
4082       if (on_load_entry != NULL) {
4083         // switch it to the agent list -- so that Agent_OnLoad will be called,
4084         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4085         Arguments::convert_library_to_agent(agent);
4086       } else {
4087         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4088       }
4089     }
4090   }
4091 }
4092 
4093 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4094 // Invokes Agent_OnLoad
4095 // Called very early -- before JavaThreads exist
4096 void Threads::create_vm_init_agents() {
4097   extern struct JavaVM_ main_vm;
4098   AgentLibrary* agent;
4099 
4100   JvmtiExport::enter_onload_phase();
4101 
4102   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4103     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4104 
4105     if (on_load_entry != NULL) {
4106       // Invoke the Agent_OnLoad function
4107       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4108       if (err != JNI_OK) {
4109         vm_exit_during_initialization("agent library failed to init", agent->name());
4110       }
4111     } else {
4112       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4113     }
4114   }
4115   JvmtiExport::enter_primordial_phase();
4116 }
4117 
4118 extern "C" {
4119   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4120 }
4121 
4122 void Threads::shutdown_vm_agents() {
4123   // Send any Agent_OnUnload notifications
4124   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4125   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4126   extern struct JavaVM_ main_vm;
4127   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4128 
4129     // Find the Agent_OnUnload function.
4130     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4131                                                    os::find_agent_function(agent,
4132                                                    false,
4133                                                    on_unload_symbols,
4134                                                    num_symbol_entries));
4135 
4136     // Invoke the Agent_OnUnload function
4137     if (unload_entry != NULL) {
4138       JavaThread* thread = JavaThread::current();
4139       ThreadToNativeFromVM ttn(thread);
4140       HandleMark hm(thread);
4141       (*unload_entry)(&main_vm);
4142     }
4143   }
4144 }
4145 
4146 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4147 // Invokes JVM_OnLoad
4148 void Threads::create_vm_init_libraries() {
4149   extern struct JavaVM_ main_vm;
4150   AgentLibrary* agent;
4151 
4152   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4153     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4154 
4155     if (on_load_entry != NULL) {
4156       // Invoke the JVM_OnLoad function
4157       JavaThread* thread = JavaThread::current();
4158       ThreadToNativeFromVM ttn(thread);
4159       HandleMark hm(thread);
4160       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4161       if (err != JNI_OK) {
4162         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4163       }
4164     } else {
4165       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4166     }
4167   }
4168 }
4169 
4170 
4171 // Last thread running calls java.lang.Shutdown.shutdown()
4172 void JavaThread::invoke_shutdown_hooks() {
4173   HandleMark hm(this);
4174 
4175   // We could get here with a pending exception, if so clear it now.
4176   if (this->has_pending_exception()) {
4177     this->clear_pending_exception();
4178   }
4179 
4180   EXCEPTION_MARK;
4181   Klass* shutdown_klass =
4182     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4183                                       THREAD);
4184   if (shutdown_klass != NULL) {
4185     // SystemDictionary::resolve_or_null will return null if there was
4186     // an exception.  If we cannot load the Shutdown class, just don't
4187     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4188     // won't be run.  Note that if a shutdown hook was registered,
4189     // the Shutdown class would have already been loaded
4190     // (Runtime.addShutdownHook will load it).
4191     JavaValue result(T_VOID);
4192     JavaCalls::call_static(&result,
4193                            shutdown_klass,
4194                            vmSymbols::shutdown_method_name(),
4195                            vmSymbols::void_method_signature(),
4196                            THREAD);
4197   }
4198   CLEAR_PENDING_EXCEPTION;
4199 }
4200 
4201 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4202 // the program falls off the end of main(). Another VM exit path is through
4203 // vm_exit() when the program calls System.exit() to return a value or when
4204 // there is a serious error in VM. The two shutdown paths are not exactly
4205 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4206 // and VM_Exit op at VM level.
4207 //
4208 // Shutdown sequence:
4209 //   + Shutdown native memory tracking if it is on
4210 //   + Wait until we are the last non-daemon thread to execute
4211 //     <-- every thing is still working at this moment -->
4212 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4213 //        shutdown hooks
4214 //   + Call before_exit(), prepare for VM exit
4215 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4216 //        currently the only user of this mechanism is File.deleteOnExit())
4217 //      > stop StatSampler, watcher thread, CMS threads,
4218 //        post thread end and vm death events to JVMTI,
4219 //        stop signal thread
4220 //   + Call JavaThread::exit(), it will:
4221 //      > release JNI handle blocks, remove stack guard pages
4222 //      > remove this thread from Threads list
4223 //     <-- no more Java code from this thread after this point -->
4224 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4225 //     the compiler threads at safepoint
4226 //     <-- do not use anything that could get blocked by Safepoint -->
4227 //   + Disable tracing at JNI/JVM barriers
4228 //   + Set _vm_exited flag for threads that are still running native code
4229 //   + Call exit_globals()
4230 //      > deletes tty
4231 //      > deletes PerfMemory resources
4232 //   + Delete this thread
4233 //   + Return to caller
4234 
4235 bool Threads::destroy_vm() {
4236   JavaThread* thread = JavaThread::current();
4237 
4238 #ifdef ASSERT
4239   _vm_complete = false;
4240 #endif
4241   // Wait until we are the last non-daemon thread to execute
4242   { MutexLocker nu(Threads_lock);
4243     while (Threads::number_of_non_daemon_threads() > 1)
4244       // This wait should make safepoint checks, wait without a timeout,
4245       // and wait as a suspend-equivalent condition.
4246       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4247                          Mutex::_as_suspend_equivalent_flag);
4248   }
4249 
4250   EventShutdown e;
4251   if (e.should_commit()) {
4252     e.set_reason("No remaining non-daemon Java threads");
4253     e.commit();
4254   }
4255 
4256   // Hang forever on exit if we are reporting an error.
4257   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4258     os::infinite_sleep();
4259   }
4260   os::wait_for_keypress_at_exit();
4261 
4262   // run Java level shutdown hooks
4263   thread->invoke_shutdown_hooks();
4264 
4265   before_exit(thread);
4266 
4267   thread->exit(true);
4268   // thread will never call smr_delete, instead of implicit cancel
4269   // in wait_for_vm_thread_exit we do it explicit.
4270   thread->cancel_handshake();
4271 
4272   // Stop VM thread.
4273   {
4274     // 4945125 The vm thread comes to a safepoint during exit.
4275     // GC vm_operations can get caught at the safepoint, and the
4276     // heap is unparseable if they are caught. Grab the Heap_lock
4277     // to prevent this. The GC vm_operations will not be able to
4278     // queue until after the vm thread is dead. After this point,
4279     // we'll never emerge out of the safepoint before the VM exits.
4280 
4281     MutexLocker ml(Heap_lock);
4282 
4283     VMThread::wait_for_vm_thread_exit();
4284     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4285     VMThread::destroy();
4286   }
4287 
4288   // Now, all Java threads are gone except daemon threads. Daemon threads
4289   // running Java code or in VM are stopped by the Safepoint. However,
4290   // daemon threads executing native code are still running.  But they
4291   // will be stopped at native=>Java/VM barriers. Note that we can't
4292   // simply kill or suspend them, as it is inherently deadlock-prone.
4293 
4294   VM_Exit::set_vm_exited();
4295 
4296   // Clean up ideal graph printers after the VMThread has started
4297   // the final safepoint which will block all the Compiler threads.
4298   // Note that this Thread has already logically exited so the
4299   // clean_up() function's use of a JavaThreadIteratorWithHandle
4300   // would be a problem except set_vm_exited() has remembered the
4301   // shutdown thread which is granted a policy exception.
4302 #if defined(COMPILER2) && !defined(PRODUCT)
4303   IdealGraphPrinter::clean_up();
4304 #endif
4305 
4306   notify_vm_shutdown();
4307 
4308   // exit_globals() will delete tty
4309   exit_globals();
4310 
4311   // We are after VM_Exit::set_vm_exited() so we can't call
4312   // thread->smr_delete() or we will block on the Threads_lock.
4313   // Deleting the shutdown thread here is safe because another
4314   // JavaThread cannot have an active ThreadsListHandle for
4315   // this JavaThread.
4316   delete thread;
4317 
4318 #if INCLUDE_JVMCI
4319   if (JVMCICounterSize > 0) {
4320     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4321   }
4322 #endif
4323 
4324   LogConfiguration::finalize();
4325 
4326   return true;
4327 }
4328 
4329 
4330 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4331   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4332   return is_supported_jni_version(version);
4333 }
4334 
4335 
4336 jboolean Threads::is_supported_jni_version(jint version) {
4337   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4338   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4339   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4340   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4341   if (version == JNI_VERSION_9) return JNI_TRUE;
4342   if (version == JNI_VERSION_10) return JNI_TRUE;
4343   return JNI_FALSE;
4344 }
4345 
4346 
4347 void Threads::add(JavaThread* p, bool force_daemon) {
4348   // The threads lock must be owned at this point
4349   assert_locked_or_safepoint(Threads_lock);
4350 
4351   BarrierSet::barrier_set()->on_thread_attach(p);
4352 
4353   p->set_next(_thread_list);
4354   _thread_list = p;
4355 
4356   // Once a JavaThread is added to the Threads list, smr_delete() has
4357   // to be used to delete it. Otherwise we can just delete it directly.
4358   p->set_on_thread_list();
4359 
4360   _number_of_threads++;
4361   oop threadObj = p->threadObj();
4362   bool daemon = true;
4363   // Bootstrapping problem: threadObj can be null for initial
4364   // JavaThread (or for threads attached via JNI)
4365   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4366     _number_of_non_daemon_threads++;
4367     daemon = false;
4368   }
4369 
4370   ThreadService::add_thread(p, daemon);
4371 
4372   // Maintain fast thread list
4373   ThreadsSMRSupport::add_thread(p);
4374 
4375   // Possible GC point.
4376   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4377 }
4378 
4379 void Threads::remove(JavaThread* p) {
4380 
4381   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4382   ObjectSynchronizer::omFlush(p);
4383 
4384   // Extra scope needed for Thread_lock, so we can check
4385   // that we do not remove thread without safepoint code notice
4386   { MutexLocker ml(Threads_lock);
4387 
4388     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4389 
4390     // Maintain fast thread list
4391     ThreadsSMRSupport::remove_thread(p);
4392 
4393     JavaThread* current = _thread_list;
4394     JavaThread* prev    = NULL;
4395 
4396     while (current != p) {
4397       prev    = current;
4398       current = current->next();
4399     }
4400 
4401     if (prev) {
4402       prev->set_next(current->next());
4403     } else {
4404       _thread_list = p->next();
4405     }
4406 
4407     _number_of_threads--;
4408     oop threadObj = p->threadObj();
4409     bool daemon = true;
4410     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4411       _number_of_non_daemon_threads--;
4412       daemon = false;
4413 
4414       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4415       // on destroy_vm will wake up.
4416       if (number_of_non_daemon_threads() == 1) {
4417         Threads_lock->notify_all();
4418       }
4419     }
4420     ThreadService::remove_thread(p, daemon);
4421 
4422     // Make sure that safepoint code disregard this thread. This is needed since
4423     // the thread might mess around with locks after this point. This can cause it
4424     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4425     // of this thread since it is removed from the queue.
4426     p->set_terminated_value();
4427   } // unlock Threads_lock
4428 
4429   // Since Events::log uses a lock, we grab it outside the Threads_lock
4430   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4431 }
4432 
4433 // Operations on the Threads list for GC.  These are not explicitly locked,
4434 // but the garbage collector must provide a safe context for them to run.
4435 // In particular, these things should never be called when the Threads_lock
4436 // is held by some other thread. (Note: the Safepoint abstraction also
4437 // uses the Threads_lock to guarantee this property. It also makes sure that
4438 // all threads gets blocked when exiting or starting).
4439 
4440 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4441   ALL_JAVA_THREADS(p) {
4442     p->oops_do(f, cf);
4443   }
4444   VMThread::vm_thread()->oops_do(f, cf);
4445 }
4446 
4447 void Threads::change_thread_claim_parity() {
4448   // Set the new claim parity.
4449   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4450          "Not in range.");
4451   _thread_claim_parity++;
4452   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4453   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4454          "Not in range.");
4455 }
4456 
4457 #ifdef ASSERT
4458 void Threads::assert_all_threads_claimed() {
4459   ALL_JAVA_THREADS(p) {
4460     const int thread_parity = p->oops_do_parity();
4461     assert((thread_parity == _thread_claim_parity),
4462            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4463   }
4464   VMThread* vmt = VMThread::vm_thread();
4465   const int thread_parity = vmt->oops_do_parity();
4466   assert((thread_parity == _thread_claim_parity),
4467          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4468 }
4469 #endif // ASSERT
4470 
4471 class ParallelOopsDoThreadClosure : public ThreadClosure {
4472 private:
4473   OopClosure* _f;
4474   CodeBlobClosure* _cf;
4475 public:
4476   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4477   void do_thread(Thread* t) {
4478     t->oops_do(_f, _cf);
4479   }
4480 };
4481 
4482 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4483   ParallelOopsDoThreadClosure tc(f, cf);
4484   possibly_parallel_threads_do(is_par, &tc);
4485 }
4486 
4487 void Threads::nmethods_do(CodeBlobClosure* cf) {
4488   ALL_JAVA_THREADS(p) {
4489     // This is used by the code cache sweeper to mark nmethods that are active
4490     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4491     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4492     if(!p->is_Code_cache_sweeper_thread()) {
4493       p->nmethods_do(cf);
4494     }
4495   }
4496 }
4497 
4498 void Threads::metadata_do(void f(Metadata*)) {
4499   ALL_JAVA_THREADS(p) {
4500     p->metadata_do(f);
4501   }
4502 }
4503 
4504 class ThreadHandlesClosure : public ThreadClosure {
4505   void (*_f)(Metadata*);
4506  public:
4507   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4508   virtual void do_thread(Thread* thread) {
4509     thread->metadata_handles_do(_f);
4510   }
4511 };
4512 
4513 void Threads::metadata_handles_do(void f(Metadata*)) {
4514   // Only walk the Handles in Thread.
4515   ThreadHandlesClosure handles_closure(f);
4516   threads_do(&handles_closure);
4517 }
4518 
4519 void Threads::deoptimized_wrt_marked_nmethods() {
4520   ALL_JAVA_THREADS(p) {
4521     p->deoptimized_wrt_marked_nmethods();
4522   }
4523 }
4524 
4525 
4526 // Get count Java threads that are waiting to enter the specified monitor.
4527 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4528                                                          int count,
4529                                                          address monitor) {
4530   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4531 
4532   int i = 0;
4533   DO_JAVA_THREADS(t_list, p) {
4534     if (!p->can_call_java()) continue;
4535 
4536     address pending = (address)p->current_pending_monitor();
4537     if (pending == monitor) {             // found a match
4538       if (i < count) result->append(p);   // save the first count matches
4539       i++;
4540     }
4541   }
4542 
4543   return result;
4544 }
4545 
4546 
4547 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4548                                                       address owner) {
4549   // NULL owner means not locked so we can skip the search
4550   if (owner == NULL) return NULL;
4551 
4552   DO_JAVA_THREADS(t_list, p) {
4553     // first, see if owner is the address of a Java thread
4554     if (owner == (address)p) return p;
4555   }
4556 
4557   // Cannot assert on lack of success here since this function may be
4558   // used by code that is trying to report useful problem information
4559   // like deadlock detection.
4560   if (UseHeavyMonitors) return NULL;
4561 
4562   // If we didn't find a matching Java thread and we didn't force use of
4563   // heavyweight monitors, then the owner is the stack address of the
4564   // Lock Word in the owning Java thread's stack.
4565   //
4566   JavaThread* the_owner = NULL;
4567   DO_JAVA_THREADS(t_list, q) {
4568     if (q->is_lock_owned(owner)) {
4569       the_owner = q;
4570       break;
4571     }
4572   }
4573 
4574   // cannot assert on lack of success here; see above comment
4575   return the_owner;
4576 }
4577 
4578 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4579 void Threads::print_on(outputStream* st, bool print_stacks,
4580                        bool internal_format, bool print_concurrent_locks,
4581                        bool print_extended_info) {
4582   char buf[32];
4583   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4584 
4585   st->print_cr("Full thread dump %s (%s %s):",
4586                VM_Version::vm_name(),
4587                VM_Version::vm_release(),
4588                VM_Version::vm_info_string());
4589   st->cr();
4590 
4591 #if INCLUDE_SERVICES
4592   // Dump concurrent locks
4593   ConcurrentLocksDump concurrent_locks;
4594   if (print_concurrent_locks) {
4595     concurrent_locks.dump_at_safepoint();
4596   }
4597 #endif // INCLUDE_SERVICES
4598 
4599   ThreadsSMRSupport::print_info_on(st);
4600   st->cr();
4601 
4602   ALL_JAVA_THREADS(p) {
4603     ResourceMark rm;
4604     p->print_on(st, print_extended_info);
4605     if (print_stacks) {
4606       if (internal_format) {
4607         p->trace_stack();
4608       } else {
4609         p->print_stack_on(st);
4610       }
4611     }
4612     st->cr();
4613 #if INCLUDE_SERVICES
4614     if (print_concurrent_locks) {
4615       concurrent_locks.print_locks_on(p, st);
4616     }
4617 #endif // INCLUDE_SERVICES
4618   }
4619 
4620   VMThread::vm_thread()->print_on(st);
4621   st->cr();
4622   Universe::heap()->print_gc_threads_on(st);
4623   WatcherThread* wt = WatcherThread::watcher_thread();
4624   if (wt != NULL) {
4625     wt->print_on(st);
4626     st->cr();
4627   }
4628 
4629   st->flush();
4630 }
4631 
4632 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4633                              int buflen, bool* found_current) {
4634   if (this_thread != NULL) {
4635     bool is_current = (current == this_thread);
4636     *found_current = *found_current || is_current;
4637     st->print("%s", is_current ? "=>" : "  ");
4638 
4639     st->print(PTR_FORMAT, p2i(this_thread));
4640     st->print(" ");
4641     this_thread->print_on_error(st, buf, buflen);
4642     st->cr();
4643   }
4644 }
4645 
4646 class PrintOnErrorClosure : public ThreadClosure {
4647   outputStream* _st;
4648   Thread* _current;
4649   char* _buf;
4650   int _buflen;
4651   bool* _found_current;
4652  public:
4653   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4654                       int buflen, bool* found_current) :
4655    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4656 
4657   virtual void do_thread(Thread* thread) {
4658     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4659   }
4660 };
4661 
4662 // Threads::print_on_error() is called by fatal error handler. It's possible
4663 // that VM is not at safepoint and/or current thread is inside signal handler.
4664 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4665 // memory (even in resource area), it might deadlock the error handler.
4666 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4667                              int buflen) {
4668   ThreadsSMRSupport::print_info_on(st);
4669   st->cr();
4670 
4671   bool found_current = false;
4672   st->print_cr("Java Threads: ( => current thread )");
4673   ALL_JAVA_THREADS(thread) {
4674     print_on_error(thread, st, current, buf, buflen, &found_current);
4675   }
4676   st->cr();
4677 
4678   st->print_cr("Other Threads:");
4679   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4680   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4681 
4682   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4683   Universe::heap()->gc_threads_do(&print_closure);
4684 
4685   if (!found_current) {
4686     st->cr();
4687     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4688     current->print_on_error(st, buf, buflen);
4689     st->cr();
4690   }
4691   st->cr();
4692 
4693   st->print_cr("Threads with active compile tasks:");
4694   print_threads_compiling(st, buf, buflen);
4695 }
4696 
4697 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4698   ALL_JAVA_THREADS(thread) {
4699     if (thread->is_Compiler_thread()) {
4700       CompilerThread* ct = (CompilerThread*) thread;
4701 
4702       // Keep task in local variable for NULL check.
4703       // ct->_task might be set to NULL by concurring compiler thread
4704       // because it completed the compilation. The task is never freed,
4705       // though, just returned to a free list.
4706       CompileTask* task = ct->task();
4707       if (task != NULL) {
4708         thread->print_name_on_error(st, buf, buflen);
4709         task->print(st, NULL, true, true);
4710       }
4711     }
4712   }
4713 }
4714 
4715 
4716 // Internal SpinLock and Mutex
4717 // Based on ParkEvent
4718 
4719 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4720 //
4721 // We employ SpinLocks _only for low-contention, fixed-length
4722 // short-duration critical sections where we're concerned
4723 // about native mutex_t or HotSpot Mutex:: latency.
4724 // The mux construct provides a spin-then-block mutual exclusion
4725 // mechanism.
4726 //
4727 // Testing has shown that contention on the ListLock guarding gFreeList
4728 // is common.  If we implement ListLock as a simple SpinLock it's common
4729 // for the JVM to devolve to yielding with little progress.  This is true
4730 // despite the fact that the critical sections protected by ListLock are
4731 // extremely short.
4732 //
4733 // TODO-FIXME: ListLock should be of type SpinLock.
4734 // We should make this a 1st-class type, integrated into the lock
4735 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4736 // should have sufficient padding to avoid false-sharing and excessive
4737 // cache-coherency traffic.
4738 
4739 
4740 typedef volatile int SpinLockT;
4741 
4742 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4743   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4744     return;   // normal fast-path return
4745   }
4746 
4747   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4748   int ctr = 0;
4749   int Yields = 0;
4750   for (;;) {
4751     while (*adr != 0) {
4752       ++ctr;
4753       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4754         if (Yields > 5) {
4755           os::naked_short_sleep(1);
4756         } else {
4757           os::naked_yield();
4758           ++Yields;
4759         }
4760       } else {
4761         SpinPause();
4762       }
4763     }
4764     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4765   }
4766 }
4767 
4768 void Thread::SpinRelease(volatile int * adr) {
4769   assert(*adr != 0, "invariant");
4770   OrderAccess::fence();      // guarantee at least release consistency.
4771   // Roach-motel semantics.
4772   // It's safe if subsequent LDs and STs float "up" into the critical section,
4773   // but prior LDs and STs within the critical section can't be allowed
4774   // to reorder or float past the ST that releases the lock.
4775   // Loads and stores in the critical section - which appear in program
4776   // order before the store that releases the lock - must also appear
4777   // before the store that releases the lock in memory visibility order.
4778   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4779   // the ST of 0 into the lock-word which releases the lock, so fence
4780   // more than covers this on all platforms.
4781   *adr = 0;
4782 }
4783 
4784 // muxAcquire and muxRelease:
4785 //
4786 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4787 //    The LSB of the word is set IFF the lock is held.
4788 //    The remainder of the word points to the head of a singly-linked list
4789 //    of threads blocked on the lock.
4790 //
4791 // *  The current implementation of muxAcquire-muxRelease uses its own
4792 //    dedicated Thread._MuxEvent instance.  If we're interested in
4793 //    minimizing the peak number of extant ParkEvent instances then
4794 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4795 //    as certain invariants were satisfied.  Specifically, care would need
4796 //    to be taken with regards to consuming unpark() "permits".
4797 //    A safe rule of thumb is that a thread would never call muxAcquire()
4798 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4799 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4800 //    consume an unpark() permit intended for monitorenter, for instance.
4801 //    One way around this would be to widen the restricted-range semaphore
4802 //    implemented in park().  Another alternative would be to provide
4803 //    multiple instances of the PlatformEvent() for each thread.  One
4804 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4805 //
4806 // *  Usage:
4807 //    -- Only as leaf locks
4808 //    -- for short-term locking only as muxAcquire does not perform
4809 //       thread state transitions.
4810 //
4811 // Alternatives:
4812 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4813 //    but with parking or spin-then-park instead of pure spinning.
4814 // *  Use Taura-Oyama-Yonenzawa locks.
4815 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4816 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4817 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4818 //    acquiring threads use timers (ParkTimed) to detect and recover from
4819 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4820 //    boundaries by using placement-new.
4821 // *  Augment MCS with advisory back-link fields maintained with CAS().
4822 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4823 //    The validity of the backlinks must be ratified before we trust the value.
4824 //    If the backlinks are invalid the exiting thread must back-track through the
4825 //    the forward links, which are always trustworthy.
4826 // *  Add a successor indication.  The LockWord is currently encoded as
4827 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4828 //    to provide the usual futile-wakeup optimization.
4829 //    See RTStt for details.
4830 //
4831 
4832 
4833 const intptr_t LOCKBIT = 1;
4834 
4835 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4836   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4837   if (w == 0) return;
4838   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4839     return;
4840   }
4841 
4842   ParkEvent * const Self = Thread::current()->_MuxEvent;
4843   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4844   for (;;) {
4845     int its = (os::is_MP() ? 100 : 0) + 1;
4846 
4847     // Optional spin phase: spin-then-park strategy
4848     while (--its >= 0) {
4849       w = *Lock;
4850       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4851         return;
4852       }
4853     }
4854 
4855     Self->reset();
4856     Self->OnList = intptr_t(Lock);
4857     // The following fence() isn't _strictly necessary as the subsequent
4858     // CAS() both serializes execution and ratifies the fetched *Lock value.
4859     OrderAccess::fence();
4860     for (;;) {
4861       w = *Lock;
4862       if ((w & LOCKBIT) == 0) {
4863         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4864           Self->OnList = 0;   // hygiene - allows stronger asserts
4865           return;
4866         }
4867         continue;      // Interference -- *Lock changed -- Just retry
4868       }
4869       assert(w & LOCKBIT, "invariant");
4870       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4871       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4872     }
4873 
4874     while (Self->OnList != 0) {
4875       Self->park();
4876     }
4877   }
4878 }
4879 
4880 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4881   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4882   if (w == 0) return;
4883   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4884     return;
4885   }
4886 
4887   ParkEvent * ReleaseAfter = NULL;
4888   if (ev == NULL) {
4889     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4890   }
4891   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4892   for (;;) {
4893     guarantee(ev->OnList == 0, "invariant");
4894     int its = (os::is_MP() ? 100 : 0) + 1;
4895 
4896     // Optional spin phase: spin-then-park strategy
4897     while (--its >= 0) {
4898       w = *Lock;
4899       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4900         if (ReleaseAfter != NULL) {
4901           ParkEvent::Release(ReleaseAfter);
4902         }
4903         return;
4904       }
4905     }
4906 
4907     ev->reset();
4908     ev->OnList = intptr_t(Lock);
4909     // The following fence() isn't _strictly necessary as the subsequent
4910     // CAS() both serializes execution and ratifies the fetched *Lock value.
4911     OrderAccess::fence();
4912     for (;;) {
4913       w = *Lock;
4914       if ((w & LOCKBIT) == 0) {
4915         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4916           ev->OnList = 0;
4917           // We call ::Release while holding the outer lock, thus
4918           // artificially lengthening the critical section.
4919           // Consider deferring the ::Release() until the subsequent unlock(),
4920           // after we've dropped the outer lock.
4921           if (ReleaseAfter != NULL) {
4922             ParkEvent::Release(ReleaseAfter);
4923           }
4924           return;
4925         }
4926         continue;      // Interference -- *Lock changed -- Just retry
4927       }
4928       assert(w & LOCKBIT, "invariant");
4929       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4930       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4931     }
4932 
4933     while (ev->OnList != 0) {
4934       ev->park();
4935     }
4936   }
4937 }
4938 
4939 // Release() must extract a successor from the list and then wake that thread.
4940 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4941 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4942 // Release() would :
4943 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4944 // (B) Extract a successor from the private list "in-hand"
4945 // (C) attempt to CAS() the residual back into *Lock over null.
4946 //     If there were any newly arrived threads and the CAS() would fail.
4947 //     In that case Release() would detach the RATs, re-merge the list in-hand
4948 //     with the RATs and repeat as needed.  Alternately, Release() might
4949 //     detach and extract a successor, but then pass the residual list to the wakee.
4950 //     The wakee would be responsible for reattaching and remerging before it
4951 //     competed for the lock.
4952 //
4953 // Both "pop" and DMR are immune from ABA corruption -- there can be
4954 // multiple concurrent pushers, but only one popper or detacher.
4955 // This implementation pops from the head of the list.  This is unfair,
4956 // but tends to provide excellent throughput as hot threads remain hot.
4957 // (We wake recently run threads first).
4958 //
4959 // All paths through muxRelease() will execute a CAS.
4960 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4961 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4962 // executed within the critical section are complete and globally visible before the
4963 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4964 void Thread::muxRelease(volatile intptr_t * Lock)  {
4965   for (;;) {
4966     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4967     assert(w & LOCKBIT, "invariant");
4968     if (w == LOCKBIT) return;
4969     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4970     assert(List != NULL, "invariant");
4971     assert(List->OnList == intptr_t(Lock), "invariant");
4972     ParkEvent * const nxt = List->ListNext;
4973     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4974 
4975     // The following CAS() releases the lock and pops the head element.
4976     // The CAS() also ratifies the previously fetched lock-word value.
4977     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
4978       continue;
4979     }
4980     List->OnList = 0;
4981     OrderAccess::fence();
4982     List->unpark();
4983     return;
4984   }
4985 }
4986 
4987 
4988 void Threads::verify() {
4989   ALL_JAVA_THREADS(p) {
4990     p->verify();
4991   }
4992   VMThread* thread = VMThread::vm_thread();
4993   if (thread != NULL) thread->verify();
4994 }